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Abstract: Model selection has had a virtual monopoly on dealing with model un-

certainty ever since models were identified as important conduits for statistical

inference. Model averaging alleviates some of its deficiencies, but does not offer a

practical solution in all settings. We propose an alternative based on linear com-

binations of the candidate models’ estimators. The general proposal is elaborated

for ordinary regression and is illustrated with examples. Some estimators based on

invalid models contribute to efficient estimation of certain quantities.
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1. Introduction

The search for a parsimonious valid model to fit to a dataset is often justi-

fied by the belief that the corresponding estimator of any relevant parameter or

another target is efficient (Burnham and Anderson (2002)). It implies estimation

in two stages. First we associate each candidate model with an estimator. Then

we identify the best fitting model and apply the associated estimator. State-

ments made about such post-selection (ps) estimators are not valid when they

are conditional on the selected model and its validity, or assume that the selec-

tion is ignorable. This is obvious from the representation of a ps estimator as

the mixture

θ̂S = i0θ̂0 + i1θ̂1 + · · ·+ iK θ̂K = i⊤θ̂ , (1.1)

where θ̂ = (θ̂0 , θ̂1 , . . . , θ̂K)⊤ are the estimators of a target θ based on respec-

tive models M0 ,M1 , . . ., MK , and the elements of i = (i0 , i1 , . . . , iK)⊤ in-

dicate the selected model S; S is a multinomial random variable defined in

M = {M0 ,M1 , . . . ,MK}, or in {0, 1, . . . ,K}, as S = k when ik = 1. A selection

process S is said to be ignorable for model k when θ̂k has the same distribution

as (θ̂k |S = k). Only some trivial and esoteric selection processes are ignorable.

We want to estimate θ with as small mean squared error (MSE) as possible.

We assume that such an estimator θ̃ is the final product of an analysis, and of

interest is solely its realized value and an (approximately) unbiased estimator of

its MSE. We set aside all issues of interpretation, such as which models k (and
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corresponding estimators θ̂k) contribute to θ̃, and in what way. In contrast, lasso

(Tibshirani (1996)) yields a single model that is intended for all inferences based

on the dataset. Some of the weaknesses of the lasso are addressed by Zou (2006)

and Li and Shao (2015), but it remains a ps estimator. The SCAD selection

process (Fan and Li (2001)) has good (asymptotic) properties of selecting the

important covariates and estimating regression coefficients. Efron (2014) studies

the properties of ps estimators by resampling methods. Rolling and Yang (2014)

seek a single model on which to base estimation of a narrow class of quantities

related to non-constant treatment effects.

Using ps estimators is in discord with two principles. First, they ignore the

consequences of the errors in selection; their distributions are distorted by selec-

tion. The selection should be informed by the target of estimation, θ, but in the

current practice it usually is not. Second, estimation under model uncertainty is

an application of the EM algorithm (Dempster, Laird and Rubin (1977)) in which

the appropriate model is the missing information. The E-step of the algorithm

estimates the conditional probabilities of the alternative models, and the M-step

combines the estimators in θ̂ with these probabilities as the weights. Thus, θ̂k
and Mk that do not win the selection contest should have a role in estimation

of θ. In a ps estimator they do not. In model averaging, such runners-up are

incorporated, but with weights not sensitive to the target θ. This criticism is in

line with Claeskens and Hjort (2003) and Longford (2012) who concluded that

no single process S yields efficient estimators θ̂S for a wide range of targets θ,

and estimators have to be combined differently for one target than for another.

We award no credit for unbiasedness (nor for small bias), or for analytical

or distributional simplicity of the estimator. We eschew any asymptotic argu-

ments or derivations, because we regard model uncertainty as a sub-asymptotic

problem. Oracle properties of an estimator are also irrelevant because they refer

to asymptotics, and we find some invalid models useful for estimation in finite

samples. In brief, we separate estimation from the discovery of the structure

underlying the data, and justify this approach by both examples and theoretical

arguments. Our derivations resemble those of Liang et al. (2011) but, unlike us,

they pursue model averaging as a compromise. We show that greater flexibility

is essential and the averaging has to be target-specific.

Our solution is based on composite estimators, defined as linear combinations

θ̃ = c⊤θ̂ = c0θ̂0 + c1θ̂1 + · · ·+ cK θ̂K , (1.2)

where c is a vector of constants that add up to unity: c⊤1 = 1, where 1 is

the vector of unities of length implied by the context. We use similarly 0 for the

vector of zeros and I for the identity matrix. In some cases, model 0 is a submodel

of each model 1, . . . ,K, models k = 1, . . . ,K − 1 are all submodels of model K,
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and model K is assumed to be valid a priori. Models are solely the sources of

candidate estimators θ̂k , and all that matters are their MSE-related properties,

E(θ̂) and V = Var (θ̂), evaluated under the assumption that a specified model

M∗ is valid. These moments may depend on some unknown parameters. We

assume that estimator θ̂∗ based on M∗, and θ̂K when MK = M∗, is unbiased.

The validity of any other model is neither assumed nor inferred. We never make

the assumption that θ̂k , k < K, would be unbiased if Mk were valid. We adhere

to the frequentist paradigm, operating with sampling distributions, but we could

switch to the Bayesian paradigm by working with posterior distributions instead.

We exploit the fact that some submodels of M∗, even if patently invalid,

are useful for estimating some targets. In the problem of estimating a linear

combination of regression parameters in ordinary regression with K covariates,

we first reduce the list of candidates from 2K models (and their estimators) to

K + 1, and then reduce the problem further to a composition of only θ̂0 , based

on the simplest model M0 , and θ̂∗. Then the only ps issue is the selection of M0 .

In the next section, we highlight the breakdown of established methods for

model selection and averaging, with the exception of the focused information

criterion (Claeskens and Hjort (2008)). Section 3 presents our general proposal

and Section 4 gives details of estimating a linear predictor xβ in ordinary re-

gression. Illustrations and examples of the method are presented in Section 5.

Section 6 explores an extension to generalized linear models (GLM). The con-

cluding section discusses the implications of the method on the everyday practice

of statistics.

2. Motivating Examples

Suppose outcomes {yjh}, j = 1, . . . , nh and h = 1, . . . , H, are generated by

the model of analysis of variance with the standard assumptions of normality,

independence and constant within-group variance σ2 > 0. The obvious estimator

of the expected outcome in group 1, µ1 , is its sample mean µ̂1 =
∑

j yj1/n1 .

When n1 is small the overall sample mean µ̂ =
∑

h

∑
j yjh/n, where n =

∑
h nh ,

is a credible alternative. It is biased for µ1 , but Var (µ̂) = σ2/n is much smaller

than Var (µ̂1) = σ2/n1 . Choosing µ̂1 or µ̂, as in (1.1) with K = 1, may be inferior

to µ̃1 = (1 − c)µ̂1 + cµ̂ with a suitable constant c. Let ∆n1 = 1/n1 − 1/n and

µ = E(µ̂). The optimal constant is c∗ = ∆n1/{∆n1+(µ1−µ)2/σ2}. It has to be

estimated, but µ̃1(ĉ
∗) is more efficient than the ps estimator for a wide range of

values of |µ1−µ|/σ; see Longford (2008), Chapter 1. The constant c∗ depends on

n1 , so we combine µ̂k and µ̂ differently for one group than for another that has a

different sample size. Model averaging (Kass and Raftery (1995), Hoeting et al.

