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Abstract: In many applications of generalized linear mixed models (GLMMs), there

is a hierarchical structure in the effects that needs to be taken into account when

performing variable selection. A prime example of this is when fitting mixed models

to longitudinal data, where it is usual for covariates to be included as only fixed

effects or as composite (fixed and random) effects. In this article, we propose the

first regularization method that can deal with large numbers of candidate GLMMs

while preserving this hierarchical structure: CREPE (Composite Random Effects

PEnalty) for joint selection in mixed models. CREPE induces sparsity in a hier-

archical manner, as the fixed effect for a covariate is shrunk to zero only if the

corresponding random effect is or has already been shrunk to zero. In the setting

where the number of fixed effects grow at a slower rate than the number of clusters,

we show that CREPE is selection consistent for both fixed and random effects,

and attains the oracle property. Simulations show that CREPE outperforms some

currently available penalized methods for mixed models.
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1. Introduction

Joint selection of fixed and random effects in generalized linear mixed models

(GLMMs) presents a challenging problem, especially as regards the question of

how to perform selection in a computationally efficient manner while account-

ing for any hierarchical structure present in the model. Even with a bounded

number of covariates, when jointly selecting over fixed and random effects the

number of candidate models is considerably larger than in the standard regres-

sion context, making methods based on information criteria or the fence (Jiang

et al. (2008)) computationally burdensome; see Müller, Scealy and Welsh (2013)

for a general review of model selection in linear mixed models. One approach to

overcoming this computational problem is penalized likelihood methods. While

penalized methods for generalized linear models have been extensively studied

(dating back to Tibshirani (1996)), their application to mixed models has only
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recently been considered, almost exclusively in settings where the number of co-

variates is bounded, and the selection of fixed and random effects is treated as

separate processes. Bondell, Krishna and Ghosh (2010) and Ibrahim et al. (2011)

proposed separate penalties for the fixed and random effects that are summed to-

gether. Fan and Li (2012), Peng and Lu (2012), and Lin, Pang and Jiang (2013)

all proposed two-stage methods where the fixed and random effects selection are

performed independently.

When fitting GLMMs to longitudinal data, there is a hierarchical structure

in the selection of the effects that is often imposed in practice, namely “we

usually only consider time-varying covariates that have been included in the

fixed effects.” (Cheng et al. (2010)). It is natural for covariates to be included

as either a fixed effect only, or as both fixed and random effects. We refer to the

latter as a composite effect covariate. As an example, in a longitudinal study

monitoring the weights of infants over time (see Section 6), a random slope is

included to account for heterogeneity between infants’ changes in weight only if

there is a significant overall trend (fixed effect) over time. Another example is in

forest management, where random slopes are used to account for between plot

variability only if a significant change is observed in the forest’s overall health in

response to climate (Hao et al. (2015)). Of course there may be exceptions to

this hierarchical structure, a notable one being the case of linear mixed models

with centered responses, where a random intercept may be included without

a fixed intercept. For most settings however, it is reasonable that covariates

should be included as either fixed or composite effects. However, while notions

of hierarchical selection have been researched in (generalized) linear models with

grouped variables and ordered or polynomial terms, see for instance the group

LASSO (Least Absolute Shrinkage and Selection Operator) of Yuan and Lin

(2006) and the composite absolute penalty of Zhao, Rocha and Yu (2009), they

have not been investigated for GLMMs. This is exemplified in the illustrative

examples of Bondell, Krishna and Ghosh (2010) and Ibrahim et al. (2011), where

the respective penalties lead to at least one covariate selected only as a random

effect.

We propose a penalty called CREPE (Composite Random Effects PEnalty)

for hierarchical selection of fixed and random effects in longitudinal GLMMs.

CREPE is the first penalty that directly incorporates the notion of covariates

being selected as fixed or composite effects. This is done by exploiting the hi-

erarchical structure of the effects, such that a fixed effect coefficient is shrunk

to zero only if the corresponding random effect coefficients are, or have already
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been shrunk to, zero. CREPE also accommodates covariates that are included

a-priori as fixed effects only. The concept of using a penalty that accounts for

the hierarchical structure of the effects has been considered in other contexts, e.g.

the fused LASSO (Tibshirani et al. (2005)), finite mixture of regression models

(Hui, Warton and Foster (2015a)), and feature selection in bioinformatics (Gar-

cia et al. (2014)), but has yet to be explored for joint selection in GLMMs. A key

part of CREPE’s design involves the use of a group-based penalty for selecting

the random effects, specifically, the elements in a row of the eigendecomposition

of the random effects covariance matrix (as defined in Section 2) are encouraged

to be zero simultaneously.

In the setting where the number of fixed effects is allowed to grow at a

slower rate than the number of clusters, we show that CREPE satisfies the ora-

cle property of asymptotically identifying the truly non-zero fixed and composite

covariates. Regarding computation, we use a Monte-Carlo Expectation Maxi-

mization (MCEM, Wei and Tanner (1990)) algorithm to calculate the CREPE

estimates, showing how the E-step can be performed straightforwardly for the

common cases of Gaussian, Poisson, and Bernoulli responses. Simulation stud-

ies show CREPE outperforms some other penalties available for jointly selecting

fixed and random effects in GLMMs. We illustrate the application of CREPE to

a longitudinal infant study for identifying important baseline and time-varying

predictors of infant weights. We provide R code for calculating the CREPE esti-

mates in the Supplementary Material; an R package is planned in future research.

2. Model Selection Using CREPE

We focus on the independent cluster model with random intercepts and

slopes. Let yij denote the jth response collected for the ith cluster, where

i = 1, . . . , n and j = 1, . . . ,m. For simplicity, all clusters are assumed to have

the same number of measurements, m, where m is bounded and does not grow

with n. Conditional on the random effects, the yij are assumed to be inde-

pendent responses from the exponential family f(yij |β, bi, ϕ) with mean µij and

dispersion parameter ϕ. Given a link function g(·), the mean is modeled as

g(µij) = ηij = xT
ijβ + zT

ijbi for a vector xij of predictors corresponding to fixed

effects β, and a vector zij of predictors corresponding to random effects bi, both

containing an intercept term if appropriate. The random effects are assumed to

have a multivariate Gaussian distribution, bi ∼ N (0,Σ) where Σ = ΓΓT and Γ

is an unstructured matrix of the same dimension as Σ, based on the eigendecom-
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position Σ = QΛ1/2Λ1/2QT = ΓΓT such that Γ = QΛ1/2, with Q an orthogonal

matrix of normalized eigenvectors and Λ a diagonal matrix of eigenvalues.

Lemma 1. Let γk be the kth row of Γ. Then for each k, ∥γk∥ = 0 implies that

[Σ]kl = [Σ]lk = 0 for all l, where [Σ]kl refers to element (k, l) of Σ, and ∥ · ∥
denotes the L2-norm.

This result suggests that, rather than penalizing the (diagonal) elements of

Σ directly, we can employ a group-based penalty on the rows γk, and indeed

this is what we pursue. One advantage group-based penalization on the eigen-

decomposition has is that all the elements of Γ can take any number on the real

line. This contrasts to the diagonal elements of both Σ and its Cholesky de-

composition, which are bounded below by zero (see Bondell, Krishna and Ghosh

(2010), Lin, Pang and Jiang (2013), and Pan and Huang (2014) for examples of

methods that penalize the diagonal elements of Σ or its Cholesky decomposi-

tion). By using the eigendecomposition, we can avoid potential boundary issues

when performing Taylor expansions (used in the theoretical study of the CREPE

estimators in Section 3) and during the actual estimation process.

For the independent cluster GLMM, the observed log-likelihood for a GLMM

is,

ℓ(Ψ) =

n∑
i=1

ℓi(Ψ) =

n∑
i=1

log



∫ m∏

j=1

f(yij |β, ϕ, bi)f(bi|Γ)dbi


 ,

where ℓi(Ψ) is the log-likelihood contribution from the ith cluster, and Ψ =

{β, ϕ, vec(Γ)}.
We introduce some notation describing the nature of the covariates in the

GLMM. Let α denote the full set of p covariates in the dataset. We divide this set

into mutually exclusive subsets αf , which denotes the set of pf covariates entered

into the model as fixed effects only (e.g., baseline covariates such as gender), and

αc, which denotes the set of pc covariates entered into the model as composite

effects (e.g., time varying covariates such as time of visit). We allow pf to grow at

a smaller rate than n (see Condition C6 in Section 3), while assuming pc < m is

fixed. Subsequently, we can write Ψ = (β, ϕ,γ1, . . . ,γpc
) where β = (βαf

,βαc
).

