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Abstract: This paper presents a hypothesis testing method given independent sam-

ples from a number of connected populations. The method is motivated by a

forestry project for monitoring change in the strength of lumber. Traditional prac-

tice has been built upon nonparametric methods which ignore the fact that these

populations are connected. By pooling the information in multiple samples through

a density ratio model, the proposed empirical likelihood method leads to more effi-

cient inferences and therefore reduces the cost in applications. The new test has a

classical chi-square null limiting distribution. Its power function is obtained under

a class of local alternatives. The local power is found increased even when some un-

derlying populations are unrelated to the hypothesis of interest. Simulation studies

confirm that this test has better power properties than potential competitors, and

is robust to model misspecification. An application example to lumber strength is

included.
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1. Introduction

The paper presents a method for testing hypotheses about parameters of a

given number of different population distributions with independent samples from

each. The method was created as part of a research program aimed at developing

statistical theory for monitoring change in the strength of lumber. Interest in such

a program has been sparked by climate change, which will affect the way trees

grow, as well by the changing resource mix, for example due to increasing reliance

on plantation lumber. Added impetus comes from the increasing importance of

wood as a construction material due to its sustainability as a building material.

Moreover, the worldwide forest products industry is vast.

Desiderata for the statistical methods used in the long-term monitoring pro-

gram of lumber includes two key goals. First the methods must be efficient to

reduce the sizes of the required samples: testing lumber costs time and money.

Toward the goal of efficiency, this paper proposes a method that borrows strength

across the multiple samples by exploiting an obvious feature of the resource, that
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distinct populations of lumber over years, species, regions and so on will share

some latent strength characteristics. Second the methods should ideally be non-

parametric in accordance with the well-ingrained practice in setting standards for

forest products like those in American Society for Testing and Materials (ASTM)

protocols (ASTM D1990 – 07).

These desiderata lead to the semiparametric density ratio model (DRM)

adopted in this paper. More precisely, suppose we have m+1 lumber populations

with cumulative distribution functions (CDFs) Fk(x), k = 0, . . . , m. We link

them through the DRM assumption:

dFk(x) = exp
{
αk + β

ᵀ
kq(x)

}
dF0(x), (1.1)

where x could be a single-valued or vector-valued variable, q(x), the basis func-

tion, is a prespecified d-dimensional function, and θ
ᵀ
k = (αk,β

ᵀ
k) are model pa-

rameters. The baseline distribution F0(x) is completely unspecified.

The DRM is flexible and covers many commonly used distribution families,

including each member of the exponential family. For example, normal distri-

butions N(µk, σk), k = 0, . . . , m, satisfy a DRM with basis function q(x) =

(x, x2)
ᵀ
and corresponding parameters αk = log (σ0/σk) + µ2

0/(2σ
2
0)− µ2

k/(2σ
2
k),

βk = (µk/σ
2
k − µ0/σ

2
0, 1/(2σ

2
0)− 1/(2σ2

k))
ᵀ
. There is a close relationship be-

tween the logistic regression model in case-control studies and the two-sample

DRM (Qin and Zhang (1997)).

The empirical likelihood (EL) is a natural platform for data analysis that

in recent years has been widely studied in the context of DRM. See Chen and

Liu (2013) and Zhang (2000) for quantile estimation, Fokianos (2004) for den-

sity estimation, and Keziou and Leoni-Aubin (2008) for a two-sample EL ratio

test. Investigating the properties of tests constructed under the DRM assump-

tion proves challenging since the parameters under the null hypothesis are often

not interior points of the parameter space. Thus, the limiting distribution of

the EL-based likelihood ratio test cannot be derived from the usual approach

such as the ones given in Owen (2001) or Qin (1998). Instead, we study the

properties of the dual empirical likelihood ratio (DELR) test. We show that the

proposed test statistic has a classical chi-square null limiting distribution under

fairly general conditions. We further study its power function under a class of

local alternatives and find that this local power often increases when additional

samples are included in the data analysis even when their distributions are not

related to the hypothesis. This result supports the use of the DRM for pool-

ing information across multiple samples. Under a broad range of distributional

settings, our simulations show that the proposed DELR test is more powerful

in detecting distributional changes over samples than many classical tests. The
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new method is also found to be model robust: its size and power are resistant to

mild violations to the DRM assumption.

An anonymous referee suggested the semi-parametric proportional hazards

model (CoxPH) proposed by Cox (1972) as an alternative for analyzing multiple

samples. The limitation of the CoxPH approach for multiple samples may be seen

in the simulation results included in Sections 5.3 and 5.4. The power of the partial

likelihood ratio test under the CoxPH is comparable to that of DRM approach

when its proportional hazards assumption is true. Otherwise, the DRM-based

test has a higher power.

The paper is organized as follows. We first review the EL methodology

for multiple samples under the DRM. We then motivate the use of dual EL to

overcome the associated boundary problem. In Section 3, we obtain the limiting

distributions of the DELR statistic under various null hypotheses and local alter-

natives. Section 4 studies the effect of information pooling on power properties

of the DELR test. The finite sample properties of the DELR test are assessed via

simulation in Section 5. An application to lumber strength is given in Section 6.

The simulation details are presented in the Appendix and the proofs are given

in the supplementary material.

2. EL under the DRM

Denote the observations in the m + 1 samples as {xkj : j = 1, . . . , nk}mk=0

where nk > 0 is the size of the kth sample. Suppose these samples are independent

of each other, and the observations within each sample are independent and

identically distributed (iid). We denote the total sample size as n =
∑

k nk. Let

dFk(x) = Fk(x)−Fk(x
−), and put pkj = dF0(xkj). For convenience, take α0 = 0,

β0 = 0, and θ0 = (α0, β
ᵀ
0)

ᵀ
. Under the DRM assumption (1.1), the EL of the

{Fk} is defined to be

Ln(F0, . . . , Fm) =
∏
k, j

dFk(xkj) =
{∏

k, j

pkj

}
· exp

{∑
k, j

(
αk + β

ᵀ
kq(xkj)

)}
,

where the sum and product are over all possible (k, j) combinations. The DRM

assumption and the fact that the {Fk} are distribution functions imply that

1 =

∫
dFk(x) =

∫
exp{αk + β

ᵀ
kq(x)}dF0(x). (2.1)

Let α = (α1, . . . , αm)
ᵀ
, β = (β

ᵀ
1 , . . . , β

ᵀ
m)

ᵀ
, and θ = (α

ᵀ
, β

ᵀ
)
ᵀ
. We write the

EL as Ln(θ, F0). When there are tied observations, say xkj = xk′j′ for some

(k, j) ̸= (k′, j′), the Ln defined above may be interpreted as the limit of the EL

based on ykj = xkj + δϵkj as δ → 0, where ϵkj are some iid continuous random

variables. With this convention, the Ln is well defined and motivated. We are
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distinct populations of lumber over years, species, regions and so on will share
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tion proves challenging since the parameters under the null hypothesis are often
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properties of the dual empirical likelihood ratio (DELR) test. We show that the

proposed test statistic has a classical chi-square null limiting distribution under

fairly general conditions. We further study its power function under a class of

local alternatives and find that this local power often increases when additional

samples are included in the data analysis even when their distributions are not

related to the hypothesis. This result supports the use of the DRM for pool-

ing information across multiple samples. Under a broad range of distributional

settings, our simulations show that the proposed DELR test is more powerful

in detecting distributional changes over samples than many classical tests. The
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samples. The limitation of the CoxPH approach for multiple samples may be seen
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test has a higher power.

The paper is organized as follows. We first review the EL methodology

for multiple samples under the DRM. We then motivate the use of dual EL to

overcome the associated boundary problem. In Section 3, we obtain the limiting

distributions of the DELR statistic under various null hypotheses and local alter-

natives. Section 4 studies the effect of information pooling on power properties

of the DELR test. The finite sample properties of the DELR test are assessed via

simulation in Section 5. An application to lumber strength is given in Section 6.

The simulation details are presented in the Appendix and the proofs are given

in the supplementary material.

2. EL under the DRM

Denote the observations in the m + 1 samples as {xkj : j = 1, . . . , nk}mk=0
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ᵀ
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assured that inferences based on this Ln are the same as those based on the EL

formulated with tied observations; unnecessary mathematical complexity is all

that we lose (Owen (2001, Sec. 2.3)).

The maximum EL estimator (MELE) of θ and F0 is the maximum point of

Ln(θ, F0) over the space of θ and F0 such that (2.1) is satisfied. For theoretical

discussion and numerical computation, the maximization is carried out in two

steps. First, we define the profile log–EL:

l̃n(θ) = sup
{
logLn(θ, F0) :

∑
k, j

exp{αr + β
ᵀ
rq(xkj)}pkj = 1, r = 0, . . . ,m,

}

where the supremum is over the space of F0 with fixed θ. Based on the method

of Lagrange multipliers, the supremum is found to be attained when

pkj({λr}, θ) = n−1
{
1 +

m∑
r=1

λr

[
exp

{
αr + β

ᵀ
rq(xkj)

}
− 1

]}−1
, (2.2)

where the Lagrange multipliers {λr} solve, for t = 0, . . . , m,∑
k, j

exp
{
αt + β

ᵀ
t q(xkj)

}
pkj({λr}, θ) = 1. (2.3)

The profile log–EL can hence be written as

l̃n(θ) = −
∑
k, j

log
{
1 +

m∑
r=1

λr

[
exp

{
αr + β

ᵀ
rq(xkj)

}
− 1

]}
+
∑
k, j

{
αk + β

ᵀ
kq(xkj)

}
.