(1999), and Hansen (2007)) uses the same set of weights for the two targets.
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For estimating σ2, we proceed similarly. The common unbiased estimator of

σ2, denoted σ̂2
1 , is based on the model with unrelated means µk . It is associated

with the χ2
n−H distribution. The estimator σ̂2

0 based on the submodel with

µ1 = . . . = µH has bias (n− 1)−1
∑

h nh(µh − µ)2, but its distribution has H − 1

additional degrees of freedom. When H − 1 ≪ n − H, we should combine the

two estimators of σ2 with a large weight given to σ̂2
1 because a few degrees of

freedom gained are a poor trade for the likely bias of σ̂2
0 .

Ordinary regression is commonly applied to compare two treatments for a

medical or some other condition; yjh = µh+xjh β+ εjh , where j = 1, . . . , nh and

h = 0, 1, with εjh ∼ N (0, σ2) independently. The covariate X is a background

variable, with its values xjh not affected by the treatment assignment. We com-

bine the contrast of the within-group means, ∆ȳ = ȳ1− ȳ0 , based on the possibly

false assumption that β = 0, with the ordinary least squares (OLS) estimator ∆µ̂

of ∆µ = µ1 − µ0 as ∆µ̃ = (1 − c)∆µ̂ + c∆ȳ with a suitable coefficient c. When

the within-group means x̄0 and x̄1 differ the optimal value of c is

c∗ =
1

1 + (T0 + T1) ρ2
,

where Th =
∑

j(xjh− x̄h)
2, h = 0, 1, and ρ = β/σ. When x̄1 = x̄0 , ∆µ̂ = ∆ȳ and

then the choice between ∆µ̂ and ȳ, or how they are combined, is immaterial; X

can be ignored. A connection with randomisation and post-observation design

(Rosenbaum (2010)) is discussed in Supplementary Materials, Section A.

In summary, our disposition to the candidate models should be informed by

the design (e.g., the sample sizes nh) and the target of estimation. This exposes

a profound weakness shared by model selection and model averaging.

3. Composition

For the composite estimator θ̃ given by (1.2), MSE(θ̃; θ) = (b⊤c)2 + c⊤Vc,

where the vector of biases b = E(θ̂) − θ1 and V = Var (θ̂) are evaluated under

an a priori specified valid model M∗, not necessarily one in the collection M.

Estimator θ̂∗ associated with M∗ is unbiased, so b̂ = θ̂ − θ̂∗1 is unbiased for b.

If V is nonsingular, then MSE(θ̃; θ) attains its minimum for

c∗ =
1

1⊤
(
V+ bb⊤)−1

1

(
V+ bb⊤

)−1
1 ,

derived by the method of Lagrange multipliers. If V is singular, we drop redun-

dant estimators from θ̂. Let B0 = 1⊤V−11, B1 = 1⊤V−1b, and B2 = b⊤V−1b.

The identity (V+ bb⊤)−1 = V−1 − (1 +B2)
−1V−1bb⊤V−1 implies the expres-

sions
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c∗ =
1

B0 (1 +B2)−B2
1

{
(1 +B2)V

−11−B1V
−1b

}
,

c∗⊤θ̂ = θ̂∗ +
1

B0 (1 +B2)−B2
1

{
(1 +B2)1

⊤V−1b̂−B1b
⊤V−1b̂

}
,

MSE
(
c∗⊤θ̂; θ

)
=

1 +B2

B0 (1 +B2)−B2
1

. (3.1)

The essence of our proposal is to substitute naive estimators for all terms in the

expression for c∗⊤θ̂. This results in the estimator

θ̃ = θ̂∗ +
B̂1

B̂0

(
1 + B̂2

)
− B̂2

1

. (3.2)

The right-hand side of (3.1), denoted by MSE†, understates the MSE of θ̃. In the

next section, we derive simple expressions for θ̃ in a standard problem in ordinary

regression that reduce the problem to a composition of θ̂0 and θ̂∗. Estimation of

MSE is addressed in Section 4.3.

4. Linear Predictor in Ordinary Regression

Borrowing the terminology from linear algebra, we refer to θ̂ in (1.2) as the

basis that generates a space of composite estimators. This space is not linear,

nor is it a simplex, because negative coefficients ck are permitted. A basis is

called non-redundant if the space it generates becomes smaller after excluding

any one of its elements. A basis is called complete for a collection of estimators,

or the related models, if every estimator in the collection belongs to the space.

Suppose an ordinary regression model y = Xβ + ε, ε ∼ Nn(0, σ
2I), is

valid and X, of dimensions n × (K + 1), has orthogonal columns and full rank

K + 1. Define T = X⊤X and t = diag(T−1) = (t0 , t1 , . . . , tK)⊤. We consider

only submodels defined by constraining some elements of β to zero. For given

x0 = (x0,0 , . . . , x0,K), we estimate the target θ = x0β by OLS as θ̂ = x0 β̂, using

a selection of models. Then we form a composition of these estimators.

The OLS estimator θ̂∗ based on model M∗ with no constraints on β is unbi-

ased and Var (θ̂∗) = σ2x0T
−1x⊤

0 . For each excluded covariate Xk , the estimator

is changed by subtracting x0,k β̂k , incurring (additional) bias −x0,k βk , but reduc-

ing the variance by σ2tk x
2
0,k . The biases may (partly) cancel, but the variance

reductions accumulate. A complete non-redundant basis for the OLS estimators

based on the 2K models comprises K + 1 estimators because every estimator of

x0β can be combined from any basis estimator and the estimators of the elemen-

tary biases −x0,k β̂k . We consider two such bases: A, the intercept-only model

M0 and models formed by adding one variable at a time, in arbitrary order,

ending up with the unconstrained model MK = M∗; B, M0 , and all the simple
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regressions, comprising one covariate each. All these models have an intercept.

The empty model M0 can be replaced by the model y = ε, or by a model with

one or several covariates that are included unconditionally.

The spaces generated by bases A and B coincide and can be described as

all compositions of the estimators θ̂0 and θ̂∗, or equivalently, as adjustments of

one of them by a fraction (shrinkage) of the estimated bias of θ̂0 . This result

is derived next, and such simple compositions are studied further in Section 4.3.

Section B of Supplementary Materials discusses estimation of the variance σ2.