The CREPE estimator is defined as the maximizer of the penalized log-

likelihood function

ℓpen(Ψ) = ℓ(Ψ)− nλ

p∑
k=1

w̃k

(
β2
k + {k∈αc}ṽk∥γk∥

)1/2
, (2.1)

where λ > 0 is the tuning parameter and {·} denotes the indicator function. The
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adaptive weights w̃k and ṽk may depend on a common power parameter ν > 0

(Zou (2006)) and are required to satisfy some regularity conditions.

For k ∈ αf , CREPE reduces to the adaptive LASSO penalty (Zou (2006)).

On the other hand, for k ∈ αc, CREPE encourages sparsity in a hierarchical man-

ner so that either both the fixed and random effects for the covariate are shrunk to

zero, or only the random effect is shrunk to zero. There are two types of sparsity

featured in CREPE: group sparsity, occurring on the rows of the eigendecom-

position, ∥γk∥ = 0, and the “larger” sparsity given by (β2
k + {k∈αc}ṽk∥γk∥)1/2.

Critically, the group sparsity is nested inside the larger sparsity event. Thus

∥γk∥ = 0 must occur either before or simultaneously with βk = 0. Then, in

maximizing (2.1), CREPE allows a covariate k ∈ αc to be included as either a

fixed effect only, or as a composite effect.

Such a group penalty approach to random effects selection has been consid-

ered before by Ibrahim et al. (2011), and is arguably a better approach than that

used by Bondell, Krishna and Ghosh (2010) amongst others, which penalizes the

diagonal elements of the Cholesky decomposition of Σ.

Fixed intercepts in GLMMs are generally not penalized, although the ran-

dom intercept (if included) may be. In such a case, (2.1) can be altered to

ℓpen(Ψ) = ℓ(Ψ)− nλ(ṽ1∥γ1∥)1/2 − nλ
p∑

k=2

w̃k(β
2
k + {k∈αc}ṽk∥γk∥)1/2, where it is

assumed the first elements in xij and zij represent the fixed and random inter-

cepts respectively.

3. Asymptotic Properties

We study the large sample properties of the CREPE estimator when pf grows

at a slower rate than n, while pc is fixed. Allowing the number of random effects

to grow is a more difficult problem, as it requires both the number of clusters

and the cluster size to grow in order to achieve attractive asymptotic properties

(see for instance Fan and Li (2012)), and (Demidenko (2004)) for an overview of

asymptotic theory in mixed models.

Let Ψ0 = (β0, ϕ0,γ01, . . . ,γ0pc
), denote the true parameter values, where

β0 = (β0αf
,β0αc

) and, let p0f be the number of non-zero elements in β0αf
.

Without loss of generality, we write Ψ0 = (Ψ01,Ψ02 = 0) so Ψ01 consists of all

the non-zero elements of β0, all the vectors γ0k whose L2-norm is positive, and

ϕ0. Likewise, we write the CREPE estimate as Ψ̂ = (Ψ̂1, Ψ̂2).

Let H(Ψ) = −(1/n)∂2ℓ(Ψ)/∂Ψ∂ΨT denote the observed Fisher information

matrix for the GLMM, and let κmin{H(Ψ)} and κmax{H(Ψ)} denote its mini-
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k + {k∈αc}ṽk∥γk∥)1/2.

Critically, the group sparsity is nested inside the larger sparsity event. Thus

∥γk∥ = 0 must occur either before or simultaneously with βk = 0. Then, in

maximizing (2.1), CREPE allows a covariate k ∈ αc to be included as either a

fixed effect only, or as a composite effect.

Such a group penalty approach to random effects selection has been consid-

ered before by Ibrahim et al. (2011), and is arguably a better approach than that

used by Bondell, Krishna and Ghosh (2010) amongst others, which penalizes the

diagonal elements of the Cholesky decomposition of Σ.

Fixed intercepts in GLMMs are generally not penalized, although the ran-

dom intercept (if included) may be. In such a case, (2.1) can be altered to

ℓpen(Ψ) = ℓ(Ψ)− nλ(ṽ1∥γ1∥)1/2 − nλ
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mum and maximum eigenvalues respectively. The following regularity conditions

are required here.

(C1) For every n, there exists a positive constant c1 such that 0 < c1 <

κmin{H(Ψ0)} < κmax{H(Ψ0)} < 1/c1 < ∞.

(C2) For any given ϵ > 0, there exists a δ > 0 with ∥Ψ − Ψ0∥ < δ such that

(1− ϵ)c1 < κmin{H(Ψ)} < κmax{H(Ψ)} < (1 + ϵ)/c1 for n large enough.

(C3) There exists an open subset Ω in the interior of the parameter space of Ψ,

containing Ψ0, such that the third derivatives of the log-likelihood ℓ(Ψ)

exist for every Ψ ∈ Ω. For all Ψ ∈ Ω, there exist integrable functions

Urst such that
��∂3ℓ(Ψ)/∂Ψr∂Ψs∂Ψt

�� < Urst, with E(U2
rst) < ∞, where the

expectation is with respect to the true model.

(C4)
(
minl∈Ψ01

{β2
0l}+minl∈Ψ01

{∥γ0l∥}
)
≥ c2, where c2 > 0 is a positive con-

stant.

(C5) The adaptive weights satisfy w̃k = Op(1) and ṽk = Op(1) for k ∈ Ψ01, and

w̃k = Op{(n/pf )ν/2} and ṽk = Op{(n/pf )ν/2} for k ∈ Ψ02.

(C6) (a) λ
√
np0f → 0 (b) λ(n/pf )

(ν+3)/4 → ∞, where ν > 0.

Condition (C1) ensures the observed Fisher information matrix is well-defined

at the true parameter values for every n, while condition (C2) extends this to a

small neighborhood of Ψ0. The two conditions are similar to conditions A4 and

A5 in Chen and Chen (2012) for generalized linear models (GLMs). Condition

(C3) is a mild condition to ensure the log-likelihood function for GLMMs is suffi-

ciently smooth. Since Ψ involves elements of the eigendecomposition Γ that can

take any value on the real line, Ω is guaranteed to not lie on the boundary space.

Condition (C4) places a lower bound on the magnitude of the truly non-zero

coefficients. This may be weakened to permit the truly non-zero effects to tend

to zero at a slow rate, although we do not pursue this extension here. Together,

conditions (C2) and (C4) define a rate at which incorrect models are allowed to

approach the true model with increasing n. Condition (C5) is a generalization

of condition (C1) in Ibrahim et al. (2011), requiring that the adaptive weights

exhibit different asymptotic behavior for truly zero and non-zero coefficients. Fi-

nally, conditions (C6a) and (C6b) constrain the rate of growth of the tuning

parameter λ, and is similar to conditions in Hui, Warton and Foster (2015b)

for adaptive LASSO GLMs. Together, they restrict the number of fixed effects
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to grow subject to (pf/n)
(ν+3)/4√np0f → 0. This is an advance on Ibrahim

et al. (2011) and Lin, Pang and Jiang (2013), amongst others, who proved oracle

properties assuming fixed p.

We first establish a result regarding the consistency properties of the CREPE

estimator.

Theorem 1. If (C1)-(C6) are satisfied and ν ≥ 1, then there exists a local

maximizer Ψ̂ of the penalized log-likelihood function in (2.1) that satisfies

(a) Estimation consistency: ∥Ψ̂−Ψ0∥ = Op(
√

pf/n).

(b) Selection consistency: P (Ψ̂2 = 0) → 1.

With probability tending to one then, CREPE asymptotically correctly de-

termines whether each covariate is a fixed or a composite effect.

Let I(Ψ0) = E(−∂2ℓ(Ψ)/∂Ψ∂ΨT )|Ψ0
be the expected Fisher information

matrix evaluated at the true parameter point.

Theorem 2. For a fixed integer q, let Bn be a q × dim(Ψ01) matrix such that

BnB
T
n → G for some non-negative, symmetric q× q matrix G. If (C1)-(C6) are

satisfied and ν ≥ 1, then the local maximizer Ψ̂ in Theorem 1 satisfies
√
nBnI−1/2(Ψ01)(Ψ̂1 −Ψ01)

d−→ N (0,G),

where I(Ψ01) is the block of the expected Fisher information matrix involving

only the truly non-zero parameters Ψ01.

Theorems 1 and 2 establish that the CREPE estimator attains the oracle

property in GLMMs. The proofs of the theorems are provided in the Supple-

mentary Material, following a similar outline to that of Fan and Peng (2004).