In the sequel, pkj({λr},θ) will be simplified to pkj if it does not lead to any

confusion.

The MELE θ̂ of θ is then the point at which l̃n(θ) is maximized. Given θ̂,

we solve for the Lagrange multipliers λ̂r through (2.3). Interestingly, we always

have λ̂r = nr/n. Subsequently, we obtain p̂kj by plugging θ̂ and λ̂k into (2.2).

Finally, the MELEs of the {Fk} are given by

F̂k(x) = n−1
∑
r, j

exp
{
α̂k + β̂

ᵀ
kq(xrj)

}
p̂rj1(xrj ≤ x),

where 1(·) is the indicator function.

In applications, giving a point estimation is a minor part of the data analy-

sis. Assessing the uncertainty in the point estimator and testing hypotheses are

judged of greater practical importance. Asymptotic properties of the point esti-

mator and the likelihood function enable this, but classical asymptotic theories

usually rely on differential properties of the likelihood function in the neighbour-

hood of the true parameter value. Consequently these results are applicable only

if this neighbourhood lies in the parameter space.

HYPOTHESIS TESTING UNDER DRMS 5

According to (2.1), αk is a normalizing constant satisfying

αk = − log

∫
exp{βᵀ

kq(x)}dF0(x).

Thus, αk = 0 whenever βk = 0. When the true value θ1 = 0, its neighborhood

is not contained in the parameter space and DRM is not regular at this θ (Zou,

Fine and Yandell (2002)). Regularity is also violated when β1 = β2 which implies

α1 = α2. In our application, θk is the parameter of the lumber population at

year k and θ1 = θ2 signifies the stability of the wood quality over these two years.

Non-regularity denies a straightforward application of the EL ratio test to this

hypothesis, creating a need for other effective inferential methods.

3. Dual EL and Its Properties

With θ = θ̂, we have λ̂r = nr/n. Hence,

ln(θ) = −
∑
k, j

log
{ m∑

r=0

nr

n
exp

{
αr + β

ᵀ
rq(xkj)

}}
+
∑
k, j

{
αk + β

ᵀ
kq(xkj)

}
, (3.1)

shares the same maximum point as well as maximum value as the profile log–

EL l̃(θ). Therefore the MELE θ̂ is also given by θ̂ = argmax
θ

ln(θ). Keziou

and Leoni-Aubin (2008) derived ln(θ) under a two-sample DRM by solving the

dual prolem of profiling the EL. Thus we call ln(θ) the dual empirical likelihood

(DEL) function. Compared to the EL under the DRM assumption, the DEL

is well-defined for any θ in the corresponding Euclidean space, has a simple

analytical form, and is concave. Under a two-sample DRM (m = 1), Keziou and

Leoni-Aubin found that the corresponding likelihood ratio test statistic has the

usual chi-square limiting distribution for H0 : β1 = 0, but this result does not

apply when, for example, there are m+ 1 = 5 samples and the hypothesis is

H0 : β1 = 0 against H1 : β1 ̸= 0, (3.2)

where β2, β3, and β4 are nuisance parameters that do not appear in the hypoth-

esis, or when

H0 : β1 = 0 and β2 = β3 against H1 : β1 ̸= 0 or β2 ̸= β3. (3.3)

These are problems of interest in our lumber quality monitoring project.

Many of our inferential problems can be abstractly stated as testing

H0 : g(β) = 0 against H1 : g(β) ̸= 0 (3.4)

for some smooth function g : Rmd → Rq, with q ≤ md, the length of β, with

m the number of non-baseline distributions, and d the dimension of the basis
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function q(x). Here we assume that g is thrice differentiable with a full rank

Jacobian matrix ∂g/∂β. The parameters {αk} are usually not a part of the

hypothesis, because their values are fully determined by the {βk} and F0 under

the DRM assumption, although they are treated as independent parameters in

the DEL.

Let θ̃ be the point at which the maximum of ln(θ) is attained under the

constraint g(β) = 0. The DELR test statistic is defined to be

Rn = 2{ln(θ̂)− ln(θ̃)}.

Theorem 1. Given m+1 random samples from populations with distributions of

the DRM form (1.1) and a true parameter value θ∗ such that
∫
exp{βᵀ

kq(x)}dF0(x)

< ∞ for θ in a neighbourhood of θ∗,
∫
Q(x)Q

ᵀ
(x)dF0(x) is positive definite with

Q
ᵀ
(x) = (1, q

ᵀ
(x)), and λ̂k = nk/n = ρk + o(1) for some constant ρk ∈ (0, 1).

Under the null hypothesis g(β) = 0, Rn → χ2
q in distribution as n → ∞,

where χ2
q is a chi-square random variable with q degrees of freedom.

The proof of Theorem 1 is given in the supplementary material. When

m = 1 and g(β) = β1, Theorem 1 reduces to the result of Keziou and Leoni-

Aubin (2008). Theorem 1 covers additional ground, for instance, the hypothesis

testing problems (3.2) and (3.3).

The null limiting distribution given by Theorem 1 is useful for approximating

the p-value of a DELR test about β and for constructing approximate confidence

regions for β. Let g(β) = β − β∗ for a given value β∗. Then the MELE of θ

under the constraint g(β) = β − β∗ = 0 is a function of β∗, and we denote

it as θ̃(β∗). Consequently, the DELR statistic is a function of β∗ given by

Rn(β
∗) = 2{ln(θ̂) − ln(θ̃(β

∗))}. When β∗ is the true β parameter value, the

limiting distribution of Rn(β
∗) is χ2

md by Theorem 1. Hence an approximate

α×100%, 0 < α < 1, confidence region for β∗ is given by {β∗ : Rn(β
∗) ≤ χ2

md,α},
where χ2

md,α is the αth quantile of the χ2
md distribution.

For the power of the DELR test, we study the limiting distribution of Rn

at a local alternative. Let {β∗
k} be a set of parameter values which form a null

model satisfying H0 : g(β) = 0 under the DRM assumption. Let

βk = β∗
k + n

−1/2
k ck (3.5)

for some constants {ck} be a set of parameter values which form a local alterna-

tive. We denote the distribution functions corresponding to β∗
k and βk as Fk and

Gk with G0 = F0, respectively. As n → ∞, the limiting distribution of Rn under

this local alternative is usually non-degenerate and provides useful information

on the power of the test.

HYPOTHESIS TESTING UNDER DRMS 7

Let Un = −n−1∂2ln(θ
∗)/∂θ∂θ

ᵀ
be the empirical information matrix. Its

almost sure limit under H0 is a symmetric positive definite matrix that can be

regarded as an information matrix U . We partition the entries of U in agreement

with α and β and represent them as Uαα, Uαβ, Uβα, and Uββ. Let φk(θ, x) =

exp{αk + β
ᵀ
kq(x)}, k = 0, . . . ,m, and

h(θ, x) = (ρ1φ1(θ, x), . . . , ρmφm(θ, x))
ᵀ
,

s(θ, x) = ρ0 +

m∑
k=1

ρkφk(θ, x),

H(θ, x) = diag{h(θ, x)} − h(θ, x)h
ᵀ
(θ, x)

s(θ, x)
.

(3.6)

Let E0(·) be the expectation operator with respect to F0. Then, the blockwise

algebraic expressions of the information matrix U in terms of H(θ∗, x) and q(x)

can be written as

Uαα = E0

{
H(θ∗, x)

}
,

Uββ = E0

{
H(θ∗, x)⊗

(
q(x)q

ᵀ
(x)

)}
,

Uαβ = U
ᵀ
βα = E0

{
H(θ∗, x)⊗ q

ᵀ
(x)

}
,

(3.7)

where ⊗ is the Kronecker product operator. We partition the Jacobian matrix

of g(β) evaluated at β∗, ▽ = ∂g(β∗)/∂β, into (▽1, ▽2), with q and md − q

columns respectively. Without loss of generality, we assume that ▽1 has a full

rank. Let Ik be an identity matrix of size k × k and J
ᵀ
= (−(▽−1

1 ▽2)
ᵀ
, Imd−q).

Theorem 2. Under the conditions of Theorem 1 and the local alternative defined

by (3.5), Rn → χ2
q(δ

2) in distribution as n → ∞, where χ2
q(δ

2) is a non-central

chi-square random variable with q degrees of freedom and a nonnegative non-

centrality parameter

δ2 =

{
η
ᵀ{

Λ− ΛJ
(
J
ᵀ
ΛJ

)−1
J
ᵀ
Λ
}
η, if q < md,

η
ᵀ
Λη, if q = md,

where η
ᵀ
= (ρ

−1/2
1 c

ᵀ
1, ρ

−1/2
2 c

ᵀ
2, . . . , ρ

−1/2
m c

ᵀ
m) and Λ = Uββ−UβαU

−1
ααUαβ. More-

over, δ2 > 0 except when η is in the column space of J .

The proof is given in the supplementary material. The following example

demonstrates one usage of this result: computing local power of the DELR test

under a given distributional setting.