4.1. Nested sequence of models (basis A)

Let θ̂ be the set of OLS estimators of θ = x0β based on a nested sequence

of ordinary regression models in basis A. Let bk = E(θ̂k) − θ and vk = Var (θ̂k),

and write the elementary biases as ∆bk = bk−1 − bk = −x0,k βk , the variance

inflations as ∆vk = vk − vk−1 = σ2tk x
2
0,k , and their ratios as ρk = ∆bk/∆vk ,

k = 1, . . . ,K. The covariance of two estimators in θ̂ is equal to the variance

of the estimator based on the covariates that the two associated models have

in common. Therefore the elements of V = Var (θ̂) are vhk = vmin(h,k) , 0 ≤
h, k ≤ K. The inverse of V is tridiagonal (θ̂ is a Markov chain), with diagonal

elements u00 = 1/v0 + 1/∆v1 , ukk = 1/∆vk + 1/∆vk+1 for k = 1, . . . ,K − 1,

and uKK = 1/∆vK , and uk,k+1 = uk+1,k = −1/∆vk next to the diagonal. For

example, for K = 3,

V =




v0 v0 v0 v0
v0 v1 v1 v1
v0 v1 v2 v2
v0 v1 v2 v3




V−1 =




1
v0

+ 1
∆v1

− 1
∆v1

0 0

− 1
∆v1

1
∆v1

+ 1
∆v2

− 1
∆v2

0

0 − 1
∆v2

1
∆v2

+ 1
∆v3

− 1
∆v3

0 0 − 1
∆v3

1
∆v3


 .

The identitiesV−11 = (1/v0 , 0, . . . , 0)
⊤ andV−1b = (ρ1+b0/v0 , ρ2−ρ1 , . . . , ρK−

ρK−1 ,−ρK )⊤ imply that B0 = 1/v0 , B1 = b0/v0 and B2 = R + b20/v0 , where

R = r1 + · · ·+ rK and rk = ∆bk ρk = ∆b2k/∆vk . Hence

c∗ =
1

1 +R

{
1 +R− b0 ρ1 , b0 (ρ1 − ρ2) , . . . , b0 (ρK−1 − ρK) , b0 ρK

}

and, since b̂0 = θ̂0 − θ̂K , the composite estimator c∗⊤θ̂ is

θ̃ = θ̂K +
b̂0

1 +R
= θ̂0 −

Rb̂0
1 +R

=
θ̂0 +Rθ̂K
1 +R

. (4.1)

ESTIMATION UNDER MODEL UNCERTAINTY 7

In practice, R has to be estimated. The consequent inflation of MSE can be
explored by simulations. In basis A, rk = β2

k /(tk σ
2) and rk does not depend on

x0 , although the case x0,k = 0 has to be treated separately. Therefore R does
not depend on x0 and neither do the weights assigned to θ̂0 and θ̂K . By dropping
estimator θ̂k , 0 < k < K, from basis A, the expression for θ̃ is altered only by
replacing rk + rk+1 in R with (∆bk +∆bk+1)

2/(∆vk +∆vk+1), and then x0,k and
x0,k+1 cancel out only when x0,k x0,k+1 = 0. By dropping θ̂k , R is reduced by

∆vk∆vk+1

∆vk +∆vk+1
(ρk − ρk+1)

2 ≥ 0 .

In an incomplete basis, R and θ̃ may depend on x0 .
We explore MSE(θ̃; θ) as a function of R:

MSE◦
(
θ̃; θ

)
= v0 +

R2(vK − v0)

(1 +R)2
+

b20
(1 +R)2

; (4.2)

the circle ◦ indicates that the evaluation ignores the uncertainty about R. For
very large R, MSE◦ is close to vK ; for very small R it is close to MSE(θ̂0 ; θ) =
v0 + b20 . The minimum of MSE◦(θ̃; θ) is attained for R∗ = b20/(vK − v0) and the
minimum value is

MSE◦
(
θ̃∗; θ

)
= v0 +

b20
1 + b20/(vK − v0)

. (4.3)

This coincides with the optimal composition of θ̂0 and θ̂K , making all the inter-
mediate models 1, . . . ,K− 1 redundant. Note that R∗ = R∗(θ) is target-specific.

By substituting B0 , B1 , and B2 in the MSE in (3.1), we obtain the identity

MSE†
(
θ̃; θ

)
= v0 +

b20
1 +R

,

so MSE† and MSE◦ have the same form, v0 + b20/(1 + m), with m = R and
m = b20/(vK − v0), respectively. Thus, MSE† becomes smaller as more variables
are considered, whereas MSE◦ is inflated if vK is increased. Neither MSE is
uniformly smaller than the other but MSE† = MSE◦ = v0 when b0 = 0.

If θ̂0 is dropped from the basis, θ̂1 takes over its role as the simplest estimator.
Then R is reduced by r1 , and θ̂1 and b̂1 are substituted in (4.1) for θ̂0 and b̂0 ,
respectively. The expression for MSE◦ in (4.2) implies that this is worthwhile
when b21 ≪ b20 and r1 ≫ 0. Comparison of the expressions (4.3) for the original
and reduced bases yields the condition

b21 <
(vk − v1)

2

(vk − v0)2
(
vk − v0 + b20

)
− (vk − v1) (4.4)

for usefully dropping θ̂0 . This rule can be applied by using estimates for b20 and
b21 . Note that dropping or not dropping θ̂0 amounts to post-selection.
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regressions, comprising one covariate each. All these models have an intercept.

The empty model M0 can be replaced by the model y = ε, or by a model with

one or several covariates that are included unconditionally.

The spaces generated by bases A and B coincide and can be described as

all compositions of the estimators θ̂0 and θ̂∗, or equivalently, as adjustments of

one of them by a fraction (shrinkage) of the estimated bias of θ̂0 . This result

is derived next, and such simple compositions are studied further in Section 4.3.

Section B of Supplementary Materials discusses estimation of the variance σ2.

4.1. Nested sequence of models (basis A)

Let θ̂ be the set of OLS estimators of θ = x0β based on a nested sequence

of ordinary regression models in basis A. Let bk = E(θ̂k) − θ and vk = Var (θ̂k),

and write the elementary biases as ∆bk = bk−1 − bk = −x0,k βk , the variance

inflations as ∆vk = vk − vk−1 = σ2tk x
2
0,k , and their ratios as ρk = ∆bk/∆vk ,

k = 1, . . . ,K. The covariance of two estimators in θ̂ is equal to the variance

of the estimator based on the covariates that the two associated models have

in common. Therefore the elements of V = Var (θ̂) are vhk = vmin(h,k) , 0 ≤
h, k ≤ K. The inverse of V is tridiagonal (θ̂ is a Markov chain), with diagonal

elements u00 = 1/v0 + 1/∆v1 , ukk = 1/∆vk + 1/∆vk+1 for k = 1, . . . ,K − 1,

and uKK = 1/∆vK , and uk,k+1 = uk+1,k = −1/∆vk next to the diagonal. For

example, for K = 3,

V =




v0 v0 v0 v0
v0 v1 v1 v1
v0 v1 v2 v2
v0 v1 v2 v3




V−1 =




1
v0

+ 1
∆v1

− 1
∆v1

0 0

− 1
∆v1

1
∆v1

+ 1
∆v2

− 1
∆v2

0

0 − 1
∆v2

1
∆v2

+ 1
∆v3

− 1
∆v3

0 0 − 1
∆v3

1
∆v3


 .

