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A. Balance in ordinary regression and post-observation design

This section expands on the text presented in Section 2 of the paper.

(Approximate) balance of a background variable X, irrespective of whether

observed or not, can be arranged by randomization. It enables us to ignore all

covariates (background) with no loss of efficiency. Thus, for estimating the treat-

ment effect ∆µ, we can dispense with modelling (considering several alternative

models) thanks to the design. This can be interpreted as using a bad model that

ignores some important covariates. However, modelling is essential for estimating

some other quantities, such as the expected outcome for a particular value of X

and a treatment.

Methods that use matching to estimate a treatment effect in observational

studies (Rosenbaum, 2010) seek arrangements in the design (selection of units

based on their values of X) that enable the analyst to ignore the values of X.

Balance of the within-treatment distributions of the covariates, arranged by sub-

setting (e.g., forming matched pairs) or weighting, is the key intermediate goal

in such an analysis. So, model uncertainty is addressed, and eliminated, by post-
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observation design, and dispensed are all the model-related assumptions: distri-

bution of the outcomes, linearity (appropriate scale for X) and even homoscedas-

ticity. Our approach to estimating a treatment effect in an observational study

would be more effective if the posited regression model were valid, an assumption

that, admittedly, can rarely pass a thorough examination. Post-observation de-

sign has a weaker assumption, namely that all the relevant background variables

are available, but it usually cannot be confirmed either. Some other differences,

related to how the (average) treatment effect is defined, are discussed in an ap-

plication presented in Section D below.

In our proposal for estimating ∆µ, the relative importance of the candidate

estimators is moderated by the departure of X from group-level balance. We

should not ignore the configuration of the values of X in estimation in general.

If an observational dataset happens to have a near-balance of covariate A with

respect to covariate B, then A is a distraction for estimating some targets related

to B. In summary, some invalid models are sometimes useful, and the combination

of validity and parsimony, the goal of the information criteria, such as Akaike

(1976), Schwartz (1978) and Spiegelhalter et al. (2002), and other derivatives of

the likelihood ratio statistic, may sidetrack us from the pursuit of efficiency.

B. Variance estimation

This section expands on the text presented in Section 4 of the paper.

Composite estimation of the residual variance σ2 in ordinary regression does

not have the potential of its counterpart for linear predictors (x0β) when the

candidate submodels of M∗ are associated with only a few degrees of freedom
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more than the unbiased estimator σ̂2
∗ . This is borne out by analytical derivations.

Let σ̂2
k be the established estimator of σ2 for model k in a basis of models

nested from M0 to MK = M∗. Then σ̂2
k has bias bk = λk/(n− pk) and variance

vk =
2σ4

n− pk
+

4λk σ
2

(n− pk)2
,

where λk = β⊤

k,outX
⊤

k,outXk,outβk,out and pk is the number of parameters in βk,in ;

see Seber (1977), Theorem 1.8. The (additional) indices ‘in’ and ‘out’ refer to the

elements of the vector or columns of the matrix linked to the covariates included

in and excluded from a model. Further, the covariance of basis estimators σ̂2
h

and σ̂2
k , h < k, is

vhk =
2σ4

n− ph
+

4λk σ
2

(n− ph)(n− pk)
.

The variance matrix of the basis estimators σ̂2 has the same pattern, vhk =

vmax(h,k) , as its counterpart for θ̂ in Section 4.1 of the paper only approximately

when n ≫ pk . Unlike in estimating x0β, the bias terms λk accumulate with

model simplification, and they inflate both the bias and the sampling variance of

σ̂2
k . The results from Section 4.1 carry over only subject to some approximation,

leading to the estimator

σ̃2 = σ̂2
K +

b̂0
1 +R

,

where R =
∑K

k=1∆b2k/∆vk , with b0 = λ0/(n−p0), ∆bk = λk/(n−pk)−λk+1/(n−

pk+1) and ∆vk = vk+1 − vk . In the terms contributing to R, the squared bias

in the numerator is a quartic function of the regression parameters and is often

far greater than the denominator. Thus, R is large and σ̃2 .
= σ̂2

K . The same

conclusion is arrived at even with the simple composition of σ̂2
0 and σ̂2

∗ when
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K ≪ n. In brief, increasing the number of degrees of freedom in σ̂2 is too risky,

given the uncertainty about β and its propagation in both the bias and the

variance of a basis estimator.

In simple composition of σ̂2
0 and σ̂2

∗ , the optimal coefficient for σ̂2
0 is

c∗ =
K(n− 1)σ4

K(n− 1)σ4 + (n− p)(λ2
0 + 4σ2λ0)

.

C. Optimal composition of simple regressions (basis B)

This section complements Section 4.1 of the paper.