Example 1 (Computing the local power of the DELR test for a composite hy-

pothesis). Consider the situation where m+1 = 3 samples are from a DRM with
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function q(x). Here we assume that g is thrice differentiable with a full rank

Jacobian matrix ∂g/∂β. The parameters {αk} are usually not a part of the

hypothesis, because their values are fully determined by the {βk} and F0 under

the DRM assumption, although they are treated as independent parameters in

the DEL.
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∫
exp{βᵀ

kq(x)}dF0(x)

< ∞ for θ in a neighbourhood of θ∗,
∫
Q(x)Q

ᵀ
(x)dF0(x) is positive definite with

Q
ᵀ
(x) = (1, q

ᵀ
(x)), and λ̂k = nk/n = ρk + o(1) for some constant ρk ∈ (0, 1).

Under the null hypothesis g(β) = 0, Rn → χ2
q in distribution as n → ∞,

where χ2
q is a chi-square random variable with q degrees of freedom.
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where χ2
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k} be a set of parameter values which form a null

model satisfying H0 : g(β) = 0 under the DRM assumption. Let

βk = β∗
k + n

−1/2
k ck (3.5)

for some constants {ck} be a set of parameter values which form a local alterna-

tive. We denote the distribution functions corresponding to β∗
k and βk as Fk and

Gk with G0 = F0, respectively. As n → ∞, the limiting distribution of Rn under

this local alternative is usually non-degenerate and provides useful information

on the power of the test.
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Let Un = −n−1∂2ln(θ
∗)/∂θ∂θ

ᵀ
be the empirical information matrix. Its

almost sure limit under H0 is a symmetric positive definite matrix that can be

regarded as an information matrix U . We partition the entries of U in agreement

with α and β and represent them as Uαα, Uαβ, Uβα, and Uββ. Let φk(θ, x) =

exp{αk + β
ᵀ
kq(x)}, k = 0, . . . ,m, and

h(θ, x) = (ρ1φ1(θ, x), . . . , ρmφm(θ, x))
ᵀ
,

s(θ, x) = ρ0 +

m∑
k=1

ρkφk(θ, x),

H(θ, x) = diag{h(θ, x)} − h(θ, x)h
ᵀ
(θ, x)

s(θ, x)
.

(3.6)

Let E0(·) be the expectation operator with respect to F0. Then, the blockwise

algebraic expressions of the information matrix U in terms of H(θ∗, x) and q(x)

can be written as

Uαα = E0

{
H(θ∗, x)

}
,

Uββ = E0

{
H(θ∗, x)⊗

(
q(x)q

ᵀ
(x)

)}
,

Uαβ = U
ᵀ
βα = E0

{
H(θ∗, x)⊗ q

ᵀ
(x)

}
,

(3.7)

where ⊗ is the Kronecker product operator. We partition the Jacobian matrix

of g(β) evaluated at β∗, ▽ = ∂g(β∗)/∂β, into (▽1, ▽2), with q and md − q

columns respectively. Without loss of generality, we assume that ▽1 has a full

rank. Let Ik be an identity matrix of size k × k and J
ᵀ
= (−(▽−1

1 ▽2)
ᵀ
, Imd−q).

Theorem 2. Under the conditions of Theorem 1 and the local alternative defined

by (3.5), Rn → χ2
q(δ

2) in distribution as n → ∞, where χ2
q(δ

2) is a non-central

chi-square random variable with q degrees of freedom and a nonnegative non-

centrality parameter

δ2 =

{
η
ᵀ{

Λ− ΛJ
(
J
ᵀ
ΛJ

)−1
J
ᵀ
Λ
}
η, if q < md,

η
ᵀ
Λη, if q = md,

where η
ᵀ
= (ρ

−1/2
1 c

ᵀ
1, ρ

−1/2
2 c

ᵀ
2, . . . , ρ

−1/2
m c

ᵀ
m) and Λ = Uββ−UβαU

−1
ααUαβ. More-

over, δ2 > 0 except when η is in the column space of J .

The proof is given in the supplementary material. The following example

demonstrates one usage of this result: computing local power of the DELR test

under a given distributional setting.

Example 1 (Computing the local power of the DELR test for a composite hy-

pothesis). Consider the situation where m+1 = 3 samples are from a DRM with
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basis function q(x) = (x, log x)
ᵀ
, and the sample proportions are (0.4, 0.3, 0.3).

Let Fk, k = 1, 2, be the distributions with parameters β∗
1 = (−1, 1)

ᵀ
and

β∗
2 = (−2, 2)

ᵀ
. Suppose H0 is g(β) = 2β1 − β2 = 0. Consider the local al-

ternative

βk = β∗
k + n

−1/2
k ck, for k = 1, 2, (3.8)

with c1 = (2, 3)
ᵀ
and c2 = (−1, 0)

ᵀ
.

Under the above settings, we find ▽ = (2I2, −I2) so J = ((1/2)I2, I2), and

η ≈ (3.65, 5.48, −1.83, 0)
ᵀ
. The information matrix U is F0 dependent. When

F0 is Γ(2, 1), where in general Γ(λ, κ) denotes the gamma distribution with

shape λ and rate κ, we obtain the information matrix (3.7) and hence Λ, based

on numerical computation. We therefore get δ2 ≈ 10.29.

Let χ2
d, p denotes the pth quantile of the χ2

d distribution. The null limiting

distribution of Rn is χ2
2. Thus at the 5% significance level, the null hypothesis

is rejected when Rn ≥ χ2
2, 0.95 ≈ 5.99. Therefore at the current local alternative,

the power of the DELR test is approximately P (χ2
2(10.29) ≥ 5.99) ≈ 0.83.

Theorem 2 is also useful for sample size calculation.

Example 2 (Sample size calculation for Example 1). Adopt the settings of

Example 1. Suppose we require the power of the DELR test to be at least

0.8 at the alternative of β1 = β∗
1 + (0.5, 1.5)

ᵀ
and β2 = β∗

2 + (0.5, 0.5)
ᵀ
at

the 5% significance level. This alternative corresponds to a local alternative of

the form (3.8) with with c1 = (0.5
√
n1, 1.5

√
n1)

ᵀ
= 0.5(

√
0.3n, 3

√
0.3n)

ᵀ
and

c2 = (0.5
√
n2, 0.5

√
n2)

ᵀ
= 0.5(

√
0.3n,

√
0.3n)

ᵀ
.

Using c1, c2, and sample proportions (0.4, 0.3, 0.3), we obtain η = (0.3−1/2c
ᵀ
1,

0.3−1/2c
ᵀ
2)

ᵀ
= 0.5

√
n(1, 3, 1, 1)

ᵀ
as a function of the total sample size n. With

the J , F0, and U obtained in Example 1, and applying the formula given in

Theorem 2, we obtain the non-centrality parameter δ2(n) as a function of n. We

find that when n ≥ 50, P(χ2
2(δ

2(n)) ≥ χ2
2, 0.95) ≥ 0.8.

Theorem 2 is also an effective tool for comparing the local powers of DELR

tests formulated in different ways. The comparison helps us to determine the

most efficient use of information contained in multiple samples. This point is

discussed in the next section.

4. Power Properties of the DELR Test under the DRM

Our use of DRM is motivated by its ability to pool information across mul-

tiple samples. In general, we expect that the DELR test has higher power when

more random samples included in the DRM. This section provides rigorous evi-

dence of this.

HYPOTHESIS TESTING UNDER DRMS 9

Suppose we observe m+1 random samples from distributions satisfying the

DRM assumption (1.1), but a hypothesis testing problem of interest focuses on

a characteristic of r + 1 of them, where r < m. Generally, we find that a DELR

test based only on the r+1 samples is less informative than the one based on all

the m+ 1 samples.

Without loss of generality, consider a null hypothesis regarding subpopula-

tions F0, . . . , Fr with r < m and let ζ
ᵀ
= (β

ᵀ
1 , . . . , β

ᵀ
r ). The composite hypothe-

ses are specified as

H0 : g(ζ) = 0 against H1 : g(ζ) ̸= 0 (4.1)

for some smooth function g : Rrd → Rq with q ≤ rd. A DELR test can be

based either on samples from just F0, . . . , Fr, or on the samples from all the

populations F0, . . . , Fm. We denote the corresponding test statistics as R
(1)
n and

R
(2)
n , respectively.

Theorem 1 implies that, under the null model of (4.1), R
(1)
n and R

(2)
n have

the same χ2
q distribution in the limit. To compare their asymptotic powers, one

can carry out simulations, or assess their asymptotic powers at local alternatives.

Theorem 2 provides a useful tool for the latter approach: R
(1)
n and R

(2)
n have

non-central chi-square limiting distributions with the same q degrees of freedom,

but with possibly different non-centrality parameter values at a local alternative.

Our next result shows that R
(2)
n always has a greater non-centrality parameter

than R
(1)
n . Its proof is given in the supplementary material.

Theorem 3. Under the conditions of Theorem 1, consider the composite hypoth-

esis (4.1) and the local alternative

βk =

{
β∗
k + n

−1/2
k ck, for k = 1, . . . , r

β∗
k, for k = r + 1, . . . , m

(4.2)

with some given constants {ck}. If δ21 and δ22 are the non-centrality parameters

of the limiting distributions of R
(1)
n and R

(2)
n under the local alternative model,

then δ22 ≥ δ21.

A standard result of Johnson, Kotz and Balakrishnan (1995, (29.25a)) has

that if two non-central chi-square distributions have the same degrees of freedom,

then the one with the greater non-central parameter stochastically dominates the

other. Therefore, by Theorem 3, the local power of R
(2)
n is greater than that of

R
(1)
n at all significance levels.