The identitiesV−11 = (1/v0 , 0, . . . , 0)
⊤ andV−1b = (ρ1+b0/v0 , ρ2−ρ1 , . . . , ρK−

ρK−1 ,−ρK )⊤ imply that B0 = 1/v0 , B1 = b0/v0 and B2 = R + b20/v0 , where

R = r1 + · · ·+ rK and rk = ∆bk ρk = ∆b2k/∆vk . Hence

c∗ =
1

1 +R

{
1 +R− b0 ρ1 , b0 (ρ1 − ρ2) , . . . , b0 (ρK−1 − ρK) , b0 ρK

}

and, since b̂0 = θ̂0 − θ̂K , the composite estimator c∗⊤θ̂ is

θ̃ = θ̂K +
b̂0

1 +R
= θ̂0 −

Rb̂0
1 +R

=
θ̂0 +Rθ̂K
1 +R

. (4.1)
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In practice, R has to be estimated. The consequent inflation of MSE can be
explored by simulations. In basis A, rk = β2

k /(tk σ
2) and rk does not depend on

x0 , although the case x0,k = 0 has to be treated separately. Therefore R does
not depend on x0 and neither do the weights assigned to θ̂0 and θ̂K . By dropping
estimator θ̂k , 0 < k < K, from basis A, the expression for θ̃ is altered only by
replacing rk + rk+1 in R with (∆bk +∆bk+1)

2/(∆vk +∆vk+1), and then x0,k and
x0,k+1 cancel out only when x0,k x0,k+1 = 0. By dropping θ̂k , R is reduced by

∆vk∆vk+1

∆vk +∆vk+1
(ρk − ρk+1)

2 ≥ 0 .

In an incomplete basis, R and θ̃ may depend on x0 .
We explore MSE(θ̃; θ) as a function of R:

MSE◦
(
θ̃; θ

)
= v0 +

R2(vK − v0)

(1 +R)2
+

b20
(1 +R)2

; (4.2)

the circle ◦ indicates that the evaluation ignores the uncertainty about R. For
very large R, MSE◦ is close to vK ; for very small R it is close to MSE(θ̂0 ; θ) =
v0 + b20 . The minimum of MSE◦(θ̃; θ) is attained for R∗ = b20/(vK − v0) and the
minimum value is

MSE◦
(
θ̃∗; θ

)
= v0 +

b20
1 + b20/(vK − v0)

. (4.3)

This coincides with the optimal composition of θ̂0 and θ̂K , making all the inter-
mediate models 1, . . . ,K− 1 redundant. Note that R∗ = R∗(θ) is target-specific.

By substituting B0 , B1 , and B2 in the MSE in (3.1), we obtain the identity

MSE†
(
θ̃; θ

)
= v0 +

b20
1 +R

,

so MSE† and MSE◦ have the same form, v0 + b20/(1 + m), with m = R and
m = b20/(vK − v0), respectively. Thus, MSE† becomes smaller as more variables
are considered, whereas MSE◦ is inflated if vK is increased. Neither MSE is
uniformly smaller than the other but MSE† = MSE◦ = v0 when b0 = 0.

If θ̂0 is dropped from the basis, θ̂1 takes over its role as the simplest estimator.
Then R is reduced by r1 , and θ̂1 and b̂1 are substituted in (4.1) for θ̂0 and b̂0 ,
respectively. The expression for MSE◦ in (4.2) implies that this is worthwhile
when b21 ≪ b20 and r1 ≫ 0. Comparison of the expressions (4.3) for the original
and reduced bases yields the condition

b21 <
(vk − v1)

2

(vk − v0)2
(
vk − v0 + b20

)
− (vk − v1) (4.4)

for usefully dropping θ̂0 . This rule can be applied by using estimates for b20 and
b21 . Note that dropping or not dropping θ̂0 amounts to post-selection.
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We do not regard selection ofM∗ as a ps issue, because a data-based selection

normally entails uncertainty. Nevertheless, if submodel MK′ of M∗ is selected,

eliminating models MK′+1 , . . . , MK from the basis, MSE◦ in (4.3) is reduced

because vK′ < vK . In contrast, MSE† in (3.1) is increased, as it is a minimum

over a smaller space of estimators.

4.2. Simple regressions (basis B)

Basis B, with the empty and simple regressions, generates the same space of

compositions as basis A, so the same estimator with minimum MSE† is obtained

for the two bases. The proof that parallels the derivations in Section 4.1 is given

in Supplementary Materials, Section C.

A covariate h can be included in M0 . Then every other model in the basis

has to be supplemented with covariate h. Let ∇vh = vh−v0 and b′0 = b0+x0,hβh ;

b′0 is the bias of the ‘new’ estimator θ̂0 . By comparing the expressions (4.3) for

the original and the new bases, with vK replaced by v∗, we obtain the condition

b′0
2
<

b20∇v2h
(v∗ − v0)2

+
∇v2h − 2b20∇vh

v∗ − v0
+ b20 −∇vh

for when moving covariate h to M0 is worthwhile. As a (quadratic) function of

∇vh , the right-hand side attains its minimum at ∇v∗h = 1
2 (v

∗ − v0)(v
∗ − v0 +

2b20)/(v
∗ − v0 + b20), and the minimum, −1

4(v
∗ − v0)

2/(v∗ − v0 + b20), is negative.

Without this derivation, an attractive choice for the revised model 0 might be

the regression on one or several covariates known to be strongly associated with

the outcome. In Section 5.1 we give an example in which this is a poor choice.

For either complete basis, A or B with K ≥ 1, the average R̂/K has a

noncentral F distribution withK and n−K degrees of freedom and noncentrality

parameter λ = R/K. For fixed degrees of freedom, both the mean and variance

of the noncentral F are increasing functions of λ. The ratio of the variance and

squared mean,

2
(K + λ)2 + (K + 2λ)(n−K − 2)

(K + λ)2(n−K − 4)
,

is decreasing in λ. It converges to 2/(n−K − 4) for λ → +∞, so it is small for

large λ when n ≫ K. In fact, the ratio is smaller than a positive constant c even

when λ = 0 for K > 2(n − 2)/{c(n − K − 4)} > 2/c. Therefore, a large value

of R̂ is very likely a consequence of large λ and implies that composition cannot

improve much on θ̂∗. With a basis reduced to H ≤ K estimators, R̂/H has a

noncentral FH,n−H distribution, but the two reduced-basis estimators differ.

4.3. Simple composition

Estimation with bases A and B reduces to composing two estimators, based

on the valid modelM∗ and the smallest submodelM0 . Since θ̂0 and the estimator

ESTIMATION UNDER MODEL UNCERTAINTY 9

of its bias, b̂0 = θ̂0− θ̂∗, are independent, we need to estimate efficiently only the

transformed bias b0R/(1+R) = b30(b
2
0+v∗−v0). We consider shrinkage estimators

b̃0(C) = Cb̂0 R̂/(1 + R̂). No generality is lost by assuming that s = v∗ − v0 = 1;

otherwise we work with b0/
√
s .

For sufficiently large sample size n, when the difference between the tn−K−1

andN (0, 1) distributions and the uncertainty about σ2 are negligible, we evaluate

the empirical MSE of b̃0/σ on a fine two-way grid of values of C and b0 and

identify the coefficient C(b0) for which the empirical MSE is minimized. For

smaller n, we simulate the values of b̂0/σ̂ from the appropriate t distribution.

