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Abstract: Given a sample of size n from a population of individuals belonging to

different species with unknown proportions, a problem of practical interest consists

in making inference on the probability Dn(l) that the (n + 1)-th draw coincides

with a species with frequency l in the sample, for any l = 0, 1, . . . , n. This pa-

per contributes to the methodology of Bayesian nonparametric inference for Dn(l).

Specifically, under the general framework of Gibbs-type priors we show how to

derive credible intervals for a Bayesian nonparametric estimation of Dn(l), and

we investigate the large n asymptotic behaviour of such an estimator. Of par-

ticular interest are special cases of our results obtained under the specification of

the two parameter Poisson–Dirichlet prior and the normalized generalized Gamma

prior. With respect for these prior specifications, the proposed results are illustrated

through a simulation study and a benchmark Expressed Sequence Tags dataset. To

the best our knowledge, this provides the first comparative study between the two-

parameter Poisson–Dirichlet prior and the normalized generalized Gamma prior in

the context of Bayesian nonparemetric inference for Dn(l).
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1. Introduction

The problem of estimating discovery probabilities arises when an experi-

menter is sampling from a population of individuals (Xi)i≥1 belonging to an

(ideally) infinite number of species (Yi)i≥1 with unknown proportions (qi)i≥1.

Given an observable sample Xn = (X1, . . . , Xn), interest lies in estimating the

probability that the (n+ 1)-th draw coincides with a species with frequency l in

Xn, for any l = 0, 1, . . . , n. This probability is denoted by Dn(l) and referred

to as the l-discovery, while discovery probabilities is used to address this class of

probabilities. In terms of the species proportions qi’s, we can write

Dn(l) =
∑
i≥1

qi1{l}(Ñi,n), (1.1)
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where Ñi,n denotes the frequency of the species Yi in the sample. Here Dn(0)

is the proportion of yet unobserved species or, equivalently, the probability of

discovering a new species. The reader is referred to Bunge and Fitzpatrick (1993)

and Bunge, Willis and Walsh (2014) for comprehensive reviews on the full range

of statistical approaches, parametric and nonparametric, as well as frequentist

and Bayesian, for estimating the l-discovery and related quantities. The term

discovery probability is also used in the literature to refer to a more general class

of probabilities that originate when considering an additional unobserved sample

of size m ≥ 0. For instance, in this framework and conditionally on Xn, Lijoi,

Mena and Prünster (2007) consider the problem of estimating the probability

that Xn+m+1 is new, while Favaro, Lijoi and Prünster (2012) focus on the so-

called m-step l-discovery, the probability that Xn+m+1 coincides with a species

that has been observed with frequency l in the enlarged sample of size n + m.

According to this terminology, the discovery probabilityDn(l) introduced in (1.1)

is the 0-step l-discovery.

The estimation of the l-discovery has found numerous applications in ecol-

ogy and linguistics, and its importance has grown considerably in recent years,

driven by challenging applications in bioinformatics, genetics, machine learning,

design of experiments, etc. For examples, Efron and Thisted (1976) and Church

and Gale (1991) discuss applications in empirical linguistics; Good (1953) and

Chao and Lee (1992), among many others, discuss the probability of discover-

ing new species of animals in a population; Mao and Lindsay (2002), Navarrete,

Quintana and Müller (2008), Lijoi, Mena and Prünster (2007a), and Guindani et

al. (2014) study applications in genomics and molecular biology; Zhang (2005)

considers applications to network species sampling problems and data confiden-

tiality; Caron and Fox (2015) discuss applications arising from bipartite and

sparse random graphs; Rasmussen and Starr (1979) and Chao et al. (2009) in-

vestigate optimal stopping procedures in finding new species; Bubeck, Ernst and

Garivier (2013) study applications within the framework of multi-armed bandits

for security analysis of electric power systems.

This paper contributes to the methodology of Bayesian nonparametric infer-

ence for Dn(l). As observed in Lijoi, Mena and Prünster (2007) for the discovery

probability of new species (0-discovery Dn(0)), a natural Bayesian nonparametric

approach for estimating Dn(l) consists in randomizing the qi’s. Specifically, con-

sider the random probability measure Q =
∑

i≥1 qiδYi , where (qi)i≥1 are nonnega-

tive random weights such that
∑

i≥1 qi = 1 almost surely, and (Yi)i≥1 are random

locations independent of (qi)i≥1 and independent and identically distributed as

a nonatomic probability measure ν0 on a space X. Then, it is assumed that

Xi |Q
i.i.d.∼ Q, i = 1, . . . , n

Q ∼ Q,
(1.2)
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for any n ≥ 1, where Q is the prior distribution over the species composition.

Under the Bayesian nonparametric model (1.2), the estimator of Dn(l) with

respect to a squared loss function, say D̂n(l), arises from the predictive distri-

butions characterizing (Xi)i≥1. Specifying Q in the large class of Gibbs-type

random probability measures by Pitman (2003), we consider the problem of de-

riving credible intervals for D̂n(l), and study the large n asymptotic behaviour

of D̂n(l). Before introducing our results, we review some aspects of D̂n(l).

1.1. Preliminaries on D̂n(l)

Let Xn be a sample from a Gibbs-type random probability measure Q, fea-

turingKn = kn speciesX∗
1 , . . . , X

∗
Kn

, the unique values ofXn recorded in order of

appearance, with corresponding frequencies (N1,n, . . . , NKn,n) = (n1,n, . . . , nkn,n).

Here for every i = 1, 2, . . . , kn, there exists a non-negative integer ξi such that

X∗
i = Yξi and Ni,n = Ñξi,n, where (Yn)n≥1 is the sequence of random atoms in

the definition of Q. Let σ ∈ (0, 1) and (Vn,k)k≤n,n≥1 be a triangular array of

nonnegative weights such that V1,1 = 1 and Vn,k = (n − σk)Vn+1,k + Vn+1,k+1.

According to de Finetti’s representation theorem, Xn is part of an exchangeable

sequence (Xi)i≥1 whose distribution has been characterized in Pitman (2003) and

Gnedin and Pitman (2006) as follows: for any set A in the Borel sigma-algebra

of X,

P[Xn+1 ∈ A |Xn] =
Vn+1,kn+1

Vn,kn

ν0(A) +
Vn+1,kn

Vn,kn

kn∑
i=1

(ni,n − σ)δX∗
i
(A). (1.3)

The conditional probability (1.3) is referred to as the predictive distribution of

Q. Two peculiar features of Q emerge directly from (1.3): the probability that

Xn+1 /∈ {X∗
1 , . . . , X

∗
Kn

} depends only on kn; the probability that Xn+1 = X∗
i

depends only on (kn, ni,n). See De Blasi et al. (2015) for a review on Gibbs-type

priors in Bayesian nonparametrics.

Two of the most commonly used nonparametric priors are of Gibbs-type; the

two-parameter Poisson–Dirichlet (PD) prior in Pitman (1995) and Pitman and

Yor (1997); the normalized generalized Gamma (GG) prior in Pitman (2003) and

Lijoi, Mena and Prünster (2007b) (see also Prünster (2002),James (2002),Lijoi

and Prünster (2003), and Regazzini, Lijoi and Prünster (2003) for early ap-

pearance of normalized GG). The Dirichlet process of Ferguson (1973) can be

recovered from both priors by letting σ → 0. For any σ ∈ (0, 1), θ > −σ and

τ > 0, the predictive distributions of the two-parameter PD and the normalized

GG priors are of the form (1.3) where Vn,kn , respectively, are
∏kn−1

i=0 (θ + iσ)

(θ)n
and

σkn−1eτ
σ

Γ(n)

n−1∑
i=0

(
n− 1

i

)
(−τ)iΓ

(
kn − i

σ
; τσ

)
, (1.4)
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where (a)n :=
∏

0≤i≤n−1(a+i) with (a)0 :=1, and Γ(a, b) :=
∫ +∞
b xa−1 exp{−x}dx.

See Pitman (1995); Lijoi, Mena and Prünster (2007b) for details on (1.4). Accord-

ing to (1.3), the parameter σ admits an interpretation in terms of the distribution

of Kn: the larger σ, the higher is the number of species and, among these, most

of them have small abundances. In other terms, the larger the σ the flatter is the

distribution of Kn. The parameters θ and τ are location parameters, the bigger

they are the larger the expected number of species tends to be.

Denote byMl,n the number of species with frequency l inXn, and byml,n the

corresponding observed value. An estimator D̂n(l) arises from (1.3) by suitably

specifying the Borel set A. In particular, if A0 := X \ {X∗
1 , . . . , X

∗
Kn

} and Al :=

{X∗
i : Ni,n = l}, for any l = 1, . . . , n, then one has

D̂n(0) = P[Xn+1 ∈ A0 |Xn] = E[Q(A0) |Xn] =
Vn+1,kn+1

Vn,kn

, (1.5)

D̂n(l) = P[Xn+1 ∈ Al |Xn] = E[Q(Al) |Xn] = (l − σ)ml,n
Vn+1,kn

Vn,kn

. (1.6)

Estimators (1.5) and (1.6) provide Bayesian counterparts to the celebrated Good–

Turing estimator Ďn(l) = (l + 1)ml+1,n/n, for any l = 0, 1, . . . , n − 1, which

is a frequentist nonparametric estimator of Dn(l) introduced in Good (1953).

The most notable difference between D̂n(l) and Ďn(l) consists in the use of the

information in Xn: Ďn(l) is a function of ml+1,n, and not of (kn,ml,n) as one

would intuitively expect for an estimator of Dn(l). See Favaro, Lijoi and Prünster

(2012) for details.

Under the two-parameter PD prior, Favaro, Nipoti and Teh (2016) estab-

lished a large n asymptotic relationship between D̂n(l) and Ďn(l). Due to the

irregular behaviour of theml,m’s, the peculiar dependency onml+1,n makes Ďn(l)

a sensible estimator only if l is sufficiently small with respect to n. See for instance

Good (1953) and Sampson (2001) for examples of absurd estimates determined

by Ďn(l). In order to overcome this drawback, Good (1953) suggested smoothing

(ml,n)l≥1 to a more regular series (m′
l,n)l≥1, where m′

l,n = plkn with S = (pl)l≥1

being nonnegative weights such that
∑

l≥0(l + 1)m′
l+1,n/n = 1. The resulting

smoothed estimator is

Ďn(l;S ) = (l + 1)
m′

l+1,n

n
.

See Chapter 7 in Sampson (2001) and references therein for a comprehensive

account on smoothing techniques for Ďn(l). According to Theorem 1 in Favaro,

Nipoti and Teh (2016), as n becomes large, D̂n(l) is asymptotically equivalent to

Ďn(l;SPD), where SPD denotes a smoothing rule such that

m′
l,n =

σ(1− σ)l−1

l!
kn. (1.7)
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While the smoothing approach was introduced as an ad hoc tool for post process-

ing the irregular ml,n’s in order to improve the performance of Ďn(l), Theorem

1 in Favaro, Nipoti and Teh (2016) shows that, for a large sample size n, a simi-

lar smoothing mechanism underlies the Bayesian nonparametric framework (1.2)

with a two-parameter PD prior. Interestingly, the smoothing rule SPD has been

proved to be a generalization of the Poisson smoothing rule discussed in Good

(1953) and Engen (1978).