4. Estimation

We use the Monte-Carlo EM (MCEM, Wei and Tanner (1990)) algorithm

combined with the local quadratic approximation (Fan and Li (2001)) for cal-

culating the CREPE estimators. We focus on the common cases of Gaussian,

Poisson, and Bernoulli mixed models, showing that updates of the parameters in

these cases can be obtained straightforwardly. Let

ℓpen,c(Ψ, b) =

n∑
i=1




m∑
j=1

log{f(yij |β, ϕ, bi)} −
1

2
log{det(ΓΓT )} − 1

2
bTi (ΓΓ

T )−1bi




− nλ

p∑
k=1

ρ(βk,γk)
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mum and maximum eigenvalues respectively. The following regularity conditions

are required here.

(C1) For every n, there exists a positive constant c1 such that 0 < c1 <

κmin{H(Ψ0)} < κmax{H(Ψ0)} < 1/c1 < ∞.

(C2) For any given ϵ > 0, there exists a δ > 0 with ∥Ψ − Ψ0∥ < δ such that

(1− ϵ)c1 < κmin{H(Ψ)} < κmax{H(Ψ)} < (1 + ϵ)/c1 for n large enough.

(C3) There exists an open subset Ω in the interior of the parameter space of Ψ,

containing Ψ0, such that the third derivatives of the log-likelihood ℓ(Ψ)

exist for every Ψ ∈ Ω. For all Ψ ∈ Ω, there exist integrable functions

Urst such that
��∂3ℓ(Ψ)/∂Ψr∂Ψs∂Ψt

�� < Urst, with E(U2
rst) < ∞, where the

expectation is with respect to the true model.

(C4)
(
minl∈Ψ01

{β2
0l}+minl∈Ψ01

{∥γ0l∥}
)
≥ c2, where c2 > 0 is a positive con-

stant.

(C5) The adaptive weights satisfy w̃k = Op(1) and ṽk = Op(1) for k ∈ Ψ01, and

w̃k = Op{(n/pf )ν/2} and ṽk = Op{(n/pf )ν/2} for k ∈ Ψ02.

(C6) (a) λ
√
np0f → 0 (b) λ(n/pf )

(ν+3)/4 → ∞, where ν > 0.

Condition (C1) ensures the observed Fisher information matrix is well-defined

at the true parameter values for every n, while condition (C2) extends this to a

small neighborhood of Ψ0. The two conditions are similar to conditions A4 and

A5 in Chen and Chen (2012) for generalized linear models (GLMs). Condition

(C3) is a mild condition to ensure the log-likelihood function for GLMMs is suffi-

ciently smooth. Since Ψ involves elements of the eigendecomposition Γ that can

take any value on the real line, Ω is guaranteed to not lie on the boundary space.

Condition (C4) places a lower bound on the magnitude of the truly non-zero

coefficients. This may be weakened to permit the truly non-zero effects to tend

to zero at a slow rate, although we do not pursue this extension here. Together,

conditions (C2) and (C4) define a rate at which incorrect models are allowed to

approach the true model with increasing n. Condition (C5) is a generalization

of condition (C1) in Ibrahim et al. (2011), requiring that the adaptive weights

exhibit different asymptotic behavior for truly zero and non-zero coefficients. Fi-

nally, conditions (C6a) and (C6b) constrain the rate of growth of the tuning

parameter λ, and is similar to conditions in Hui, Warton and Foster (2015b)

for adaptive LASSO GLMs. Together, they restrict the number of fixed effects
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to grow subject to (pf/n)
(ν+3)/4√np0f → 0. This is an advance on Ibrahim

et al. (2011) and Lin, Pang and Jiang (2013), amongst others, who proved oracle

properties assuming fixed p.

We first establish a result regarding the consistency properties of the CREPE

estimator.

Theorem 1. If (C1)-(C6) are satisfied and ν ≥ 1, then there exists a local

maximizer Ψ̂ of the penalized log-likelihood function in (2.1) that satisfies

(a) Estimation consistency: ∥Ψ̂−Ψ0∥ = Op(
√

pf/n).

(b) Selection consistency: P (Ψ̂2 = 0) → 1.

With probability tending to one then, CREPE asymptotically correctly de-

termines whether each covariate is a fixed or a composite effect.

Let I(Ψ0) = E(−∂2ℓ(Ψ)/∂Ψ∂ΨT )|Ψ0
be the expected Fisher information

matrix evaluated at the true parameter point.

Theorem 2. For a fixed integer q, let Bn be a q × dim(Ψ01) matrix such that

BnB
T
n → G for some non-negative, symmetric q× q matrix G. If (C1)-(C6) are

satisfied and ν ≥ 1, then the local maximizer Ψ̂ in Theorem 1 satisfies
√
nBnI−1/2(Ψ01)(Ψ̂1 −Ψ01)

d−→ N (0,G),

where I(Ψ01) is the block of the expected Fisher information matrix involving

only the truly non-zero parameters Ψ01.

Theorems 1 and 2 establish that the CREPE estimator attains the oracle

property in GLMMs. The proofs of the theorems are provided in the Supple-

mentary Material, following a similar outline to that of Fan and Peng (2004).

4. Estimation

We use the Monte-Carlo EM (MCEM, Wei and Tanner (1990)) algorithm

combined with the local quadratic approximation (Fan and Li (2001)) for cal-

culating the CREPE estimators. We focus on the common cases of Gaussian,

Poisson, and Bernoulli mixed models, showing that updates of the parameters in

these cases can be obtained straightforwardly. Let

ℓpen,c(Ψ, b) =

n∑
i=1




m∑
j=1

log{f(yij |β, ϕ, bi)} −
1

2
log{det(ΓΓT )} − 1

2
bTi (ΓΓ

T )−1bi




− nλ

p∑
k=1

ρ(βk,γk)
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=

n∑
i=1

ℓc,i(Ψ, bi)− nλ

p∑
k=1

ρ(βk,γk),

where ρ(βk,γk) = w̃k(β
2
k + {k∈αc}ṽk∥γk∥)1/2. Suppose at iteration t, we have

estimates Ψ̂(t). The MCEM algorithm iterates between the following steps: the

E-step, which calculates the expectation of ℓpen,c(Ψ, b) with respect to the con-

ditional posterior distribution f(bi|y, Ψ̂(t)), better known as the Q-function, and

the M-step, which maximizes the Q-function to obtain updated estimates Ψ̂(t+1).

For non-Gaussian responses where the posterior distribution does not possess a

closed form, we perform the E-step using Monte-Carlo integration,

Ebi|Ψ̂(t) {ℓc,i(Ψ, bi)} =

∫
ℓc,i(Ψ, bi)×

m∏
j=1

f(yij |β̂(t), ϕ̂(t), bi)f(bi|Γ̂(t))

exp{ℓi(Ψ̂(t))}
dbi

≈ exp{ℓi(Ψ̂(t))}−1 1

D

D∑
d=1

ℓc,i(Ψ, bdi )

m∏
j=1

f(yij |β̂(t), ϕ̂(t), bdi ),

(4.1)

where bdi is simulated from f(bi|Γ̂(t)), the quantity exp{ℓi(Ψ̂(t))} is approximated

as D−1
D∑

d=1

m∏
j=1

f(yij |β̂(t), ϕ̂(t), bdi ), and D is the number of Monte-Carlo samples.

In the simulations in Section 5, we used D = 2, 000.

To avoid non-differentiability at the origin, we approximate the CREPE

penalty by a local quadratic approximation (LQA). At iteration t, set element k

of Ψ̂(t+1) to zero if the corresponding element in Ψ̂(t) is equal to or very close

to zero, e.g., absolute value within 10−3. Otherwise, approximate the CREPE

penalty as

ρ(βk,γk) = ρ(β̂
(t)
k , γ̂

(t)
k ) +M

(t)
k (β2

k − (β̂
(t)
k )2)

+ {k∈αc}M
(t)
k

ṽk

2∥γ̂(t)
k ∥

(γT
k γk − (γ̂

(t)
k )T γ̂

(t)
k ),

where M
(t)
k = (w̃k/2)

(
(β̂

(t)
k )2 + {k∈αc}ṽk∥γ̂

(t)
k ∥

)−1/2
. Combining these results,

the M-step consists of maximizing the penalized Q-function,

Qpen(Ψ|Ψ̂(t))=Ebi|Ψ̂(t) {ℓc,i(Ψ, bi)}−nλ

p∑
k=1

(
M

(t)
k β2

k+ {k∈αc}M
(t)
k

ṽk

2∥γ̂(t)
k ∥

γT
k γk

)
.