The results are summarized in panels A and B of Figure 1 by the functions

C(b0) and the corresponding empirical root-MSEs (rMSE) for N (0, 1) and a few

t distributions. The optimal shrinkage C increases with b0 /σ, converging at a

slow rate to 1.0 as | b0 | → +∞. The rMSEs increase, have a flat maximum, and

then slowly decrease toward 1.0. For large n, MSE < 1.0 up to about b0 = 1.6σ.

Composition is not useful for b0 > 1.6 because Var (b̂0/σ) > 1; choosing θ̂∗

unconditionally is then prefered. When b̂0/σ̂ has a noncentral th distribution,

Var (b̂0/σ̂) ≥ h/(h− 2) > 1, but the MSE is also greater, so the borderline b∗0 up

to which composition is useful is about the same. However, b0/σ is not known.

Panels C and D compare the shrinkage coefficients and the rMSE functions

for the t distributions by relating them to N (0, 1). Panel C is curtailed because

of the effects of coarse optimization. For a given scaled bias b0 /σ, the optimal

shrinkage increases with the degrees of freedom and converges to the shrinkage

that is optimal with N (0, 1). The minimum rMSE decreases with the degrees

of freedom toward its ‘normal’ counterpart. The ratio
√
MSE/MSE◦ can be

regarded as a measure of deception caused by ignoring the uncertainty about

R. Its reciprocal is plotted by dots in panel D. The deception is greatest at

b0/σ
.
= ±2.3, equal to 1/0.84=1.19. Composition is not useful for | b0 |/σ > 1.6,

so in practice the upper bound on deception is lower.

5. Examples

We explored composite estimation of a cubic regression for observations made

at points x = 1, 2, . . . , 40. The targets were the fitted values in the range −10 <

x < 50, including some extrapolation. The basis for composite estimation was

formed by the sample mean (model 0, or A) and estimators based on the linear

(L), quadratic (Q), and cubic regressions on x (model K = 3 or C). We simulated

datasets from the ordinary regression model y = 25+ x′1 +0.01x′2 − 0.0012x′3 + ε

with Var (ε) = 100, x′0 = 1, x′1 = x − x̄, x′2 = (x − x̄)2 − (n2 − 1)/12, and

x′3 = (x − x̄)3 − (3n2 − 7)(x − x̄)/20, where x̄ = 20.5. These polynomials are

orthogonal for x = 1, . . . , n = 40. For each of 1,000 replications, we fitted the

four basis models and evaluated the composite estimators for the complete basis
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We do not regard selection ofM∗ as a ps issue, because a data-based selection

normally entails uncertainty. Nevertheless, if submodel MK′ of M∗ is selected,

eliminating models MK′+1 , . . . , MK from the basis, MSE◦ in (4.3) is reduced

because vK′ < vK . In contrast, MSE† in (3.1) is increased, as it is a minimum

over a smaller space of estimators.

4.2. Simple regressions (basis B)

Basis B, with the empty and simple regressions, generates the same space of

compositions as basis A, so the same estimator with minimum MSE† is obtained

for the two bases. The proof that parallels the derivations in Section 4.1 is given

in Supplementary Materials, Section C.

A covariate h can be included in M0 . Then every other model in the basis

has to be supplemented with covariate h. Let ∇vh = vh−v0 and b′0 = b0+x0,hβh ;

b′0 is the bias of the ‘new’ estimator θ̂0 . By comparing the expressions (4.3) for

the original and the new bases, with vK replaced by v∗, we obtain the condition

b′0
2
<

b20∇v2h
(v∗ − v0)2

+
∇v2h − 2b20∇vh

v∗ − v0
+ b20 −∇vh

for when moving covariate h to M0 is worthwhile. As a (quadratic) function of

∇vh , the right-hand side attains its minimum at ∇v∗h = 1
2 (v

∗ − v0)(v
∗ − v0 +

2b20)/(v
∗ − v0 + b20), and the minimum, −1

4(v
∗ − v0)

2/(v∗ − v0 + b20), is negative.

Without this derivation, an attractive choice for the revised model 0 might be

the regression on one or several covariates known to be strongly associated with

the outcome. In Section 5.1 we give an example in which this is a poor choice.

For either complete basis, A or B with K ≥ 1, the average R̂/K has a

noncentral F distribution withK and n−K degrees of freedom and noncentrality

parameter λ = R/K. For fixed degrees of freedom, both the mean and variance

of the noncentral F are increasing functions of λ. The ratio of the variance and

squared mean,

2
(K + λ)2 + (K + 2λ)(n−K − 2)

(K + λ)2(n−K − 4)
,

is decreasing in λ. It converges to 2/(n−K − 4) for λ → +∞, so it is small for

large λ when n ≫ K. In fact, the ratio is smaller than a positive constant c even

when λ = 0 for K > 2(n − 2)/{c(n − K − 4)} > 2/c. Therefore, a large value

of R̂ is very likely a consequence of large λ and implies that composition cannot

improve much on θ̂∗. With a basis reduced to H ≤ K estimators, R̂/H has a

noncentral FH,n−H distribution, but the two reduced-basis estimators differ.

4.3. Simple composition

Estimation with bases A and B reduces to composing two estimators, based

on the valid modelM∗ and the smallest submodelM0 . Since θ̂0 and the estimator

ESTIMATION UNDER MODEL UNCERTAINTY 9

of its bias, b̂0 = θ̂0− θ̂∗, are independent, we need to estimate efficiently only the

transformed bias b0R/(1+R) = b30(b
2
0+v∗−v0). We consider shrinkage estimators

b̃0(C) = Cb̂0 R̂/(1 + R̂). No generality is lost by assuming that s = v∗ − v0 = 1;

otherwise we work with b0/
√
s .

For sufficiently large sample size n, when the difference between the tn−K−1

andN (0, 1) distributions and the uncertainty about σ2 are negligible, we evaluate

the empirical MSE of b̃0/σ on a fine two-way grid of values of C and b0 and

identify the coefficient C(b0) for which the empirical MSE is minimized. For

smaller n, we simulate the values of b̂0/σ̂ from the appropriate t distribution.

The results are summarized in panels A and B of Figure 1 by the functions

C(b0) and the corresponding empirical root-MSEs (rMSE) for N (0, 1) and a few

t distributions. The optimal shrinkage C increases with b0 /σ, converging at a

slow rate to 1.0 as | b0 | → +∞. The rMSEs increase, have a flat maximum, and

then slowly decrease toward 1.0. For large n, MSE < 1.0 up to about b0 = 1.6σ.

Composition is not useful for b0 > 1.6 because Var (b̂0/σ) > 1; choosing θ̂∗

unconditionally is then prefered. When b̂0/σ̂ has a noncentral th distribution,

Var (b̂0/σ̂) ≥ h/(h− 2) > 1, but the MSE is also greater, so the borderline b∗0 up

to which composition is useful is about the same. However, b0/σ is not known.