Suppose the basis comprises the estimators based on simple regressions, esti-

mator θ̂k based on covariateXk , and the intercept-only model 0 with θ̂0 = ȳ. The

covariates are pairwise orthogonal. Denote ∇bk = b0−bk and ∇vk = vk−v0 . The

diagonal entries of V = var(θ̂) are v0 , v1 , . . . , vK and every off-diagonal element

is equal to v0 = σ2/n. The inverse of V is an arrow-shaped matrix; its diagonal

elements are u00 = 1/v0+1/∇v1+ · · ·+1/∇vK and ukk = 1/∇vk , k = 1, . . . ,K,

and off-diagonal elements are all equal to zero except for the elements in row

and column of θ̂0 , which are equal to u0k = uk0 = −1/∇vk , k = 1, . . . ,K. For

example,

V−1 =











1
v0

+ 1
∇v1

+ 1
∇v2

+ 1
∇v3

− 1
∇v1

− 1
∇v2

− 1
∇v3

− 1
∇v1

1
∇v1

0 0

− 1
∇v2

0 1
∇v2

0

− 1
∇v3

0 0 1
∇v3











for K = 3. Hence B0 = 1/v0 , B1 = b0/v0 and B2 = R′ + b20/v0 , where R′ =

r′1 + · · · + r′K and r′k = ∇b2k/∇vk ; compare with R in Section 4.1. In fact, for

complete bases A and B, which generate identical spaces, R = R′. The optimal
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composition is c∗⊤θ̂, with

c∗ =
1

1 +R′

(

1 +R′ + b0

K
∑

k=1

ρ′k , − b0 ρ
′
1 , . . . , − b0 ρ

′
K

)⊤

,

where ρ′k = ∇bk/∇vk . Substitution of θ̂0 − θ̂k = ∇b̂k in θ̂ and replacing B0 , B1

and B2 by their estimates yield the estimator θ̃ = θ̂0− R̂′ b̂0/(1+ R̂′), leading to

a discussion similar to that following equation (4.1) of the paper. In particular,

MSE◦(θ̃; θ) would attain its minimum for R′
∗ = b20/(v

∗− v0), where v
∗ = var(θ̂∗),

and it corresponds to the optimal composition of θ̂0 and θ̂∗. The presence of

model M0 in the basis is essential for the analytical convenience of the arrow

shape of V−1. However, analytical tractability is retained if a nontrivial model

M0 is declared, so long as it is a submodel of all the other basis models and

they differ from M0 by disjoint sets of covariates, so that ∇b̂k , k = 1, . . . ,K, are

mutually independent. When a covariate h is included in M0 , every remaining

model in the basis has to be supplemented with covariate h. The value of v0 is

increased but R′ is reduced by the eliminated term r′h .

D. Composition and propensity matching with prostate cancer data

This section is related to Section 5.1 of the paper.

We contrast composite estimation with propensity matching analysis on the

example of estimating the (causal) effect of the variable svi. In the counterfactual

formulation, our target is the average difference of the outcomes of the 21 subjects

with svi equal to 1, if their values of svi were all switched to zero, without

affecting the values of any other background variables, or the outcomes for any

other subjects. First, every subject with svi= 1 is matched with a similar subject
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with svi= 0. No subject can be reused in the matched pairs, but some may end

up without a match. Propensity matching, Rosenbaum and Rubin (1983) and

Rosenbaum and Rubin (1985), yields the scores plotted in Figure 1. They are the

linear predictors fitted by the logistic regression of svi on the other background

variables. The vertical dashes delimit the overlap of the ranges of the scores, with

a bit of leeway left for inexact matching. There are only 32 + 14 subjects (47%)

within the range from the respective groups 0 and 1. Further, the distributions

of the two groups in this range are uneven (excess of group 0 around −3 and

shortage around 1), and not all the 14 subjects with svi = 1 could be paired.

Dots connect the 11 pairs formed by caliper matching (Cochran and Rubin, 1973)

with half-width of 0.2. Ten units in group 1 (marked by large gray discs) are not

matched, three of them inside the overlap. In summary, very few subjects in the

data are useful for comparing the two groups defined by the values of svi. With

11 matched pairs, the expected value of the standard error is σ/
√
5.5

.
= 0.30.

In the regression formulation, the parameter of interest is the slope on svi,

without a reference to a particular set of subjects. The subjects are represented

in both analyses only through their vectors of covariates x, which in the regres-

sion approach cancel out owing to linearity. The composite estimate with the

intercept-only model 0 is 0.766, with standard error 0.232, similar to the estimate

based on the the unconstrained model, 0.695 (0.233). Composite estimation, or

regression in general, appears to be more efficient than propensity matching anal-

ysis. However, the assumption that model M∗ is valid is rather onerous because

estimation of the relevant parameter entails substantial extrapolation, and this
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Figure 1: Propensity scores (values of the fitted linear predictor Xβ̂ in

logistic regression) for estimating the causal effect of svi on lpsa for subjects

with svi= 1. Vertical noise is added to the points to distinguish subjects

with very similar values of Xβ̂. The matched pairs are connected by dots.

may not be apparent in a cursory inspection of the data or of the results. In

many settings, the cautious attitude implied by the causal analysis, and plac-

ing no faith in a model (M∗) in particular, is well justified, although it has to

be supplemented by an extrapolation from the realized sample to the relevant

population, a problematic task with a small (selected) subset of a dataset. Note

that the outcomes have no role in the selection of the propensity model, nor in

forming matched pairs. Thus, no ps issues arise.

