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Abstract: The issues of model-based clustering and classification of longitudinal

data have received increasing attention in recent years. In this paper, we propose

a finite mixture of multivariate t linear mixed-effects model (FM-MtLMM) for

analyzing longitudinally measured multi-outcome data arisen from more than one

heterogeneous sub-population. The motivation behind this work comes from a

cohort study of patients with primary biliary cirrhosis, where the interest is in

classifying new patients into two or more prognostic groups on the basis of their

longitudinally observed bilirubin and albumin levels. The proposed FM-MtLMM

offers robustness and flexibility to accommodate fat tails or atypical observations

contained in one or several of the groups. An efficient alternating expectation

conditional maximization (AECM) algorithm is employed for the computation of

maximum likelihood estimates of parameters. The calculation of standard errors

is effected by an information-based method. Practical techniques for clustering

of multivariate longitudinal data, estimation of random effects, and classification

of future patients are also provided. The methodology is illustrated by analyzing

Mayo Clinic Primary Biliary Cirrhosis sequential (PBCseq) data and a simulation

study.
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1. Introduction

Finite mixtures of linear mixed models (FM-LMM; Verbeke and Lesaffre

(1996)), combining the potency of (univariate) linear mixed models (LMM; Laird

andWare (1982)) and finite normal mixture models (McLachlan and Peel (2000)),

have emerged as one of the most effective tools for clustering grouped longitudi-

nal data in which a single continuous outcome is observed and class memberships

may not be known a priori. De la Cruz-Meśıa, Quintana and Marshall (2008)

proposed a nonlinear formulation of FM-LMM for classification of hormone tra-

jectories with nonlinear profiles. The clustering method for discrete longitudinal

data can be carried out in a similar way by replacing LMMs with generalized
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linear mixed models (GLMM; Molenberghs and Verbeke (2005)), where a nor-

mal mixture framework is assumed for the random effects (Spiessens, Verbeke

and Komárek (2002)); Komárek and Lesaffre (2008)). Earlier developments of

FM-LMM can be found in Spiessens, Verbeke and Komárek (2002), Gaffney and

Smyth (2003), Pfeifer (2004), Celeux, Martin and Lavergne (2005), Ng et al.

(2006), and Booth, Casella and Hobert (2008), among others. In recent years,

a number of authors, for example, Pinheiro, Liu and Wu (2001), Rosa, Gianola

and Padovani (2004), Lin and Lee (2006), Lin and Lee (2007), and Song, Zhang

and Qu (2007), have put forward robust generalizations of LMM using the multi-

variate t distribution (Kotz and Nadarajah (2004)), known as the t linear mixed

model (tLMM). Bai, Chen and Yao (2016) presented a finite mixture of tLMMs

(FM-tLMM) to accommodate heterogeneity among repeated measures. However,

the application of FM-tLMM approach is limited to single-outcome longitudinal

data.

In many biomedical studies or clinical trials, it is common to have data

with more than one response variables on the same subject measured repeatedly

over time leading to multivariate longitudinal data. For handling such data,

Shah, Laird and Schoenfeld (1997) pioneered the introduction of a multivariate

generalization of LMM by exploiting a correlation structure across responses: the

multivariate linear mixed-effects model (MLMM). They developed an iterative

EM algorithm (Dempster, Laird and Rubin (1977)) to estimate the parameters

of the model. Villarroel, Marshall and Barón (2009) performed cluster analysis

using the multivariate nonlinear mixed-effects model (MNLMM) proposed by

Marshall et al. (2006), who described an EM algorithm for parameter estimation

based on the first-order Taylor approximation. In the case where group labels

are predefined, Marshall et al. (2009) developed a discrimination procedure using

the MNLMM for predicting the class membership of future subjects. Komárek

and Komárková (2013) investigated the problem of clustering for multivariate

mixed-type longitudinal data using an appropriate Bayesian Markov chain Monte

Carlo (MCMC) scheme. For robust inference against potential outliers in multi-

outcome longitudinal data, Wang and Fan (2011) have extended the tLMM to

a multivariate version, called the multivariate t linear mixed model (MtLMM).

Further developments along this line can be found in Wang (2013) and Wang and

Lin (2014). In spite of having robustness against non-normality due to outliers

or atypical (influential) observations, the MtLMM is still limited to its practical

use for clustering and classification of grouped multivariate longitudinal data.