We now focus on the three special cases of Gaussian, Poisson, and Bernoulli

responses.

Gaussian responses: For the linear mixed model where f(yij |β, ϕ, bi) =N (ηij ,

MIXED MODEL SELECTION USING CREPE 9

σ2), a closed form for the posterior distribution of bi can be obtained. Let yi =

(yi1, . . . , yim), Xi = (xi1 . . .xim)T and Zi = (zi1 . . . zim)T . It is straightforward

to show that f(bi|y, Ψ̂) = N (âi, Âi), where Âi =
(
(Γ̂Γ̂T )−1 + σ̂−2ZT

i Zi

)−1
and

âi = σ̂−2ÂiZ
T
i (yi−Xiβ̂). In turn, we can derive a closed form for the penalized

Q-function by using this result and the fact that

Ebi|Ψ̂(t)(b
T
i (ΓΓ

T )−1bi) = âT
i (ΓΓ

T )−1âi + tr{(ΓΓT )−1Âi}, (4.2)

an identity that does not require the normality assumption on bi. Closed form

updates for β and σ2 may then be obtained, while a Quasi-Newton method, for

instance, can be used to update the rows of Γ.

Poisson responses: Using the log link, we have

n∑
i=1

m∑
j=1

log{f(yij |β, bi)} =

n∑
i=1

m∑
j=1

{
yij(x

T
ijβ + zT

ijbi)− exp(xT
ijβ) exp(z

T
ijbi)

}
.

From this, it is straightforward to see that for the penalized Q-function, we only

require Monte-Carlo estimates of the posterior mean Ebi|Ψ̂(t)(bi), the moment

generating function Ebi
{exp(zT

ijbi)}, along with the posterior covariance matrix

for use in (4.2). Since none of these is a function of the parameters that need

updating, the M-step can be performed relatively quickly.

Bernoulli responses: Using the logit link, we have

n∑
i=1

m∑
j=1

log{f(yij |β, bi)} =

n∑
i=1

m∑
j=1

[
yij(x

T
ijβ + zT

ijbi)− log{1+ exp(xT
ijβ+zT

ijbi)}
]
.

Applying the MCEM algorithm directly is challenging because the second term

is non-linear in β. To overcome this, we use the fact that the variance of the

Bernoulli distribution is bounded above by 1/2. We can therefore minorize the

above expression by a partial quadratic expansion about β = β̂(t),
n∑

i=1

m∑
j=1

log{f(yij |β, bi)} ≥
n∑

i=1

m∑
j=1

log{f(yij |β̂(t), bi)}

+

n∑
i=1

m∑
j=1

(yij − µ
(t)
ij )x

T
ij(β − β̂(t))

− 1

4

n∑
i=1

m∑
j=1

(β − β̂(t))Txijx
T
ij(β − β̂(t)), (4.3)

where η
(t)
ij = xT

ijβ̂
(t) + zT

i bi and µ
(t)
ij = exp(η̂

(t)
ij )/{1 + exp(η̂

(t)
ij )} (see Hunter and

Li (2005) for details on the notion of minorizing functions). Since this inequality
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=

n∑
i=1

ℓc,i(Ψ, bi)− nλ

p∑
k=1

ρ(βk,γk),

where ρ(βk,γk) = w̃k(β
2
k + {k∈αc}ṽk∥γk∥)1/2. Suppose at iteration t, we have

estimates Ψ̂(t). The MCEM algorithm iterates between the following steps: the

E-step, which calculates the expectation of ℓpen,c(Ψ, b) with respect to the con-

ditional posterior distribution f(bi|y, Ψ̂(t)), better known as the Q-function, and

the M-step, which maximizes the Q-function to obtain updated estimates Ψ̂(t+1).

For non-Gaussian responses where the posterior distribution does not possess a

closed form, we perform the E-step using Monte-Carlo integration,

Ebi|Ψ̂(t) {ℓc,i(Ψ, bi)} =

∫
ℓc,i(Ψ, bi)×

m∏
j=1

f(yij |β̂(t), ϕ̂(t), bi)f(bi|Γ̂(t))

exp{ℓi(Ψ̂(t))}
dbi

≈ exp{ℓi(Ψ̂(t))}−1 1

D

D∑
d=1

ℓc,i(Ψ, bdi )

m∏
j=1

f(yij |β̂(t), ϕ̂(t), bdi ),

(4.1)

where bdi is simulated from f(bi|Γ̂(t)), the quantity exp{ℓi(Ψ̂(t))} is approximated

as D−1
D∑

d=1

m∏
j=1

f(yij |β̂(t), ϕ̂(t), bdi ), and D is the number of Monte-Carlo samples.

In the simulations in Section 5, we used D = 2, 000.

To avoid non-differentiability at the origin, we approximate the CREPE

penalty by a local quadratic approximation (LQA). At iteration t, set element k

of Ψ̂(t+1) to zero if the corresponding element in Ψ̂(t) is equal to or very close

to zero, e.g., absolute value within 10−3. Otherwise, approximate the CREPE

penalty as

ρ(βk,γk) = ρ(β̂
(t)
k , γ̂

(t)
k ) +M

(t)
k (β2

k − (β̂
(t)
k )2)

+ {k∈αc}M
(t)
k

ṽk

2∥γ̂(t)
k ∥

(γT
k γk − (γ̂

(t)
k )T γ̂

(t)
k ),

where M
(t)
k = (w̃k/2)

(
(β̂

(t)
k )2 + {k∈αc}ṽk∥γ̂

(t)
k ∥

)−1/2
. Combining these results,

the M-step consists of maximizing the penalized Q-function,

Qpen(Ψ|Ψ̂(t))=Ebi|Ψ̂(t) {ℓc,i(Ψ, bi)}−nλ

p∑
k=1

(
M

(t)
k β2

k+ {k∈αc}M
(t)
k

ṽk

2∥γ̂(t)
k ∥

γT
k γk

)
.

We now focus on the three special cases of Gaussian, Poisson, and Bernoulli

responses.

Gaussian responses: For the linear mixed model where f(yij |β, ϕ, bi) =N (ηij ,

MIXED MODEL SELECTION USING CREPE 9

σ2), a closed form for the posterior distribution of bi can be obtained. Let yi =

(yi1, . . . , yim), Xi = (xi1 . . .xim)T and Zi = (zi1 . . . zim)T . It is straightforward

to show that f(bi|y, Ψ̂) = N (âi, Âi), where Âi =
(
(Γ̂Γ̂T )−1 + σ̂−2ZT

i Zi

)−1
and

âi = σ̂−2ÂiZ
T
i (yi−Xiβ̂). In turn, we can derive a closed form for the penalized

Q-function by using this result and the fact that

Ebi|Ψ̂(t)(b
T
i (ΓΓ

T )−1bi) = âT
i (ΓΓ

T )−1âi + tr{(ΓΓT )−1Âi}, (4.2)

an identity that does not require the normality assumption on bi. Closed form

updates for β and σ2 may then be obtained, while a Quasi-Newton method, for

instance, can be used to update the rows of Γ.

Poisson responses: Using the log link, we have

n∑
i=1

m∑
j=1

log{f(yij |β, bi)} =

n∑
i=1

m∑
j=1

{
yij(x

T
ijβ + zT

ijbi)− exp(xT
ijβ) exp(z

T
ijbi)

}
.

From this, it is straightforward to see that for the penalized Q-function, we only

require Monte-Carlo estimates of the posterior mean Ebi|Ψ̂(t)(bi), the moment

generating function Ebi
{exp(zT

ijbi)}, along with the posterior covariance matrix

for use in (4.2). Since none of these is a function of the parameters that need

updating, the M-step can be performed relatively quickly.

Bernoulli responses: Using the logit link, we have

n∑
i=1

m∑
j=1

log{f(yij |β, bi)} =

n∑
i=1

m∑
j=1

[
yij(x

T
ijβ + zT

ijbi)− log{1+ exp(xT
ijβ+zT

ijbi)}
]
.

