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Abstract: Case-control studies are designed to study associations between risk fac-

tors and a single, primary outcome. Information about additional, secondary out-

comes is also collected, but association studies targeting such secondary outcomes

should account for the case-control sampling scheme, or otherwise results may be

biased. Often, one uses inverse probability weighted (IPW) estimators to estimate

population effects in such studies. IPW estimators are robust, as they only re-

quire correct specification of the mean regression model of the secondary outcome

on covariates and knowledge of the disease prevalence. However, IPW estimators

are inefficient relative to estimators that make additional assumptions about the

data generating mechanism. We propose a class of estimators for the effect of risk

factors on a secondary outcome in case-control studies that combine IPW with an

additional modeling assumption: specification of the disease outcome probability

model. We incorporate this model via a mean zero control function. We derive

the class of all regular and asymptotically linear estimators corresponding to our

modeling assumption when the secondary outcome mean is modeled using either

the identity or the log link. We find the efficient estimator in our class of estimators

and show that it reduces to standard IPW when the model for the primary disease

outcome is unrestricted, and is more efficient than standard IPW when the model

is either parametric or semiparametric.

Key words and phrases: Case-control study, genetic association studies, inverse

probability weighting, semiparametric inference.

1. Introduction

Case-control studies are designed to study associations between exposures

and, traditionally, a rare, primary outcome. Recently, genome-wide association

studies (GWAS) are routinely conducted using a case-control study design, even

when the primary disease outcome is relatively common, to increase power while

maintaining relatively low cost. For instance, type 2 diabetes (T2D) is studied in

a case-control GWAS study nested within the Nurses Health Study (NHS), and

its prevalence in the cohort is estimated to be 8.4% (Cornelis et al. (2012)). Such

case-control studies typically collect information about additional, secondary out-

comes, potentially associated with the primary disease. Specifically, body mass
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index (BMI) measurements, which are well known to be associated with T2D,

were collected in the T2D case-control study. We are interested in re-purposing

the T2D GWAS data to study associations of single nucleotide polymorphisms

(SNPs) from the FTO gene, coding the Fat Mass and Obesity Protein, with BMI.

As Nagelkerke et al. (1995) pointed out, and others later demonstrated (Jiang,

Scott and Wild (2006); Richardson et al. (2007); Wang and Shete (2011), for

instance), applying standard regression methods to case-control data for analysis

of a secondary outcome can yield biased estimates, and therefore analysts need

to adapt analysis schemes.

Several approaches have been proposed for the analysis of secondary out-

comes from case-control studies. Nagelkerke et al. (1995) suggested that using

solely the control group is valid if it is fairly representative of the general pop-

ulation. This happens when the disease is rare, but may not hold otherwise.

Richardson et al. (2007) and Monsees, Tamimi and Kraft (2009) discussed using

inverse probability weighting (IPW), in which the contribution of each subject

for the estimating equation is weighted by the inverse of its selection probabil-

ity into the sample. IPW is robust to sampling bias, and is unbiased as long

as the mean outcome model is correctly specified. However, IPW is less effi-

cient than estimators that make additional modeling assumptions. Lin and Zeng

(2009) proposed to estimate model parameters by maximizing the retrospective

likelihood, taking into account case-control ascertainment by conditioning on dis-

ease status. Li and Gail (2012) generalized Lin and Zeng (2009)’s approach and

suggested an adaptively weighted estimate of the association between the expo-

sure and a binary secondary outcome, via a weighted sum of two retrospective

likelihood-based estimators that differ in their assumed disease model. Chen,

Kittles and Zhang (2013) proposed a bias correction formula for an estimated

odds ratio parameter, so that one can fit a regression model for the marginal

or conditional analysis of the secondary outcome, and correct the estimate us-

ing the result from regressing the primary outcome on the secondary outcome

and the exposure. Fewer methods are available for continuous secondary out-

comes. Ghosh, Wright and Zou (2013) elaborated on the retrospective likelihood

approach, mainly to incorporate auxiliary covariates. These likelihood-based es-

timators rely heavily on distributional assumptions. Wei et al. (2013) modeled a

continuous secondary outcome semiparametrically and relaxed the distributional

assumptions, but assumed that the primary disease is rare, which does not ap-

ply in many situations, including the T2D case-control study introduced earlier.

Tchetgen Tchetgen (2014) proposed a general model based on a nonparametric

parameterization for the secondary outcome conditional on disease status and

covariates, for the identity, log, and logit link functions. Under the proposed

parameterization, the mean model of the outcome conditional on disease status

IPW CONTROL FUNCTION 3

and covariates is factored into three functions: the mean model of the outcome

conditional on covariates, the disease probability model, and a so-called selec-

tion bias function. This model requires correct specification of these functions,

while it is robust to misspecification of the error distribution of the outcome.

As this model requires maximization of a factorized likelihood, it suffers from

computational instability when incorporating auxiliary covariates, like most of

the retrospective likelihood methods.

Current methodology relies on distributional assumptions or, in cases where

fewer assumptions are made, proposed estimators are not necessarily efficient.

Here, we use semiparametric theory to propose estimators for the population re-

gression of the secondary outcome on covariates that are both robust and locally

semiparametric efficient. We take the IPW estimator, which is the most robust of

the existing estimators, and pose an additional modeling assumption by placing

a model on the primary disease risk conditional on covariates. We construct a

control function (Wooldridge (2002); Petrin and Train (2010)) in terms of this

model, and add it to the usual IPW estimating equation. We get a new estimating

equation that reduces to the usual IPW in the absence of any restriction on the

model of disease risk given covariates. When this model is (semi)parametric, our

proposed estimator is more efficient than IPW. Interestingly, we show that the

new set of estimating equations uses the parameterization proposed by Tchetgen

Tchetgen (2014). However, focusing on the identity and log links, our approach

is more robust to certain forms of misspecification than the estimator of Tchet-

gen Tchetgen (2014). Our approach is reminiscent of Augmented IPW (AIPW)

estimators in that a term is added to the IPW to reflect additional modeling

assumptions. However, our estimators are crucially different than AIPW, which

uses data external to the case-control sample. Specifically, AIPW augments IPW

complete-cases with a score for the missingness/selection process which by anal-

ogy here would require both persons sampled and not sampled into the nested

case-control study to contribute. In our setting only data available in the case-

control sample contribute information, so that our estimators retain an IPW

form. Furthermore, in a nested case-control study, one could in principle aug-

ment the estimating equations developed in this paper for additional efficiency

gains using AIPW theory.

This paper is organized as follows. In Section 2 we describe the proposed

class of estimators. In Section 3 we develop the semiparametric locally efficient

estimator in the class of estimators, and its asymptotic properties. Through-

out, we focus on the identity link (continuous outcome) and the log link (count,

or positive outcome) for modeling the outcome mean. In Section 4 we present

simulation results, empirically demonstrating the balance that our proposed esti-

mators strike between robustness and efficiency, by comparing them to prevailing
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estimators in the literature. We use our proposed estimator in Section 5 in asso-
ciating SNPs from the FTO gene with BMI, using the case-control, GWAS, T2D
data set. Finally, in Section 6 we discuss our results.

2. Model

Suppose the case-control study has i = 1, . . . , n independent participants,
with an indicator for the primary disease Di, Di = 1 if the ith participant is a
case and Di = 0 otherwise. Let Yi denote the secondary outcome of interest, and
Xi the q× 1 vector of covariates of subject i. Let Si be an indicator of inclusion
in the case-control study. The observed data are given by {(SiYi, SiXi, SiDi), i =
1 . . . , n}.