Panels C and D compare the shrinkage coefficients and the rMSE functions

for the t distributions by relating them to N (0, 1). Panel C is curtailed because

of the effects of coarse optimization. For a given scaled bias b0 /σ, the optimal

shrinkage increases with the degrees of freedom and converges to the shrinkage

that is optimal with N (0, 1). The minimum rMSE decreases with the degrees

of freedom toward its ‘normal’ counterpart. The ratio
√

MSE/MSE◦ can be

regarded as a measure of deception caused by ignoring the uncertainty about

R. Its reciprocal is plotted by dots in panel D. The deception is greatest at

b0/σ
.
= ±2.3, equal to 1/0.84=1.19. Composition is not useful for | b0 |/σ > 1.6,

so in practice the upper bound on deception is lower.

5. Examples

We explored composite estimation of a cubic regression for observations made

at points x = 1, 2, . . . , 40. The targets were the fitted values in the range −10 <

x < 50, including some extrapolation. The basis for composite estimation was

formed by the sample mean (model 0, or A) and estimators based on the linear

(L), quadratic (Q), and cubic regressions on x (model K = 3 or C). We simulated

datasets from the ordinary regression model y = 25+ x′1 +0.01x′2 − 0.0012x′3 + ε

with Var (ε) = 100, x′0 = 1, x′1 = x − x̄, x′2 = (x − x̄)2 − (n2 − 1)/12, and

x′3 = (x − x̄)3 − (3n2 − 7)(x − x̄)/20, where x̄ = 20.5. These polynomials are

orthogonal for x = 1, . . . , n = 40. For each of 1,000 replications, we fitted the

four basis models and evaluated the composite estimators for the complete basis
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Figure 1. Optimal shrinkage coefficients and the corresponding rMSEs of
the simple composition with v∗ − v0 = 1, as functions of the bias b0 for the
normal and a selection of t distributions. The relative shrinkage in panel
C is defined as the difference of the shrinkage coefficients for a t and the
N (0, 1) distribution. The relative rMSE in panel D is defined as the ratio of
the rMSEs for a t and the N (0, 1) distribution.

(ALQC), with θ̂0 dropped (LQC), and the simple compositions AC, LC, and QC.

The ps estimator (psE) was defined by testing the null-hypothesis for the cubic

coefficient, using the conventional test size of 0.05.

Estimator ALQC was slightly more efficient than estimator C around x =

20.5 and less efficient around x = 6 and 35. Estimator AC was more efficient than

C and ALQC only around x = 20.5 and for extrapolation (x < 1 and x > 40).

Except for a few narrow intervals of x, psE was less efficient than both C and

Q, as were estimators defined by other established model selection (information)

criteria. Submodel Q was selected in only 13.4% of replications, and yet was

more efficient than ALQC, AC, C, and psE in a wide range around x = 31. We

ESTIMATION UNDER MODEL UNCERTAINTY 11

regard both ALQC and AC as failures because they are less efficient than Q or

C in wide ranges of values of x. But psE has not much to commend either.

A large value of r1 suggests that estimator A should be dropped from the

basis, although (4.4) is a more appropriate criterion. Composite estimators LQC

and LC were uniformly more efficient than C, and LC was also superior to Q,

except for x ∈ (31.5, 35). Estimator LQC was more efficient than LC only by

a narrow margin for x < 3 and x ∈ (11, 19). Apart from intervals (2, 9) and

(34, 36), the estimator with shrinkage applied to LC (LCshr) was more efficient

than LC. The gain in efficiency was small throughout, except for x > 40, where

the reduction of rMSE was by nearly 4%. The shrinkage coefficient was based

on the 90th percentile of t36 . For higher percentiles, the gains would be smaller

but positive throughout.

Selection of the basis is addressed in Figure 2, where the percentages of the

decisions to drop θ̂0 from the basis (and use estimator LC instead of AC), and

to drop also θ̂1 (and use QC) are plotted. The shaded region represents the

choice of LC, and the regions above and below are for AC and QC, respectively.

The choices were based on the inequality in (4.4). The estimator with minimum

(empirical) rMSE is marked by gray horizontal dashes drawn at the heights −1

(to use QC), 51 (LC), and 102 (AC). Thick segments indicate ‘clear winners’ (e.g.,

AC for −10 < x < −2.5), for which the second best choice has rMSE greater

at least 1.025 times. Thinner segments are used for ‘narrow winners’ (e.g., QC

for −2 < x < 0.2) and are accompanied by the ‘narrow losers’ marked by even

thinner segments (e.g., QC for 0.3 < x < 2.2). Their rMSEs are greater than

for the corresponding winners less than 1.025 times. Thus, LC is a winner or a

narrow loser throughout the range (−2.5, 50), except for a narrow interval around

20.5, where AC is the winner. Estimator QC is not a clear winner anywhere in

(−10, 50) and AC is a clear loser in much of the range. Inspection of r̂ would

make us choose LC, a good choice overall, but not uniformly the best.

The pointwise selected compositions do not form a cubic function, but the fit

is pointwise more efficient than any cubic function. This indicates both a problem

with interpreting the fit and a hindrance to efficient estimation caused by insisting

on a single (basis) estimator or a universal composition (model averaging). Owing

to symmetry of x, the sample mean is the most efficient of the basis estimators

for x = 20.5 (x′ = 0); the interval of x around 20.5 where A is efficient is narrow.

In all replications, r̂1/R̂ > 0.67 — r̂1 dominated in r̂. The values of R̂ had

mean 61.7, median 58.7 and standard deviation (sd) 21.7; the mean of r̂2+ r̂3 was

only 2.66, the median was 3.54 and sd was 3.33. One might conclude from a single

realization that θ̂0 is not useful, except at x = 20.5, and choose estimator LC.

Equation (4.4) credits θ̂0 for some values of x, although sometimes incorrectly.
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Figure 1. Optimal shrinkage coefficients and the corresponding rMSEs of
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Figure 2. Percentages of decisions to drop from the basis estimator θ̂0 (and

use LC) and also θ̂1 (and use QC), as functions of the target x. Based on
simulations with 1,000 replications.

Any model selection or averaging would disqualify θ̂0 . Clearly, good model fit

and efficiency are distinct criteria that should not be confused.

5.1. Prostate cancer data

We reanalyse the data on prostate cancer studied originally by Stamey et al.

(1989) and used by Tibshirani (1996) to illustrate lasso. The dataset is avail-

able in R (R Core Team (2013)). The covariates are the cancer volume (lcavol),

prostate weight (lweight), age in years, the amount of benign prostatic hyperpla-

sia (lbph), seminal vesicle invasion (svi), capsular penetration (lcp), Gleason score

(gleason) and the percentage of Gleason scores 4 and 5 (pgg45). The outcome

variable, prostate specific antigen (lpsa), has values in the range (−0.43, 5.58);

their sample mean and sd are 2.48 (1.15). The variables lcavol, lweight, lbph, lcp,

and lpsa are log-transformed. The variables lbph, lcp, and pgg45 are continuous,

but their respective minima of −1.386, −1.386, and zero occur frequently, for 43,

45, and 35 of the 97 cases. The binary variable svi has the frequencies 76 (value

0) and 21 (1). All but six cases have values of gleason equal to 6 (35 cases) or 7

(56 cases).