1.2. Contributions of the paper and outline

The problem of associating a measure of uncertainty to Bayesian nonpara-

metric estimators for discovery probabilities was first addressed in Lijoi, Mena

and Prünster (2007) where estimates of the probability of observing a new species

are endowed with highest posterior density intervals. Favaro, Nipoti and Teh

(2016) derive asymptotic posterior credible intervals covering also the case of

species already observed with a given frequency. These contributions ultimately

rely on the presence of an additional unobserved sample. While the approach of

Lijoi, Mena and Prünster (2007) cannot be used to associate a measure of uncer-

tainty to D̂n(0), where such additional sample is not considered, the approach of

Favaro, Nipoti and Teh (2016) could be taken to derive approximate credible in-

tervals for D̂n(l), l = 0, 1, . . . , n. Nonetheless, due to the asymptotic nature of the

approach, the resulting credible intervals are likely to perform poorly for moder-

ate sample size n by underestimating the uncertainty associated to the estimators.

They then leave essentially unaddressed the issue of quantifying the uncertainty

associated to the estimators D̂n(l), for l = 0, 1, . . . , n. In this paper we provide

an answer to this problem. With a slight abuse of notation, throughout the paper

we write X |Y to denote a random variable whose distribution coincides with the

conditional distribution of X given Y . Since D̂n(l) = E[Q(Al) |Xn], the problem

of deriving credible intervals for D̂n(l) boils down to the problem of characterizing

the distribution of Q(Al) |Xn, for any l = 0, 1, . . . , n. Indeed this distribution

takes on the interpretation of the posterior distribution of Dn(l) with respect

to the sample Xn. For any Gibbs-type priors we provide an explicit expression

for En,r(l) := E[(Q(Al))
r |Xn], for any r ≥ 1. Due to the bounded support of

Q(Al) |Xn, the sequence (En,r(l))r≥1 characterizes uniquely the distribution of

Q(Al) |Xn and, in principle, it can be used to obtain an approximate evaluation

of such a distribution. In particular, under the two-parameter PD prior and the

normalized GG prior we present an explicit and simple characterization of the

distribution of Q(Al) |Xn.

We also study the large n asymptotic behaviour of D̂n(l), thus extending

Theorem 1 in Favaro, Nipoti and Teh (2016) to Gibbs-type priors. Specifically,
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distribution of Q(Al) |Xn.

We also study the large n asymptotic behaviour of D̂n(l), thus extending

Theorem 1 in Favaro, Nipoti and Teh (2016) to Gibbs-type priors. Specifically,
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we show that, as n tends to infinity, D̂n(0) and D̂n(l) are asymptotically equiva-

lent to D̂′
n(0) = σkn/n and D̂′

n(l) = (l − σ)ml,n/n, respectively. In other terms,

at the order of asymptotic equivalence, any Gibbs-type prior leads to the same

approximating estimator D̂′
n(l). As a corollary we obtain that D̂n(l) is asymp-

totically equivalent to the smoothed Good–Turing estimator Ďn(l;SPD), namely

SPD is invariant with respect to any Gibbs-type prior. Refinements of D̂′
n(l) are

presented for the two-parameter PD prior and the normalized GG prior. A thor-

ough study of the large n asymptotic behaviour of (1.3) reveals that for Vn,kn in

(1.4) the estimator D̂n(l) admits large n asymptotic expansions whose first order

truncations coincide with D̂′
n(l), and that second order truncations depend on

θ > −σ and τ > 0, respectively, thus providing approximating estimators that

differ. A discussion of these second order asymptotic refinements is presented

with a view towards the problem of finding corresponding refinements of the

relationship between D̂n(l) and Ďn(l;SPD).

The estimators D̂n(l) depend on the values assigned to the involved param-

eters (see e.g. the sensitivity analysis in (Favaro, Nipoti and Teh, 2016) for the

two-parameter PD case) that therefore must be suitably estimated, e.g. via an

empirical Bayes approach. Taking into account the method used to estimate the

parameters characterizing the underlying Gibbs-type prior would then make the

analysis of the asymptotic behaviour of D̂n(l) more thorough, but we consider

the parameters as fixed. We want to stick to the original Bayesian nonparamet-

ric framework for the estimation of discovery probabilities, as set forth in Lijoi,

Mena and Prünster (2007), and we believe that this best serves the purpose of

comparing the asymptotic behaviour of the two classes of estimators, highlighting

the effect of the parameters in both.

Our results are illustrated in a simulation study and in the analysis of a

benchmark dataset of Expressed Sequence Tags (ESTs), which are short cDNA

sub-sequences highly relevant for gene identification in organisms Lijoi, Mena

and Prünster (2007a). To the best of our knowledge, only the two-parameter PD

prior has been so far applied in the context of Bayesian nonparametric inference

for the discovery probability. We consider the two-parameter PD prior and the

normalized GG prior. It turns out that the two-parameter PD prior leads to

estimates of the l-discovery, as well as associated credible intervals, that are close

to those obtained under the normalized GG prior specification. This surfaces

due to a representation of the two-parameter PD prior in terms of a suitable

mixture of normalized GG priors. Credible intervals for D̂n(l) are also compared

with corresponding confidence intervals for the Good–Turing estimator, which

as obtained by Mao (2004) and Baayen (2001). A second numerical illustration

is devoted to the large n asymptotic behaviour of D̂n(l), by using simulated

BNP INFERENCE FOR DISCOVERY PROBABILITIES 7

data we compare the exact estimator D̂n(l) with its first order and second order

approximations.

In Section 2 we present some distributional results for Q(Al) |Xn; these re-

sults provide a fundamental tool for deriving credible intervals for the Bayesian

nonparametric estimator D̂n(l). In Section 3 we investigate the large n asymp-

totic behaviour of D̂n(l), and we discuss its relationship with smoothed Good–

Turing estimators. Section 4 contains some numerical illustrations. Proofs and

technical derivations are available the supplementary material.

2. Credible Intervals for D̂n(l)

An integral representation for the Vn,kn ’s characterizing the predictive dis-

tributions (1.3) was introduced by Pitman (2003), and leads to a useful parame-

terization for Gibbs-type priors. See also Gnedin and Pitman (2006) for details.

For any σ ∈ (0, 1) let fσ be the density function of a positive σ-stable random

variable,
∫ +∞
0 exp{−tx}fσ(x)dx = exp{−tσ} for any t > 0. Then, for some

nonnegative function h, one has

Vn,kn = Vh,(n,kn) :=
σkn

Γ(n− σkn)

∫ +∞

0
h(t)t−σkn

∫ 1

0
pn−1−σknfσ((1− p)t)dpdt.

(2.1)

According to (1.3) and (2.1), a Gibbs-type prior is parameterized by (σ, h, ν0);

we denote by Qh this Gibbs-type random probability measure. The expression

(1.4) for the two-parameter PD prior is recovered from (2.1) by setting h(t) =

p(t;σ, θ) := σΓ(θ)t−θ/Γ(θ/σ), for any σ ∈ (0, 1) and θ > −σ. The expression

(1.4) for the normalized GG prior is recovered from (2.1) by setting h(t) =

g(t;σ, τ) := exp{τσ − τt}, for any τ > 0. See Section 5.4 in Pitman (2003) for

details.

Besides providing a parameterization for Gibbs-type priors, the representa-

tion (2.1) leads to a simple numerical evaluation of Vh,(n,kn). Specifically, let Ba,b

be a Beta random variable with parameter (a, b) and, for any σ ∈ (0, 1) and

c > −1, let Sσ,c be a positive random variable with density function fSσ,c(x) =

Γ(cσ + 1)x−cσfσ(x)/Γ(c + 1). Sσ,c is typically referred to as the polynomially

tilted σ-stable random variable. Simple algebraic manipulations of (2.1) lead to

Vh,(n,kn) =
σkn−1Γ(kn)

Γ(n)
E
[
h

(
Sσ,kn

Bσkn,n−σkn

)]
, (2.2)

with Bσkn,n−σkn independent of Sσ,kn . According to (2.2) a Monte Carlo evalu-

ation of Vh,(n,kn) can be performed by sampling from Bσkn,n−σkn and Sσ,kn . In

this respect, an efficient rejection sampling for Sσ,c has been proposed by De-

vroye (2009). The next theorem, combined with (2.2), provides a practical tool

for obtaining an approximate evaluation of the credible intervals for D̂n(l).
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we show that, as n tends to infinity, D̂n(0) and D̂n(l) are asymptotically equiva-

lent to D̂′
n(0) = σkn/n and D̂′

n(l) = (l − σ)ml,n/n, respectively. In other terms,

at the order of asymptotic equivalence, any Gibbs-type prior leads to the same

approximating estimator D̂′
n(l). As a corollary we obtain that D̂n(l) is asymp-

totically equivalent to the smoothed Good–Turing estimator Ďn(l;SPD), namely

SPD is invariant with respect to any Gibbs-type prior. Refinements of D̂′
n(l) are

presented for the two-parameter PD prior and the normalized GG prior. A thor-

ough study of the large n asymptotic behaviour of (1.3) reveals that for Vn,kn in

(1.4) the estimator D̂n(l) admits large n asymptotic expansions whose first order

truncations coincide with D̂′
n(l), and that second order truncations depend on

θ > −σ and τ > 0, respectively, thus providing approximating estimators that

differ. A discussion of these second order asymptotic refinements is presented

with a view towards the problem of finding corresponding refinements of the

relationship between D̂n(l) and Ďn(l;SPD).

The estimators D̂n(l) depend on the values assigned to the involved param-

eters (see e.g. the sensitivity analysis in (Favaro, Nipoti and Teh, 2016) for the

two-parameter PD case) that therefore must be suitably estimated, e.g. via an

empirical Bayes approach. Taking into account the method used to estimate the

parameters characterizing the underlying Gibbs-type prior would then make the

analysis of the asymptotic behaviour of D̂n(l) more thorough, but we consider

the parameters as fixed. We want to stick to the original Bayesian nonparamet-

ric framework for the estimation of discovery probabilities, as set forth in Lijoi,

Mena and Prünster (2007), and we believe that this best serves the purpose of

comparing the asymptotic behaviour of the two classes of estimators, highlighting

the effect of the parameters in both.