We assume that the probability of selection into the study depends solely
on the disease status, Di, and it is denoted by Pr(Si = 1|Di, Yi,Xi) = π(Di).
Further, we assume that π(Di) is known by design. Equivalently, we assume that
Pr(Di = 1) in the population is known. Denote by p(Xi) = Pr(Di = 1|Xi) the
conditional probability of disease given covariates in the target population, and
let

µ(Xi;β) = g
{
E(Yi|Xi)

}
(2.1)

be the model for the mean after transformation using the link function g(·). In
the case of a continuous outcome with the identity link, for instance, µ(Xi;β) =
E(Yi|Xi), and when the log link is used, exp

{
µ(Xi;β)

}
= E(Yi|Xi), where expec-

tations are taken over the entire population (rather than the case-control study
population). Here β is the q× 1 vector of population regression coefficients that
we wish to estimate. Let M denote the semiparametric model defined by the
mean model specification (2.1) and the assumed model for p(X).

Hereafter, unless otherwise stated, all expectations are taken with respect
to the case-control study population. For the target of inference in the general
population, we use the notation µ(X;β) without explicitly writing it in term of
expectations. Taking an estimating equations approach, parameter estimates are
obtained by solving an equation of the form

n∑
i=1

Ui(β) = 0 (2.2)

for β, where Ui(β) are q × 1 functions, with E{Ui(β)} = 0. A traditional
approach for estimation in case-control studies, originating in the sample survey
literature, is inverse probability weighting (IPW) of each equation according to
its probability of selection into the study. IPW to estimate the population mean
model entails solving equation (2.2) for β using

Uipw,i(β) =
h(Xi)Si

π(Di)

[
Yi − g−1{µ(Xi;β)

}]
, (2.3)

IPW CONTROL FUNCTION 5

where h(Xi) is a user specified q×1 function, such that E(∂Uipw/∂β) is invertible.

To see that this equation is unbiased, consider its expectation over the super-

population of N individuals, and using the sampling indicator Si, to obtain:

N∑
i=1

Sih(Xi)

π(Di)

[
Yi − g−1{µ(Xi;β)

}]
Pr(Si = 1|Xi, Di).

Since Pr(Si = 1|Xi, D) = π(Di), and E[Y |X] = g−1{µ(X;β)} in the target

population, consistency follows under fairly standard conditions. From now we

suppress the sampling indicator Si in the notation since we always use the case-

control study sample in which Si = 1 for all i = 1, . . . , n.

Consider an extension of the IPW estimating equation, constructed by an

additive term of a general control function given below.

A set of estimating equations for β: Let M be the semiparametric model

with known sampling probabilities into the case-control sample π(D) and as-

sumed models g−1{µ(X,β)} and p(X). Control-function assisted IPW estimat-

ing equations have the form

Ucont(β) =

n∑
i=1

1

π(Di)

(
h1(Xi)

[
Yi − g−1{µ(Xi;β)}

]
− h2(Xi, Di)

)
= 0, (2.4)

where h2(X, D) is a q × 1 vector control function that depends on the disease

model and satisfies E
{
h2(X, D)/π(D)

��X, S = 1
}
= 0. Control functions have

been used in econometrics to control for bias due to specific forms of selection

(see Wooldridge (2002); Petrin and Train (2010)). In the present setting, we

adopt this framework for efficiency improvement.

The control function h2(X, D)/π(D) is inverse probability weighted, and has

mean zero for all h2, so that Ucont(β) is unbiased. The choice h2(X, D) = 0 gives

standard IPW. We aim to find h2(X, D) ̸= 0 such that the resulting estimator is

asymptotically at least as efficient as IPW for a fixed h1(X). We subsequently

characterize the optimal choice of h1(X).

In Lemma 1 in the supplementary material, we show that the set of functions

h2(X, D) satisfying the mean zero restriction E{h2(X, D)/π(D)|X, S = 1} = 0

is equivalent to the set of functions h̃2(X){D − p(X)}, so that for any func-

tion h2(X, D) from this set, there exists a function h̃2(X) such that h2(X, D) =

h̃2(X){D − p(X)}. The mean zero restriction is thus satisfied when p(X) is

correctly specified. Here, we use semiparametric theory to study in a unified

framework the semiparametric efficiency implications of positing a nonparamet-

ric, semiparametric, or parametric model for p(X), that is always assumed to be

correctly specified.
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3. Semiparametric Theory

In this section, we develop the semiparametric framework that serves as a

basis for our methods. We characterize the Regular Asymptotic Linear (RAL)

estimators corresponding to a given disease model p(X) and subsequently discuss

inference.

3.1. The RAL estimators for β

Denote the tangent space of a parametric, semiparametric, or nonparametric

submodel for p(X) by ΛD,sub. In the supplementary material, we provide exam-

ples for such tangent spaces. Let Π(v|Λ) denote the orthogonal projection of the

vector v on the subspace Λ of L0
2.

Theorem 1. The set of influence functions of β is given by

Γ =

{
1

π(D)
h1(X)[Y − g−1{µ(X,β)}]− h2(X, D)

π(D)
+ Π

(
h2(X, D)

π(D)

����ΛD,sub

)
:

E
{ 1

π(D)
h2(X, D)|X

}
= 0

}
∩ L0

2

up to a multiplicative constant.

Theorem 1 characterizes all RAL estimators of β in a semiparametric model

M defined by µ(X,β) and a choice of model for p(X). The proof (in the supple-

mentary material) states that if

h2(X, D)

π(D)
= Π

(
h2(X, D)

π(D)

����ΛD,sub

)
,

then all influence functions for β are IPW influence functions. This equality

holds, for instance, in the special case where the model p(X) is saturated, or

nonparametric. In other words, even if one uses the estimator (2.4), for any

choice of h2(X, D) the asymptotic distribution of the estimator will mimic that

of the IPW estimator, and the estimator cannot be made more efficient.

Corollary 1. Consider the model M with p(X) unrestricted. For a fixed choice

of h1(X) in (2.4), the optimal choice of function h2(X, D) is hopt2 (X, D) = 0, and

the most efficient estimator for β is the IPW estimator that solves the estimating

equation

Uipw(β) =

n∑
i=1

1

π(Di)

(
h1(Xi)

[
Yi − g−1{µ(Xi;β)}

])
= 0.

In the next section we restrict p(X) by imposing modeling assumptions. We

find the most efficient estimating equation for β in Γ, by deriving the optimal

functions h1(X) and h2(X), and provide the locally efficient estimator of β.

IPW CONTROL FUNCTION 7

3.2. Inference for a restricted model p(X)

Theorem 2. Let M be the model defined by the sampling probability π(D),

the population mean function g−1(µ(X;β)), and the disease model p(X). The

following hold for the estimator for β in model M.

1. If h1(X) is fixed, the function that minimizes the variance of �β is

hopt2 (X, D) = h1(X)
[
E(Y |X, D;β)− g−1{µ(X;β)}

]
.

If µ̃(X, D;β) = g
{
E(Y |X, D;β)

}
, which satisfies E

{
E(Y |X, D;β)

��X}
=

g−1{µ(X;β)}, then the influence function corresponding to hopt2 (X, D), up to

a multiplicative constant, is

h1(X)

π(D)

[
Y − g−1

{
µ̃(X, Di;β)

}]
.

2. The semiparametric efficient influence function has

hopt1 (X) = E
{

1

π(D)
var(Y |D,X)

����X
}−1 ∂

∂β

[
g−1

{
µ̃(X, D;β)

}]
.

The corresponding estimator �β is locally efficient in the submodel of M in

which h1(X) and h2(X, D) are correctly modeled. If these functions are mis-

specified, �β will still be CAN, but less efficient. The proof is provided in the

supplementary material.

Tchetgen Tchetgen (2014) provided parameterizations of µ̃(X, D;β) in terms

of µ(X;β) for the identity, log, and logit links. We use these parameterizations

to construct feasible estimating equations Uopt
ident and Uopt

log based on Theorem 2.

Consider first the identity link function. As shown in Tchetgen Tchetgen (2014),

E(Y |X, D;β) can be parameterized as E(Y |X, D;β) = µ(X;β) + γ(X){D −
p(X)}, where γ(X) = E(Y |D = 1,X) − E(Y |D = 0,X) is the “selection bias

function”, resulting from sampling according to disease status. We have that

Uopt
ident(β) =

n∑
i=1

hopt1 (Xi)

π(Di)

[
Yi − µ(Xi;β)− γ(Xi){Di − p(Xi)}

]
.