Example 3 (Effect of information pooling by DRM on the local power of the

DELR test). Suppose m + 1 = 3, samples are from a DRM with basis func-

tion q(x) = (x, x2)
ᵀ
, and the sample proportions are (0.5, 0.25, 0.25). Let
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basis function q(x) = (x, log x)
ᵀ
, and the sample proportions are (0.4, 0.3, 0.3).

Let Fk, k = 1, 2, be the distributions with parameters β∗
1 = (−1, 1)

ᵀ
and

β∗
2 = (−2, 2)

ᵀ
. Suppose H0 is g(β) = 2β1 − β2 = 0. Consider the local al-

ternative

βk = β∗
k + n

−1/2
k ck, for k = 1, 2, (3.8)

with c1 = (2, 3)
ᵀ
and c2 = (−1, 0)

ᵀ
.

Under the above settings, we find ▽ = (2I2, −I2) so J = ((1/2)I2, I2), and

η ≈ (3.65, 5.48, −1.83, 0)
ᵀ
. The information matrix U is F0 dependent. When

F0 is Γ(2, 1), where in general Γ(λ, κ) denotes the gamma distribution with

shape λ and rate κ, we obtain the information matrix (3.7) and hence Λ, based

on numerical computation. We therefore get δ2 ≈ 10.29.

Let χ2
d, p denotes the pth quantile of the χ2

d distribution. The null limiting

distribution of Rn is χ2
2. Thus at the 5% significance level, the null hypothesis

is rejected when Rn ≥ χ2
2, 0.95 ≈ 5.99. Therefore at the current local alternative,

the power of the DELR test is approximately P (χ2
2(10.29) ≥ 5.99) ≈ 0.83.

Theorem 2 is also useful for sample size calculation.

Example 2 (Sample size calculation for Example 1). Adopt the settings of

Example 1. Suppose we require the power of the DELR test to be at least

0.8 at the alternative of β1 = β∗
1 + (0.5, 1.5)

ᵀ
and β2 = β∗

2 + (0.5, 0.5)
ᵀ
at

the 5% significance level. This alternative corresponds to a local alternative of

the form (3.8) with with c1 = (0.5
√
n1, 1.5

√
n1)

ᵀ
= 0.5(

√
0.3n, 3

√
0.3n)

ᵀ
and

c2 = (0.5
√
n2, 0.5

√
n2)

ᵀ
= 0.5(

√
0.3n,

√
0.3n)

ᵀ
.

Using c1, c2, and sample proportions (0.4, 0.3, 0.3), we obtain η = (0.3−1/2c
ᵀ
1,

0.3−1/2c
ᵀ
2)

ᵀ
= 0.5

√
n(1, 3, 1, 1)

ᵀ
as a function of the total sample size n. With

the J , F0, and U obtained in Example 1, and applying the formula given in

Theorem 2, we obtain the non-centrality parameter δ2(n) as a function of n. We

find that when n ≥ 50, P(χ2
2(δ

2(n)) ≥ χ2
2, 0.95) ≥ 0.8.

Theorem 2 is also an effective tool for comparing the local powers of DELR

tests formulated in different ways. The comparison helps us to determine the

most efficient use of information contained in multiple samples. This point is

discussed in the next section.

4. Power Properties of the DELR Test under the DRM

Our use of DRM is motivated by its ability to pool information across mul-

tiple samples. In general, we expect that the DELR test has higher power when

more random samples included in the DRM. This section provides rigorous evi-

dence of this.

HYPOTHESIS TESTING UNDER DRMS 9

Suppose we observe m+1 random samples from distributions satisfying the

DRM assumption (1.1), but a hypothesis testing problem of interest focuses on

a characteristic of r + 1 of them, where r < m. Generally, we find that a DELR

test based only on the r+1 samples is less informative than the one based on all

the m+ 1 samples.

Without loss of generality, consider a null hypothesis regarding subpopula-

tions F0, . . . , Fr with r < m and let ζ
ᵀ
= (β

ᵀ
1 , . . . , β

ᵀ
r ). The composite hypothe-

ses are specified as

H0 : g(ζ) = 0 against H1 : g(ζ) ̸= 0 (4.1)

for some smooth function g : Rrd → Rq with q ≤ rd. A DELR test can be

based either on samples from just F0, . . . , Fr, or on the samples from all the

populations F0, . . . , Fm. We denote the corresponding test statistics as R
(1)
n and

R
(2)
n , respectively.

Theorem 1 implies that, under the null model of (4.1), R
(1)
n and R

(2)
n have

the same χ2
q distribution in the limit. To compare their asymptotic powers, one

can carry out simulations, or assess their asymptotic powers at local alternatives.

Theorem 2 provides a useful tool for the latter approach: R
(1)
n and R

(2)
n have

non-central chi-square limiting distributions with the same q degrees of freedom,

but with possibly different non-centrality parameter values at a local alternative.

Our next result shows that R
(2)
n always has a greater non-centrality parameter

than R
(1)
n . Its proof is given in the supplementary material.

Theorem 3. Under the conditions of Theorem 1, consider the composite hypoth-

esis (4.1) and the local alternative

βk =

{
β∗
k + n

−1/2
k ck, for k = 1, . . . , r

β∗
k, for k = r + 1, . . . , m

(4.2)

with some given constants {ck}. If δ21 and δ22 are the non-centrality parameters

of the limiting distributions of R
(1)
n and R

(2)
n under the local alternative model,

then δ22 ≥ δ21.

A standard result of Johnson, Kotz and Balakrishnan (1995, (29.25a)) has

that if two non-central chi-square distributions have the same degrees of freedom,

then the one with the greater non-central parameter stochastically dominates the

other. Therefore, by Theorem 3, the local power of R
(2)
n is greater than that of

R
(1)
n at all significance levels.

Example 3 (Effect of information pooling by DRM on the local power of the

DELR test). Suppose m + 1 = 3, samples are from a DRM with basis func-

tion q(x) = (x, x2)
ᵀ
, and the sample proportions are (0.5, 0.25, 0.25). Let
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Fk, k = 1, 2, be the distributions with parameters β∗
1 = (6, −1.5)

ᵀ
and β∗

2 =
(−0.25, 0.375)

ᵀ
. Suppose H0 is given by g(ζ) = β1 − (6, −1.5)

ᵀ
= 0, and the

local alternative is β1 = β∗
1 + n

−1/2
1 c1 and β2 = β∗

2 with c1 = (2, 2)
ᵀ
.

Let R
(1)
n and R

(2)
n be the DELR test statistics based on F0, F1, and on

F0, F1, F2, respectively. When F0 is the standard normal, we obtain informa-
tion matrices (3.7), and hence Λ = Uββ − UβαU

−1
ααUαβ, for R

(1)
n and R

(2)
n based

on numerical computation. For R
(1)
n , η = (4, 4)

ᵀ
and q = d = 2, so by The-

orem 2, δ21 = η
ᵀ
Λη ≈ 5.90. For R

(2)
n , η = (4, 4, 0, 0)

ᵀ
, ▽ = (I2, 02×2), and

J = (02×2, I2)
ᵀ
. And we get δ22 ≈ 6.67. Since δ21 < δ22 , R

(2)
n is more powerful

than R
(1)
n at all significance levels. At the 5% significance level, for example, the

powers of R
(1)
n and R

(2)
n are approximately 0.577 and 0.633, respectively.

5. Simulation Studies

We conducted simulations to study: (1) the approximation accuracy of the
limiting distributions to the finite-sample distributions of the DELR statistic
under both the null and the alternative models, (2) the power of the DELR
test under correctly specified and misspecified DRMs, and (3) the effect of the
number of samples used in the DRM to the local asymptotic power of the DELR
test. The number of simulation runs was set to 10, 000. Our simulations were
more extensive, so we selected the most representative ones to include here; the
other results are similar. All computations were carried out by our R package
drmdel for EL inference under DRMs, which is available on the Comprehensive
R Archive Network (CRAN).

5.1. Approximation to the distribution of the DELR under the null
model

We studied how well the chi-square distribution approximates the finite-
sample distribution of the DELR statistic under the null hypothesis of (3.4).
With m + 1 = 6 and g(β) = (β

ᵀ
1 , β

ᵀ
3) − (β

ᵀ
2 , β

ᵀ
4), the null hypothesis is equiv-

alent to F1 = F2 and F3 = F4. We generated two sets of six samples of sizes
(90, 60, 120, 80, 110, 30) from two distribution families. The first set were from
normal distributions with means (0, 2, 2, 1, 1, 3.2) and standard deviations (1,
1.5, 1.5, 3, 3, 2). The second set of samples were from gamma distributions with
shapes (3, 4, 4, 5, 5, 3.2) and rates (0.5, 0.8, 0.8, 1.1, 1.1, 1.5).

When the basis function q(x) is correctly specified, with q(x) = (x, x2)
ᵀ
for

the normal family and q(x) = (log x, x)
ᵀ
for gamma family, the DELR statistic,

Rn, has a χ2
4 null limiting distribution. The quantile-quantile (Q-Q) plots of the

distribution of Rn and χ2
4 are shown in Figure 1. In both cases, the approxima-

tions are accurate. The type I error rates of Rn at 5% level are 0.056 and 0.058
for normal and gamma data respectively.
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Figure 1. Q-Q plots of the simulated and the null limiting distributions of
the DELR statistic.