Our results are illustrated in a simulation study and in the analysis of a

benchmark dataset of Expressed Sequence Tags (ESTs), which are short cDNA

sub-sequences highly relevant for gene identification in organisms Lijoi, Mena

and Prünster (2007a). To the best of our knowledge, only the two-parameter PD

prior has been so far applied in the context of Bayesian nonparametric inference

for the discovery probability. We consider the two-parameter PD prior and the

normalized GG prior. It turns out that the two-parameter PD prior leads to

estimates of the l-discovery, as well as associated credible intervals, that are close

to those obtained under the normalized GG prior specification. This surfaces

due to a representation of the two-parameter PD prior in terms of a suitable

mixture of normalized GG priors. Credible intervals for D̂n(l) are also compared

with corresponding confidence intervals for the Good–Turing estimator, which

as obtained by Mao (2004) and Baayen (2001). A second numerical illustration

is devoted to the large n asymptotic behaviour of D̂n(l), by using simulated
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data we compare the exact estimator D̂n(l) with its first order and second order

approximations.

In Section 2 we present some distributional results for Q(Al) |Xn; these re-

sults provide a fundamental tool for deriving credible intervals for the Bayesian

nonparametric estimator D̂n(l). In Section 3 we investigate the large n asymp-

totic behaviour of D̂n(l), and we discuss its relationship with smoothed Good–

Turing estimators. Section 4 contains some numerical illustrations. Proofs and

technical derivations are available the supplementary material.

2. Credible Intervals for D̂n(l)

An integral representation for the Vn,kn ’s characterizing the predictive dis-

tributions (1.3) was introduced by Pitman (2003), and leads to a useful parame-

terization for Gibbs-type priors. See also Gnedin and Pitman (2006) for details.

For any σ ∈ (0, 1) let fσ be the density function of a positive σ-stable random

variable,
∫ +∞
0 exp{−tx}fσ(x)dx = exp{−tσ} for any t > 0. Then, for some

nonnegative function h, one has

Vn,kn = Vh,(n,kn) :=
σkn

Γ(n− σkn)

∫ +∞

0
h(t)t−σkn

∫ 1

0
pn−1−σknfσ((1− p)t)dpdt.

(2.1)

According to (1.3) and (2.1), a Gibbs-type prior is parameterized by (σ, h, ν0);

we denote by Qh this Gibbs-type random probability measure. The expression

(1.4) for the two-parameter PD prior is recovered from (2.1) by setting h(t) =

p(t;σ, θ) := σΓ(θ)t−θ/Γ(θ/σ), for any σ ∈ (0, 1) and θ > −σ. The expression

(1.4) for the normalized GG prior is recovered from (2.1) by setting h(t) =

g(t;σ, τ) := exp{τσ − τt}, for any τ > 0. See Section 5.4 in Pitman (2003) for

details.

Besides providing a parameterization for Gibbs-type priors, the representa-

tion (2.1) leads to a simple numerical evaluation of Vh,(n,kn). Specifically, let Ba,b

be a Beta random variable with parameter (a, b) and, for any σ ∈ (0, 1) and

c > −1, let Sσ,c be a positive random variable with density function fSσ,c(x) =

Γ(cσ + 1)x−cσfσ(x)/Γ(c + 1). Sσ,c is typically referred to as the polynomially

tilted σ-stable random variable. Simple algebraic manipulations of (2.1) lead to

Vh,(n,kn) =
σkn−1Γ(kn)

Γ(n)
E
[
h

(
Sσ,kn

Bσkn,n−σkn

)]
, (2.2)

with Bσkn,n−σkn independent of Sσ,kn . According to (2.2) a Monte Carlo evalu-

ation of Vh,(n,kn) can be performed by sampling from Bσkn,n−σkn and Sσ,kn . In

this respect, an efficient rejection sampling for Sσ,c has been proposed by De-

vroye (2009). The next theorem, combined with (2.2), provides a practical tool

for obtaining an approximate evaluation of the credible intervals for D̂n(l).

845



8 JULYAN ARBEL, STEFANO FAVARO, BERNARDO NIPOTI AND YEE WHYE TEH

Theorem 1. Let Xn be a sample generated from Qh according to (1.2) and fea-

turing Kn = kn species, labelled by X∗
1 , . . . , X

∗
Kn

, with corresponding frequencies

(N1,n, . . . , NKn,n) = (n1,n, . . . , nkn,n). For any set A in the Borel sigma-algebra

of X, let µn,kn(A) =
∑

1≤i≤kn
(ni,n − σ)δX∗

i
(A). Then, for any r ≥ 1, the rth

moment E[(Qh(A))
r |Xn] coincides with

r∑
i=0

Vh,(n+r,kn+i)

Vh,(n,kn)
(ν0(A))

i
∑

0≤j1≤···≤ji≤i

r−i−1∏
q=0

(µn,kn(A) + jq(1− σ) + q). (2.3)

Let Mn := (M1,n, . . . ,Mn,n) = (m1,n, . . . ,mn,n) be the frequency counts from

a sample Xn from Qh. In order to obtain credible intervals for D̂n(l) we take

two specifications of the Borel set A: A0 = X \ {X∗
1 , . . . , X

∗
Kn

} and Al = {X∗
i :

Ni,n = l}, for any l = 1, . . . , n. With them, (2.3) reduces to

En,r(0) = E[(Qh(A0))
r |Xn] =

r∑
i=0

(
r

i

)
(−1)i

Vh,(n+i,kn)

Vh,(n,kn)
(n− σkn)i, (2.4)

En,r(l) = E[(Qh(Al))
r |Xn] =

Vh,(n+r,kn)

Vh,(n,kn)
((l − σ)ml,n)r, (2.5)

respectively. Equations (2.4) and (2.5) take on the interpretation of the r-th

moments of the posterior distribution of Dn(0) and Dn(l) under the specifica-

tion of a Gibbs-type prior. In particular for r = 1, by using the recursion

Vh,(n,kn) = (n − σkn)Vh,(n+1,kn) + Vh,(n+1,kn+1), (2.4) and (2.5) reduce to the

Bayesian nonparametric estimators of Dn(l) displayed resp. in (1.5) and (1.6).

The distribution of Qh(Al) |Xn is on [0, 1] and, therefore, it is characterized

by (En,r(l))r≥1. The approximation of a distribution given its moments is a

longstanding problem which has been tackled by such approaches as expansions

in polynomial bases, maximum entropy methods, and mixtures of distributions.

For instance, the polynomial approach consists in approximating the density

function of Qh(Al) |Xn with a linear combination of orthogonal polynomials,

where the coefficients of the combination are determined by equating En,r(l)
with the moments of the approximating density. The higher the degree of the

polynomials, or equivalently the number of moments used, the more accurate

the approximation. As a rule of thumb, ten moments turn out to be enough in

most cases. See Provost (2005) for details. The approximating density function

of Qh(Al) |Xn can then be used to obtain an approximate evaluation of the

credible intervals for D̂n(l). This is typically done by generating random variates,

via rejection sampling, from the approximating distribution of Qh(Al) |Xn. See

Arbel, Lijoi and Nipoti (2016) for details.

Under the specification of the two-parameter PD prior and the normalized

GG prior, (2.4) and (2.5) lead to explicit and simple characterizations for the

BNP INFERENCE FOR DISCOVERY PROBABILITIES 9

distributions of Qp(Al) |Xn and Qg(Al) |Xn, respectively. Let Ga,1 be a Gamma

random variable with parameter (a, 1) and, for any σ ∈ (0, 1) and b > 0, let

Rσ,b be a random variable with density function fRσ,b
(x) = exp{bσ − bx}fσ(x).

Rσ,b is typically referred to as the exponentially tilted σ-stable random variable.

Finally, define Wa,b = bRσ,b/(bRσ,b + Ga,1), where Ga,1 is independent of Rσ,b.

The random variable Wa,b is nonnegative and with values on the set [0, 1].

Proposition 1. Let Xn be a sample generated from Qp according to (1.2) and

featuring Kn = kn species with Mn = (m1,n, . . . ,mn,n). Let Zp be a nonnegative

random variable with density function of the form

fZp(x) =
σ

Γ(θ/σ + kn)
xθ+σkn−1e−xσ

1(0,+∞)(x).

Then, Qp(A0) |Xn
d
= Wn−σkn,Zp

d
= Bθ+σkn,n−σkn and

Qp(Al) |Xn
d
=B(l−σ)ml,n,n−σkn−(l−σ)ml,n

(1−Wn−σkn,Zp)
d
=B(l−σ)ml,n,θ+n−(l−σ)ml,n

.

Proposition 2. Let Xn be a sample generated from Qg according to (1.2) and

featuring Kn = kn species with Mn = (m1,n, . . . ,mn,n). Let Zg be a nonnegative

random variable with density function of the form

fZg(x) =
σxσkn−n(x− τ)n−1 exp{−xσ}1(τ,+∞)(x)∑

0≤i≤n−1

(
n−1
i

)
(−τ)iΓ(kn − i/σ; τσ)

. (2.6)

Then, Qg(A0) |Xn
d
=Wn−σkn,Zg and

Qg(Al) |Xn
d
=B(l−σ)ml,n,n−σkn−(l−σ)ml,n

(1−Wn−σkn,Zg).

According to Propositions 1 and 2, the random variables Qp(A0) |Xn and

Qg(A0) |Xn have a common structure driven by the W random variable. More-

over, for any l = 1, . . . , n, Qp(Al) |Xn and Qg(Al) |Xn are obtained by taking

the same random proportion B(l−σ)ml,n,n−σkn−(l−σ)ml,n
of (1 − Wn−σkn,Zp) and

(1−Wn−σkn,Zg), respectively. Under the specification of the two-parameter PD

prior and the normalized GG prior, Propositions 1 and 2 provide practical tools

for deriving credible intervals for the Bayesian nonparametric estimator D̂n(l),

for any l = 0, 1, . . . , n. This is typically done by performing a numerical evalua-

tion of appropriate quantiles of the distribution of Qp(Al) |Xn and Qg(Al) |Xn.

In the special case of the Beta distribution, quantiles can be also determined ex-

plicitly as solutions of a certain class of non-linear ordinary differential equations.

See Steinbrecher and Shaw (2008) and references therein for a detailed account

on this approach.