Applying the MCEM algorithm directly is challenging because the second term

is non-linear in β. To overcome this, we use the fact that the variance of the

Bernoulli distribution is bounded above by 1/2. We can therefore minorize the

above expression by a partial quadratic expansion about β = β̂(t),
n∑

i=1

m∑
j=1

log{f(yij |β, bi)} ≥
n∑

i=1

m∑
j=1

log{f(yij |β̂(t), bi)}

+

n∑
i=1

m∑
j=1

(yij − µ
(t)
ij )x

T
ij(β − β̂(t))

− 1

4

n∑
i=1

m∑
j=1

(β − β̂(t))Txijx
T
ij(β − β̂(t)), (4.3)

where η
(t)
ij = xT

ijβ̂
(t) + zT

i bi and µ
(t)
ij = exp(η̂

(t)
ij )/{1 + exp(η̂

(t)
ij )} (see Hunter and

Li (2005) for details on the notion of minorizing functions). Since this inequality
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remains true when we apply expectations to both sides, it means that we can

use (4.3) to construct a minorizer of Qpen(Ψ|Ψ̂(t)), and therefore maximize the

minorizer instead. This is known as a (Monte-Carlo) minorization-maximization

algorithm, as detailed in Hunter and Li (2005). Importantly, it is clear that

this minorizer requires only Monte-Carlo estimates of Ebi|Ψ̂(t)(bi), the expected

fitted probability Ebi
(µ

(t)
ij ), along with the posterior covariance matrix for use in

(4.2). As none of these is a function of the parameters that need updating, the

maximization can be performed straightforwardly.

5. Simulation Study

An empirical study was conducted to compare the performance of CREPE

with some other proposed penalties for variable selection in GLMMs. We focus

on the cases of Gaussian, Poisson and Bernoulli responses. For brevity, only the

results for Gaussian and Bernoulli mixed models are presented; the results for

Poisson GLMMs are similar and are provided in the Supplementary Material.

For CREPE, we chose the adaptive weights as follows. Let β̃ = (β̃f , β̃c) and

Σ̃ denote the maximum likelihood estimators of the fixed effects coefficients and

random effects covariance matrix, based on fitting a saturated GLMM using the

lme4 package (Bates et al. (2014)). Then we set w̃k = |β̃k|−2 and ṽk = [Σ̃]−2
kk ,

where [Σ̃]kk denotes the kth diagonal element of Σ̃. The saturated GLMM fit was

also used to obtain starting values for the CREPE estimator. It is worth pointing

out that the current version of lme4 (version 1.1-10 at the time of writing) does

not permit fitting mixed models when the number of random effects exceeds

cluster size, pc > m. Instead, we used an older version (version 1.0-6) that did

permit such saturated models to be fitted.

In all three settings, we used a BIC-type criterion to select the tuning param-

eter for CREPE, BICλ = −2ℓ(Ψ̂) + log(n) dim(Ψ̂), where dim(Ψ̂) denotes the

number of non-zero estimated parameters in Ψ̂. The model complexity penalty

used in the BIC is based on the log of the number of clusters, n. More generally,

our use of a BIC-type criterion for tuning parameter selection is comparable to

what has been advocated in Bondell, Krishna and Ghosh (2010) and Lin, Pang

and Jiang (2013), amongst others. We did however also consider the use of an

AIC-type criterion, where log(n) was replaced by 2 as the model complexity

penalty, with results (not shown) indicating that it tended to overfit both the

fixed and random effects.

For each combination of n (number of clusters) and m (cluster size) consid-
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ered, we generated 200 datasets. We assessed performance in terms of both model

selection and model accuracy. For the former, we considered the mean number

of false positives (truly zero coefficients not shrunk to zero, indicative of overfit-

ting) and false negatives (truly non-zero coefficients shrunk to zero, indicative of

underfitting) for the fixed effects, and the percentage of datasets with correctly

chosen random effects. We also recorded the percentage of datasets where the

method produced non-hierarchical shrinkage, where one or more covariates end

up being selected as a random effect only. As discussed below (2.1), such non-

hierarchical shrinkage is not permitted by the design of the CREPE penalty. In

the Supplementary Material, we also present the percentage of datasets where

the method obtained the correct model.

To assess model accuracy, we computed two measures for each method: the

Kullback-Leibler distance between the true and fitted models, and the model

error defined as the squared Euclidean norm between the estimated and true

parameters. We subsequently computed a median relative Kullback-Leibler dis-

tance and the median relative model error, the median of the ratios of the

Kullback-Leibler distance (or model error) between the CREPE estimator and

the alternative method. Relative Kullback-Leibler distances and model errors

less than one were indicative of CREPE having better model accuracy. Similar

measures of model accuracy were used in Bondell, Krishna and Ghosh (2010)

and Lin, Pang and Jiang (2013), among many others. Because the results for

both measures were similar, we only present the relative Kullback-Leibler dis-

tance results in main text, and present the results for relative model errors in the

Supplementary Material.

5.1. Normal responses

We adapted the simulation design in Bondell, Krishna and Ghosh (2010), but

allowed the number of fixed effects to grow with n. In detail, datasets were sim-

ulated from a linear mixed model with the number of predictors growing at rate

p = ⌈7n1/4⌉ where ⌈·⌉ is the ceiling function. Covariates xij were constructed by

setting the first element to one for a fixed intercept, and generating the remaining

elements from a multivariate Gaussian distribution with mean zero and covari-

ance matrix Cov(xijr, xijs) = 0.5|r−s|. The covariates for the random effects zij
were taken as the first eight covariates of xij , so pc = 8 and pf = p − pc grows

at the same rate as p. For the true model, the first eight elements of β0 were set

to (−1, 3, 1.5, 0, 0, 2, 1, 0). Then every third term was set to alternating values of

±1. The true 8×8 covariance matrix for the random effects, Σ0, consisted of two
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remains true when we apply expectations to both sides, it means that we can

use (4.3) to construct a minorizer of Qpen(Ψ|Ψ̂(t)), and therefore maximize the

minorizer instead. This is known as a (Monte-Carlo) minorization-maximization

algorithm, as detailed in Hunter and Li (2005). Importantly, it is clear that

this minorizer requires only Monte-Carlo estimates of Ebi|Ψ̂(t)(bi), the expected

fitted probability Ebi
(µ

(t)
ij ), along with the posterior covariance matrix for use in

(4.2). As none of these is a function of the parameters that need updating, the

maximization can be performed straightforwardly.

5. Simulation Study

An empirical study was conducted to compare the performance of CREPE

with some other proposed penalties for variable selection in GLMMs. We focus

on the cases of Gaussian, Poisson and Bernoulli responses. For brevity, only the

results for Gaussian and Bernoulli mixed models are presented; the results for

Poisson GLMMs are similar and are provided in the Supplementary Material.

For CREPE, we chose the adaptive weights as follows. Let β̃ = (β̃f , β̃c) and

Σ̃ denote the maximum likelihood estimators of the fixed effects coefficients and

random effects covariance matrix, based on fitting a saturated GLMM using the

lme4 package (Bates et al. (2014)). Then we set w̃k = |β̃k|−2 and ṽk = [Σ̃]−2
kk ,

where [Σ̃]kk denotes the kth diagonal element of Σ̃. The saturated GLMM fit was

also used to obtain starting values for the CREPE estimator. It is worth pointing

out that the current version of lme4 (version 1.1-10 at the time of writing) does

not permit fitting mixed models when the number of random effects exceeds

cluster size, pc > m. Instead, we used an older version (version 1.0-6) that did

permit such saturated models to be fitted.

In all three settings, we used a BIC-type criterion to select the tuning param-

eter for CREPE, BICλ = −2ℓ(Ψ̂) + log(n) dim(Ψ̂), where dim(Ψ̂) denotes the

number of non-zero estimated parameters in Ψ̂. The model complexity penalty

used in the BIC is based on the log of the number of clusters, n. More generally,

our use of a BIC-type criterion for tuning parameter selection is comparable to

what has been advocated in Bondell, Krishna and Ghosh (2010) and Lin, Pang

and Jiang (2013), amongst others. We did however also consider the use of an

AIC-type criterion, where log(n) was replaced by 2 as the model complexity

penalty, with results (not shown) indicating that it tended to overfit both the

fixed and random effects.

For each combination of n (number of clusters) and m (cluster size) consid-
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ered, we generated 200 datasets. We assessed performance in terms of both model

selection and model accuracy. For the former, we considered the mean number

of false positives (truly zero coefficients not shrunk to zero, indicative of overfit-

ting) and false negatives (truly non-zero coefficients shrunk to zero, indicative of

underfitting) for the fixed effects, and the percentage of datasets with correctly

chosen random effects. We also recorded the percentage of datasets where the

method produced non-hierarchical shrinkage, where one or more covariates end

up being selected as a random effect only. As discussed below (2.1), such non-

hierarchical shrinkage is not permitted by the design of the CREPE penalty. In

the Supplementary Material, we also present the percentage of datasets where

the method obtained the correct model.