For the log link, it was shown in Tchetgen Tchetgen (2014) that

µ̃(X, D;β) = E(Y |X, D;β) = exp
(
µ(X;β)+ν(X, D)− log E[exp{ν(X, D)}|X]

)
,

where the selection bias function ν(X, D) is

ν(X, D) = log

{
E(Y |X, D)

E(Y |X, D = 0)

}
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3. Semiparametric Theory

In this section, we develop the semiparametric framework that serves as a

basis for our methods. We characterize the Regular Asymptotic Linear (RAL)

estimators corresponding to a given disease model p(X) and subsequently discuss

inference.

3.1. The RAL estimators for β

Denote the tangent space of a parametric, semiparametric, or nonparametric

submodel for p(X) by ΛD,sub. In the supplementary material, we provide exam-

ples for such tangent spaces. Let Π(v|Λ) denote the orthogonal projection of the

vector v on the subspace Λ of L0
2.

Theorem 1. The set of influence functions of β is given by

Γ =

{
1

π(D)
h1(X)[Y − g−1{µ(X,β)}]− h2(X, D)

π(D)
+ Π

(
h2(X, D)

π(D)

����ΛD,sub

)
:

E
{ 1

π(D)
h2(X, D)|X

}
= 0

}
∩ L0

2

up to a multiplicative constant.

Theorem 1 characterizes all RAL estimators of β in a semiparametric model

M defined by µ(X,β) and a choice of model for p(X). The proof (in the supple-

mentary material) states that if

h2(X, D)

π(D)
= Π

(
h2(X, D)

π(D)

����ΛD,sub

)
,

then all influence functions for β are IPW influence functions. This equality

holds, for instance, in the special case where the model p(X) is saturated, or

nonparametric. In other words, even if one uses the estimator (2.4), for any

choice of h2(X, D) the asymptotic distribution of the estimator will mimic that

of the IPW estimator, and the estimator cannot be made more efficient.

Corollary 1. Consider the model M with p(X) unrestricted. For a fixed choice

of h1(X) in (2.4), the optimal choice of function h2(X, D) is hopt2 (X, D) = 0, and

the most efficient estimator for β is the IPW estimator that solves the estimating

equation

Uipw(β) =

n∑
i=1

1

π(Di)

(
h1(Xi)

[
Yi − g−1{µ(Xi;β)}

])
= 0.

In the next section we restrict p(X) by imposing modeling assumptions. We

find the most efficient estimating equation for β in Γ, by deriving the optimal

functions h1(X) and h2(X), and provide the locally efficient estimator of β.
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3.2. Inference for a restricted model p(X)

Theorem 2. Let M be the model defined by the sampling probability π(D),

the population mean function g−1(µ(X;β)), and the disease model p(X). The

following hold for the estimator for β in model M.

1. If h1(X) is fixed, the function that minimizes the variance of �β is

hopt2 (X, D) = h1(X)
[
E(Y |X, D;β)− g−1{µ(X;β)}

]
.

If µ̃(X, D;β) = g
{
E(Y |X, D;β)

}
, which satisfies E

{
E(Y |X, D;β)

��X}
=

g−1{µ(X;β)}, then the influence function corresponding to hopt2 (X, D), up to

a multiplicative constant, is

h1(X)

π(D)

[
Y − g−1

{
µ̃(X, Di;β)

}]
.

2. The semiparametric efficient influence function has

hopt1 (X) = E
{

1

π(D)
var(Y |D,X)

����X
}−1 ∂

∂β

[
g−1

{
µ̃(X, D;β)

}]
.

The corresponding estimator �β is locally efficient in the submodel of M in

which h1(X) and h2(X, D) are correctly modeled. If these functions are mis-

specified, �β will still be CAN, but less efficient. The proof is provided in the

supplementary material.

Tchetgen Tchetgen (2014) provided parameterizations of µ̃(X, D;β) in terms

of µ(X;β) for the identity, log, and logit links. We use these parameterizations

to construct feasible estimating equations Uopt
ident and Uopt

log based on Theorem 2.

Consider first the identity link function. As shown in Tchetgen Tchetgen (2014),

E(Y |X, D;β) can be parameterized as E(Y |X, D;β) = µ(X;β) + γ(X){D −
p(X)}, where γ(X) = E(Y |D = 1,X) − E(Y |D = 0,X) is the “selection bias

function”, resulting from sampling according to disease status. We have that

Uopt
ident(β) =

n∑
i=1

hopt1 (Xi)

π(Di)

[
Yi − µ(Xi;β)− γ(Xi){Di − p(Xi)}

]
.

For the log link, it was shown in Tchetgen Tchetgen (2014) that

µ̃(X, D;β) = E(Y |X, D;β) = exp
(
µ(X;β)+ν(X, D)− log E[exp{ν(X, D)}|X]

)
,

where the selection bias function ν(X, D) is

ν(X, D) = log

{
E(Y |X, D)

E(Y |X, D = 0)

}
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and reflects the log multiplicative association between D and Y given X. The
expectation in E[exp{ν(X, D)}|X] is taken over the population. Therefore, we
have that

Uopt
log(β) =

n∑
i=1

hopt1 (Xi)

π(Di)

{
Yi − exp

(
µ(Xi;β) + ν(Xi, Di)

−logE[exp{ν(Xi, Di)}|Xi]
)}

.

These estimating equations are robust, in the sense that even if the selection bias
functions γ and ν are misspecified, the estimating equations is unbiased as long
as µ(X;β) and p(X) are correctly modeled.

3.3. Asymptotic properties

We saw that �β is a RAL estimator in model M in which p(X) is correctly
specified. We compute �β by solving the estimating equation �Uopt

cont(β) = 0,
defined as Uopt

cont(β) with
�h1(X),�h2(X, D), and �p(X).

Let δ denote the parameters for the selection bias function, either ν(X, D; δ)
(log link) or γ(X; δ) (identity link). Let θ = (βT , δT )T . It is convenient to esti-
mate θ jointly, by modifying the estimating equation Uopt

cont(β) to define Uopt
cont(θ)

by taking

hopt1 (X) = E
{

1

π(D)
var(Y |D,X)

����X
}−1 ∂

∂θ

[
g−1

{
µ(X, D;θ)

}]
.

In the supplementary material, we describe how to compute the estimator �θ, and
derive its asymptotic distribution. To this end, we need to know its influence
function, which is found from the first order Taylor expansion of the estimating

equation around the limiting value of �θ = (�βT
, �δT )T . Let V(α) be the estimating

equation for α. The influence function for θ is given by

ψ(θ;α) = −
[
E

∂

∂θ

{
Ucont(θ;α)

}]−1

×

[
Ucont(θ;α)− E

{
∂

∂α
Ucont(θ;α)

}
E
{

∂

∂α
V(α)

}−1

V(α)

]
.

A consistent estimator of the covariance matrix of the estimator �θ is given by

�Σ(θ) =
1

n

n∑
i=1

�ψi

(�θ; �α
) �ψT

i

(�θ; �α
)
,

where �ψi is the influence function evaluated at the ith subject, with all expecta-
tions in the expression ψ(θ;α) estimated by the corresponding sample means.
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Corollary 2. The estimator �θ that solves Ucont(β, δ; �α) under M in which
µ(X,β) and p(X) are correctly specified, is asymptotically normally distributed
with asymptotic mean θ and covariance Σ(θ) = E

{
ψ(θ;α)ψ(θ;α)T

}
. In the

submodel where �hopt1 (X) → p limn→∞ hopt1 (X), and �hopt2 (X, D) → p limn→∞ hopt2

(X, D), �β is locally efficient.