We studied prediction for ages 40−80 years and a fixed set of values of

the covariates listed in the first row of Table 1. Tibshirani (1996) selected the

covariates lcavol, lweight, and svi by both subset selection and lasso. We applied

ordinary regression with intercept only (M0), all the covariates (M1), and the

covariates selected by lasso (MT). The compositions of M0 and M1 and of MT

and M1 are denoted by C0 and CT, respectively. Further, Cp and Cpt refer to the

respective versions of C0 and CT averaged over 1,000 replicate sets of plausible

values. The estimators are assessed by their predictions and estimated rMSEs in
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Table 1. Values of the covariates used in prediction (‘?’ indicates the target).
Prostate cancer data.

Variable

lcavol lweight age lbph svi lcp gleason pgg45 lpsa

Value 1.35 3.65 40−80 -1.40 0 -1.40 7.00 0.0 ?

Mean 1.35 3.65 63.9 0.10 0.22 -0.18 6.75 24.4 2.48

St. dev. 1.18 0.50 7.45 1.45 0.41 1.40 0.72 28.2 1.15

Figure 3. Prediction of lpsa for ages 40 – 80 years, with covariate values listed
in the first row of Table 1. Prostate cancer data.

Notes: M denotes OLS and C composite estimators; 0 stands for the intercept-only, 1 for the

unconstrained, and T for the model selected by lasso; p indicates that the estimate is based on

1,000 replicate sets plausible values.

Figure 3, drawn as functions of age. With model M1 we obtain a (decreasing)

linear function of age. Compositions C0 and CT yield nonlinear functions of age.

The biases (and rMSEs) of the predictions based on OLS were estimated with

reference to model M1. The estimates ignore the uncertainty about R∗, which

was in fact very modest throughout the range of age, because R̂∗ was quite small.

Even with a considerable leeway for error, estimators M0 and C0 were uniformly

far superior to CT. The estimates of rMSE obtained by bootstrap (not drawn in

the diagram) decreased from 1.06 for 40 years to 0.98 for 80 years of age, still

smaller than the estimated rMSE of CT; they decreased from 1.22 to 1.08 for

rMSE◦ and from 1.37 to 1.26 for the bootstrap overestimate.

Setting M0 to the model with the variables identified by lasso is not useful

because prediction is made at the sample means of lcavol and lweight, and at

a value of svi not far away from its mean, 0.22. With these variables in M0 ,

we import a lot of sampling variation for next to no bias reduction. The small
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Figure 3. Prediction of lpsa for ages 40 – 80 years, with covariate values listed
in the first row of Table 1. Prostate cancer data.

Notes: M denotes OLS and C composite estimators; 0 stands for the intercept-only, 1 for the

unconstrained, and T for the model selected by lasso; p indicates that the estimate is based on

1,000 replicate sets plausible values.

Figure 3, drawn as functions of age. With model M1 we obtain a (decreasing)

linear function of age. Compositions C0 and CT yield nonlinear functions of age.

The biases (and rMSEs) of the predictions based on OLS were estimated with

reference to model M1. The estimates ignore the uncertainty about R∗, which

was in fact very modest throughout the range of age, because R̂∗ was quite small.

Even with a considerable leeway for error, estimators M0 and C0 were uniformly

far superior to CT. The estimates of rMSE obtained by bootstrap (not drawn in

the diagram) decreased from 1.06 for 40 years to 0.98 for 80 years of age, still

smaller than the estimated rMSE of CT; they decreased from 1.22 to 1.08 for

rMSE◦ and from 1.37 to 1.26 for the bootstrap overestimate.

Setting M0 to the model with the variables identified by lasso is not useful

because prediction is made at the sample means of lcavol and lweight, and at

a value of svi not far away from its mean, 0.22. With these variables in M0 ,

we import a lot of sampling variation for next to no bias reduction. The small
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contributions from the ‘unimportant’ variables happen to add up and generate a

prediction strongly related to age. The estimators of rMSE based on 1,000 sets of

plausible values of β and σ2 are represented in Figure 3 by solid lines marked Cp

(for composition of M0 and M1) and Cpt (MT and M1). Their means are plot-

ted in the left-hand panel. The rMSE for Cpt is only slightly, though uniformly,

greater than rMSE◦. In contrast, much greater inflation takes place for C0, espe-

cially for older ages, although it does not affect our assessment that C0 is much

more efficient than CT. In conclusion, the trivial model with no covariates should

be retained in the basis of the composition (as M0), even if it were known that

lcavol, lweight, and svi are important predictors. In Supplementary Materials,

Section D, we relate composite estimation to propensity matching analysis.

6. Composition of GLM Estimators

We explore composition outside the confines of ordinary regression by esti-

mating the linear predictor θ = x0β in logistic regression for binary outcomes.

We note first that efficient estimation of x0β and of its inverse-link transform

g−1(x0β) are different tasks when the link function g is nonlinear, as is the case

when some of the probabilities fitted by logistic regression are extreme.

The reduction of multi-estimator compositions to simple compositions does

not carry over to GLM. The identity Cov (θ̂1 , θ̂2) = Var (θ̂1) for estimators θ̂1 and

θ̂2 based on respective models M1 and M2 holds only when M1 is a submodel of

M2 , and M2 is valid. The latter clause is not required with the identity link, as

in ordinary regression. An extreme departure arises when the iterative weights

in two (invalid) models differ substantially. For example, the weights in a logistic

regression may be clustered around 0.25 for one model and be much smaller

for another. Balance of the covariates is a property not only of X but also of

the model, through the weights it implies. The model-based estimators do not

form a basis as defined in Section 4. Equation (3.2) applies generally, but the

intermediate estimators do not cancel out as they do in (4.1).

Nevertheless, we may consider the composition of estimators θ̂0 and θ̂∗. We

give an example of a simple composition that is more efficient than both basis

estimators. We generated a 500× 3 regression matrix with the intercept column,

a random sample from the convolution of N (0, 1) rounded to integers with the

uniform distribution on (0, 1), and a column comprising 100 repeats of the regular

sequence (1, 2, 3, 4, 5). This (fixed) matrix X was used in 10,000 replications

of generating binary outcomes according to the logistic regression with β =

(−1, 0.4,−0.25)⊤. We estimated the linear predictors for x0 = (1, 0, k), k =

1, . . . , 5, using the models with intercept only (M0), with the first two columns of

X (model M1), and with the entire matrix X (model M2). The covariate X2 had

the range (−2.68, 3.42), mean 0.40, median 0.425, and 0 at the percentile 36.6.
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Table 2. Simulation of linear prediction in logistic regression; β0 = 1, β1 = 0;
10,000 replications.