In other simulations under various settings, we found more generally that
the chi-square approximation has satisfactory precision when nk ≥ 10qd. When
nk is much smaller, a bootstrap or permutation test based on the DELR statistic
can serve as an alternative.

5.2. Approximation to the distribution of the DELR under local
alternatives

We examined the precision of the non-central chi-square distribution under
the local alternative model (3.5), with m + 1 = 4 and sample sizes 120, 160, 80
and 60.

We first tested the hypothesis (3.4) with g(β) = β
ᵀ
1 − β

ᵀ
2 . The perceived

null model is specified by β∗
1 = β∗

2 = (0.25, 1.875)
ᵀ
, β∗

3 = (0.125, 1.97)
ᵀ
with

basis function q(x) = (x, x2)
ᵀ
. The data were generated from G0 = N(0, 0.52),

G1 and G3 with β∗
1 and β∗

3 respectively, and G2 with β2 = β∗
2 + n

−1/2
2 (1, 0)

ᵀ
.

According to Theorem 2, the limiting distribution of Rn is χ2
2(2.67).

We also tested (3.4) with g(β) = (β
ᵀ
1 , β

ᵀ
3) − (β

ᵀ
2 , (−6, 9)

ᵀ
). The perceived

null model is specified by β∗
1 = β∗

2 = (−4, 5)
ᵀ
, β∗

3 = (−6, 9)
ᵀ
with basis function

q(x) = (log x, x)
ᵀ
. We generated data from G0 = Γ(3, 2) and Gk, k = 1, 2, 3,

specified by (3.5) with c1 = (0.5, 0.5)
ᵀ
, c2 = (1, 1)

ᵀ
and c3 = (2, 2)

ᵀ
. According

to Theorem 2, the limiting distribution of Rn is χ2
4(1.80).

The Q-Q plots under the two settings are shown in Figure 2. The non-
central chi-square limiting distributions approximate those of Rn well. In other
simulations, we generally found the approximation of the non-central chi-square
to be satisfactory when nk ≥ 15qd.
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Fk, k = 1, 2, be the distributions with parameters β∗
1 = (6, −1.5)

ᵀ
and β∗

2 =
(−0.25, 0.375)

ᵀ
. Suppose H0 is given by g(ζ) = β1 − (6, −1.5)

ᵀ
= 0, and the

local alternative is β1 = β∗
1 + n

−1/2
1 c1 and β2 = β∗

2 with c1 = (2, 2)
ᵀ
.

Let R
(1)
n and R

(2)
n be the DELR test statistics based on F0, F1, and on

F0, F1, F2, respectively. When F0 is the standard normal, we obtain informa-
tion matrices (3.7), and hence Λ = Uββ − UβαU

−1
ααUαβ, for R

(1)
n and R

(2)
n based

on numerical computation. For R
(1)
n , η = (4, 4)

ᵀ
and q = d = 2, so by The-

orem 2, δ21 = η
ᵀ
Λη ≈ 5.90. For R

(2)
n , η = (4, 4, 0, 0)

ᵀ
, ▽ = (I2, 02×2), and

J = (02×2, I2)
ᵀ
. And we get δ22 ≈ 6.67. Since δ21 < δ22 , R

(2)
n is more powerful

than R
(1)
n at all significance levels. At the 5% significance level, for example, the

powers of R
(1)
n and R

(2)
n are approximately 0.577 and 0.633, respectively.

5. Simulation Studies

We conducted simulations to study: (1) the approximation accuracy of the
limiting distributions to the finite-sample distributions of the DELR statistic
under both the null and the alternative models, (2) the power of the DELR
test under correctly specified and misspecified DRMs, and (3) the effect of the
number of samples used in the DRM to the local asymptotic power of the DELR
test. The number of simulation runs was set to 10, 000. Our simulations were
more extensive, so we selected the most representative ones to include here; the
other results are similar. All computations were carried out by our R package
drmdel for EL inference under DRMs, which is available on the Comprehensive
R Archive Network (CRAN).

5.1. Approximation to the distribution of the DELR under the null
model

We studied how well the chi-square distribution approximates the finite-
sample distribution of the DELR statistic under the null hypothesis of (3.4).
With m + 1 = 6 and g(β) = (β

ᵀ
1 , β

ᵀ
3) − (β

ᵀ
2 , β

ᵀ
4), the null hypothesis is equiv-

alent to F1 = F2 and F3 = F4. We generated two sets of six samples of sizes
(90, 60, 120, 80, 110, 30) from two distribution families. The first set were from
normal distributions with means (0, 2, 2, 1, 1, 3.2) and standard deviations (1,
1.5, 1.5, 3, 3, 2). The second set of samples were from gamma distributions with
shapes (3, 4, 4, 5, 5, 3.2) and rates (0.5, 0.8, 0.8, 1.1, 1.1, 1.5).

When the basis function q(x) is correctly specified, with q(x) = (x, x2)
ᵀ
for

the normal family and q(x) = (log x, x)
ᵀ
for gamma family, the DELR statistic,

Rn, has a χ2
4 null limiting distribution. The quantile-quantile (Q-Q) plots of the

distribution of Rn and χ2
4 are shown in Figure 1. In both cases, the approxima-

tions are accurate. The type I error rates of Rn at 5% level are 0.056 and 0.058
for normal and gamma data respectively.
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Figure 1. Q-Q plots of the simulated and the null limiting distributions of
the DELR statistic.

In other simulations under various settings, we found more generally that
the chi-square approximation has satisfactory precision when nk ≥ 10qd. When
nk is much smaller, a bootstrap or permutation test based on the DELR statistic
can serve as an alternative.

5.2. Approximation to the distribution of the DELR under local
alternatives

We examined the precision of the non-central chi-square distribution under
the local alternative model (3.5), with m + 1 = 4 and sample sizes 120, 160, 80
and 60.

We first tested the hypothesis (3.4) with g(β) = β
ᵀ
1 − β

ᵀ
2 . The perceived

null model is specified by β∗
1 = β∗

2 = (0.25, 1.875)
ᵀ
, β∗

3 = (0.125, 1.97)
ᵀ
with

basis function q(x) = (x, x2)
ᵀ
. The data were generated from G0 = N(0, 0.52),

G1 and G3 with β∗
1 and β∗

3 respectively, and G2 with β2 = β∗
2 + n

−1/2
2 (1, 0)

ᵀ
.

According to Theorem 2, the limiting distribution of Rn is χ2
2(2.67).

We also tested (3.4) with g(β) = (β
ᵀ
1 , β

ᵀ
3) − (β

ᵀ
2 , (−6, 9)

ᵀ
). The perceived

null model is specified by β∗
1 = β∗

2 = (−4, 5)
ᵀ
, β∗

3 = (−6, 9)
ᵀ
with basis function

q(x) = (log x, x)
ᵀ
. We generated data from G0 = Γ(3, 2) and Gk, k = 1, 2, 3,

specified by (3.5) with c1 = (0.5, 0.5)
ᵀ
, c2 = (1, 1)

ᵀ
and c3 = (2, 2)

ᵀ
. According

to Theorem 2, the limiting distribution of Rn is χ2
4(1.80).

The Q-Q plots under the two settings are shown in Figure 2. The non-
central chi-square limiting distributions approximate those of Rn well. In other
simulations, we generally found the approximation of the non-central chi-square
to be satisfactory when nk ≥ 15qd.
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Figure 2. Q-Q plots of the distributions of the DELR statistics under the
local alternative model against the corresponding asymptotic theoretical dis-
tributions.

5.3. Power comparison

We compared the power of the DELR test with a number of popular methods

for detecting differences between distribution functions, testing H0 : F0 = F1 =

· · · = Fm. This is (3.4) with g(β) = β. We used the nominal level of 5%.

Competitors were the Wald test based on the DRM (Wald) (Fokianos et al.

(2001)), a one-way analysis of variance (ANOVA), the Kruskal–Wallis rank-sum

test (KW) (Wilcox (1995)), the k-sample Anderson–Darling test (AD) (Scholz

and Stephens (1987)), and the likelihood ratio test based on the partial likelihood

under the CoxPH when observations are intrinsically positive. Under the CoxPH,

we utilized m dummy covariates for data analysis. The corresponding likelihood

ratio based on the partial likelihood has a χ2
m limiting distribution under the null

hypothesis.

We compared powers based on normal data with m + 1 = 2 and sample

sizes n0 = 30 and n1 = 40. We considered two scenarios with alternatives

having F0 = N(0, 22). In the first, F1 = N(µ, 22) with increasing µ. In the

second, we considered seven parameter settings 0–6 for F1 = N(µ, σ2) with µ

and σ taking values in (0, 0.05, 0.1, 0.15, 0.25, 0.36, 0.55) and (2, 1.9, 1.8, 1.7,

1.62, 1.56, 1.50), respectively.

The power curves are shown in Figure 3. In the two-sample case, all tests

are found to have comparable powers. In the unequal variance case, the DELR

test has much higher power than its competitors, and its type I error rate is close

to the nominal 0.05.

HYPOTHESIS TESTING UNDER DRMS 13

Figure 3. Power curve of Rn under normal data; the parameter setting 0
corresponds to the null model and settings 1−6 correspond to alternative
models.