Here �θ is asymptotically normal with covariance matrix E{ψ(θ∗; �α)ψ(θ∗;
�α)T }, where θ∗ is p limn→∞ �θ, even if one of p(X), µ(X;β), or both, are mis-
specified. In the case of misspecification, θ∗ is likely a biased estimate of the
true θ.

4. Simulations

In this section, we demonstrate the robustness and efficiency of our proposed
estimators, compared to the prevailing estimators, when modeling the mean via
the identity link. We simulate case-control studies with continuous secondary
outcomes in two sets of simulations. The goal of the first set was to investigate
the robustness and efficiency of the proposed control function estimator (‘cont’)
compared to multiple other prevailing estimators: the estimator that conditions
on disease status, using disease indicator in the regression of the secondary out-
come on covariates ‘Dind’, the estimator that treats all observations equally,
ignoring disease status ‘pooled’, the usual IPW estimator (‘IPW’), and the es-
timator of Tchetgen Tchetgen (2014) (‘TT’), implemented via an approximate
algorithm. The goal of the second set was to compare the performance of cont
to the estimators proposed by Ghosh, Wright and Zou (2013) and Lin and Zeng
(2009). In each section below, we describe the simulations and provide results,
where for cont, we provide two sets of results: when the model for E

(
Y |X, D

)
is

correctly specified, and when it is misspecified. For each scenario, we calculated
the mean bias of the estimates (1/n.sim)

∑n.sim
k=1

�βk − β, the mean squared error

(MSE) (1/n.sim)
∑n.sim

k=1 (�βk−β)2, the sample standard deviation of the estimator

{(1/n.sim)
∑n.sim

k=1 (�βk − �̄β)2}1/2, the mean of the estimated standard deviations

in the simulations (1/n.sim)
∑n.sim

k=1 ŝd(βk), and the Wald coverage probability.
Due to limited space, only some of the simulation results are presented in the
main manuscript. Additional extensive simulation results are relegated to the
supplementary material, including all summaries pertaining to the performance
of the estimators Dind and pooled.

The proposed cont estimators and the estimated standard deviations were
calculated as described in the supplementary material. The IPW estimator and
the estimated standard deviations were calculated using Newton-Raphson itera-
tions of the estimating function Uipw, with h1(Xi) = Xi, with the robust (sand-
wich) covariance matrix. The näıve estimators Dind and pooled were calculated
from linear regression.
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and reflects the log multiplicative association between D and Y given X. The
expectation in E[exp{ν(X, D)}|X] is taken over the population. Therefore, we
have that

Uopt
log(β) =

n∑
i=1

hopt1 (Xi)

π(Di)

{
Yi − exp

(
µ(Xi;β) + ν(Xi, Di)

−logE[exp{ν(Xi, Di)}|Xi]
)}

.

These estimating equations are robust, in the sense that even if the selection bias
functions γ and ν are misspecified, the estimating equations is unbiased as long
as µ(X;β) and p(X) are correctly modeled.

3.3. Asymptotic properties

We saw that �β is a RAL estimator in model M in which p(X) is correctly
specified. We compute �β by solving the estimating equation �Uopt

cont(β) = 0,
defined as Uopt

cont(β) with
�h1(X),�h2(X, D), and �p(X).

Let δ denote the parameters for the selection bias function, either ν(X, D; δ)
(log link) or γ(X; δ) (identity link). Let θ = (βT , δT )T . It is convenient to esti-
mate θ jointly, by modifying the estimating equation Uopt

cont(β) to define Uopt
cont(θ)

by taking

hopt1 (X) = E
{

1

π(D)
var(Y |D,X)

����X
}−1 ∂

∂θ

[
g−1

{
µ(X, D;θ)

}]
.

In the supplementary material, we describe how to compute the estimator �θ, and
derive its asymptotic distribution. To this end, we need to know its influence
function, which is found from the first order Taylor expansion of the estimating

equation around the limiting value of �θ = (�βT
, �δT )T . Let V(α) be the estimating

equation for α. The influence function for θ is given by

ψ(θ;α) = −
[
E

∂

∂θ

{
Ucont(θ;α)

}]−1

×

[
Ucont(θ;α)− E

{
∂

∂α
Ucont(θ;α)

}
E
{

∂

∂α
V(α)

}−1

V(α)

]
.

A consistent estimator of the covariance matrix of the estimator �θ is given by

�Σ(θ) =
1

n

n∑
i=1

�ψi

(�θ; �α
) �ψT

i

(�θ; �α
)
,

where �ψi is the influence function evaluated at the ith subject, with all expecta-
tions in the expression ψ(θ;α) estimated by the corresponding sample means.
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Corollary 2. The estimator �θ that solves Ucont(β, δ; �α) under M in which
µ(X,β) and p(X) are correctly specified, is asymptotically normally distributed
with asymptotic mean θ and covariance Σ(θ) = E

{
ψ(θ;α)ψ(θ;α)T

}
. In the

submodel where �hopt1 (X) → p limn→∞ hopt1 (X), and �hopt2 (X, D) → p limn→∞ hopt2

(X, D), �β is locally efficient.

Here �θ is asymptotically normal with covariance matrix E{ψ(θ∗; �α)ψ(θ∗;
�α)T }, where θ∗ is p limn→∞ �θ, even if one of p(X), µ(X;β), or both, are mis-
specified. In the case of misspecification, θ∗ is likely a biased estimate of the
true θ.

4. Simulations

In this section, we demonstrate the robustness and efficiency of our proposed
estimators, compared to the prevailing estimators, when modeling the mean via
the identity link. We simulate case-control studies with continuous secondary
outcomes in two sets of simulations. The goal of the first set was to investigate
the robustness and efficiency of the proposed control function estimator (‘cont’)
compared to multiple other prevailing estimators: the estimator that conditions
on disease status, using disease indicator in the regression of the secondary out-
come on covariates ‘Dind’, the estimator that treats all observations equally,
ignoring disease status ‘pooled’, the usual IPW estimator (‘IPW’), and the es-
timator of Tchetgen Tchetgen (2014) (‘TT’), implemented via an approximate
algorithm. The goal of the second set was to compare the performance of cont
to the estimators proposed by Ghosh, Wright and Zou (2013) and Lin and Zeng
(2009). In each section below, we describe the simulations and provide results,
where for cont, we provide two sets of results: when the model for E

(
Y |X, D

)
is

correctly specified, and when it is misspecified. For each scenario, we calculated
the mean bias of the estimates (1/n.sim)

∑n.sim
k=1

�βk − β, the mean squared error

(MSE) (1/n.sim)
∑n.sim

k=1 (�βk−β)2, the sample standard deviation of the estimator

{(1/n.sim)
∑n.sim

k=1 (�βk − �̄β)2}1/2, the mean of the estimated standard deviations

in the simulations (1/n.sim)
∑n.sim

k=1 ŝd(βk), and the Wald coverage probability.
Due to limited space, only some of the simulation results are presented in the
main manuscript. Additional extensive simulation results are relegated to the
supplementary material, including all summaries pertaining to the performance
of the estimators Dind and pooled.

The proposed cont estimators and the estimated standard deviations were
calculated as described in the supplementary material. The IPW estimator and
the estimated standard deviations were calculated using Newton-Raphson itera-
tions of the estimating function Uipw, with h1(Xi) = Xi, with the robust (sand-
wich) covariance matrix. The näıve estimators Dind and pooled were calculated
from linear regression.
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All simulation scenarios included 500 cases and 500 controls, and were run

1,000 times. The prevalence of the disease D in the population (the primary

case-control outcome) was fixed at 0.12, i.e. the disease is relatively common.

We conducted other simulation studies under a variety of plausible scenarios.

First, we performed a simulation study for the identity link with a single exposure

variable, in which we also considered the maximum likelihood estimator proposed

by Tchetgen Tchetgen (2014). Second, we performed simulations for the log link,

and lastly, we carried out another identity link simulation study closely mimicking

the observed data distribution in the T2D sample. Results for these additional

scenarios are provided in the supplementary material. In general, they support

the conclusions of the simulations presented here.