E. Guide dogs for the blind

This section presents an application related to Section 6 of the paper.

A guide dog is invaluable for a blind person when the dog is well trained,

the person well instructed and well disposed, and the two are well matched. A

survey was conducted to assess factors that contribute to the successful match

of a blind person with a guide dog. The dataset is from a donor who wishes to
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Table 1: Summary of the data about guide dogs.

Success Living alone Past dog owner

Age (years) No Yes No Yes No Yes All

20 – 29 285 1089 698 676 425 949 1374

30 – 39 125 545 352 318 261 409 670

40 – 49 75 441 333 183 223 293 516

50 – 59 69 368 340 97 227 210 437

60 + 59 344 357 46 229 174 403

All 613 2787 2080 1320 1365 2035 3400

remain anonymous. The variables recorded are success of the match, person’s

age (in years, between 20 and 70), whether the person lives alone and whether

he or she has previously owned a dog, not necessarily a guide dog. The three

variables other than age are binary. Success is defined as retaining the dog for

more than 90 days. Most of the failed matches lasted for less than three weeks.

A person with a failure appears in the dataset only once, with the first match.

The marginal success rate in the 3400 matches (records) is 82.0%; 38.8% of

the persons live alone and 59.9% have previously owned a dog. The mean age

in the data is 37.7 years and the median is 34 years. Table 1 gives some of the

data summaries (counts). It shows that the rate of living alone declines with

age and past dog ownership among older persons is less prevalent. The failure

rate declines with age (from 21% in the twenties to 14.5% in the sixties). We

estimate by logistic regression the advantage that can be attributed to past dog

ownership.

In the logistic regression fit with ‘linear’ age and no interactions, the covariate
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‘living alone’ (LA) is nominally not significant (t ratio 0.45) and the other two

covariates are highly significant. Model selection would conclude that LA should

be dropped and the two other covariates retained. The model with all three

covariates which, for illustration, we regard as valid, yields the estimated log-odds

of success with respect to past dog ownership 0.959, with estimated standard error

0.095. If the model with LA dropped were adopted unconditionally, the estimate

would be 0.950 (0.086). The composition of these two estimators yields the

estimate 0.952, with the shrinkage coefficient (the weight on the reduced model)

0.837. The estimated rMSE is 0.0935, but it should be adjusted for the deception

due to ignoring the uncertainty about the extent of shrinkage. Composition of

the unconstrained model with other submodels is not useful; next to no shrinkage

takes place (ĉ < 0.05) and the estimated standard error is 0.095, not adjusted

for deception. In conclusion, we should estimate the log-odds of success with

respect to past dog ownership by the unconstrained model, because the variance

reduction is not worth the bias likely to be incurred by composition.

Caliper matching analysis with guide dogs data

In the Rubin’s causal model (Holland, 1986), previous dog ownership is a

cause (treatment) that could be, at least in principle, altered (manipulated) in

advance of the onset of blindness. The effect of this cause is estimated by forming

a set of matched pairs; each pair comprises a subject with previous ownership and

one without. The selection of such a matched subset for analysis is an alternative

to adjusting for confounders (age and LA) by logistic regression. The paucity of

background information is a problem common to the two approaches.
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The result of caliper matching is a set of 1323 pairs of subjects (a match

is not found for 42 subjects in the focal group), so 3400 − 2646 = 754 records

(22.2%) are discarded. The table of successes for them is

Failure Success

Not past owner 343 980

Past dog owner 156 1167

so the estimated difference of the rates is 14.1% and the log-odds ratio is es-

timated by 0.963. In 100 replications of the matching process, the number of

matched pairs was in the range 1288 – 1349 (mean 1316.4 and standard deviation

13.4).

The replicate estimates of the difference of the rates have mean 13.7% and

standard deviation 0.6%. The replicate estimates of the log-odds ratio have

mean 0.929 and standard deviation 0.049. These results differ somewhat from

the regression analysis, but the targets of the two analyses are also different.

The regression refers to a superpopulation, whereas the matched-pairs analysis

is for the subset of persons in the survey who have not owned a dog in the past.

Arguably, the target of the regression analysis is more relevant. On the other

hand, the matched-pairs analysis does not rely on linear dependence on age (on

the logit scale), and the estimated probability is easier to interpret than the

log-odds ratio.
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