We also compared these tests on non-normal samples with m + 1 = 5 and

sample sizes to be 30, 40, 25, 45 and 50. We generated data from the gamma,

log–normal, Pareto with common support, and Weibull distributions with shape

parameter equaling 0.8. The log–normal, Pareto and Weibull distributions are

DRMs with basis functions q(x) = (log x, log2 x)
ᵀ
, q(x) = log x, and q(x) = x0.8,

respectively.

For each distribution family, we obtain simulated power under six parameter

settings 0–5 shown in Table 2 in the Appendix. Setting 0 satisfies the null

hypothesis and settings 1–5 do not. The simulated rejection rates are shown in

Figure 4. The DELR test has the highest power while its type I error rates are

close to the nominal.

The gamma and log–normal families do not satisfy the conditions needed to

justify use of the CoxPH approach. Consequently, the DELR test based on the

DRM has a much higher power than the likelihood ratio test based on the partial

likelihood under the CoxPH model. In contrast, the Pareto or Weibull families

with known, common shapes do satisfy the CoxPH requirements; in these cases,

the two tests have almost the same power. These results show that in general

the DRM is a better choice for multiple samples.

5.4. DELR test under misspecified DRM

Examining the effect of misspecification is an important topic. Fokianos

and Kaimi (2006) suggested that misspecifying the basis function q(x) has an
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Figure 2. Q-Q plots of the distributions of the DELR statistics under the
local alternative model against the corresponding asymptotic theoretical dis-
tributions.

5.3. Power comparison

We compared the power of the DELR test with a number of popular methods

for detecting differences between distribution functions, testing H0 : F0 = F1 =

· · · = Fm. This is (3.4) with g(β) = β. We used the nominal level of 5%.

Competitors were the Wald test based on the DRM (Wald) (Fokianos et al.

(2001)), a one-way analysis of variance (ANOVA), the Kruskal–Wallis rank-sum

test (KW) (Wilcox (1995)), the k-sample Anderson–Darling test (AD) (Scholz

and Stephens (1987)), and the likelihood ratio test based on the partial likelihood

under the CoxPH when observations are intrinsically positive. Under the CoxPH,

we utilized m dummy covariates for data analysis. The corresponding likelihood

ratio based on the partial likelihood has a χ2
m limiting distribution under the null

hypothesis.

We compared powers based on normal data with m + 1 = 2 and sample

sizes n0 = 30 and n1 = 40. We considered two scenarios with alternatives

having F0 = N(0, 22). In the first, F1 = N(µ, 22) with increasing µ. In the

second, we considered seven parameter settings 0–6 for F1 = N(µ, σ2) with µ

and σ taking values in (0, 0.05, 0.1, 0.15, 0.25, 0.36, 0.55) and (2, 1.9, 1.8, 1.7,

1.62, 1.56, 1.50), respectively.

The power curves are shown in Figure 3. In the two-sample case, all tests

are found to have comparable powers. In the unequal variance case, the DELR

test has much higher power than its competitors, and its type I error rate is close

to the nominal 0.05.
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Figure 3. Power curve of Rn under normal data; the parameter setting 0
corresponds to the null model and settings 1−6 correspond to alternative
models.

We also compared these tests on non-normal samples with m + 1 = 5 and

sample sizes to be 30, 40, 25, 45 and 50. We generated data from the gamma,

log–normal, Pareto with common support, and Weibull distributions with shape

parameter equaling 0.8. The log–normal, Pareto and Weibull distributions are

DRMs with basis functions q(x) = (log x, log2 x)
ᵀ
, q(x) = log x, and q(x) = x0.8,

respectively.

For each distribution family, we obtain simulated power under six parameter

settings 0–5 shown in Table 2 in the Appendix. Setting 0 satisfies the null

hypothesis and settings 1–5 do not. The simulated rejection rates are shown in

Figure 4. The DELR test has the highest power while its type I error rates are

close to the nominal.

The gamma and log–normal families do not satisfy the conditions needed to

justify use of the CoxPH approach. Consequently, the DELR test based on the

DRM has a much higher power than the likelihood ratio test based on the partial

likelihood under the CoxPH model. In contrast, the Pareto or Weibull families

with known, common shapes do satisfy the CoxPH requirements; in these cases,

the two tests have almost the same power. These results show that in general

the DRM is a better choice for multiple samples.

5.4. DELR test under misspecified DRM

Examining the effect of misspecification is an important topic. Fokianos

and Kaimi (2006) suggested that misspecifying the basis function q(x) has an
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Figure 4. Power curves that obtain when the population distribution from
which the data are sampled is non-normal; the parameter setting 0 corre-
sponds to the null model and settings 1−5 correspond to alternative models.

adverse effect on estimating β. Chen and Liu (2013) found that estimation

of population quantiles is robust against misspecification. In this section, we

demonstrate that the effect of misspecification on DELR test is small for testing

the equal population hypothesis.

We put m + 1 = 5 with sample sizes 90, 120, 75, 135 and 150. In the first

simulation, we generated data from two-parameter Weibull distributions with

density

f(x; a, b) =
(a
b

)(x
b

)a−1
exp

{(
− x

b

)a}
, x ≥ 0.

HYPOTHESIS TESTING UNDER DRMS 15

Figure 5. Power curves of five tests. Parameter setting 0 corresponds to the
null model; settings 1−5 form alternative models.

The two-parameter Weibull family does not satisfy the DRM assumption (1.1).

Nevertheless, we still fit a DRM with q(x) = (x, log x)
ᵀ
to the Weibull data. We

used DELR test and Wald test under this DRM to test the equal distribution

function hypothesis. We calculated the simulated power of these tests under six

parameter settings (Table 3 in the Appendix) with setting 0 satisfying the null

hypothesis.

We also applied ANOVA, KW, AD, and the CoxPH tests. The results are

summarized as power curves in Figure 5. The DELR test has close to nominal

type I error rates. It has superior power in detecting distributional differences.

In particular, our DELR approach has a much higher power than the CoxPH.

We also experimented with other models. The results were similar.

5.5. Comparison of R
(1)
n and R

(2)
n

It is helpful to have data from other populations in DELR analysis by The-

orem 3. Here, we reaffirm this by means of simulations. We considered the same

question about the Wald tests, Wald(1) and Wald(2), and included this in our

simulations. The number of simulation repetitions was set to 10, 000.

The first simulation used data from m+ 1 = 3 normal populations with the

null hypothesis β1 = (6, −1.5)
ᵀ
. The total sample size n was 240. We calculated

the powers of R
(1)
n , R

(2)
n , Wald(1), and Wald(2) with the six DRM parameters as

shown in the Appendix as the “Normal Case” in Table 4. The simulated power
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Figure 4. Power curves that obtain when the population distribution from
which the data are sampled is non-normal; the parameter setting 0 corre-
sponds to the null model and settings 1−5 correspond to alternative models.

adverse effect on estimating β. Chen and Liu (2013) found that estimation

of population quantiles is robust against misspecification. In this section, we

demonstrate that the effect of misspecification on DELR test is small for testing

the equal population hypothesis.

We put m + 1 = 5 with sample sizes 90, 120, 75, 135 and 150. In the first

simulation, we generated data from two-parameter Weibull distributions with

density

f(x; a, b) =
(a
b

)(x
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)a−1
exp

{(
− x
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)a}
, x ≥ 0.
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Figure 5. Power curves of five tests. Parameter setting 0 corresponds to the
null model; settings 1−5 form alternative models.

The two-parameter Weibull family does not satisfy the DRM assumption (1.1).

Nevertheless, we still fit a DRM with q(x) = (x, log x)
ᵀ
to the Weibull data. We

used DELR test and Wald test under this DRM to test the equal distribution

function hypothesis. We calculated the simulated power of these tests under six

parameter settings (Table 3 in the Appendix) with setting 0 satisfying the null

hypothesis.

We also applied ANOVA, KW, AD, and the CoxPH tests. The results are

summarized as power curves in Figure 5. The DELR test has close to nominal

type I error rates. It has superior power in detecting distributional differences.

In particular, our DELR approach has a much higher power than the CoxPH.

We also experimented with other models. The results were similar.

5.5. Comparison of R
(1)
n and R

(2)
n

It is helpful to have data from other populations in DELR analysis by The-

orem 3. Here, we reaffirm this by means of simulations. We considered the same

question about the Wald tests, Wald(1) and Wald(2), and included this in our

simulations. The number of simulation repetitions was set to 10, 000.

The first simulation used data from m+ 1 = 3 normal populations with the

null hypothesis β1 = (6, −1.5)
ᵀ
. The total sample size n was 240. We calculated

the powers of R
(1)
n , R

(2)
n , Wald(1), and Wald(2) with the six DRM parameters as

shown in the Appendix as the “Normal Case” in Table 4. The simulated power
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curves are in Figure 6 (a). The power comparisons between R
(1)
n and R

(2)
n yield

conclusions akin to that of Theorem 3. The Wald tests are not as powerful as

the DELR tests, but Wald(2) seems to be more powerful than Wald(1).

Even if additional samples are from distributions not under comparison, they

may well be helpful in estimating the baseline distribution F0, and, in turn, help

to better identify the differences among the distributions under comparison. Let

m + 1 = 4 and consider a hypothesis test for β1. The DELR test can be done

using the first two samples (R
(1)
n ) and then using all four samples (R

(2)
n ).

We generated samples with sizes 60, 30, 40, and 90 from gamma distributions

under two scenarios. In the first, the extra populations F2 and F3 are close to F0.