To assess model accuracy, we computed two measures for each method: the

Kullback-Leibler distance between the true and fitted models, and the model

error defined as the squared Euclidean norm between the estimated and true

parameters. We subsequently computed a median relative Kullback-Leibler dis-

tance and the median relative model error, the median of the ratios of the

Kullback-Leibler distance (or model error) between the CREPE estimator and

the alternative method. Relative Kullback-Leibler distances and model errors

less than one were indicative of CREPE having better model accuracy. Similar

measures of model accuracy were used in Bondell, Krishna and Ghosh (2010)

and Lin, Pang and Jiang (2013), among many others. Because the results for

both measures were similar, we only present the relative Kullback-Leibler dis-

tance results in main text, and present the results for relative model errors in the

Supplementary Material.

5.1. Normal responses

We adapted the simulation design in Bondell, Krishna and Ghosh (2010), but

allowed the number of fixed effects to grow with n. In detail, datasets were sim-

ulated from a linear mixed model with the number of predictors growing at rate

p = ⌈7n1/4⌉ where ⌈·⌉ is the ceiling function. Covariates xij were constructed by

setting the first element to one for a fixed intercept, and generating the remaining

elements from a multivariate Gaussian distribution with mean zero and covari-

ance matrix Cov(xijr, xijs) = 0.5|r−s|. The covariates for the random effects zij
were taken as the first eight covariates of xij , so pc = 8 and pf = p − pc grows

at the same rate as p. For the true model, the first eight elements of β0 were set

to (−1, 3, 1.5, 0, 0, 2, 1, 0). Then every third term was set to alternating values of

±1. The true 8×8 covariance matrix for the random effects, Σ0, consisted of two

511



12 FRANCIS K. C. HUI, SAMUEL MÜLLER AND A. H. WELSH

non-zero blocks: I) a 2×2 matrix with diagonal entries 9 and 4, and off-diagonal

entries of 4.8, occupying rows/columns 1 and 2 of Σ0, II) a 2×2 diagonal matrix

with entries 2, occupying rows/columns 6 and 7 of Σ0. This resulted in four

informative composite effect covariates. Responses yij were then generated from

a Gaussian distribution with variance σ2
0 = 1. We considered combinations of

n = 30, 60 clusters (corresponding to p = 17 and 20 respectively) and cluster

sizes of m = 5, 10, 20.

Three penalized estimators were compared: (1) CREPE with ν = 2 in the

adaptive weights for CREPE, (2) the M-ALASSO penalty of Bondell, Krishna

and Ghosh (2010), and (3) the ALASSO penalty of Lin, Pang and Jiang (2013).

To the best of our knowledge, these three procedures are currently the only

penalties publicly available in R for selecting both fixed and random effects, and

we found no additional methods. Since all procedures perform joint selection

of fixed and random effects, we took the model error as ME = ∥β̂ − β0∥2 +

∥vech(Σ̂)− vech(Σ0)∥2.
Overall, CREPE performed the best in selecting both fixed and random

effects, as well as in model accuracy (Table 1 and Supplementary Material Ta-

ble 1). M-ALASSO tended to choose a smaller number of fixed effects compared

to CREPE, as reflected in the lower number of false positives but higher num-

ber of false negatives, while ALASSO performed worst as it severely overfitted

the fixed effects. For random effects, M-ALASSO performed slightly better than

CREPE although differences between the two were minor at the larger cluster

sizes. For all settings, CREPE performed best in terms of selecting the correct

model (Supplementary Material Table 1). ALASSO tended to underfit the ran-

dom effects and shrink rows/columns 6 and 7 of the covariance matrix to zero.

This underfitting of the random effects by ALASSO may be a result of the BIC

used for the selecting the tuning parameter, which involves a large model com-

plexity penalty log(mn) (following the recommendation in Lin, Pang and Jiang,

2013). The median relative Kullback-Leibler distance was less than one in all

but one case, indicating that CREPE has better model accuracy compared to

the two alternative methods.

Both M-ALASSO and ALASSO presented cases of non-hierarchical shrink-

age, particularly on element 7 in xij (and equivalently zij) where the fixed effect

was shrunk to zero while the corresponding random effect remained in the fi-

nal model. Not surprisingly, the percentage of datasets where non-hierarchical

shrinkage occurred decreased with increasing cluster size m.
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Table 1. Simulation results for linear mixed models. Performance was assessed the mean
number false positives (FP) and false negatives (FN) for the fixed effects, the percent-
age of datasets with correctly chosen random effects components (%RE), percentage of
datasets where there was non-hierarchical shrinkage (%S), and median relative Kullback-
Leibler distance (RKL). Since %S was equal to zero for CREPE, this column is omitted
from the table.

n m CREPE M-ALASSO ALASSO
FP FN %RE FP FN %RE %S RKL FP FN %RE %S RKL

5 0.52 0.19 38 0.23 1.02 47 78 0.92 3.21 0.62 4 94 0.83
30 10 0.05 0.06 86 0.03 0.28 90 29 0.90 2.45 0.53 50 50 0.78

20 0.06 0.02 95 0.01 0.24 96 24 0.50 4.46 0.42 41 35 0.39
5 0.32 0.03 42 0.05 0.28 63 47 0.82 1.09 0.34 38 76 1.01

60 10 0 0.02 93 0 0.10 94 14 0.64 1.44 0.39 72 40 0.95
20 0.01 0 97 0.01 0.07 96 9 0.49 3.37 0.31 56 39 0.63

5.2. Bernoulli responses

We generated datasets from a Bernoulli GLMM using the same rate of growth

of p (and thus pf ) as in Section 5.1. Covariates xij and zij were constructed in

the same manner as in the Gaussian response case, zij being taken as the first

eight covariates of xij such that pc = 8. The elements of β0 were the same as

in Setting 1, while the true 8 × 8 covariance matrix Σ0 was set to a diagonal

matrix with the entries (1, 1, 0, 0, 0, 1, 0, 0). Responses yij were then generated

from a Bernoulli distribution with logit link. For CREPE, we used ν = 2 for the

adaptive LASSO weights. We considered combinations of n = 50, 100 clusters,

corresponding to p = 19 and 23 respectively, and cluster sizes of m = 10, 20. We

had intended to perform simulations at m = 5 also, as we did with Gaussian and

Poisson responses, but found that we were unable to obtain suitable adaptive

weights for CREPE based on a saturated GLMM fit. This was not surprising

given the small cluster size m = 5 and relative lack of information in Bernoulli

responses. While other methods of obtaining adaptive weights are possible, they

are outside the scope of this work (see also our discussion in Section 7).

To our knowledge, no R packages are currently available for performing joint

selection in mixed models with non-normal responses. For comparison with

CREPE then, we considered the glmmLasso package (Groll and Tutz (2014)),

which performs fixed effects selection only in GLMMs using the unweighted

LASSO penalty. With this method, we considered two possibilities: the ran-

dom effects component was known and only elements 1, 2, and 6 of zij were

included; the random effects was unknown and all eight elements of zij were

included. Our fitting models of such models via glmmLasso is unconventional in
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non-zero blocks: I) a 2×2 matrix with diagonal entries 9 and 4, and off-diagonal

entries of 4.8, occupying rows/columns 1 and 2 of Σ0, II) a 2×2 diagonal matrix

with entries 2, occupying rows/columns 6 and 7 of Σ0. This resulted in four

informative composite effect covariates. Responses yij were then generated from

a Gaussian distribution with variance σ2
0 = 1. We considered combinations of

n = 30, 60 clusters (corresponding to p = 17 and 20 respectively) and cluster

sizes of m = 5, 10, 20.

Three penalized estimators were compared: (1) CREPE with ν = 2 in the

adaptive weights for CREPE, (2) the M-ALASSO penalty of Bondell, Krishna

and Ghosh (2010), and (3) the ALASSO penalty of Lin, Pang and Jiang (2013).

To the best of our knowledge, these three procedures are currently the only

penalties publicly available in R for selecting both fixed and random effects, and

we found no additional methods. Since all procedures perform joint selection

of fixed and random effects, we took the model error as ME = ∥β̂ − β0∥2 +

∥vech(Σ̂)− vech(Σ0)∥2.
Overall, CREPE performed the best in selecting both fixed and random

effects, as well as in model accuracy (Table 1 and Supplementary Material Ta-

ble 1). M-ALASSO tended to choose a smaller number of fixed effects compared

to CREPE, as reflected in the lower number of false positives but higher num-

ber of false negatives, while ALASSO performed worst as it severely overfitted

the fixed effects. For random effects, M-ALASSO performed slightly better than

CREPE although differences between the two were minor at the larger cluster

sizes. For all settings, CREPE performed best in terms of selecting the correct

model (Supplementary Material Table 1). ALASSO tended to underfit the ran-

dom effects and shrink rows/columns 6 and 7 of the covariance matrix to zero.