4.1. Simulation set 1 - studying robustness and efficiency

To design the simulations, we need to sample data from the distribution

f(Y,D|X) in such a way that the parameter of interest E[Y |X] can a priori be de-

fined explicitly. We consider the decomposition f(Y,D|X) = f(Y |D,X)Pr(D|X),

and generate the data according to the two parts of the likelihood, Pr(D|X) and

f(Y |D,X). This decomposition always holds and puts no constraints on the

underlying model. We use the the general reparameterization of E[Y |X, D] (pro-

posed by Tchetgen Tchetgen (2014)) as an explicit function of E[Y |X], which

allows us to specify the two parts of the likelihood using the variation indepen-

dent parameters (Pr(D = 1|X), γ(X), and E(Y |X)). First, exposure/covariate

variables X were sampled. Then, disease probabilities were calculated for each

subject, based on exposure values. The intercept for the disease model p(X)

was set so that disease prevalence was 0.12. Disease statuses were obtained from

disease probabilities, and the secondary outcomes Y were generated based on

exposure values and disease status.

In more detail, we simulated two covariates, X1 and X2 where X1 ∼ N (2, 4),

and X2 ∼ Binary(0.1). The primary disease probability was calculated by

logit {Pr(D = 1|X)} = −3.2 + 0.3X1 +X2,

and disease status was sampled. The conditional mean of the secondary outcome

was

E(Y |X, D) = 50+ 4X1 +3X2 +3X1X2 + {D− p(X)}(3 + 2X1 +2X2 +2X1X2),

so that µ(X,β) = XTβ with X = (1, X1, X2, X1X2)
T and β = (50, 4, 3, 3)T ,

and γ(X) = XTα with α = (3, 2, 2, 2)T . The residuals were sampled by ϵ ∼
N (0, 4). The design matrix for γ(X) was X = (1, X1, X2, X1X2)

T when the

model was correctly specified. We studied the following forms of misspecification

IPW CONTROL FUNCTION 11

of the design matrix of γ(X): the estimator ‘cont-mis1’ had the design matrix

X = (1, X1, X2)
T (no interaction term), ‘cont-mis2’ had X = (1, X1)

T , ‘cont-

mis3’ had X = (1, X2)
T , and ‘cont-mis4’ accounted only for an intercept, design

matrix X = 1. ‘cont-cor’ used the correct design matrix.

Table 1 compares the results of cont-cor, cont-mis1, IPW, and the TT estima-

tor under correct specification, and misspecification (the same design matrix used

by cont-mis1). Results for other estimators are in the supplementary material.

One can see that all of cont-cor, cont-mis1, IPW, and TT-cor are approximately

unbiased. The MSE and the empirical standard deviation of the cont estimator

were higher when the model for γ(X) was misspecified, yet the MSE of cont-

cor was always smaller than that of the IPW. In fact, the relative efficiency of

cont-cor was from 17% (β2) to 71% (β3) lower than that of the IPW. TT-mis

performed poorly under misspecification of γ(X), as expected. In the supplemen-

tary material, one can see that the estimator Dind and pooled perform poorly as

well, as expected.

4.2. Simulation set 2 - comparison to other recently proposed methods

Here we compare our estimator ‘cont’, and the IPW, to the pseudo-likelihood

estimator proposed by Ghosh, Wright and Zou (2013), and the retrospective like-

lihood estimator proposed by Lin and Zeng (2009). We followed the simulation

scenario performed in Ghosh, Wright and Zou (2013), using code shared by the

authors. We also adapted our simulations from Section 4.1 to their assumed

data structure, and compared the effects of the associations of the SNP with the

disease (via p(X) and with the outcome in the cases versus controls (via γ(X))

on the performance of the IPW, cont and retrospective likelihood estimators.

First, we ran 1,000 simulations in Ghosh, Wright and Zou (2013) settings

and compared the estimators. In their simulations, they focused on a single

coefficient, namely the effect of a single nucleotide polymorphism (SNP) G on

the outcome Y . G had a minor allele frequency (MAF) of 0.25 and effect size

0.1. In addition, there were two covariates Z, a continuous variable, and a

binary one, the latter with probability 0.45 of having the values 1. The disease

and the secondary outcome were modeled by a bivariate normal distribution and

thresholding, so that the disease model was dependent on G and Z via a logistic

model. However, it is unclear how to correctly specify γ(X). We used a linear

model of the form γ(X) = Xδ, though this is likely incorrect. The outcome Y

had variance 1, and disease prevalence was 0.05. We used 500 cases and 500

controls. More details can be found in Ghosh, Wright and Zou (2013). The

results of these simulations are presented at the top of Table 2.

Then, we ran 1,000 simulations in settings adapted from our simulations from

Section 4.1. Here, we had the same G and Z variables, with Z1 continuous and
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All simulation scenarios included 500 cases and 500 controls, and were run

1,000 times. The prevalence of the disease D in the population (the primary

case-control outcome) was fixed at 0.12, i.e. the disease is relatively common.

We conducted other simulation studies under a variety of plausible scenarios.

First, we performed a simulation study for the identity link with a single exposure

variable, in which we also considered the maximum likelihood estimator proposed

by Tchetgen Tchetgen (2014). Second, we performed simulations for the log link,

and lastly, we carried out another identity link simulation study closely mimicking

the observed data distribution in the T2D sample. Results for these additional

scenarios are provided in the supplementary material. In general, they support

the conclusions of the simulations presented here.

4.1. Simulation set 1 - studying robustness and efficiency

To design the simulations, we need to sample data from the distribution

f(Y,D|X) in such a way that the parameter of interest E[Y |X] can a priori be de-

fined explicitly. We consider the decomposition f(Y,D|X) = f(Y |D,X)Pr(D|X),

and generate the data according to the two parts of the likelihood, Pr(D|X) and

f(Y |D,X). This decomposition always holds and puts no constraints on the

underlying model. We use the the general reparameterization of E[Y |X, D] (pro-

posed by Tchetgen Tchetgen (2014)) as an explicit function of E[Y |X], which

allows us to specify the two parts of the likelihood using the variation indepen-

dent parameters (Pr(D = 1|X), γ(X), and E(Y |X)). First, exposure/covariate

variables X were sampled. Then, disease probabilities were calculated for each

subject, based on exposure values. The intercept for the disease model p(X)

was set so that disease prevalence was 0.12. Disease statuses were obtained from

disease probabilities, and the secondary outcomes Y were generated based on

exposure values and disease status.

In more detail, we simulated two covariates, X1 and X2 where X1 ∼ N (2, 4),

and X2 ∼ Binary(0.1). The primary disease probability was calculated by

logit {Pr(D = 1|X)} = −3.2 + 0.3X1 +X2,

and disease status was sampled. The conditional mean of the secondary outcome

was

E(Y |X, D) = 50+ 4X1 +3X2 +3X1X2 + {D− p(X)}(3 + 2X1 +2X2 +2X1X2),

so that µ(X,β) = XTβ with X = (1, X1, X2, X1X2)
T and β = (50, 4, 3, 3)T ,

and γ(X) = XTα with α = (3, 2, 2, 2)T . The residuals were sampled by ϵ ∼
N (0, 4). The design matrix for γ(X) was X = (1, X1, X2, X1X2)

T when the

model was correctly specified. We studied the following forms of misspecification
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of the design matrix of γ(X): the estimator ‘cont-mis1’ had the design matrix

X = (1, X1, X2)
T (no interaction term), ‘cont-mis2’ had X = (1, X1)

T , ‘cont-

mis3’ had X = (1, X2)
T , and ‘cont-mis4’ accounted only for an intercept, design

matrix X = 1. ‘cont-cor’ used the correct design matrix.

Table 1 compares the results of cont-cor, cont-mis1, IPW, and the TT estima-

tor under correct specification, and misspecification (the same design matrix used

by cont-mis1). Results for other estimators are in the supplementary material.