To obtain credible intervals for D̂n(l), we generate random variates from

Qp(Al) |Xn and Qg(Al) |Xn. With the two-parameter PD prior, sampling from
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Theorem 1. Let Xn be a sample generated from Qh according to (1.2) and fea-

turing Kn = kn species, labelled by X∗
1 , . . . , X

∗
Kn

, with corresponding frequencies

(N1,n, . . . , NKn,n) = (n1,n, . . . , nkn,n). For any set A in the Borel sigma-algebra

of X, let µn,kn(A) =
∑

1≤i≤kn
(ni,n − σ)δX∗

i
(A). Then, for any r ≥ 1, the rth

moment E[(Qh(A))r |Xn] coincides with
r∑

i=0

Vh,(n+r,kn+i)

Vh,(n,kn)
(ν0(A))i

∑
0≤j1≤···≤ji≤i

r−i−1∏
q=0

(µn,kn(A) + jq(1− σ) + q). (2.3)

Let Mn := (M1,n, . . . ,Mn,n) = (m1,n, . . . ,mn,n) be the frequency counts from

a sample Xn from Qh. In order to obtain credible intervals for D̂n(l) we take

two specifications of the Borel set A: A0 = X \ {X∗
1 , . . . , X

∗
Kn

} and Al = {X∗
i :

Ni,n = l}, for any l = 1, . . . , n. With them, (2.3) reduces to

En,r(0) = E[(Qh(A0))
r |Xn] =

r∑
i=0

(
r

i

)
(−1)i

Vh,(n+i,kn)

Vh,(n,kn)
(n− σkn)i, (2.4)

En,r(l) = E[(Qh(Al))
r |Xn] =

Vh,(n+r,kn)

Vh,(n,kn)
((l − σ)ml,n)r, (2.5)

respectively. Equations (2.4) and (2.5) take on the interpretation of the r-th

moments of the posterior distribution of Dn(0) and Dn(l) under the specifica-

tion of a Gibbs-type prior. In particular for r = 1, by using the recursion

Vh,(n,kn) = (n − σkn)Vh,(n+1,kn) + Vh,(n+1,kn+1), (2.4) and (2.5) reduce to the

Bayesian nonparametric estimators of Dn(l) displayed resp. in (1.5) and (1.6).

The distribution of Qh(Al) |Xn is on [0, 1] and, therefore, it is characterized

by (En,r(l))r≥1. The approximation of a distribution given its moments is a

longstanding problem which has been tackled by such approaches as expansions

in polynomial bases, maximum entropy methods, and mixtures of distributions.

For instance, the polynomial approach consists in approximating the density

function of Qh(Al) |Xn with a linear combination of orthogonal polynomials,

where the coefficients of the combination are determined by equating En,r(l)
with the moments of the approximating density. The higher the degree of the

polynomials, or equivalently the number of moments used, the more accurate

the approximation. As a rule of thumb, ten moments turn out to be enough in

most cases. See Provost (2005) for details. The approximating density function

of Qh(Al) |Xn can then be used to obtain an approximate evaluation of the

credible intervals for D̂n(l). This is typically done by generating random variates,

via rejection sampling, from the approximating distribution of Qh(Al) |Xn. See

Arbel, Lijoi and Nipoti (2016) for details.

Under the specification of the two-parameter PD prior and the normalized

GG prior, (2.4) and (2.5) lead to explicit and simple characterizations for the
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distributions of Qp(Al) |Xn and Qg(Al) |Xn, respectively. Let Ga,1 be a Gamma

random variable with parameter (a, 1) and, for any σ ∈ (0, 1) and b > 0, let

Rσ,b be a random variable with density function fRσ,b
(x) = exp{bσ − bx}fσ(x).

Rσ,b is typically referred to as the exponentially tilted σ-stable random variable.

Finally, define Wa,b = bRσ,b/(bRσ,b + Ga,1), where Ga,1 is independent of Rσ,b.

The random variable Wa,b is nonnegative and with values on the set [0, 1].

Proposition 1. Let Xn be a sample generated from Qp according to (1.2) and

featuring Kn = kn species with Mn = (m1,n, . . . ,mn,n). Let Zp be a nonnegative

random variable with density function of the form

fZp(x) =
σ

Γ(θ/σ + kn)
xθ+σkn−1e−xσ

1(0,+∞)(x).

Then, Qp(A0) |Xn
d
= Wn−σkn,Zp

d
= Bθ+σkn,n−σkn and

Qp(Al) |Xn
d
=B(l−σ)ml,n,n−σkn−(l−σ)ml,n

(1−Wn−σkn,Zp)
d
=B(l−σ)ml,n,θ+n−(l−σ)ml,n

.

Proposition 2. Let Xn be a sample generated from Qg according to (1.2) and

featuring Kn = kn species with Mn = (m1,n, . . . ,mn,n). Let Zg be a nonnegative

random variable with density function of the form

fZg(x) =
σxσkn−n(x− τ)n−1 exp{−xσ}1(τ,+∞)(x)∑

0≤i≤n−1

(
n−1
i

)
(−τ)iΓ(kn − i/σ; τσ)

. (2.6)

Then, Qg(A0) |Xn
d
=Wn−σkn,Zg and

Qg(Al) |Xn
d
=B(l−σ)ml,n,n−σkn−(l−σ)ml,n

(1−Wn−σkn,Zg).

According to Propositions 1 and 2, the random variables Qp(A0) |Xn and

Qg(A0) |Xn have a common structure driven by the W random variable. More-

over, for any l = 1, . . . , n, Qp(Al) |Xn and Qg(Al) |Xn are obtained by taking

the same random proportion B(l−σ)ml,n,n−σkn−(l−σ)ml,n
of (1 − Wn−σkn,Zp) and

(1−Wn−σkn,Zg), respectively. Under the specification of the two-parameter PD

prior and the normalized GG prior, Propositions 1 and 2 provide practical tools

for deriving credible intervals for the Bayesian nonparametric estimator D̂n(l),

for any l = 0, 1, . . . , n. This is typically done by performing a numerical evalua-

tion of appropriate quantiles of the distribution of Qp(Al) |Xn and Qg(Al) |Xn.

In the special case of the Beta distribution, quantiles can be also determined ex-

plicitly as solutions of a certain class of non-linear ordinary differential equations.

See Steinbrecher and Shaw (2008) and references therein for a detailed account

on this approach.

To obtain credible intervals for D̂n(l), we generate random variates from

Qp(Al) |Xn and Qg(Al) |Xn. With the two-parameter PD prior, sampling from
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Qp(Al) |Xn for any l = 0, 1, . . . , n is straightforward, requiring generation of ran-

dom variates from a Beta distribution. With the normalized GG prior, sampling

from Qp(Al) |Xn for any l = 0, 1, . . . , n is also straightforward. As the density

function of the transformed random variable Zσ
g is log-concave, one can sample

from Zσ
g by means of the adaptive rejection sampling of Gilks and Wild (1992).

Given Zg, the problem of sampling from Wn−σkn,Zg boils down to the problem

of generating random variates from the distribution of the exponentially tilted

σ-stable random variable Rσ,Zg . This can be done by resorting to the efficient

rejection sampling proposed by Devroye (2009).

3. Large Sample Asymptotics for D̂n(l)

We investigate the large n asymptotic behavior of the estimator D̂n(l), with

a view towards its asymptotic relationships with smoothed Good–Turing esti-

mators. Under a Gibbs-type prior, the most notable difference between the

Good–Turing estimator Ďn(l) and D̂n(l) can be traced to the different use of the

information contained in the sample Xn. Thus Ďn(0) is a function of m1,n while

D̂n(0) is a function of kn, and Ďn(l) is a function of ml+1,n while D̂n(l) is a func-

tion of ml,n, for any l = 1, . . . , n. Let an ≃ bn mean that limn→+∞ an/bn = 1. We

show that, as n tends to infinity, D̂n(l) ≃ Ďn(l;SPD), where SPD is the smooth-

ing rule displayed in (1.7). Such a result thus generalizes Theorem 1 in Favaro,

Nipoti and Teh (2016) to the entire class of Gibbs-type priors. The asymptotic

results of this section hold almost surely, but the probabilistic formalization of

this idea is postponed to the proofs in the supplementary material.

Theorem 2. For almost every sample Xn generated from Qh according to (1.2)

and featuring Kn = kn species with Mn = (m1,n, . . . ,mn,n), we have

D̂n(0) =
σkn
n

+ o

(
kn
n

)
, (3.1)

D̂n(l) = (l − σ)
ml,n

n
+ o

(ml,n

n

)
. (3.2)

By a direct application of Proposition 13 in Pitman (2003) and Corollary

21 in Gnedin, Hansen and Pitman (2007) we can write that, for almost every

sample Xn from Qp, featuring Kn = kn species with Mn = (m1,n, . . . ,mn,n),

ml,n ≃ σ(1− σ)l−1

l!
kn, (3.3)

as n → +∞. By suitably combining (3.1) and (3.2) with (3.3), we obtain

D̂n(l) ≃ (l + 1)
ml+1,n

n
≃ (l + 1)

[σ(1− σ)l/(l + 1)!]kn
n

, (3.4)
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for any l = 0, 1, . . . , n. See the supplementary material for details on (3.4). The

first equivalence in (3.4) shows that, as n tends to infinity, D̂n(l) is asymptotically

equal to the Good–Turing estimator Ďn(l), whereas the second equivalence shows

that, as n tends to infinity, SPD is a smoothing rule for the frequency counts ml,n

in Ďn(l). We refer to Section 2 in Favaro, Nipoti and Teh (2016) for a relationship

between the smoothing rule SPD and the Poisson smoothing in Good (1953).

A peculiar feature of SPD is that it does not depend on the function h char-

acterizing the Gibbs-type prior. Thus, for instance, SPD is a smoothing rule

for both the two-parameter PD prior and the normalized GG prior. This in-

variance property of SPD is clearly determined by the fact that the asymptotic

equivalences in (3.4) arise by combining (3.3), which does not depend on h, with

(3.1) and (3.2), which also do not depend of h. It is worth noticing that, unlike

the smoothing rule SPD, the corresponding smoothed estimator Ď(l;SPD) does

depend on h through kn. Indeed, according to model (1.2), Q is the data generat-

ing process and therefore the choice of a specific Gibbs-type prior Q or, in other

terms, the specification of h, affects the distribution ofKn. Intuitively, smoothing

rules depending on the function h, if any exists, necessarily require to combine

refinements of the asymptotic expansions (3.1) and (3.2) with corresponding re-

finements of the asymptotic equivalence (3.3). Under the specification of the

two-parameter PD prior and the normalized GG prior, the next propositions

provide asymptotic refinements of Theorem 2.

Proposition 3. For almost every sample Xn generated from Qp according to

(1.2) and featuring Kn = kn species with Mn = (m1,n, . . . ,mn,n), we have

D̂n(0) =
σkn
n

+
θ

n
+ o

(
1

n

)
, D̂n(l) = (l − σ)

ml,n

n

(
1− θ

n

)
+ o

(ml,n

n2

)
.

Proposition 4. For almost every sample Xn generated from Qg according to

(1.2) and featuring Kn = kn species with Mn = (m1,n, . . . ,mn,n), we have

D̂n(0) =
σkn
n

+τk−1/σ
n +o

(
1

n

)
, D̂n(l) = (l−σ)

ml,n

n

(
1− τk−1/σ

n

)
+o

(ml,n

n2

)
.

In Propositions 3 and 4, we introduce second order approximations of D̂n(0)

and D̂n(l) by considering a two-term truncation of the corresponding asymptotic

series expansions. Here it is sufficient to include the second term in order to

introduce the dependency on θ > −σ and τ > 0, respectively, and then the

approximations of D̂n(0) and D̂n(l) differ between the two-parameter PD prior

and the normalized GG prior.