This underfitting of the random effects by ALASSO may be a result of the BIC

used for the selecting the tuning parameter, which involves a large model com-

plexity penalty log(mn) (following the recommendation in Lin, Pang and Jiang,

2013). The median relative Kullback-Leibler distance was less than one in all

but one case, indicating that CREPE has better model accuracy compared to

the two alternative methods.

Both M-ALASSO and ALASSO presented cases of non-hierarchical shrink-

age, particularly on element 7 in xij (and equivalently zij) where the fixed effect

was shrunk to zero while the corresponding random effect remained in the fi-

nal model. Not surprisingly, the percentage of datasets where non-hierarchical

shrinkage occurred decreased with increasing cluster size m.
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Table 1. Simulation results for linear mixed models. Performance was assessed the mean
number false positives (FP) and false negatives (FN) for the fixed effects, the percent-
age of datasets with correctly chosen random effects components (%RE), percentage of
datasets where there was non-hierarchical shrinkage (%S), and median relative Kullback-
Leibler distance (RKL). Since %S was equal to zero for CREPE, this column is omitted
from the table.

n m CREPE M-ALASSO ALASSO
FP FN %RE FP FN %RE %S RKL FP FN %RE %S RKL

5 0.52 0.19 38 0.23 1.02 47 78 0.92 3.21 0.62 4 94 0.83
30 10 0.05 0.06 86 0.03 0.28 90 29 0.90 2.45 0.53 50 50 0.78

20 0.06 0.02 95 0.01 0.24 96 24 0.50 4.46 0.42 41 35 0.39
5 0.32 0.03 42 0.05 0.28 63 47 0.82 1.09 0.34 38 76 1.01

60 10 0 0.02 93 0 0.10 94 14 0.64 1.44 0.39 72 40 0.95
20 0.01 0 97 0.01 0.07 96 9 0.49 3.37 0.31 56 39 0.63

5.2. Bernoulli responses

We generated datasets from a Bernoulli GLMM using the same rate of growth

of p (and thus pf ) as in Section 5.1. Covariates xij and zij were constructed in

the same manner as in the Gaussian response case, zij being taken as the first

eight covariates of xij such that pc = 8. The elements of β0 were the same as

in Setting 1, while the true 8 × 8 covariance matrix Σ0 was set to a diagonal

matrix with the entries (1, 1, 0, 0, 0, 1, 0, 0). Responses yij were then generated

from a Bernoulli distribution with logit link. For CREPE, we used ν = 2 for the

adaptive LASSO weights. We considered combinations of n = 50, 100 clusters,

corresponding to p = 19 and 23 respectively, and cluster sizes of m = 10, 20. We

had intended to perform simulations at m = 5 also, as we did with Gaussian and

Poisson responses, but found that we were unable to obtain suitable adaptive

weights for CREPE based on a saturated GLMM fit. This was not surprising

given the small cluster size m = 5 and relative lack of information in Bernoulli

responses. While other methods of obtaining adaptive weights are possible, they

are outside the scope of this work (see also our discussion in Section 7).

To our knowledge, no R packages are currently available for performing joint

selection in mixed models with non-normal responses. For comparison with

CREPE then, we considered the glmmLasso package (Groll and Tutz (2014)),

which performs fixed effects selection only in GLMMs using the unweighted

LASSO penalty. With this method, we considered two possibilities: the ran-

dom effects component was known and only elements 1, 2, and 6 of zij were

included; the random effects was unknown and all eight elements of zij were

included. Our fitting models of such models via glmmLasso is unconventional in
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allowing fixed effects to be penalized when the corresponding random effects (by

definition of the program) cannot be penalized. We see this less as an argument

against glmmLasso and more one in favour of using CREPE as a penalty.

Because glmmLasso only performs selection of the fixed effects here, the

model error is based only on the fixed effects, ME = ∥β̂−β0∥2. This avoids con-
founding the results with whether the true and saturated random effects structure

was used for glmmLasso. We considered several ways of implementing the pack-

age, and we present results based on the method which worked best, namely

constructing a solution path from the smallest to the largest value of the tuning

parameter.

CREPE performed better than both versions of glmmLasso at selecting the

fixed effects, except at n = 50 and m = 10 where it had a slight tendency to

underfit the fixed effects (Table 2 and Supplementary Material Table 3). This

underfitting may explain why the relative Kullback-Leibler distance for both

versions of glmmLasso was greater than one for this setting. In all other settings,

CREPE had better model accuracy as reflected in the relative Kullback-Leibler

distance (and model errors in Supplementary Material Table 2). At n = 50,

both versions of glmmLasso tended to overfit the fixed effects, a result that may

be partly attributed to the lack of adaptive weights. Regarding random effects

selection, even at n = 100 and m = 20, CREPE was only able to correctly pick

the true random effects structure half the time, with a tendency to overfit and

fail to shrink rows/column 3 of the estimated D to zero (note this covariate has

a corresponding non-zero fixed effect).

When the true random effects structure was known, glmmLasso presented no

cases of non-hierarchical shrinkage (%S). By contrast, when a saturated structure

was assumed for the random effects, strong evidence of non-hierarchical shrinkage

was observed for glmmLasso, as it shrank one or more of the fixed effects for

covariates 4, 5, and 8 to zero while leaving the corresponding random effects in

the model. This was not surprising as our application of glmmLasso allows fixed

effects to be penalized in a situation where the program (by definition) cannot

penalize the corresponding random effects.

6. Application to Yale Infant Study

To illustrate the application of CREPE, we analyzed the Yale infant growth

study of Wasserman and Leventhal (1993), which aimed to identify, among other

things, whether cocaine exposure during pregnancy affects weight gain in chil-
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Table 2. Simulation results for Bernoulli GLMMs. Performance was assessed based
on the mean number false positives (FP) and false negatives (FN) for the fixed effects,
the percentage of datasets with correctly chosen random effects components (%RE, for
CREPE only), the percentage of datasets where there was non-hierarchical shrinkage
(%S), and median relative Kullback-Leibler distance (RKL). Since %S was equal to zero
for CREPE, the column is omitted from the table.

n m CREPE glmmLassotrue glmmLassosat
FP FN %RE FP FN %S RKL FP FN %S RKL

50 10 0.68 0.71 17 1.44 0.06 0 1.18 1.55 0.05 96 1.18
20 0.13 0.01 31 2.54 0 0 0.74 3.55 0 87 0.70

100 10 0.15 0.02 11 0.57 0 0 0.85 0.78 0 100 0.82
20 0.04 0 51 0.34 0 0 0.55 0.47 0 100 0.56

dren. The dataset was also used in Ibrahim et al. (2011). A total of n = 298

infants were recruited for the study, and their weight (in pounds) monitored over

the study period. Seven predictors were available for analysis: gender of infant (1

for male; 0 for female), ethnicity (1 for African American; 0 otherwise), previous

pregnancies (1 for yes; 0 for no), cocaine use by mother (1 for yes; 0 for no), age

of mother (years), gestational age of infant (weeks), and day of visit during the

study period (a proxy for time since entering the study). The number of visits

for each infant ranged from m = 2 to m = 30, with a median of m = 10 visits.

The goal of this analysis was to identify important predictors of infant weight,

while accounting for heterogeneity between infants at baseline and over time.

It is natural to include the first four, time-independent covariates (gender,

ethnicity, previous pregnancies, cocaine use) in the model a-priori as fixed effects

(pf = 4), and to include the three other time-varying covariates (age of mother,

gestational age, day of visit) as composite effects (pc = 3). An intercept was

also included in the model as a composite effect. Prior to analysis, the three

continuous covariates were standardized to have mean zero and variance one.

Adaptive weights were constructed by fitting the saturated model and setting

ν = 2. Using BICλ to select the tuning parameter, the final model based on the

CREPE estimator had the following structure

µ̂ij = 6.962− 0.190× genderi + 0.245× cocaine usei + 0.539× gestational ageij

+ 2.642× visitij + b0i + bi × visitij ;

D̂ =

(
0.548 0.277

0.277 0.214

)
; σ̂2 = 0.517.

Of the four baseline covariates, CREPE identified gender and cocaine depen-
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allowing fixed effects to be penalized when the corresponding random effects (by

definition of the program) cannot be penalized. We see this less as an argument

against glmmLasso and more one in favour of using CREPE as a penalty.