The objective of this paper is to establish a framework for providing extra

flexibility, called finite mixtures of multivariate t linear mixed-effects model (FM-

MtLMM), constructed by imposing mixtures of multivariate t distributions (Peel

and McLachlan (2000)) for the random effects and within-subject errors jointly.
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In this model, the number of components is fixed but possibly unknown and can

be determined using the penalized likelihood-based information selection crite-

ria. Notably, the proposed FM-MtLMM allows practitioners to simultaneously

cluster/classify multiple longitudinal profiles into several internally homogeneous

sub-populations, to describe association-of-the-evolutions and evolution-of-the-

association (Wang (2013)) for multi-outcome repeated measures, and to capture

the fat-tailed phenomena existing in the data.

Maximum likelihood (ML) estimation of the FM-MtLMM is considerably

more complicated than that of single-component MtLMM because its mixture

framework does not offer explicit analytical solutions for the ML estimators of

model parameters. To cope with the computational difficulty, we develop an

efficient alternating expectation conditional maximization (AECM) algorithm

(Meng and van Dyk (1997)) on the basis of three convenient hierarchical represen-

tations. Once the parameter estimates have been obtained, it is more meaningful

in practice to cluster subjects into a pre-specified number of groups even with-

out a priori known class memberships and further to discriminate new subjects

based on the results of training data. Therefore, the problems of model-based

clustering of multi-outcome longitudinal profiles and discrimination of external

subjects are also investigated.

The outline for the rest of this paper is as follows. Section 2 describes a mo-

tivating example concerning a preliminary analysis of Primary Biliary Cirrhosis

sequential (PBCseq) data. Section 3 introduces the proposed FM-MtLMM and

presents some relevant properties. Section 4 presents an efficient AECM algo-

rithm for parameter estimation and an approximation method for standard-errors

calculation. Practical issues on the clustering of longitudinal profiles, estimation

of random effects and discriminant analysis for new subjects are also provided.

The proposed methodology is illustrated in Section 5 with the analysis of PBCseq

data and in Section 6 with a simulation study. Section 7 delivers summaries of the

paper and some directions for future research. Technical details and additional

computing results are sketched in the supplementary document.

2. Motivating Example: Primary Biliary Cirrhosis Sequential Data

In a follow-up study of primary biliary cirrhosis, participants were repeatedly

measured for their serum bilirubin and serum albumin, as well as other fractions

of blood and plasma. An extremely higher level than the standard that bilirubin

is excreted in bile and urine can indicate certain diseases. Serum albumin may

be harmful to humans having too high or too low circulating serum albumin

levels. Typically, it is believed that there exist some relationships between serum

bilirubin and serum albumin levels, and thus a joint analysis of the longitudinally

collected bilirubin and albumin has received increasing emphasis in diagnosing
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Smyth (2003), Pfeifer (2004), Celeux, Martin and Lavergne (2005), Ng et al.

(2006), and Booth, Casella and Hobert (2008), among others. In recent years,

a number of authors, for example, Pinheiro, Liu and Wu (2001), Rosa, Gianola

and Padovani (2004), Lin and Lee (2006), Lin and Lee (2007), and Song, Zhang

and Qu (2007), have put forward robust generalizations of LMM using the multi-

variate t distribution (Kotz and Nadarajah (2004)), known as the t linear mixed

model (tLMM). Bai, Chen and Yao (2016) presented a finite mixture of tLMMs

(FM-tLMM) to accommodate heterogeneity among repeated measures. However,

the application of FM-tLMM approach is limited to single-outcome longitudinal

data.

In many biomedical studies or clinical trials, it is common to have data

with more than one response variables on the same subject measured repeatedly

over time leading to multivariate longitudinal data. For handling such data,

Shah, Laird and Schoenfeld (1997) pioneered the introduction of a multivariate

generalization of LMM by exploiting a correlation structure across responses: the

multivariate linear mixed-effects model (MLMM). They developed an iterative

EM algorithm (Dempster, Laird and Rubin (1977)) to estimate the parameters

of the model. Villarroel, Marshall and Barón (2009) performed cluster analysis

using the multivariate nonlinear mixed-effects model (MNLMM) proposed by

Marshall et al. (2006), who described an EM algorithm for parameter estimation

based on the first-order Taylor approximation. In the case where group labels

are predefined, Marshall et al. (2009) developed a discrimination procedure using

the MNLMM for predicting the class membership of future subjects. Komárek
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liver diseases. The issues of how the bilirubin/albumin levels evolve over time,

how the evolution of bilirubin is related to the evolution of albumin, and how the

association between bilirubin and albumin evolves over time are natural ones.