The second order approximations in Propositions 3 and 4, in combination

with corresponding second order refinements of (3.3), do not lead to a second
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Qp(Al) |Xn for any l = 0, 1, . . . , n is straightforward, requiring generation of ran-

dom variates from a Beta distribution. With the normalized GG prior, sampling

from Qp(Al) |Xn for any l = 0, 1, . . . , n is also straightforward. As the density

function of the transformed random variable Zσ
g is log-concave, one can sample

from Zσ
g by means of the adaptive rejection sampling of Gilks and Wild (1992).

Given Zg, the problem of sampling from Wn−σkn,Zg boils down to the problem

of generating random variates from the distribution of the exponentially tilted

σ-stable random variable Rσ,Zg . This can be done by resorting to the efficient

rejection sampling proposed by Devroye (2009).

3. Large Sample Asymptotics for D̂n(l)

We investigate the large n asymptotic behavior of the estimator D̂n(l), with

a view towards its asymptotic relationships with smoothed Good–Turing esti-

mators. Under a Gibbs-type prior, the most notable difference between the

Good–Turing estimator Ďn(l) and D̂n(l) can be traced to the different use of the

information contained in the sample Xn. Thus Ďn(0) is a function of m1,n while

D̂n(0) is a function of kn, and Ďn(l) is a function of ml+1,n while D̂n(l) is a func-

tion of ml,n, for any l = 1, . . . , n. Let an ≃ bn mean that limn→+∞ an/bn = 1. We

show that, as n tends to infinity, D̂n(l) ≃ Ďn(l;SPD), where SPD is the smooth-

ing rule displayed in (1.7). Such a result thus generalizes Theorem 1 in Favaro,

Nipoti and Teh (2016) to the entire class of Gibbs-type priors. The asymptotic

results of this section hold almost surely, but the probabilistic formalization of

this idea is postponed to the proofs in the supplementary material.

Theorem 2. For almost every sample Xn generated from Qh according to (1.2)

and featuring Kn = kn species with Mn = (m1,n, . . . ,mn,n), we have

D̂n(0) =
σkn
n

+ o

(
kn
n

)
, (3.1)

D̂n(l) = (l − σ)
ml,n

n
+ o

(ml,n

n

)
. (3.2)

By a direct application of Proposition 13 in Pitman (2003) and Corollary

21 in Gnedin, Hansen and Pitman (2007) we can write that, for almost every

sample Xn from Qp, featuring Kn = kn species with Mn = (m1,n, . . . ,mn,n),

ml,n ≃ σ(1− σ)l−1

l!
kn, (3.3)

as n → +∞. By suitably combining (3.1) and (3.2) with (3.3), we obtain

D̂n(l) ≃ (l + 1)
ml+1,n

n
≃ (l + 1)

[σ(1− σ)l/(l + 1)!]kn
n

, (3.4)
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for any l = 0, 1, . . . , n. See the supplementary material for details on (3.4). The

first equivalence in (3.4) shows that, as n tends to infinity, D̂n(l) is asymptotically

equal to the Good–Turing estimator Ďn(l), whereas the second equivalence shows

that, as n tends to infinity, SPD is a smoothing rule for the frequency counts ml,n

in Ďn(l). We refer to Section 2 in Favaro, Nipoti and Teh (2016) for a relationship

between the smoothing rule SPD and the Poisson smoothing in Good (1953).

A peculiar feature of SPD is that it does not depend on the function h char-

acterizing the Gibbs-type prior. Thus, for instance, SPD is a smoothing rule

for both the two-parameter PD prior and the normalized GG prior. This in-

variance property of SPD is clearly determined by the fact that the asymptotic

equivalences in (3.4) arise by combining (3.3), which does not depend on h, with

(3.1) and (3.2), which also do not depend of h. It is worth noticing that, unlike

the smoothing rule SPD, the corresponding smoothed estimator Ď(l;SPD) does

depend on h through kn. Indeed, according to model (1.2), Q is the data generat-

ing process and therefore the choice of a specific Gibbs-type prior Q or, in other

terms, the specification of h, affects the distribution ofKn. Intuitively, smoothing

rules depending on the function h, if any exists, necessarily require to combine

refinements of the asymptotic expansions (3.1) and (3.2) with corresponding re-

finements of the asymptotic equivalence (3.3). Under the specification of the

two-parameter PD prior and the normalized GG prior, the next propositions

provide asymptotic refinements of Theorem 2.

Proposition 3. For almost every sample Xn generated from Qp according to

(1.2) and featuring Kn = kn species with Mn = (m1,n, . . . ,mn,n), we have

D̂n(0) =
σkn
n

+
θ

n
+ o

(
1

n

)
, D̂n(l) = (l − σ)

ml,n

n

(
1− θ

n

)
+ o

(ml,n

n2

)
.

Proposition 4. For almost every sample Xn generated from Qg according to

(1.2) and featuring Kn = kn species with Mn = (m1,n, . . . ,mn,n), we have

D̂n(0) =
σkn
n

+τk−1/σ
n +o

(
1

n

)
, D̂n(l) = (l−σ)

ml,n

n

(
1− τk−1/σ

n

)
+o

(ml,n

n2

)
.

In Propositions 3 and 4, we introduce second order approximations of D̂n(0)

and D̂n(l) by considering a two-term truncation of the corresponding asymptotic

series expansions. Here it is sufficient to include the second term in order to

introduce the dependency on θ > −σ and τ > 0, respectively, and then the

approximations of D̂n(0) and D̂n(l) differ between the two-parameter PD prior

and the normalized GG prior.

The second order approximations in Propositions 3 and 4, in combination

with corresponding second order refinements of (3.3), do not lead to a second
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order refinement of (3.4). A second order refinement of (3.3), arising from

Gnedin, Hansen and Pitman (2007), can be expressed as

Ml,n =
σ(1− σ)l−1

l!
Kn +O

(
Kn

nσ/2

)
, (3.5)

but second order terms in Propositions 3 and 4 are absorbed by O
(
Kn/n

σ/2
)
in

(3.5). Furthermore, even if a finer version of (3.5) was available, its combination

with Propositions 3 and 4 would produce higher order terms preventing the

resulting expression from being interpreted as a Good–Turing estimator and,

therefore, any smoothing rule from being elicited. In other terms, under the two-

parameter PD and the normalized GG priors, the relationship between D̂n(l)

and Ďn(l) only holds at the order of asymptotic equivalence. Theorem 2 and

Proposition 4, as to the normalized GG prior, provide useful approximations

that might dramatically fasten up the evaluation of D̂n(l), for l = 0, 1, . . . , n,

when n is large, by avoiding the Monte Carlo evaluation of the Vn,kn ’s appearing

in (1.5) and (1.6).

4. Illustrations

We illustrate our results with simulations and analysis of data. Data were

generated from the Zeta distribution, whose power law behavior is common in

a variety of applications. See Sampson (2001) and references therein for appli-

cations of the Zeta distribution in empirical linguistics. One has P[Z = z] =

z−s/C(s), for z = {1, 2, . . .} and s > 1, where C(s) =
∑

i≥1 i
−s. We took s = 1.1

(case s = 1.5, typically leading to samples with a smaller number of distinct

values, is presented in the supplementary material). We drew 500 samples of

size n =1,000 from Z, ordered them according to the number of observed species

kn, and split them into 5 groups: for i = 1, 2, . . . , 5, the i-th group of samples

was composed of 100 samples featuring a total number of observed species kn
between the quantiles of order (i− 1)/5 and i/5 of the empirical distribution of

kn. Then we chose at random one sample for each group and labeled it with the

corresponding index i, leading to five samples (see Table 1).

We also considered ESTs data generated by sequencing two Naegleria gruberi

complementary DNA libraries; these were prepared from cells grown under differ-

ent culture conditions, aerobic and anaerobic conditions. The rate of gene discov-

ery depends on the degree of redundancy of the library from which such sequences

are obtained. Correctly estimating the relative redundancy of such libraries, as

well as other quantities such as the probability of sampling a new or a rarely ob-

served gene, is of importance since it allows one to optimize the use of expensive

experimental sampling techniques. The Naegleria gruberi aerobic library consists

of n = 959 ESTs with kn = 473 distinct genes and ml,959 = 346, 57, 19, 12, 9, 5,
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4, 2, 4, 5, 4, 1, 1, 1, 1, 1, 1, for l = {1, 2, . . . , 12}∪{16, 17, 18}∪{27}∪{55}. The
Naegleria gruberi anaerobic library consists of n = 969 ESTs with kn = 631 dis-

tinct genes and ml,969 = 491, 72, 30, 9, 13, 5, 3, 1, 2, 0, 1, 0, 1, for l ∈ {1, 2, . . . , 13}
(see Table 1). We refer to Susko and Roger (2004) for a detailed account on the

Naegleria gruberi libraries.

We focused on the two-parameter PD prior and the normalized GG prior.

We choose the values of (σ, θ) and (σ, τ) by an empirical Bayes approach, as those

that maximized the likelihood function with respect to the sample Xn featuring

Kn = kn and (N1,n, . . . , NKn,n) = (n1,n, . . . , nkn,n),

(σ̂, θ̂)=argmax
(σ,θ)

{∏kn−1
i=0 (θ + iσ)

(θ)n

kn∏
i=1

(1− σ)(ni,n−1)

}
, (4.1)

(σ̂, τ̂)=argmax
(σ,τ)

{
eτ

σ
σkn−1

Γ(n)

n−1∑
i=0

(
n−1

i

)
(−τ)iΓ

(
kn−

i

σ
; τσ

) kn∏
i=1

(1−σ)(ni,n−1)

}
. (4.2)

As first observed by Favaro et al. (2009), under the specification of the two-

parameter PD prior and for a relatively large observed sample, there is a high

concentration of the posterior distribution of the parameter (σ, θ) around (σ̂, θ̂).

It can be checked that, under the specification of a normalized GG prior, a similar

behaviour characterizes the posterior distribution of (σ, τ).

Table 1 reports the sample size n, the number of species kn, and the values

of (σ̂, θ̂) and (σ̂, τ̂) obtained by the maximizations (4.1) and (4.2), respectively.

Here the value of σ̂ obtained under the two-parameter PD prior coincides, up to

a negligible error, with the value of σ̂ obtained under the normalized GG prior.

In general, we expect the same behaviour for any Gibbs-type prior in light of

the likelihood function of a sample Xn from a Gibbs-type random probability

measure Qh,

σkn
∏kn

i=1(1− σ)(ni−1)

Γ(n− σkn)

∫ +∞

0
h(t)t−σkn

∫ 1

0
pn−1−σknfσ((1− p)t)dpdt. (4.3)

Apart from σ, any other parameter is introduced in (4.3) via the function h,

which does not depend on the sample size n and the number of species kn. Then,

for large n and kn the maximization of (4.3) with respect to σ should lead to a

value σ̂ very close to the value that would be obtained by maximizing (4.3) with

h(t) = 1.