One can see that all of cont-cor, cont-mis1, IPW, and TT-cor are approximately

unbiased. The MSE and the empirical standard deviation of the cont estimator

were higher when the model for γ(X) was misspecified, yet the MSE of cont-

cor was always smaller than that of the IPW. In fact, the relative efficiency of

cont-cor was from 17% (β2) to 71% (β3) lower than that of the IPW. TT-mis

performed poorly under misspecification of γ(X), as expected. In the supplemen-

tary material, one can see that the estimator Dind and pooled perform poorly as

well, as expected.

4.2. Simulation set 2 - comparison to other recently proposed methods

Here we compare our estimator ‘cont’, and the IPW, to the pseudo-likelihood

estimator proposed by Ghosh, Wright and Zou (2013), and the retrospective like-

lihood estimator proposed by Lin and Zeng (2009). We followed the simulation

scenario performed in Ghosh, Wright and Zou (2013), using code shared by the

authors. We also adapted our simulations from Section 4.1 to their assumed

data structure, and compared the effects of the associations of the SNP with the

disease (via p(X) and with the outcome in the cases versus controls (via γ(X))

on the performance of the IPW, cont and retrospective likelihood estimators.

First, we ran 1,000 simulations in Ghosh, Wright and Zou (2013) settings

and compared the estimators. In their simulations, they focused on a single

coefficient, namely the effect of a single nucleotide polymorphism (SNP) G on

the outcome Y . G had a minor allele frequency (MAF) of 0.25 and effect size

0.1. In addition, there were two covariates Z, a continuous variable, and a

binary one, the latter with probability 0.45 of having the values 1. The disease

and the secondary outcome were modeled by a bivariate normal distribution and

thresholding, so that the disease model was dependent on G and Z via a logistic

model. However, it is unclear how to correctly specify γ(X). We used a linear

model of the form γ(X) = Xδ, though this is likely incorrect. The outcome Y

had variance 1, and disease prevalence was 0.05. We used 500 cases and 500

controls. More details can be found in Ghosh, Wright and Zou (2013). The

results of these simulations are presented at the top of Table 2.

Then, we ran 1,000 simulations in settings adapted from our simulations from

Section 4.1. Here, we had the same G and Z variables, with Z1 continuous and
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Table 1. Simulation set 1 results. Results are reported for the cont-cor,
cont-mis1 (the cont estimator under correct specification, and misspecifica-
tion, of the selection bias function γ(X)), the IPW estimator, and the TT
estimator (TT-cor, TT-mis) of Tchetgen Tchetgen (2014) under the same
correct specification and misspecification of γ(X) used by cont. For each
estimator and each estimated parameter the table reports the estimator’s
mean bias, MSE, empirical standard deviation over all simulations, mean
estimated standard deviation using the appropriate formula, and coverage
probability.

estimator/value bias MSE emp sd est sd coverage

Intercept, β0 = 50

cont-cor 0.007 0.019 0.138 0.139 0.958
cont-mis1 0.007 0.019 0.138 0.139 0.959
IPW 0.006 0.019 0.139 0.141 0.964
TT-cor 0.006 0.033 0.183 0.172 0.929
TT-mis -3.653 14.141 0.894 0.355 0.000

X1, β1 = 4

cont-cor −0.001 0.001 0.038 0.042 0.967
cont-mis1 −0.001 0.001 0.038 0.044 0.971
IPW 0.000 0.002 0.045 0.047 0.964
TT-cor −0.001 0.001 0.036 0.032 0.922
TT-mis −0.289 0.104 0.144 0.084 0.179

X2, β2 = 3

cont-cor 0.028 0.228 0.477 0.491 0.960
cont-mis1 0.024 0.236 0.485 0.526 0.970
IPW 0.024 0.272 0.521 0.521 0.950
TT-cor 0.027 0.274 0.523 0.496 0.941
TT-mis 0.223 2.711 1.632 0.792 0.669

X1X2, β3 = 3

cont-cor 0.005 0.022 0.148 0.207 0.998
cont-mis1 0.011 0.025 0.159 0.164 0.955
IPW 0.018 0.076 0.275 0.247 0.909
TT-cor 0.003 0.020 0.143 0.099 0.821
TT-mis 1.015 1.121 0.301 0.145 0.006

Z2 binary. Z1 ∼ N (0, 4), and Z2 ∼ Binary(0.2). The primary disease probability

was calculated by

logit {Pr(D = 1|X)} = −3.8 + 0.3Z1 + Z2 + δgG,

with δg ∈ {0, 0.3} and disease status was sampled. The intercept value was

IPW CONTROL FUNCTION 13

selected so that disease prevalence was roughly 0.05, as in Ghosh, Wright and

Zou (2013). The SNP G had MAF 0.3. The conditional mean model was:

E(Y |X, D) = 3+ 0.7Z1 + 0.5Z2 + 0.1G+ {D− p(X)}(1 + 0.5Z1 + 0.3Z2 + αgG),

with αg ∈ {0, 0.6}. 500 cases and 500 controls were sampled from the simulated

population. We compared the estimation of the effect of G on Y . The results of

these simulations are presented at the bottom of Table 2.

In the first simulation setting, the estimators Ghosh2013, IPW, and cont

were unbiased and achieved the nominal coverage level, while Lin2009 was heavily

biased. Here cont likely misspecified the model γ(X). The estimator of Ghosh,

Wright and Zou (2013) had slightly lower MSE than the IPW and control function

estimators, as expected, since this estimator is based on the same model used

to produce the simulated data. In the later simulation settings, in which the

data were sampled by specifying models for p(X), γ(X), and µ(X;β), cont and

IPW were nearly unbiased for all specifications of αg and δg. Ghosh2013 had

comparable, and slightly lower, MSE than IPW and cont in all settings, but was

more biased when αg = 0.6. Lin2009 had the lowest MSE when αg = δg = 0,

i.e., when there is no selection bias due to the SNP effect. However, when the

SNP was associated with the probability of disease, it became biased and had

low coverage of 75%−80%.

5. Analysis of Type 2 Diabetes GWAS

We analyzed the case-control GWAS study of T2D, with the goal of iden-

tifying SNPs in the FTO gene region, associated with BMI. There were 3,080

female participants in these data, genotyped on the affymetrix 6.0 array, with

1,326 cases and 1,754 controls (Cornelis et al. (2012)). There were 152 genotyped

SNPs from the region on chromosome 16 spanning the FTO variants. There are a

few SNPs from the FTO gene associated with BMI (Speliotes et al. (2010)), and

validated on large cohorts. In particular, the SNP rs1558902 has the strongest

association with log-BMI. This SNP is not in the data, but other SNPs in high

Linkage Disequilabrium (LD) with it are. The population prevalence of T2D was

8.4% (Cornelis et al. (2012)). We compared the usual IPW, the control func-

tion estimator cont, the pooled estimator ignoring disease status, the estimator

Dind with disease indicator in the design matrix, and the estimator of Lin and

Zeng (2009) dubbed Lin2009. We did not compare to the estimator proposed

by Ghosh, Wright and Zou (2013), since their code was not applicable to the

specific setting of variables. We could not compare to Tchetgen Tchetgen (2014)

because the MLE proposed suffered from (non)convergence problems in the data

application mainly due to the presence of multiple covariates.
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Z2 binary. Z1 ∼ N (0, 4), and Z2 ∼ Binary(0.2). The primary disease probability

was calculated by

logit {Pr(D = 1|X)} = −3.8 + 0.3Z1 + Z2 + δgG,

with δg ∈ {0, 0.3} and disease status was sampled. The intercept value was
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E(Y |X, D) = 3+ 0.7Z1 + 0.5Z2 + 0.1G+ {D− p(X)}(1 + 0.5Z1 + 0.3Z2 + αgG),

with αg ∈ {0, 0.6}. 500 cases and 500 controls were sampled from the simulated

population. We compared the estimation of the effect of G on Y . The results of

these simulations are presented at the bottom of Table 2.