2.1. Description of the PBCseq data

In a subset of the data from the Primary Biliary Cirrhosis sequential (PBC-

seq) cohort study, 312 patients were recruited from the Mayo Clinic between

January 1974 and May 1984, and participated in either of two double-blind,

placebo-controlled, randomized trials with D-penicillamine for treating primary

biliary cirrhosis until April 1988. A clinical laboratory database was established

on each patient who was collected repeatedly and prospectively at yearly inter-

vals under standardized forms, definitions, and study protocols. The collected

variables comprised ID number; five time variables, including age and total num-

ber of follow-up days; eight categorical variables, including sex, drug and status;

two censoring indicators for events; and seven continuous measurement variables,

including the natural logarithm scale of bili and albumin. A total of 1945 visit

rows and 38 variables on the 312 randomized patients are freely available from

the R package mixAK (Komárek and Komárková (2014)) and electronically at

http://lib.stat.cmu.edu/datasets/pbcseq.

Among these patients (36 males and 276 females), the total number of follow-

up days ranges from 41 to 5,225 days, and the age at entry ranges from 26 to 79

years. At the endpoint of this cohort study, 140 of the patients had died, Group 1,

while 172 were known to be alive, Group 0. A comprehensive description of the

clinical background can be found in Dickson et al. (1989), Markus et al. (1989),

and Fleming and Harrington (1991); the data have been previously analyzed by

Murtaugh et al. (1994).

Biomedical research indicates that serum bilirubin and serum albumin are

two of primary indicators to help evaluate and track the absence of liver dis-

eases. Orthotopic liver transplantation can be treated as potentially life-saving

alternative for patients with advanced or end-stage primary biliary cirrhosis. As

a consequence, we concentrate on modeling the dependence of the longitudinal

profiles of two markers, say natural logarithm of serum bilirubin (lbili) and the

natural logarithm of serum albumin (lalbumin), on time (visited years) and other

covariates of interest (e.g., sex, drug, age). Investigating how to cluster or classify

the bivariate longitudinal markers can raise many new statistical interests and

challenges.

2.2. Preliminary analysis

Figure 1 displays the trajectories for exploring the evolution of lbili and lal-

bumin markers in Groups 0 and 1. It can be observed that the trend of population
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mean profiles vary over time, and patients differ in their initial levels and time

trends between the two groups. Supplementary Table S1 presents the observed

correlations between lbili and lalbumin levels across time (in diagonal) along with

the observed autocorrelations of each response at lags 1–16 in terms of scheduled

years (lbili in upper-triangular entries and lalbumin in lower-triangular entries).

Because the response variables are measured irregularly, observations that are

not measured on schedule are treated as at nearest regularly scheduled years in

the computation of correlations. From Table S1, the two markers appear to be

negatively correlated across time. Meanwhile, the magnitude of autocorrelation

on each outcome may decay across time lag. Thus, an uncorrelated structure or

a compound symmetry assumption on within-patient variability of each outcome

across time may be inappropriate.

Let yi1k and yi2k be the levels of lbili and lalbumin markers, respectively, for

the ith patient measured at the kth occasion. Assuming a linear trend in time for

the population average and patient-specific intercepts and slopes for the random

effects, we preliminarily fit LMMs for yi1k and yi2k separately by using the lme

(Pinheiro et al. (2014)) R package:

yijk = βj0 + βj1tik + bij0 + bij1tik + eijk, for j = 1, 2,

where (βj0, βj1) are the regression coefficients of fixed effects for marker j,

(bij0, bij1) are multivariate normally distributed random effects, and indepen-

dent of (eij1, . . ., eijsi), which follow a multivariate normal distribution with zero

mean and variance-covariance matrix of a continuous-type autoregressive process

of order 1, and tik = monthik/12 is the kth visit years for patient i.