Because of this, the samples from F2 and F3 are particularly helpful in accurately

estimating F0. In the second scenario, F2 and F3 are rather distinct from F0 and

are less helpful at estimating F0. The density functions of F0, F2, and F3, along

with their parameter values under both scenarios, are depicted in Figure 6 (b).

Under both scenarios, we considered the same null hypothesis β1 = (−2, 2)
ᵀ
.

We simulated the powers of the tests at six different values of β1 (the “Gamma

Case” in Table 4 of the Appendix) and the simulated power curves are shown in

Figure 6 (c) and (d). The amounts of improvement of R
(2)
n under two scenarios

match our intuition, and are also evident for the Wald test.

Effects of the length of the basis function on DELR tests

If the additional populations are not exponential tilts of F0 with a specific

basis function, we may use a long basis function in the DRM to approximate

the actual density ratios. This may have an adverse effect on the power. We

investigate this issue here.

Letm+1 = 4 and consider the hypothesis test for β1 as in the last simulation.

We compared the tests based on the first two samples and the ones based on all

four samples.

We took the same distribution and parameter settings for F0 and F1 as

in the last simulation but set F2 to be log–normal with mean 0 and standard

deviation 1 on log scale and F3 to be Weibull with shape 2 and scale 3. We

considered the basis functions (1) q(x) = (log x, x)
ᵀ
, (2) q(x) = (log x,

√
x, x)

ᵀ
,

(3) q(x) = (log x,
√
x, x, x2)

ᵀ
, and (4) q(x) = (log x,

√
x, x, x1.5, x2)

ᵀ
.

The simulation results are shown in Figure 7, where the parameter setting

0 corresponds to the null model. We see that R
(2)
n is more powerful than R

(1)
n

in all cases. With the simplest basis function q(x) = (log x, x)
ᵀ
, R

(2)
n has the

type I error rate of 0.0625, which notably exceeds the nominal size of 5%; the

type I error rate improves significantly when the dimension of the basis function

increases. Moreover, the powers of all four tests can be seen to decrease as the

dimension of the basis function increases.

HYPOTHESIS TESTING UNDER DRMS 17

Figure 6. Power curves of R
(1)
n , R

(2)
n , Wald(1) and Wald(2); Parameter setting

0 corresponds to the null model; settings 1−5 correspond to alternative
models.

In this particular case, choosing a three dimensional basis function gives the

best overall result: a reasonably accurate type I error rate and also a good power.

The issue on how to choose basis function to achieve such a balance in general is

rather delicate, and we will study it in the near future.

6. Analysis of Lumber Properties

The authors are members of the Forest Products Stochastic Modeling Group

centered at the University of British Columbia and, in that capacity, are helping

develop methods for assessing the engineering strength properties of lumber.
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curves are in Figure 6 (a). The power comparisons between R
(1)
n and R

(2)
n yield

conclusions akin to that of Theorem 3. The Wald tests are not as powerful as

the DELR tests, but Wald(2) seems to be more powerful than Wald(1).

Even if additional samples are from distributions not under comparison, they

may well be helpful in estimating the baseline distribution F0, and, in turn, help

to better identify the differences among the distributions under comparison. Let

m + 1 = 4 and consider a hypothesis test for β1. The DELR test can be done

using the first two samples (R
(1)
n ) and then using all four samples (R

(2)
n ).

We generated samples with sizes 60, 30, 40, and 90 from gamma distributions

under two scenarios. In the first, the extra populations F2 and F3 are close to F0.

Because of this, the samples from F2 and F3 are particularly helpful in accurately

estimating F0. In the second scenario, F2 and F3 are rather distinct from F0 and

are less helpful at estimating F0. The density functions of F0, F2, and F3, along

with their parameter values under both scenarios, are depicted in Figure 6 (b).

Under both scenarios, we considered the same null hypothesis β1 = (−2, 2)
ᵀ
.

We simulated the powers of the tests at six different values of β1 (the “Gamma

Case” in Table 4 of the Appendix) and the simulated power curves are shown in

Figure 6 (c) and (d). The amounts of improvement of R
(2)
n under two scenarios

match our intuition, and are also evident for the Wald test.

Effects of the length of the basis function on DELR tests

If the additional populations are not exponential tilts of F0 with a specific

basis function, we may use a long basis function in the DRM to approximate

the actual density ratios. This may have an adverse effect on the power. We

investigate this issue here.

Letm+1 = 4 and consider the hypothesis test for β1 as in the last simulation.

We compared the tests based on the first two samples and the ones based on all

four samples.

We took the same distribution and parameter settings for F0 and F1 as

in the last simulation but set F2 to be log–normal with mean 0 and standard

deviation 1 on log scale and F3 to be Weibull with shape 2 and scale 3. We

considered the basis functions (1) q(x) = (log x, x)
ᵀ
, (2) q(x) = (log x,

√
x, x)

ᵀ
,

(3) q(x) = (log x,
√
x, x, x2)

ᵀ
, and (4) q(x) = (log x,

√
x, x, x1.5, x2)

ᵀ
.

The simulation results are shown in Figure 7, where the parameter setting

0 corresponds to the null model. We see that R
(2)
n is more powerful than R

(1)
n

in all cases. With the simplest basis function q(x) = (log x, x)
ᵀ
, R

(2)
n has the

type I error rate of 0.0625, which notably exceeds the nominal size of 5%; the

type I error rate improves significantly when the dimension of the basis function

increases. Moreover, the powers of all four tests can be seen to decrease as the

dimension of the basis function increases.
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Figure 6. Power curves of R
(1)
n , R

(2)
n , Wald(1) and Wald(2); Parameter setting

0 corresponds to the null model; settings 1−5 correspond to alternative
models.

In this particular case, choosing a three dimensional basis function gives the

best overall result: a reasonably accurate type I error rate and also a good power.

The issue on how to choose basis function to achieve such a balance in general is

rather delicate, and we will study it in the near future.

6. Analysis of Lumber Properties

The authors are members of the Forest Products Stochastic Modeling Group

centered at the University of British Columbia and, in that capacity, are helping

develop methods for assessing the engineering strength properties of lumber.
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Figure 7. Power curves of R
(1)
n , R

(2)
n , Wald(1) and Wald(2) under DRMs with

basis functions of different dimensions; Parameter setting 0 corresponds to
the null model; settings 1−5 correspond to alternative models.

A primary goal is an effective but relatively inexpensive long-term monitoring

program for the strength of lumber. Of primary importance is the so-called

modulus of rupture (MOR) or “bending strength”, which is measured in units of

103 pound-force per square inch (psi). The Forest Products Stochastic Modeling

Group collected three MOR samples in year 2007, 2010, and 2011 with sample

sizes 98, 282, and 445, respectively. Our interest in change over time led us to test

the hypothesis that the three samples come from the same lumber population.

We used basis function q(x) = (log x, x, x2)
ᵀ
for the DRM, chosen according

to the characteristics of the kernel density estimators of the MOR samples, shown

HYPOTHESIS TESTING UNDER DRMS 19

Figure 8. EL and empirical kernel density plots of the MOR samples.

in Figure 8 (a). They seem to be well approximated by either a Gamma or a nor-

mal distribution. Hence, we chose a basis function that includes both (log x, x)

and (x, x2). To examine the adequacy of this basis function for fitting the MOR

samples, we obtained EL kernel density estimates based on {xkj} with weights

{p̂kj} in addition to the usual kernel density estimates. These density estimates

along with histograms of the MOR samples are shown in Figure 8 (b)−(d). We

see that the EL kernel density estimates based on the DRM (the DRM fits) agree

reasonably with the usual kernel density estimators (the Empirical fits) and the

histograms.

With F07, F10 and F11 distributions for 2007, 2010, and 2011, the p-values

obtained using the DELR test, Wald test, ANOVA and Kruskal–Wallis tests for
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Figure 7. Power curves of R
(1)
n , R

(2)
n , Wald(1) and Wald(2) under DRMs with

basis functions of different dimensions; Parameter setting 0 corresponds to
the null model; settings 1−5 correspond to alternative models.

A primary goal is an effective but relatively inexpensive long-term monitoring

program for the strength of lumber. Of primary importance is the so-called

modulus of rupture (MOR) or “bending strength”, which is measured in units of

103 pound-force per square inch (psi). The Forest Products Stochastic Modeling

Group collected three MOR samples in year 2007, 2010, and 2011 with sample

sizes 98, 282, and 445, respectively. Our interest in change over time led us to test

the hypothesis that the three samples come from the same lumber population.

We used basis function q(x) = (log x, x, x2)
ᵀ
for the DRM, chosen according

to the characteristics of the kernel density estimators of the MOR samples, shown
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Figure 8. EL and empirical kernel density plots of the MOR samples.

in Figure 8 (a). They seem to be well approximated by either a Gamma or a nor-
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{p̂kj} in addition to the usual kernel density estimates. These density estimates

along with histograms of the MOR samples are shown in Figure 8 (b)−(d). We

see that the EL kernel density estimates based on the DRM (the DRM fits) agree

reasonably with the usual kernel density estimators (the Empirical fits) and the

histograms.

With F07, F10 and F11 distributions for 2007, 2010, and 2011, the p-values

obtained using the DELR test, Wald test, ANOVA and Kruskal–Wallis tests for
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Table 1. The p-values of pairwise comparisons among three MOR populations.