In the first simulation setting, the estimators Ghosh2013, IPW, and cont

were unbiased and achieved the nominal coverage level, while Lin2009 was heavily

biased. Here cont likely misspecified the model γ(X). The estimator of Ghosh,

Wright and Zou (2013) had slightly lower MSE than the IPW and control function

estimators, as expected, since this estimator is based on the same model used

to produce the simulated data. In the later simulation settings, in which the

data were sampled by specifying models for p(X), γ(X), and µ(X;β), cont and

IPW were nearly unbiased for all specifications of αg and δg. Ghosh2013 had

comparable, and slightly lower, MSE than IPW and cont in all settings, but was

more biased when αg = 0.6. Lin2009 had the lowest MSE when αg = δg = 0,

i.e., when there is no selection bias due to the SNP effect. However, when the

SNP was associated with the probability of disease, it became biased and had

low coverage of 75%−80%.

5. Analysis of Type 2 Diabetes GWAS

We analyzed the case-control GWAS study of T2D, with the goal of iden-

tifying SNPs in the FTO gene region, associated with BMI. There were 3,080

female participants in these data, genotyped on the affymetrix 6.0 array, with

1,326 cases and 1,754 controls (Cornelis et al. (2012)). There were 152 genotyped

SNPs from the region on chromosome 16 spanning the FTO variants. There are a

few SNPs from the FTO gene associated with BMI (Speliotes et al. (2010)), and

validated on large cohorts. In particular, the SNP rs1558902 has the strongest

association with log-BMI. This SNP is not in the data, but other SNPs in high

Linkage Disequilabrium (LD) with it are. The population prevalence of T2D was

8.4% (Cornelis et al. (2012)). We compared the usual IPW, the control func-

tion estimator cont, the pooled estimator ignoring disease status, the estimator

Dind with disease indicator in the design matrix, and the estimator of Lin and

Zeng (2009) dubbed Lin2009. We did not compare to the estimator proposed

by Ghosh, Wright and Zou (2013), since their code was not applicable to the

specific setting of variables. We could not compare to Tchetgen Tchetgen (2014)

because the MLE proposed suffered from (non)convergence problems in the data

application mainly due to the presence of multiple covariates.
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Table 2. Simulation set 2 results. We compare results for the usual IPW
estimator, cont, the pseudo-likelihood estimator of Ghosh, Wright and Zou
(2013) (‘Ghosh 2013’), and the retrospective likelihood estimator of Lin and
Zeng (2009) (‘Lin2009’). The top part of the table provides results of simu-
lations in the settings in Ghosh, Wright and Zou (2013), and the lower parts
summarize simulations designed according to the conditional mean model
E(Y |X, D). In all scenarios, the SNP effect was β = 0.1. The SNP effects
on the disease model and the selection bias functions are provided in the
section headers, with αg being the SNP effect on the selection bias func-
tion, and δg the SNP effect of disease probability. For each estimator and
each estimated parameter the table reports the estimator’s mean bias, MSE,
empirical standard deviation over all simulations, mean estimated standard
deviation using the appropriate formula, and coverage probability.

estimator/value bias MSE emp sd est sd coverage

Settings 1 (Ghosh, 2013)

Ghosh2013 0.000 0.003 0.056 0.057 0.961
cont 0.000 0.004 0.067 0.067 0.952
IPW 0.000 0.004 0.067 0.067 0.953
Lin2009 -0.765 0.588 0.049 0.055 0.000

Settings 2a: δg = 0, αg = 0

Ghosh2013 -0.002 0.066 0.258 0.261 0.952
cont -0.002 0.068 0.261 0.262 0.949
IPW -0.002 0.069 0.262 0.263 0.946
Lin2009 0.006 0.039 0.197 0.200 0.949

Settings 2b: δg = 0, αg = 0.6

Ghosh2013 0.027 0.067 0.257 0.260 0.950
cont -0.002 0.068 0.262 0.262 0.951
IPW -0.002 0.069 0.263 0.263 0.946
Lin2009 0.250 0.102 0.200 0.200 0.749

Settings 2c: δg = 0.3, αg = 0

Ghosh2013 0.018 0.068 0.260 0.256 0.943
cont 0.008 0.072 0.269 0.259 0.940
IPW 0.008 0.072 0.269 0.260 0.946
Lin2009 -0.030 0.040 0.197 0.196 0.942

Settings 2d: δg = 0.3, αg = 0.6

Ghosh2013 0.049 0.069 0.259 0.255 0.934
cont 0.008 0.072 0.269 0.260 0.940
IPW 0.009 0.073 0.270 0.261 0.946
Lin2009 0.216 0.086 0.198 0.197 0.798

IPW CONTROL FUNCTION 15

All analyses were adjusted to age, binary smoking status (current versus past

or never), binary alcohol intake measure according to less or more than 10 grams a

day, physical activity (above or under the median), and to the first four principal

components of the genetic data. The outcome, BMI, was log transformed, as is

usually done with BMI. For the analysis using the estimator cont, the mean model

of BMI, the model for disease probability Pr(D = 1|X), and the selection bias

model γ(X) used the same covariates. All SNPs were analyzed in the additive

mode of inheritance.

Figure 1 compares the estimated effect sizes, and their respective standard

errors (SEs), of all 152 SNPs in the FTO gene, between cont, and the other esti-

mators under consideration. The cont estimator yielded roughly identical results

to that of the IPW. This is in agreement with the simulation study imitating

the effect sizes in the T2D data set (see Supplementary Material) and was ex-

pected since both T2D and BMI are complex traits, and no single SNP highly

affects them. Thus, incorporating the disease and selection bias models in the

estimation cannot improve it much. As seen in Table 3, the p-values and adjusted

p-values of the cont estimates are smaller than those of the IPW. Effect estimates

of other estimators that make more assumptions on the data distribution, are

quite different than those of cont, while their SEs are usually smaller.

There were ten SNPs with Holm’s adjusted p-value≤0.05 by the pooled esti-

mator, which yielded the lowest p-values. As they were all in high LD, we selected

the SNP that is in highest LD with rs1558902, namely rs1421085 (Johnson et al.

(2008)). Table 3 compares between the various analyses results on this SNP. As

the effects are relatively low (∼ −0.02), all estimates are within a range of 0.04 of

each other. The absolute effect estimate is largest in the pooled estimator. Since

pooled and Dind are likely biased estimators (as supported by the simulations

mimicking the T2D diabetes data set, in the Supplementary Material), we now

consider Lin2009. This estimator accounts for case-control sampling, but assumes

that the outcome is normally distributed around the population mean. Figure 2

compares the density of the residuals of log-BMI after removing the population

mean estimated by IPW to the normal density, suggesting that normality does

not hold and that the estimator is potentially biased.

Consistent with the plot, cont and IPW gave identical effect estimates (after

rounding), and the efficiency gain in using the cont estimator is small. In the

supplementary material, we describe an extensive simulation study guided by

the diabetes data set. From this study we learn that for realistic effect sizes,

the improvement in efficiency in cont compared to IPW is high when the SNP’s

MAF is low and the SNP’s effect on γ(X) is relatively high. However, rs1421085

has MAF 0.22 (quite high), and we expect that its effect on γ(X) is small.
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tion, and δg the SNP effect of disease probability. For each estimator and
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All analyses were adjusted to age, binary smoking status (current versus past

or never), binary alcohol intake measure according to less or more than 10 grams a

day, physical activity (above or under the median), and to the first four principal

components of the genetic data. The outcome, BMI, was log transformed, as is

usually done with BMI. For the analysis using the estimator cont, the mean model

of BMI, the model for disease probability Pr(D = 1|X), and the selection bias

model γ(X) used the same covariates. All SNPs were analyzed in the additive

mode of inheritance.