The upper panel of Figure 2 displays scatter plots along with the 95% confi-

dence ellipses and summary histograms of empirical Bayes estimates of random

intercepts and slopes obtained after fitting the LMMs to the two markers. Dif-

ferent colors and symbols represent different groups. In the lower panel of this

figure, scatter plots of fitted values against residuals, along with their 95% con-

fidence ellipses and boxplots of residuals, for lbili are shown in the two graphs

on the left-hand side, while those for lalbumin are shown in the two graphs on

the right-hand side. The scatter plots exhibit a difference in the variations of

random effects and within-subject errors between the two groups, suggesting

that the homogeneity assumption for the underlying distributions of random ef-

fects and within-subject errors might not be realistic. The boxplots exhibit the

heavy-tailed phenomenon for residuals, especially for those patients in Group 1,

revealing that some atypical observations or outliers might exist in the data.

From these findings, the routine homogeneity and normality assumptions for

the random effects and errors appear inappropriate for modeling this data set.
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Figure 1. Trajectories plots for the PBCseq data. Observed evolution (in
gray) of lbili and lalbumin markers for 312 patients. Solid and dashed (dot
and dot-dashed) lines show the fitted mean profiles of male (female) patients
who were treated with placebo (Drug=0) and D-penicillamine (Drug=1),
respectively, with mean random effects in Group 0 and Group 1 under the
fitted FM-MtNLMM with RIS and DEC errors.

Indeed, a misspecified distribution for random quantities in the model can seri-

ously influence parameter estimates as well as their standard errors, subsequently

leading to invalid statistical inferences. Besides, a separate analysis of the two

markers can lose important information about evolutional relationships among

multiple responses across time. This motivates us to establish a more robust and

flexible model.
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Figure 2. (Upper panel) Scatter plots along with the 95% confidence el-
lipses and histogram of empirical Bayes estimates for random effects; (Lower
left/right panel) Scatter plots along with the 95% confidence ellipses and
boxplots of residuals for lbili and lalbumin under the fitted LMMs for lbili
and lalbumin markers, separately.

3. Model Formulation

Suppose that there are n subjects from G heterogeneous groups in a study,

where the ith subject has r outcome variables measured repeatedly over si
time points. Let Yi = [yi1 : · · · : yir] be a si × r matrix of responses for

subject i (i = 1, . . . , n), where each yij = (yij,1, . . . , yij,si)
T is a si × 1 re-

sponse vector for outcome j (j = 1, . . . , r). Let Xi = diag{Xi1, . . . ,Xir} and

Zi = diag{Zi1, . . . ,Zir}, where Xij is a si × pj full-rank design matrix for fixed

effects associated with yij , and Zij , formed usually by a subset of Xij , is a si×qj
design matrix for random effects. The block-diagonal structures of Xi and Zi

allow the analysts to link the grand and subject-specific relationships between

covariates and each response, which is collected repeatedly at unequally spaced

occasions for each subject, via distinct design matrices for each response. Let

Eig = [ei1,g : . . . : eir,g] = [eTi·1,g : . . . : eTi·si,g]
T be the si × r matrix of within-

subject errors of the gth component corresponding to Yi, where eij,g is a si × 1

error vector of component g for outcome j over si occasions, and ei·k,g is a 1×r er-
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ror vector of component g for all outcomes at the same occasion (k = 1, . . . , si).

For notational convenience, we write yi = vec(Yi) and εig = vec(Eig), where

vec(·) is the vectorization operator. Finally, we let ni = sir, and p =
∑r

j=1 pj
and q =

∑r
j=1 qj be the total dimensions of fixed effects and random effects,

respectively.

The FM-MtLMM for the ith subject can be formulated as

yi = Xiβg + Zibig + εig with mixing probability wg, (3.1)

for g = 1, . . . , G subject to
∑G

g=1wg = 1, along with the assumption that

[
big

εig

]
∼ Tq+ni

([
0

0

]
,

[
Dg 0

0 Rig

]
, νg

)
, (3.2)

where Td(µ,Ω, ν) denotes the multivariate t distribution with dimension d, lo-

cation vector µ, scale-covariance matrix Ω, and degrees of freedom (DOF) ν.

Here, βg = (βT
g1, . . . ,β

T
gr)

T is a p× 1 vector of fixed effects of the gth component

with each pj × 1 sub-vector βgj used to describe the component mean profile of

outcome j, big = (bT
ig,1, . . . ,b

T
ig,r)

T is a q×1 vector of (unobservable) component

random effects with each qj ×1 sub-vector big,j corresponding to subject-specific

features on yij , Dg and Rig are scale-covariance matrices for component random

effects and component within-subject errors, respectively, and νg is the compo-

nent DOF.