β2

1 2 3 4 5

θ̂2 = θ̂∗ — estimator with M2

Bias -0.012 -0.014 -0.016 -0.018 -0.021
rMSE 0.204 0.155 0.147 0.185 0.249
rMSE◦ 0.200 0.152 0.145 0.184 0.249

θ̃12 — composition of θ̂1 and θ̂2
Bias −0.055 −0.031 0.001 0.023 0.047
rMSE 0.214 0.158 0.145 0.185 0.254
rMSE◦ 0.193 0.150 0.144 0.178 0.236
E(ĉ) 0.127 0.114 0.397 0.171 0.157

θ̃02 — composition of θ̂0 and θ̂2
Bias −0.067 −0.006 0.010 0.019 0.039
rMSE 0.196 0.136 0.145 0.185 0.254
rMSE◦ 0.169 0.130 0.143 0.180 0.240
E(ĉ) 0.406 0.662 0.107 0.079 0.088

The values of the target, −1.25,−1.70, . . . ,−2.25, correspond to probabilities

0.223, 0.182, 0.148, 0.119 and 0.095.

We formed simple compositions of estimators θ̂0 and θ̂2 and of θ̂1 and θ̂2 ,

based on the estimated variance matrices of the estimators of x0β and their

biases, assuming that θ̂2 = x0 β̂2 is unbiased. The empirical biases and rMSEs

are listed in Table 2. The analytical rMSEs in the table are the averages of

the values of rMSE◦ based on each replicate fit. Note that the variation of the

iterative weights across the replications is a source of uncertainty additional to

that in ordinary regression. The values of the average shrinkage coefficient c are

listed in the fourth row of each block for a composite estimator.

The table shows that compositions θ̃02 and θ̃12 are not useful for β2 > 3,

but θ̃02 is more efficient than θ̂2 for β2 = 1 and 2. We would be deceived

by rMSE◦, especially for β2 = 1. Estimators θ̂0 and θ̂1 are not competitive,

except for narrow ranges where their bias is small; details are omitted. The

shrinkage coefficient is on average very large (0.662) for θ̃02 at β2 = 2. Its sd

is 0.260, so the coefficient is rarely small. For prediction at x0 = (1,−3, k),

k = 1, . . . , 5, rMSE(θ̃12 ; θ) < rMSE(θ̃02 ; θ) in all five cases, but rMSE(θ̃12 ; θ)

differs from rMSE(θ̂2 ; θ) by less than 1%. The composite estimators entail much

more deception as the targets are much smaller probabilities, decreasing from

0.08 to 0.03. An application is presented in Supplementary Materials, Section E.
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the values of rMSE◦ based on each replicate fit. Note that the variation of the

iterative weights across the replications is a source of uncertainty additional to

that in ordinary regression. The values of the average shrinkage coefficient c are

listed in the fourth row of each block for a composite estimator.

The table shows that compositions θ̃02 and θ̃12 are not useful for β2 > 3,

but θ̃02 is more efficient than θ̂2 for β2 = 1 and 2. We would be deceived
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7. Conclusion

We summarize our alternative to model selection by two key points related
to model-based estimation: efficiency in finite samples is not equivalent to the
combination of inferred validity and parsimony, and composition has a greater
potential than selecting one of the models. This potential is relatively easy to
realize in standard ordinary regression problems. Estimation should not be an
eliminatory contest of models, but a cooperative effort of estimators, with small
MSE (or a similar criterion) as the sole arbiter of quality. We re-interpret the
well known quip of Box (1976) that ‘All models are wrong, but some are useful.’
by pointing to the value of some grossly invalid models in a composition.

We defined a basis of composition as a finite set of model-based estimators of
a quantity (a function of parameters). A basis can be formed by estimators that
are not linked to any models. For example, the estimators may be defined by
alternative methods, such as (full, restricted or penalized) maximum likelihood,
moment matching and a non-parametric method, or different adjustments of the
sampling weights (and equal weights) in survey analysis. For an application of
this idea to mixed models, see Longford (2015).

In ordinary regression, composite estimators offer a dramatic reduction of
the dimensionality of the problem, from 2K to K, where K is the number of co-
variates. Further reduction is afforded by studying the quantities r̂k = ∆b̂2k/∆v̂k
and reducing model selection to specifying the simplest basis model. Our esti-
mator of choice is a composition of this and the valid (the most complex) model
M∗. It is advantageous to define a more parsimonious model M∗, but its valid-
ity is imperative. The outcome of the analysis is an estimate, not a model to
be adopted, so any scientific problem has to be converted to one or several sets
of quantities to be estimated. Relations among these estimators usually have
no inferential meaning because they may be based on different (collections of)
models. We suggest to study relations among the underlying quantities.

Our method is not suitable for interpreting the results, that is, to infer the
plausible structure underlying the data from the analytical form of the estima-
tor. However, when some elements of the structure are characterized by numeric
quantities, their efficient estimation is paramount; then our approach is relevant.
For other formats of inferential statements, such as confidence intervals, our ap-
proach is not immediately adaptable. For example, µ+cσ may be estimated more
efficiently than by standard methods, but the distribution of such a confidence
limit can only be approximated. In contrast, it is known with precision when
based on the established estimators. Minimising MSE also implies a disregard for
any constraints on the targets, even when all the basis estimators satisfy them.

We do not have a closed-form expression for the MSE of the composition
or for its unbiased estimator. A closed-form expression, MSE◦ in (4.2), is avail-
able for simple composition in ordinary regression, assuming that the sum of
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scaled squared biases, R, is known. The naive estimator of MSE◦ is too opti-

mistic because it ignores the uncertainty due to estimating R. The extent of

this underestimation can be explored by simulations. The multiplicative bias

(deception) is not greater than 1.19. The bias is close to this bound when R

is large, and composition is then ineffective — it is less efficient than the valid-

model estimator θ̂∗. Therefore, the level of deception is in practice lower than

1.19. However, this statement ignores the ps nature of estimation, arising from

the choice between composition and the valid model.

Bootstrap, Efron and Tibshirani (1993) and Davison and Hinkley (1997),

and crossvalidation, Picard and Cook (1984) and Shao (1993), are not suitable

for MSE estimation because composition is conditioned on the (joint) distribu-

tion of covariates, which cannot be held fixed in replications. Also, a different

composition is optimal for a subset of the data because it has a different balance

of the bias (unchanged) and variance (increased) than the original dataset.

Selection from a finite set of options is an operation frequently encountered in

practice (Lindley (1985)) but the calculus used in everyday statistical evaluations

is more amenable to linear operations, such as composition, and its properties

are easier to explore. In particular, composition is a smooth (differentiable)

operation, whereas selection is discontinuous.

Models used in the analysis of experiments and with post-observation design

tend to fit poorly, because they do not involve any background variables. Models

that fit better may yield less efficient estimators and, ironically, raise concerns

about model validity. Composition reduces the divide between the analysis of

experiments, in which the (joint) distribution of the covariates is controlled, and

observational studies in which it is not. It leads to a simple analysis of treatment

effects when the within-group distributions are (nearly) identical, both when

this is arranged by design and when it happens to arise. Balance with respect

to a subset of the covariates is effectively exploited by composition. Matched-

group analysis has some important advantages over modelling for estimating

treatment effects in observational studies, but composition reduces this advantage

by involving invalid models.

Supplementary Materials

The online supplementary materials contain five sections, dealing with post-

observation design (Section A), composite estimation of the residual variance

in ordinary regression (B), composite estimation with basis B (C), propensity

matching with the prostate cancer data analysed in Section 5.1 (D), and an

application of composition to GLM contrasted with matched-pairs analysis (E).
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