Because glmmLasso only performs selection of the fixed effects here, the

model error is based only on the fixed effects, ME = ∥β̂−β0∥2. This avoids con-
founding the results with whether the true and saturated random effects structure

was used for glmmLasso. We considered several ways of implementing the pack-

age, and we present results based on the method which worked best, namely

constructing a solution path from the smallest to the largest value of the tuning

parameter.

CREPE performed better than both versions of glmmLasso at selecting the

fixed effects, except at n = 50 and m = 10 where it had a slight tendency to

underfit the fixed effects (Table 2 and Supplementary Material Table 3). This

underfitting may explain why the relative Kullback-Leibler distance for both

versions of glmmLasso was greater than one for this setting. In all other settings,

CREPE had better model accuracy as reflected in the relative Kullback-Leibler

distance (and model errors in Supplementary Material Table 2). At n = 50,

both versions of glmmLasso tended to overfit the fixed effects, a result that may

be partly attributed to the lack of adaptive weights. Regarding random effects

selection, even at n = 100 and m = 20, CREPE was only able to correctly pick

the true random effects structure half the time, with a tendency to overfit and

fail to shrink rows/column 3 of the estimated D to zero (note this covariate has

a corresponding non-zero fixed effect).

When the true random effects structure was known, glmmLasso presented no

cases of non-hierarchical shrinkage (%S). By contrast, when a saturated structure

was assumed for the random effects, strong evidence of non-hierarchical shrinkage

was observed for glmmLasso, as it shrank one or more of the fixed effects for

covariates 4, 5, and 8 to zero while leaving the corresponding random effects in

the model. This was not surprising as our application of glmmLasso allows fixed

effects to be penalized in a situation where the program (by definition) cannot

penalize the corresponding random effects.

6. Application to Yale Infant Study

To illustrate the application of CREPE, we analyzed the Yale infant growth

study of Wasserman and Leventhal (1993), which aimed to identify, among other

things, whether cocaine exposure during pregnancy affects weight gain in chil-
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Table 2. Simulation results for Bernoulli GLMMs. Performance was assessed based
on the mean number false positives (FP) and false negatives (FN) for the fixed effects,
the percentage of datasets with correctly chosen random effects components (%RE, for
CREPE only), the percentage of datasets where there was non-hierarchical shrinkage
(%S), and median relative Kullback-Leibler distance (RKL). Since %S was equal to zero
for CREPE, the column is omitted from the table.

n m CREPE glmmLassotrue glmmLassosat
FP FN %RE FP FN %S RKL FP FN %S RKL

50 10 0.68 0.71 17 1.44 0.06 0 1.18 1.55 0.05 96 1.18
20 0.13 0.01 31 2.54 0 0 0.74 3.55 0 87 0.70

100 10 0.15 0.02 11 0.57 0 0 0.85 0.78 0 100 0.82
20 0.04 0 51 0.34 0 0 0.55 0.47 0 100 0.56

dren. The dataset was also used in Ibrahim et al. (2011). A total of n = 298

infants were recruited for the study, and their weight (in pounds) monitored over

the study period. Seven predictors were available for analysis: gender of infant (1

for male; 0 for female), ethnicity (1 for African American; 0 otherwise), previous

pregnancies (1 for yes; 0 for no), cocaine use by mother (1 for yes; 0 for no), age

of mother (years), gestational age of infant (weeks), and day of visit during the

study period (a proxy for time since entering the study). The number of visits

for each infant ranged from m = 2 to m = 30, with a median of m = 10 visits.

The goal of this analysis was to identify important predictors of infant weight,

while accounting for heterogeneity between infants at baseline and over time.

It is natural to include the first four, time-independent covariates (gender,

ethnicity, previous pregnancies, cocaine use) in the model a-priori as fixed effects

(pf = 4), and to include the three other time-varying covariates (age of mother,

gestational age, day of visit) as composite effects (pc = 3). An intercept was

also included in the model as a composite effect. Prior to analysis, the three

continuous covariates were standardized to have mean zero and variance one.

Adaptive weights were constructed by fitting the saturated model and setting

ν = 2. Using BICλ to select the tuning parameter, the final model based on the

CREPE estimator had the following structure

µ̂ij = 6.962− 0.190× genderi + 0.245× cocaine usei + 0.539× gestational ageij

+ 2.642× visitij + b0i + bi × visitij ;

D̂ =

(
0.548 0.277

0.277 0.214

)
; σ̂2 = 0.517.

Of the four baseline covariates, CREPE identified gender and cocaine depen-
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dency as significant predictors of infant weight. In particular, prenatal cocaine

exposure (PCE) was associated with higher infant weight, a surprising result

given studies previously have found significant evidence relating PCE and low

birth weight (e.g. see the meta-analysis by Gouin, Murphy and Shah (2011)). Of

the time-varying covariates, CREPE identified gestational age as an important

fixed effect only, and day of visit as an important composite effect, with larger

values of both leading to higher overall infant weights. There was also significant

variability between infant weights at baseline as reflected in the inclusion of a

random intercept, in addition to the variability regarding how weights changed

as a function of the day of visit.

Comparing the model chosen by CREPE to the one selected using the SCAD

and ICQ method of Ibrahim et al. (2011) (see their Table 2), we find that the

latter identified gestational age as (also) having an important random effect,

and the age of the mother as having a significant random but not fixed effect,

an example of non-hierarchical shrinkage. However, Ibrahim et al. (2011) did

not include a random intercept as a candidate covariate, while in our analysis

there was substantial variation between infants in their weights at baseline. It

is of interest to point out that had we started with the saturated model and

applied backwards elimination based on likelihood ratio tests (using anova with

lmer in the R package), then this approach would have produced the same set of

informative fixed and random effects as the model selected using CREPE.

7. Discussion

One avenue of research is to extend CREPE to ultra high-dimensional GLMMs,

where the number of fixed and/or random effect potentially grows at a faster

rate than the number of clusters and cluster size. Such an extension though

is of more theoretical interest than of practical relevance. This extension is by

no means straightforward: the adaptive weights require modification since the

saturated GLMM can no longer be fitted using maximum likelihood estimation

(e.g., weights might be constructed based on marginal models, Huang, Ma and

Zhang (2008)), and the asymptotic theory demands growing n and m, differing

assumptions on the degree of sparsity, and careful consideration of the differing

impacts fixed and random effects have on the mixed model.

Supplementary Materials

The proof of Theorem 2, additional simulations results for Gaussian and
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Bernoulli GLMMs, full results for Poisson GLMMs, and R for implementing the

CREPE penalty may be found in the Supplementary Material.
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dency as significant predictors of infant weight. In particular, prenatal cocaine

exposure (PCE) was associated with higher infant weight, a surprising result

given studies previously have found significant evidence relating PCE and low

birth weight (e.g. see the meta-analysis by Gouin, Murphy and Shah (2011)). Of

the time-varying covariates, CREPE identified gestational age as an important

fixed effect only, and day of visit as an important composite effect, with larger

values of both leading to higher overall infant weights. There was also significant

variability between infant weights at baseline as reflected in the inclusion of a

random intercept, in addition to the variability regarding how weights changed

as a function of the day of visit.

Comparing the model chosen by CREPE to the one selected using the SCAD

and ICQ method of Ibrahim et al. (2011) (see their Table 2), we find that the

latter identified gestational age as (also) having an important random effect,

and the age of the mother as having a significant random but not fixed effect,

an example of non-hierarchical shrinkage. However, Ibrahim et al. (2011) did

not include a random intercept as a candidate covariate, while in our analysis

there was substantial variation between infants in their weights at baseline. It

is of interest to point out that had we started with the saturated model and

applied backwards elimination based on likelihood ratio tests (using anova with

lmer in the R package), then this approach would have produced the same set of

informative fixed and random effects as the model selected using CREPE.

7. Discussion

One avenue of research is to extend CREPE to ultra high-dimensional GLMMs,

where the number of fixed and/or random effect potentially grows at a faster

rate than the number of clusters and cluster size. Such an extension though

is of more theoretical interest than of practical relevance. This extension is by

no means straightforward: the adaptive weights require modification since the

saturated GLMM can no longer be fitted using maximum likelihood estimation

(e.g., weights might be constructed based on marginal models, Huang, Ma and

Zhang (2008)), and the asymptotic theory demands growing n and m, differing

assumptions on the degree of sparsity, and careful consideration of the differing

impacts fixed and random effects have on the mixed model.

Supplementary Materials

The proof of Theorem 2, additional simulations results for Gaussian and

MIXED MODEL SELECTION USING CREPE 17

Bernoulli GLMMs, full results for Poisson GLMMs, and R for implementing the

CREPE penalty may be found in the Supplementary Material.
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