DELR Wald t-test KW

H0: F07=F10 0.871 0.875 0.516 0.431
H0: F07=F11 5.40e-4 7.01e-3 0.0579 0.0604
H0: F10=F11 4.54e-8 1.82e-6 6.09e-4 3.95e-4

H0 : F07 = F10 = F11 were respectively 3.05e-8, 2.04e-6, 2.90e-3 and 1.08e-3.

The DRM-based tests, especially the DELR test, had much smaller p-values.

Given rejection of that hypothesis it is natural to look at pairwise compar-

isons. The p-values for them are given in Table 1. The two DRM-based tests

strongly suggest F11 is markedly different from F07 and F10, while F07 and F10 are

not significantly different. The other two tests arrive at the same conclusion, but

without statistical significance at 5% level. The conclusion does not change at

the 5% level when a Bonferroni correction is applied to account for the multiple

comparison.

In addition, if the 5% size is strictly observed, the t-test and the KW test

would imply F07 = F10 and F07 = F11, but F10 ̸= F11. This is harder to interpret.

7. Concluding Remarks

Our work was motivated in developing a new long-term monitoring program

for the North American lumber industry. The need for efficiency and hence

small sample sizes led to our DRM approach where common information across

samples is pooled to gain efficiency. The demonstration of the use of the method

on three lumber samples, shows our method to give a more incisive assessment

than competitors through paired comparisons of the populations.

Our R package drmdel for EL inference under DRMs, available on CRAN,

can carry out all computations in this paper, and those in Chen and Liu (2013).

Supplementary Materials

The online supplementary material accompanying this paper presents de-

tailed proofs of the theorems.
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Appendix: Parameter Values in Simulation Studies

Table 2. Parameter values for power comparison under non–normal dis-
tributions (Section 5.3). F0 remains unchanged across parameter settings
0–5. Γ(λ, κ): gamma distribution with shape λ and rate κ; LN(µ, σ): log–
normal distribution with mean µ and standard deviation σ on log scale;
Pa(γ): Pareto distribution with shape γ and common support of x > 1;
W (b): Weibull distribution with scale b and common shape of 0.8.

Parameter settings

F0 1 2 3 4 5

λ κ λ κ λ κ λ κ λ κ

Γ(0.2, 0.8)

F1: 0.18 0.7 0.17 0.6 0.16 0.5 0.155 0.45 0.14 0.4

F2: 0.22 0.85 0.24 0.95 0.255 1.05 0.18 0.7 0.17 0.6

F3: 0.23 0.95 0.255 1.2 0.275 1.25 0.29 1.4 0.33 1.6

F4: 0.24 1.05 0.27 1.3 0.29 1.4 0.31 1.55 0.35 1.85

µ σ µ σ µ σ µ σ µ σ

LN(0, 1.5)

F1: 0.44 1.3 0.7 1.2 0.9 1.15 1 1 1.2 0.85

F2: 0.22 1.32 0.57 1.30 0.62 1.25 0.67 1.20 0.87 1

F3: 0.18 1.35 0.63 1.33 0.73 1.30 0.83 1.28 0.85 1.28

F4: 0.37 1.38 0.60 1.35 0.70 1.33 0.75 1.32 0.95 1.30

γ γ γ γ α

Pa(2)

F1: 1.9 1.85 1.8 1.75 1.7

F2: 2.1 2.2 2.3 1.85 1.75

F3: 2.35 2.55 2.70 2.85 3.25

F4: 2.5 2.78 2.98 3.2 3.75

b b b b b

W (1)

F1: 0.76 0.65 0.59 0.53 0.42

F2: 1.2 1.26 1.31 1.35 1.42

F3: 1.08 1.05 1.10 1.12 1.14

F4: 0.90 0.89 0.85 0.82 0.78

780



20 SONG CAI, JIAHUA CHEN AND JAMES V. ZIDEK

Table 1. The p-values of pairwise comparisons among three MOR populations.

DELR Wald t-test KW

H0: F07=F10 0.871 0.875 0.516 0.431
H0: F07=F11 5.40e-4 7.01e-3 0.0579 0.0604
H0: F10=F11 4.54e-8 1.82e-6 6.09e-4 3.95e-4

H0 : F07 = F10 = F11 were respectively 3.05e-8, 2.04e-6, 2.90e-3 and 1.08e-3.

The DRM-based tests, especially the DELR test, had much smaller p-values.

Given rejection of that hypothesis it is natural to look at pairwise compar-

isons. The p-values for them are given in Table 1. The two DRM-based tests

strongly suggest F11 is markedly different from F07 and F10, while F07 and F10 are

not significantly different. The other two tests arrive at the same conclusion, but

without statistical significance at 5% level. The conclusion does not change at

the 5% level when a Bonferroni correction is applied to account for the multiple

comparison.

In addition, if the 5% size is strictly observed, the t-test and the KW test

would imply F07 = F10 and F07 = F11, but F10 ̸= F11. This is harder to interpret.

7. Concluding Remarks

Our work was motivated in developing a new long-term monitoring program

for the North American lumber industry. The need for efficiency and hence

small sample sizes led to our DRM approach where common information across

samples is pooled to gain efficiency. The demonstration of the use of the method

on three lumber samples, shows our method to give a more incisive assessment

than competitors through paired comparisons of the populations.

Our R package drmdel for EL inference under DRMs, available on CRAN,

can carry out all computations in this paper, and those in Chen and Liu (2013).

Supplementary Materials

The online supplementary material accompanying this paper presents de-

tailed proofs of the theorems.

Acknowledgements

This work was sponsored in part by the FPInnovations and the National

Sciences and Engineering Research Council of Canada (NSERC).

We would like to thank the Associate Editor and the two reviewers for their

comments that helped us improve our presentation.

HYPOTHESIS TESTING UNDER DRMS 21

Appendix: Parameter Values in Simulation Studies

Table 2. Parameter values for power comparison under non–normal dis-
tributions (Section 5.3). F0 remains unchanged across parameter settings
0–5. Γ(λ, κ): gamma distribution with shape λ and rate κ; LN(µ, σ): log–
normal distribution with mean µ and standard deviation σ on log scale;
Pa(γ): Pareto distribution with shape γ and common support of x > 1;
W (b): Weibull distribution with scale b and common shape of 0.8.

Parameter settings

F0 1 2 3 4 5

λ κ λ κ λ κ λ κ λ κ

Γ(0.2, 0.8)

F1: 0.18 0.7 0.17 0.6 0.16 0.5 0.155 0.45 0.14 0.4

F2: 0.22 0.85 0.24 0.95 0.255 1.05 0.18 0.7 0.17 0.6

F3: 0.23 0.95 0.255 1.2 0.275 1.25 0.29 1.4 0.33 1.6

F4: 0.24 1.05 0.27 1.3 0.29 1.4 0.31 1.55 0.35 1.85

µ σ µ σ µ σ µ σ µ σ

LN(0, 1.5)

F1: 0.44 1.3 0.7 1.2 0.9 1.15 1 1 1.2 0.85

F2: 0.22 1.32 0.57 1.30 0.62 1.25 0.67 1.20 0.87 1

F3: 0.18 1.35 0.63 1.33 0.73 1.30 0.83 1.28 0.85 1.28

F4: 0.37 1.38 0.60 1.35 0.70 1.33 0.75 1.32 0.95 1.30

γ γ γ γ α

Pa(2)

F1: 1.9 1.85 1.8 1.75 1.7

F2: 2.1 2.2 2.3 1.85 1.75

F3: 2.35 2.55 2.70 2.85 3.25

F4: 2.5 2.78 2.98 3.2 3.75

b b b b b

W (1)

F1: 0.76 0.65 0.59 0.53 0.42

F2: 1.2 1.26 1.31 1.35 1.42

F3: 1.08 1.05 1.10 1.12 1.14

F4: 0.90 0.89 0.85 0.82 0.78

781



22 SONG CAI, JIAHUA CHEN AND JAMES V. ZIDEK

Table 3. Parameter values for power comparison under misspecified DRMs
(Section 5.4). F0 remains unchanged across parameter settings 0–5. W (a, b):
Weibull distribution with shape a and scale b.

Parameter settings

F0 1 2 3 4 5

a b a b a b a b a b

W (1, 1)

F1: 0.9 0.95 0.85 0.94 0.82 0.92 0.79 0.91 0.75 0.88

F2: 0.98 0.98 0.96 0.96 0.95 0.95 0.94 0.94 0.91 0.92

F3: 1.03 1.04 1.05 1.06 1.07 1.07 1.09 1.08 1.12 1.12

F4: 1.01 0.95 1.02 0.92 1.03 0.90 1.05 0.89 1.07 0.85

Table 4. Parameter settings for power comparison of R
(1)
n and R

(2)
n (Section

5.5).

Normal Case

Common parameter settings: F0 : N(0, 1), F2 : N(−1, 2)

Parameter settings for F1

0 1 2 3 4 5

N(1.5, 0.5) N(1.57, 0.45) N(1.58, 0.41) N(1.6, 0.39) N(1.62, 0.36) N(1.64, 0.31)

Gamma Case

Common parameter settings: F0 : Γ(2, 1)

Parameter settings for F1

0 1 2 3 4 5

Γ(4, 3) Γ(5.3, 4.3) Γ(6.3, 5.3) Γ(7.1, 6.1) Γ(8.3, 7.3) Γ(10, 9)
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