4.1. Credible intervals

We applied Propositions 1 and 2 in order to provide credible intervals for

the Bayesian nonparametric estimator D̂n(l). For the two-parameter PD prior,
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order refinement of (3.4). A second order refinement of (3.3), arising from

Gnedin, Hansen and Pitman (2007), can be expressed as

Ml,n =
σ(1− σ)l−1

l!
Kn +O

(
Kn

nσ/2

)
, (3.5)

but second order terms in Propositions 3 and 4 are absorbed by O
(
Kn/n

σ/2
)
in

(3.5). Furthermore, even if a finer version of (3.5) was available, its combination

with Propositions 3 and 4 would produce higher order terms preventing the

resulting expression from being interpreted as a Good–Turing estimator and,

therefore, any smoothing rule from being elicited. In other terms, under the two-

parameter PD and the normalized GG priors, the relationship between D̂n(l)

and Ďn(l) only holds at the order of asymptotic equivalence. Theorem 2 and

Proposition 4, as to the normalized GG prior, provide useful approximations

that might dramatically fasten up the evaluation of D̂n(l), for l = 0, 1, . . . , n,

when n is large, by avoiding the Monte Carlo evaluation of the Vn,kn ’s appearing

in (1.5) and (1.6).

4. Illustrations

We illustrate our results with simulations and analysis of data. Data were

generated from the Zeta distribution, whose power law behavior is common in

a variety of applications. See Sampson (2001) and references therein for appli-

cations of the Zeta distribution in empirical linguistics. One has P[Z = z] =

z−s/C(s), for z = {1, 2, . . .} and s > 1, where C(s) =
∑

i≥1 i
−s. We took s = 1.1

(case s = 1.5, typically leading to samples with a smaller number of distinct

values, is presented in the supplementary material). We drew 500 samples of

size n =1,000 from Z, ordered them according to the number of observed species

kn, and split them into 5 groups: for i = 1, 2, . . . , 5, the i-th group of samples

was composed of 100 samples featuring a total number of observed species kn
between the quantiles of order (i− 1)/5 and i/5 of the empirical distribution of

kn. Then we chose at random one sample for each group and labeled it with the

corresponding index i, leading to five samples (see Table 1).

We also considered ESTs data generated by sequencing two Naegleria gruberi

complementary DNA libraries; these were prepared from cells grown under differ-

ent culture conditions, aerobic and anaerobic conditions. The rate of gene discov-

ery depends on the degree of redundancy of the library from which such sequences

are obtained. Correctly estimating the relative redundancy of such libraries, as

well as other quantities such as the probability of sampling a new or a rarely ob-

served gene, is of importance since it allows one to optimize the use of expensive

experimental sampling techniques. The Naegleria gruberi aerobic library consists

of n = 959 ESTs with kn = 473 distinct genes and ml,959 = 346, 57, 19, 12, 9, 5,
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4, 2, 4, 5, 4, 1, 1, 1, 1, 1, 1, for l = {1, 2, . . . , 12}∪{16, 17, 18}∪{27}∪{55}. The
Naegleria gruberi anaerobic library consists of n = 969 ESTs with kn = 631 dis-

tinct genes and ml,969 = 491, 72, 30, 9, 13, 5, 3, 1, 2, 0, 1, 0, 1, for l ∈ {1, 2, . . . , 13}
(see Table 1). We refer to Susko and Roger (2004) for a detailed account on the

Naegleria gruberi libraries.

We focused on the two-parameter PD prior and the normalized GG prior.

We choose the values of (σ, θ) and (σ, τ) by an empirical Bayes approach, as those

that maximized the likelihood function with respect to the sample Xn featuring

Kn = kn and (N1,n, . . . , NKn,n) = (n1,n, . . . , nkn,n),

(σ̂, θ̂)=argmax
(σ,θ)

{∏kn−1
i=0 (θ + iσ)

(θ)n

kn∏
i=1

(1− σ)(ni,n−1)

}
, (4.1)

(σ̂, τ̂)=argmax
(σ,τ)

{
eτ

σ
σkn−1

Γ(n)

n−1∑
i=0

(
n−1

i

)
(−τ)iΓ

(
kn−

i

σ
; τσ

) kn∏
i=1

(1−σ)(ni,n−1)

}
. (4.2)

As first observed by Favaro et al. (2009), under the specification of the two-

parameter PD prior and for a relatively large observed sample, there is a high

concentration of the posterior distribution of the parameter (σ, θ) around (σ̂, θ̂).

It can be checked that, under the specification of a normalized GG prior, a similar

behaviour characterizes the posterior distribution of (σ, τ).

Table 1 reports the sample size n, the number of species kn, and the values

of (σ̂, θ̂) and (σ̂, τ̂) obtained by the maximizations (4.1) and (4.2), respectively.

Here the value of σ̂ obtained under the two-parameter PD prior coincides, up to

a negligible error, with the value of σ̂ obtained under the normalized GG prior.

In general, we expect the same behaviour for any Gibbs-type prior in light of

the likelihood function of a sample Xn from a Gibbs-type random probability

measure Qh,

σkn
∏kn

i=1(1− σ)(ni−1)

Γ(n− σkn)

∫ +∞

0
h(t)t−σkn

∫ 1

0
pn−1−σknfσ((1− p)t)dpdt. (4.3)

Apart from σ, any other parameter is introduced in (4.3) via the function h,

which does not depend on the sample size n and the number of species kn. Then,

for large n and kn the maximization of (4.3) with respect to σ should lead to a

value σ̂ very close to the value that would be obtained by maximizing (4.3) with

h(t) = 1.

4.1. Credible intervals

We applied Propositions 1 and 2 in order to provide credible intervals for

the Bayesian nonparametric estimator D̂n(l). For the two-parameter PD prior,
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Table 1. Simulated data and Naegleria gruberi libraries. For each sample
we report the sample size n, number of species kn and maximum likelihood
values (σ̂, θ̂) and (σ̂, τ̂).

PD GG

sample n kn σ̂ θ̂ σ̂ τ̂

Simulated data

1 1,000 642 0.914 2.086 0.913 2.517
2 1,000 650 0.905 3.812 0.905 4.924
3 1,000 656 0.910 3.236 0.910 4.060
4 1,000 663 0.916 2.597 0.916 3.156
5 1,000 688 0.920 3.438 0.920 4.225

Naegleria
Aerobic 959 473 0.669 46.241 0.684 334.334

Anaerobic 969 631 0.656 155.408 0.656 4,151.075

for l = 0 we generated 5,000 draws from the beta Bθ̂+σ̂kn,n−σ̂kn
while, for

l ≥ 1 we sampled 5,000 draws from the distribution of a beta random vari-

able B(l−σ̂)ml,n,θ̂+n−(l−σ̂)ml,n
. In both cases, we computed the quantiles of order

{0.025, 0.975} of the empirical distribution and obtained 95% posterior credible

intervals for D̂n(l). The procedure for the normalized GG case was only slightly

more elaborate. By exploiting the adaptive rejection algorithm of Gilks and Wild

(1992), we sampled 5,000 draws from Zg with density function (2.6). In turn,

we sampled 5,000 draws from Wn−σ̂kn,Zg . We then used the quantiles of order

{0.025, 0.975} of the empirical distribution of Wn−σ̂kn,Zg to obtain 95% poste-

rior credible intervals for D̂n(0). Similarly, if l ≥ 1, we sampled 5,000 draws

from the beta B(l−σ̂)ml,n,n−σ̂kn−(l−σ̂)ml,n
and used the quantiles of the empirical

distribution of B(l−σ̂)ml,n,n−σ̂kn−(l−σ̂)ml,n
(1−Wn−σ̂kn,Zg) as extremes of the pos-

terior credible interval for D̂n(l). Under the two-parameter PD prior and the

normalized GG prior, and with respect to these data, the top panel of Table 2

shows the estimated l-discoveries, for l = 0, 1, 5, 10, and the corresponding 95%

posterior credible intervals. It is apparent that the two-parameter PD prior and

the normalized GG prior lead to the same inferences for the l-discovery. Such

a behaviour is mainly determined by the fact that the two-parameter PD prior,

for any σ ∈ (0, 1) and θ > 0, can be viewed as a mixture of normalized GG

priors. Specifically, let Qp(σ, θ) and Qg(σ, b) be the distributions of the cor-

responding random probability measures, and let Gθ/σ,1 be a Gamma random

variable with parameter (θ/σ, 1). Then, according to Proposition 21 in Pitman

and Yor (1997), Qp(σ, θ) = Qg(σ,G
1/σ
θ/σ,1), and specifying a two-parameter PD

prior is equivalent to specifying a normalized GG prior with an Gamma hyper

prior over the parameter τ1/σ. Table 2 allows us to compare the performance

of the Bayesian nonparametric estimator D̂n(l) and the Good–Turing estimator
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Ďn(l). As expected, Good–Turing estimates are not reliable as soon as l is not

very small compared to n. See, e.g., the cases l = 5 and l = 10. Of course

these estimates may be improved by introducing a suitable smoothing rule for

the frequency counts ml,n’s. We are not aware of a non-asymptotic approach for

devising confidence intervals for Ďn(l), and found that different procedures are

used according to the choice of l = 0 and l ≥ 1. We relied on Mao (2004) for l = 0

and on Church and Gale (1991) for l ≥ 1. See also Baayen (2001) for details. We

observe that the confidence intervals for Ďn(l) are wider than the corresponding

credible intervals for D̂n(l) when l = 0, and narrower if l ≥ 1. Differently from

the credible intervals for D̂n(l), the confidence intervals for Ďn(l) are symmetric

about Ďn(l); such a behaviour is determined by the Gaussian approximation used

to derive confidence intervals.

4.2. Large sample approximations

We analyzed the accuracy of the large n approximations of D̂n(l) introduced

in Theorem 2, Propositions 3 and 4. We first compared the precision of exact

and approximated estimators, while a second analysis compared the behavior of

first and second order approximations for varying sample sizes. For the simu-

lated data, the specification of the two-parameter PD prior and the normalized

GG prior, and for l = 0, 1, 5, 10, we compared the true discovery probabilities

Dn(l) with the Bayesian nonparametric estimates of Dn(l) and with their cor-

responding first and second order approximations. From Table 1, the empirical

Bayes estimates for σ can be slightly different under the two-parameter PD and

the normalized GG priors. We considered only the first order approximation of

D̂n(l) with the parameter σ = σ̂ set as indicated in (4.1).

Results of this comparative study are reported in Table 3. We also include, as

an overall measure of the performance of the exact and approximate estimators,

the sum of squared errors (SSE), defined, for a generic estimator D̂n(l) of the l-

discovery, as SSE(D̂n) =
∑

0≤l≤n(D̂n(l)−dn(l))
2, with dn(l) being the true value

of Dn(l). For all the considered samples, there are not substantial differences be-

tween the SSEs of the exact Bayesian nonparametric estimates and the SSEs of

the first and second order approximate Bayesian nonparametric estimates. The

first order approximation is already pretty accurate and, thus, the approxima-

tion error does not contribute significantly to increase the SSE. As expected, the

order of magnitude of the SSE referring to the not-smoothed Good–Turing esti-

mator is much larger than the one corresponding to the Bayesian nonparametric

estimators.