Figure 1 compares the estimated effect sizes, and their respective standard

errors (SEs), of all 152 SNPs in the FTO gene, between cont, and the other esti-

mators under consideration. The cont estimator yielded roughly identical results

to that of the IPW. This is in agreement with the simulation study imitating

the effect sizes in the T2D data set (see Supplementary Material) and was ex-

pected since both T2D and BMI are complex traits, and no single SNP highly

affects them. Thus, incorporating the disease and selection bias models in the

estimation cannot improve it much. As seen in Table 3, the p-values and adjusted

p-values of the cont estimates are smaller than those of the IPW. Effect estimates

of other estimators that make more assumptions on the data distribution, are

quite different than those of cont, while their SEs are usually smaller.

There were ten SNPs with Holm’s adjusted p-value≤0.05 by the pooled esti-

mator, which yielded the lowest p-values. As they were all in high LD, we selected

the SNP that is in highest LD with rs1558902, namely rs1421085 (Johnson et al.

(2008)). Table 3 compares between the various analyses results on this SNP. As

the effects are relatively low (∼ −0.02), all estimates are within a range of 0.04 of

each other. The absolute effect estimate is largest in the pooled estimator. Since

pooled and Dind are likely biased estimators (as supported by the simulations

mimicking the T2D diabetes data set, in the Supplementary Material), we now

consider Lin2009. This estimator accounts for case-control sampling, but assumes

that the outcome is normally distributed around the population mean. Figure 2

compares the density of the residuals of log-BMI after removing the population

mean estimated by IPW to the normal density, suggesting that normality does

not hold and that the estimator is potentially biased.

Consistent with the plot, cont and IPW gave identical effect estimates (after

rounding), and the efficiency gain in using the cont estimator is small. In the

supplementary material, we describe an extensive simulation study guided by

the diabetes data set. From this study we learn that for realistic effect sizes,

the improvement in efficiency in cont compared to IPW is high when the SNP’s

MAF is low and the SNP’s effect on γ(X) is relatively high. However, rs1421085

has MAF 0.22 (quite high), and we expect that its effect on γ(X) is small.
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Figure 1. Comparison of effect estimates for the SNPs in the FTO gene on
log-BMI, and their standard errors. Estimates of the control function esti-
mator (‘cont’) and their SEs were compared to the usual IPW, the estimator
ignoring disease status (pooled), the estimator using disease indicator in its
design matrix (‘Dind’) and the estimator of Lin and Zeng (2009) (‘Lin2009’).
Every point in the plot represent a SNP. If a point falls on the diagonal - its
associated effect (SE) estimate is equal in cont and the compared estimator.
If it falls below the diagonal, its estimated effect (SE) is smaller in cont
compared to the other estimator.

IPW CONTROL FUNCTION 17

Table 3. Effect estimates, and their respective SEs and p-values for the SNP
rs1421085 from the FTO gene. The values were obtained by the control
function estimator ‘cont’, the usual IPW, the ‘pooled’ estimator ignoring
disease status, and the estimator with disease indicator in the design matrix
‘Dind’, and the estimator of Lin and Zeng (2009) (‘Lin2009’).

Estimator effect SE p-value (raw) p-value (adj)

cont -0.017 0.0054 1.7e-3 0.247
IPW -0.017 0.0054 1.9e-3 0.273
pooled -0.021 0.0050 4.2e-5 0.006
Dind -0.018 0.0046 9.3e-5 0.014
Lin2009 -0.019 0.0047 4.7e-5 0.007

Figure 2. Histogram, and overlaid empirical and fitted normal densities to
the residuals of log-BMI after removing estimated population mean.

6. Discussion

In this work we propose and investigate the properties of estimators that ex-

tend the IPW for the population mean effects of covariates on secondary outcomes

in case-control studies. The IPW estimator only requires a correct specification

of the population mean model, and known sampling fractions for the case-control

study. We extend the IPW estimator by incorporating a model for the disease,

via an inverse probability weighted control function. Thus, the proposed cont

estimator is more efficient than the IPW, as it uses more information, yet it is

still robust for some parts of the statistical model being misspecified, the out-

come distribution and the ‘selection bias function’. We propose estimators that

may be used with identity and log links. This approach could potentially extend

to the logit link, a challenge for future research.

The control function estimator is unbiased under correct specification of the

disease model given covariates, even if the model for the selection bias function is
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6. Discussion

In this work we propose and investigate the properties of estimators that ex-

tend the IPW for the population mean effects of covariates on secondary outcomes

in case-control studies. The IPW estimator only requires a correct specification

of the population mean model, and known sampling fractions for the case-control

study. We extend the IPW estimator by incorporating a model for the disease,

via an inverse probability weighted control function. Thus, the proposed cont

estimator is more efficient than the IPW, as it uses more information, yet it is

still robust for some parts of the statistical model being misspecified, the out-

come distribution and the ‘selection bias function’. We propose estimators that

may be used with identity and log links. This approach could potentially extend

to the logit link, a challenge for future research.

The control function estimator is unbiased under correct specification of the

disease model given covariates, even if the model for the selection bias function is
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misspecified. We recommend evaluating the disease model fit with respect to the

model predictions (estimated disease probabilities). One can use Area Under the

operating Curve (AUC) and cross validation as measures that give indications

of fit due to good or poor prediction. For a comprehensive review of such meth-

ods see Harrell, Lee and Mark (1996). It is also useful to compare the control

function effect estimate to the IPW, as the IPW is robust to misspecification of

the disease model. Under correct specification of the disease model we expect to

see similar effect estimates for both IPW and control function estimators, with

smaller standard errors for the latter.

In recent work, especially that relying on the retrospective likelihood (Lin

and Zeng (2009); Li and Gail (2012); Chen, Kittles and Zhang (2013); Ghosh,

Wright and Zou (2013)), the primary disease probability is modeled in a logistic

regression, with both the exposure and the secondary outcome, and sometimes

their interaction, as predictors. This model is limited because the secondary

outcome will often occur on the causal pathway between the exposure and the

primary outcome (e.g., mammographic density and breast cancer, or smoking

and lung cancer) in which case the model for the D adjusting for X and Y is

difficult to interpret. In contrast, our formulation does not explicitly use the

secondary outcome in the disease model. However, the efficient control function

estimator incorporates a selection bias function, namely γ(X), which encodes the

association between the secondary outcome and the case/control status condi-

tional on covariates. Hence, as in any likelihood-based approach, this association

is accounted for, while more general specifications of this association are readily

applied. Thus, the control function estimator is both more general and relies

on fewer assumptions, and it is guaranteed to be most efficient if all models are

correctly specified.

IPW estimators and the control function estimator require known sampling

probabilities, or equivalently, known disease prevalence. In nested case-control

studies, disease prevalence could be estimated from the underlying cohort. Al-

ternatively, one could use registries. Still, disease prevalence may not be accu-

rately estimated in the specific target population; for instance, minorities are

less studied, and disease prevalence may differ between populations of the same

ancestry due to environmental interactions. If the disease prevalence is over-

estimated, and therefore the probability of selecting cases (controls) is assumed

lower (higher) than it is, cases (controls) are assigned higher (lower) weight, and

the IPW and cont estimators become biased towards the estimator that ignores

the biased sampling. On the other hand, if the disease prevalence is under-

estimated, the IPW and cont estimators become biased towards the “control-

only” estimator, that discards cases. In the supplementary material, we pro-

vide results from a simulation study of the effect of assuming the wrong disease
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prevalence, either too high or too low, on the effect estimates, and indeed the

estimators become somewhat biased. Therefore, it is important to consider the

evidence towards a given disease prevalence when using IPW methods for sec-

ondary outcomes analysis. As suggested by a reviewer, finding semiparametric

efficient estimators for secondary outcomes with unknown disease prevalence or

sampling probabilities is an important research question. A recent paper by

Ma and Carroll (2016), published after this paper was submitted, considers this

problem. It is of interest for future research to combine their approach with ours.

Supplementary Materials

The Supplementary Material provide mathematical derivations and addi-

tional simulation studies. In addition, the RECSO R package that computes the

control function estimators is available on CRAN.
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