We considered simulated data with sample sizes n = 102, 103, 104, 105. For

every n, we drew ten samples from a Zeta distribution with parameter s = 1.1.

We focused on the two-parameter PD prior, and for each sample we determined
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Table 1. Simulated data and Naegleria gruberi libraries. For each sample
we report the sample size n, number of species kn and maximum likelihood
values (σ̂, θ̂) and (σ̂, τ̂).

PD GG

sample n kn σ̂ θ̂ σ̂ τ̂

Simulated data

1 1,000 642 0.914 2.086 0.913 2.517
2 1,000 650 0.905 3.812 0.905 4.924
3 1,000 656 0.910 3.236 0.910 4.060
4 1,000 663 0.916 2.597 0.916 3.156
5 1,000 688 0.920 3.438 0.920 4.225

Naegleria
Aerobic 959 473 0.669 46.241 0.684 334.334

Anaerobic 969 631 0.656 155.408 0.656 4,151.075

for l = 0 we generated 5,000 draws from the beta Bθ̂+σ̂kn,n−σ̂kn
while, for

l ≥ 1 we sampled 5,000 draws from the distribution of a beta random vari-

able B(l−σ̂)ml,n,θ̂+n−(l−σ̂)ml,n
. In both cases, we computed the quantiles of order

{0.025, 0.975} of the empirical distribution and obtained 95% posterior credible

intervals for D̂n(l). The procedure for the normalized GG case was only slightly

more elaborate. By exploiting the adaptive rejection algorithm of Gilks and Wild

(1992), we sampled 5,000 draws from Zg with density function (2.6). In turn,

we sampled 5,000 draws from Wn−σ̂kn,Zg . We then used the quantiles of order

{0.025, 0.975} of the empirical distribution of Wn−σ̂kn,Zg to obtain 95% poste-

rior credible intervals for D̂n(0). Similarly, if l ≥ 1, we sampled 5,000 draws

from the beta B(l−σ̂)ml,n,n−σ̂kn−(l−σ̂)ml,n
and used the quantiles of the empirical

distribution of B(l−σ̂)ml,n,n−σ̂kn−(l−σ̂)ml,n
(1−Wn−σ̂kn,Zg) as extremes of the pos-

terior credible interval for D̂n(l). Under the two-parameter PD prior and the

normalized GG prior, and with respect to these data, the top panel of Table 2

shows the estimated l-discoveries, for l = 0, 1, 5, 10, and the corresponding 95%

posterior credible intervals. It is apparent that the two-parameter PD prior and

the normalized GG prior lead to the same inferences for the l-discovery. Such

a behaviour is mainly determined by the fact that the two-parameter PD prior,

for any σ ∈ (0, 1) and θ > 0, can be viewed as a mixture of normalized GG

priors. Specifically, let Qp(σ, θ) and Qg(σ, b) be the distributions of the cor-

responding random probability measures, and let Gθ/σ,1 be a Gamma random

variable with parameter (θ/σ, 1). Then, according to Proposition 21 in Pitman

and Yor (1997), Qp(σ, θ) = Qg(σ,G
1/σ
θ/σ,1), and specifying a two-parameter PD

prior is equivalent to specifying a normalized GG prior with an Gamma hyper

prior over the parameter τ1/σ. Table 2 allows us to compare the performance

of the Bayesian nonparametric estimator D̂n(l) and the Good–Turing estimator
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Ďn(l). As expected, Good–Turing estimates are not reliable as soon as l is not

very small compared to n. See, e.g., the cases l = 5 and l = 10. Of course

these estimates may be improved by introducing a suitable smoothing rule for

the frequency counts ml,n’s. We are not aware of a non-asymptotic approach for

devising confidence intervals for Ďn(l), and found that different procedures are

used according to the choice of l = 0 and l ≥ 1. We relied on Mao (2004) for l = 0

and on Church and Gale (1991) for l ≥ 1. See also Baayen (2001) for details. We

observe that the confidence intervals for Ďn(l) are wider than the corresponding

credible intervals for D̂n(l) when l = 0, and narrower if l ≥ 1. Differently from

the credible intervals for D̂n(l), the confidence intervals for Ďn(l) are symmetric

about Ďn(l); such a behaviour is determined by the Gaussian approximation used

to derive confidence intervals.

4.2. Large sample approximations

We analyzed the accuracy of the large n approximations of D̂n(l) introduced

in Theorem 2, Propositions 3 and 4. We first compared the precision of exact

and approximated estimators, while a second analysis compared the behavior of

first and second order approximations for varying sample sizes. For the simu-

lated data, the specification of the two-parameter PD prior and the normalized

GG prior, and for l = 0, 1, 5, 10, we compared the true discovery probabilities

Dn(l) with the Bayesian nonparametric estimates of Dn(l) and with their cor-

responding first and second order approximations. From Table 1, the empirical

Bayes estimates for σ can be slightly different under the two-parameter PD and

the normalized GG priors. We considered only the first order approximation of

D̂n(l) with the parameter σ = σ̂ set as indicated in (4.1).

Results of this comparative study are reported in Table 3. We also include, as

an overall measure of the performance of the exact and approximate estimators,

the sum of squared errors (SSE), defined, for a generic estimator D̂n(l) of the l-

discovery, as SSE(D̂n) =
∑

0≤l≤n(D̂n(l)−dn(l))
2, with dn(l) being the true value

of Dn(l). For all the considered samples, there are not substantial differences be-

tween the SSEs of the exact Bayesian nonparametric estimates and the SSEs of

the first and second order approximate Bayesian nonparametric estimates. The

first order approximation is already pretty accurate and, thus, the approxima-

tion error does not contribute significantly to increase the SSE. As expected, the

order of magnitude of the SSE referring to the not-smoothed Good–Turing esti-

mator is much larger than the one corresponding to the Bayesian nonparametric

estimators.

We considered simulated data with sample sizes n = 102, 103, 104, 105. For

every n, we drew ten samples from a Zeta distribution with parameter s = 1.1.

We focused on the two-parameter PD prior, and for each sample we determined
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Table 2. Simulated data (top panel) andNaegleria gruberi aerobic and anaer-
obic libraries (bottom panel). We report the true value of the probability
Dn(l) (available for simulated data only) and the Bayesian nonparametric
estimates of Dn(l) with 95% credible intervals for l = 0, 1, 5, 10.

Good–Turing PD GG

l sample Dn(l) Ďn(l) 95%-c.i. D̂n(l) 95%-c.i. D̂n(l) 95%-c.i.

0

1 0.599 0.588 (0.440, 0.736) 0.587 (0.557, 0.618) 0.588 (0.558, 0.620)

2 0.592 0.590 (0.454, 0.726) 0.590 (0.559, 0.621) 0.591 (0.562, 0.620)

3 0.600 0.599 (0.462, 0.736) 0.598 (0.568, 0.628) 0.599 (0.567, 0.630)

4 0.605 0.609 (0.473, 0.745) 0.609 (0.579, 0.638) 0.608 (0.577, 0.638)

5 0.599 0.634 (0.499, 0.769) 0.634 (0.603, 0.664) 0.635 (0.604, 0.663)

1

1 0.050 0.044 (0.037, 0.051) 0.051 (0.038, 0.065) 0.051 (0.038, 0.065)

2 0.052 0.054 (0.046, 0.062) 0.056 (0.043, 0.071) 0.055 (0.042, 0.070)

3 0.051 0.046 (0.039, 0.053) 0.054 (0.040, 0.068) 0.053 (0.040, 0.068)

4 0.055 0.046 (0.039, 0.053) 0.051 (0.038, 0.065) 0.051 (0.038, 0.065)

5 0.061 0.052 (0.045, 0.059) 0.051 (0.038, 0.065) 0.050 (0.038, 0.064)

5

1 0.015 0.030 (0.022, 0.038) 0.016 (0.009, 0.025) 0.016 (0.009, 0.025)

2 0.022 0 (0 , 0 ) 0.016 (0.009, 0.025) 0.016 (0.009, 0.025)

3 0.019 0.012 (0.008, 0.016) 0.020 (0.013, 0.030) 0.021 (0.012, 0.030)

4 0.015 0.006 (0.003, 0.009) 0.020 (0.013, 0.030) 0.021 (0.013, 0.031)

5 0.007 0.012 (0.007, 0.017) 0.008 (0.004, 0.015) 0.008 (0.003, 0.015)

10

1 0 0.011 n.a. 0 (0 , 0 ) 0 (0 , 0 )

2 0.007 0 (0 , 0 ) 0.009 (0.004, 0.016) 0.009 (0.004, 0.016)

3 0.011 0 (0 , 0 ) 0.009 (0.004, 0.016) 0.009 (0.004, 0.016)

4 0.011 0 (0 , 0 ) 0.009 (0.004, 0.016) 0.009 (0.004, 0.016)

5 0 0.011 n.a. 0 (0 , 0 ) 0 (0 , 0 )

0
Aerobic n.a. 0.361 (0.293, 0.429) 0.361 (0.331, 0.391) 0.361 (0.332, 0.389)

Anaerobic n.a. 0.507 (0.451, 0.562) 0.509 (0.478, 0.537) 0.507 (0.480, 0.532)

1
Aerobic n.a. 0.119 (0.107, 0.131) 0.114 (0.095, 0.134) 0.110 (0.092, 0.131)

Anaerobic n.a. 0.149 (0.135, 0.162) 0.148 (0.129, 0.169) 0.150 (0.131, 0.172)

5
Aerobic n.a. 0.031 (0.024, 0.038) 0.039 (0.028, 0.052) 0.039 (0.028, 0.053)

Anaerobic n.a. 0.031 (0.024, 0.038) 0.050 (0.038, 0.064) 0.050 (0.038, 0.064)

10
Aerobic n.a. 0.046 (0.037, 0.055) 0.046 (0.034, 0.060) 0.047 (0.034, 0.061)

Anaerobic n.a. 0.011 n.a. 0 (0 , 0 ) 0 (0 , 0 )

(σ̂, θ̂) by means of the empirical Bayes procedure described in (4.1). We then

evaluated, for every l = 0, 1, . . . , n + 1, the exact estimator D̂n(l) as well as its

first and second order approximations. To compare the relative accuracy of the

first and second order approximations D̂(1)
n (l) and D̂(2)

n (l) of the same estimator

D̂n(l) we introduce the ratio r1,2,n of the sum of squared errors
∑

0≤l≤n(D̂
(i)
n (l)−
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Table 3. Simulated data. We report the true value of the probability Dn(l),
the Good–Turing estimates ofDn(l) and the exact and approximate Bayesian
nonparametric estimates of Dn(l).

l Sample 1 2 3 4 5

0

Dn(l) 0.599 0.592 0.600 0.605 0.599
Ďn(l) 0.588 0.590 0.599 0.609 0.634

D̂n(l) under PD 0.587 0.590 0.598 0.609 0.634

D̂n(l) under GG 0.588 0.591 0.599 0.608 0.635
1st ord. 0.587 0.588 0.597 0.608 0.633

2nd ord. PD 0.589 0.592 0.600 0.610 0.6366
2nd ord. GG 0.589 0.592 0.600 0.610 0.636

1

Dn(l) 0.050 0.052 0.051 0.055 0.061
Ďn(l) 0.044 0.054 0.046 0.046 0.052

D̂n(l) under PD 0.051 0.056 0.054 0.051 0.051

D̂n(l) under GG 0.051 0.055 0.053 0.051 0.050
1st ord. 0.051 0.056 0.054 0.051 0.051

2nd ord. PD 0.051 0.056 0.054 0.051 0.051
2nd ord. GG 0.051 0.056 0.054 0.051 0.0512

5

Dn(l) 0.015 0.022 0.019 0.015 0.007
Ďn(l) 0.030 0 0.012 0.006 0.012

D̂n(l) under PD 0.016 0.016 0.020 0.020 0.008

D̂n(l) under GG 0.016 0.016 0.021 0.021 0.008
1st ord. 0.016 0.016 0.020 0.020 0.008

2nd ord. PD 0.016 0.016 0.020 0.020 0.008
2nd ord. GG 0.016 0.016 0.020 0.020 0.008

10

Dn(l) 0 0.007 0.011 0.011 0
Ďn(l) 0.011 0 0 0 0.011

D̂n(l) under PD 0 0.009 0.009 0.009 0

D̂n(l) under GG 0 0.009 0.009 0.009 0
1st ord. 0 0.009 0.009 0.009 0

2nd ord. PD 0 0.009 0.009 0.009 0
2nd ord. GG 0 0.009 0.009 0.009 0

104 × SSE(Ďn) 289.266 275.881 256.886 254.416 255.655

104 × SSE(D̂n) under PD 3.534 2.057 1.137 4.883 15.437

104 × SSE(D̂n) under GG 3.399 2.080 1.149 4.852 15.045

104 × SSE(D̂n) 1st ord. 3.780 2.142 1.180 4.776 14.456

104 × SSE(D̂n) 2st ord. PD 3.275 2.011 1.128 5.041 17.007

104 × SSE(D̂n) 2st ord. GG 3.279 2.014 1.130 5.035 16.984
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Table 2. Simulated data (top panel) andNaegleria gruberi aerobic and anaer-
obic libraries (bottom panel). We report the true value of the probability
Dn(l) (available for simulated data only) and the Bayesian nonparametric
estimates of Dn(l) with 95% credible intervals for l = 0, 1, 5, 10.

Good–Turing PD GG

l sample Dn(l) Ďn(l) 95%-c.i. D̂n(l) 95%-c.i. D̂n(l) 95%-c.i.

0

1 0.599 0.588 (0.440, 0.736) 0.587 (0.557, 0.618) 0.588 (0.558, 0.620)

2 0.592 0.590 (0.454, 0.726) 0.590 (0.559, 0.621) 0.591 (0.562, 0.620)

3 0.600 0.599 (0.462, 0.736) 0.598 (0.568, 0.628) 0.599 (0.567, 0.630)

4 0.605 0.609 (0.473, 0.745) 0.609 (0.579, 0.638) 0.608 (0.577, 0.638)

5 0.599 0.634 (0.499, 0.769) 0.634 (0.603, 0.664) 0.635 (0.604, 0.663)

1

1 0.050 0.044 (0.037, 0.051) 0.051 (0.038, 0.065) 0.051 (0.038, 0.065)

2 0.052 0.054 (0.046, 0.062) 0.056 (0.043, 0.071) 0.055 (0.042, 0.070)

3 0.051 0.046 (0.039, 0.053) 0.054 (0.040, 0.068) 0.053 (0.040, 0.068)

4 0.055 0.046 (0.039, 0.053) 0.051 (0.038, 0.065) 0.051 (0.038, 0.065)

5 0.061 0.052 (0.045, 0.059) 0.051 (0.038, 0.065) 0.050 (0.038, 0.064)

5

1 0.015 0.030 (0.022, 0.038) 0.016 (0.009, 0.025) 0.016 (0.009, 0.025)

2 0.022 0 (0 , 0 ) 0.016 (0.009, 0.025) 0.016 (0.009, 0.025)

3 0.019 0.012 (0.008, 0.016) 0.020 (0.013, 0.030) 0.021 (0.012, 0.030)

4 0.015 0.006 (0.003, 0.009) 0.020 (0.013, 0.030) 0.021 (0.013, 0.031)

5 0.007 0.012 (0.007, 0.017) 0.008 (0.004, 0.015) 0.008 (0.003, 0.015)

10

1 0 0.011 n.a. 0 (0 , 0 ) 0 (0 , 0 )

2 0.007 0 (0 , 0 ) 0.009 (0.004, 0.016) 0.009 (0.004, 0.016)

3 0.011 0 (0 , 0 ) 0.009 (0.004, 0.016) 0.009 (0.004, 0.016)

4 0.011 0 (0 , 0 ) 0.009 (0.004, 0.016) 0.009 (0.004, 0.016)

5 0 0.011 n.a. 0 (0 , 0 ) 0 (0 , 0 )

0
Aerobic n.a. 0.361 (0.293, 0.429) 0.361 (0.331, 0.391) 0.361 (0.332, 0.389)

Anaerobic n.a. 0.507 (0.451, 0.562) 0.509 (0.478, 0.537) 0.507 (0.480, 0.532)

1
Aerobic n.a. 0.119 (0.107, 0.131) 0.114 (0.095, 0.134) 0.110 (0.092, 0.131)

Anaerobic n.a. 0.149 (0.135, 0.162) 0.148 (0.129, 0.169) 0.150 (0.131, 0.172)

5
Aerobic n.a. 0.031 (0.024, 0.038) 0.039 (0.028, 0.052) 0.039 (0.028, 0.053)

Anaerobic n.a. 0.031 (0.024, 0.038) 0.050 (0.038, 0.064) 0.050 (0.038, 0.064)

10
Aerobic n.a. 0.046 (0.037, 0.055) 0.046 (0.034, 0.060) 0.047 (0.034, 0.061)

Anaerobic n.a. 0.011 n.a. 0 (0 , 0 ) 0 (0 , 0 )

(σ̂, θ̂) by means of the empirical Bayes procedure described in (4.1). We then

evaluated, for every l = 0, 1, . . . , n + 1, the exact estimator D̂n(l) as well as its

first and second order approximations. To compare the relative accuracy of the

first and second order approximations D̂(1)
n (l) and D̂(2)

n (l) of the same estimator

D̂n(l) we introduce the ratio r1,2,n of the sum of squared errors
∑

0≤l≤n(D̂
(i)
n (l)−
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Table 3. Simulated data. We report the true value of the probability Dn(l),
the Good–Turing estimates ofDn(l) and the exact and approximate Bayesian
nonparametric estimates of Dn(l).

l Sample 1 2 3 4 5

0

Dn(l) 0.599 0.592 0.600 0.605 0.599
Ďn(l) 0.588 0.590 0.599 0.609 0.634

D̂n(l) under PD 0.587 0.590 0.598 0.609 0.634

D̂n(l) under GG 0.588 0.591 0.599 0.608 0.635
1st ord. 0.587 0.588 0.597 0.608 0.633

2nd ord. PD 0.589 0.592 0.600 0.610 0.6366
2nd ord. GG 0.589 0.592 0.600 0.610 0.636

1

Dn(l) 0.050 0.052 0.051 0.055 0.061
Ďn(l) 0.044 0.054 0.046 0.046 0.052

D̂n(l) under PD 0.051 0.056 0.054 0.051 0.051

D̂n(l) under GG 0.051 0.055 0.053 0.051 0.050
1st ord. 0.051 0.056 0.054 0.051 0.051

2nd ord. PD 0.051 0.056 0.054 0.051 0.051
2nd ord. GG 0.051 0.056 0.054 0.051 0.0512

5

Dn(l) 0.015 0.022 0.019 0.015 0.007
Ďn(l) 0.030 0 0.012 0.006 0.012

D̂n(l) under PD 0.016 0.016 0.020 0.020 0.008

D̂n(l) under GG 0.016 0.016 0.021 0.021 0.008
1st ord. 0.016 0.016 0.020 0.020 0.008

2nd ord. PD 0.016 0.016 0.020 0.020 0.008
2nd ord. GG 0.016 0.016 0.020 0.020 0.008

10

Dn(l) 0 0.007 0.011 0.011 0
Ďn(l) 0.011 0 0 0 0.011

D̂n(l) under PD 0 0.009 0.009 0.009 0

D̂n(l) under GG 0 0.009 0.009 0.009 0
1st ord. 0 0.009 0.009 0.009 0

2nd ord. PD 0 0.009 0.009 0.009 0
2nd ord. GG 0 0.009 0.009 0.009 0

104 × SSE(Ďn) 289.266 275.881 256.886 254.416 255.655

104 × SSE(D̂n) under PD 3.534 2.057 1.137 4.883 15.437

104 × SSE(D̂n) under GG 3.399 2.080 1.149 4.852 15.045

104 × SSE(D̂n) 1st ord. 3.780 2.142 1.180 4.776 14.456

104 × SSE(D̂n) 2st ord. PD 3.275 2.011 1.128 5.041 17.007

104 × SSE(D̂n) 2st ord. GG 3.279 2.014 1.130 5.035 16.984
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D̂n(l))
2 for i = 1 over i = 2. We computed the coefficient r1,2,n for all the

samples and, for each n, the average ratio r̄1,2,n. We found the increasing values

r̄1,2,n = 0.163, 0.493, 1.082, 2.239 for sizes n = 102, 103, 104, 105 (see Figure S1 in

the supplementary material). While for small n a first order approximation turns

out to be more accurate, for large values of n (n ≥ 104 in our illustration), as

expected, the second order approximation is more precise.

Supplementary Material

Supplementary material, available online, contains the proofs of Theorems 1,

Proposition 1, Proposition 2, Theorem 2, Proposition 3 and Proposition 4, details

on the derivation of the asymptotic equivalence between D̂n(l) and Ďn(l;SPD),

as well as additional illustrations with simulated data.
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D̂n(l))
2 for i = 1 over i = 2. We computed the coefficient r1,2,n for all the

samples and, for each n, the average ratio r̄1,2,n. We found the increasing values

r̄1,2,n = 0.163, 0.493, 1.082, 2.239 for sizes n = 102, 103, 104, 105 (see Figure S1 in

the supplementary material). While for small n a first order approximation turns

out to be more accurate, for large values of n (n ≥ 104 in our illustration), as

expected, the second order approximation is more precise.
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