For the sake of parsimony, we can assume that eij,g ∼ Tsi(0, σjj,gCig, νg) for

j = 1, . . . , r, and ei·k,g ∼ Tr(0,Σg, νg) for k = 1, . . . , si, where Σg = [σjj′,g] ∈
Rr×r is used to describe the variances and covariances among r outcome vari-

ables, and Cig ∈ [−1, 1]si×si is a time-dependence correlation matrix used to

address possibly serial correlation among si irregularly observed occasions. Ac-

cordingly, the within-subject error matrix Eig follows the matrix-t distribution

(Kibria (2006)), and thereby the stacked ni×1 vector εig follows the multivariate

t distribution with the DOF νg, location vector zero, and scale-covariance matrix

of having a Kronecker product (KP) structure, written as Rig = Σg⊗Cig, which

helps us to estimate Rig more accurately. As suggested by Galecki (1994), to

avoid the non-identifiability problem resulting from non-unique solutions of Σg

and Cig in estimating Rig with a KP structure (Lee et al. (2013)), we need to

specify Cig as a correlation matrix rather than a covariance matrix. To make

estimation of Cig more precise, we could choose a parsimonious structure on this

correlation matrix, which can be a function of parameters ρg as well as time

points ti, denoted by Cig = Ci(ρg), based on the characteristics of the data at

hand.
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Under (3.1) and (3.2), the marginal density of yi is

f(yi) =

G∑
g=1

wgtni(yi|Xiβg,Λig, νg), (3.3)

where Λig = ZiDgZ
T
i + Σg ⊗ Cig, and td(·|µ,Σ, ν) is the probability density

function (pdf) of d-variate t distribution with location vector µ, scale-covariance

matrix Σ, and DOF ν. Summing over the natural logarithm of the marginal den-

sities of y = {yi}ni=1 gives the log-likelihood function of the full model parameter

Θ = {wg,βg,Dg,Σg, ρg, νg}Gg=1, denoted by ℓ(Θ|y) =
∑n

i=1 log f(yi). As there

is no explicit analytical solution for the ML estimator Θ̂ through a direct maxi-

mization of ℓ(Θ|y), we utilize the AECM algorithm described in Section 4.1.

To develop the AECM algorithm, we present several hierarchies of the FM-

MtLMM by introducing the allocation indicator vector ui = (ui1, . . . , uiG), in

which the entry uig = 1 if yi belongs to the gth group and uig = 0 otherwise.

Accordingly, the vector ui independently follows a multinomial distribution with

one trial and cell probabilities (w1, . . . , wG) subject to
∑G

g=1wg = 1. As such, a

two-level hierarchy of the FM-MtLMM takes the form of

yi|(uig = 1) ∼ Tni(Xiβg,Λig, νg), (3.4)

ui ∼M(1, w1, . . . , wG).

Using the definition of the multivariate t distribution in conjunction with the

marginal distribution of ui in (3.4), we obtain a flexible three-level hierarchy:

yi|(τi, uig = 1) ∼Nni(Xiβg, τ
−1
i Λig), (3.5)

τi|(uig = 1) ∼ Gamma
(νg
2
,
νg
2

)
,

where the τi’s are independent and identically distributed (i.i.d.) latent inverse

variances that follow the gamma distribution with shape νg/2 and rate νg/2 given

uig = 1. Combining the conditional distribution of τi given uig = 1 in (3.5) and

the marginal distribution of ui in (3.4) leads to the four-level hierarchy:

yi|(big, τi, uig = 1) ∼Nni(Xiβg + Zibig, τ
−1
i Rig), (3.6)

big|(τi, uig = 1) ∼Nq(0, τ
−1
i Dg).

4. Computation Methodology

4.1. Parameter estimation via the AECM algorithm

The AECM algorithm (Meng and van Dyk (1997)), a variant of the EM

algorithm (Dempster, Laird and Rubin (1977)), uses different complete data of
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ror vector of component g for all outcomes at the same occasion (k = 1, . . . , si).

For notational convenience, we write yi = vec(Yi) and εig = vec(Eig), where
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εig
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0

0

]
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Dg 0

0 Rig

]
, νg

)
, (3.2)

where Td(µ,Ω, ν) denotes the multivariate t distribution with dimension d, lo-

cation vector µ, scale-covariance matrix Ω, and degrees of freedom (DOF) ν.

Here, βg = (βT
g1, . . . ,β

T
gr)

T is a p× 1 vector of fixed effects of the gth component

with each pj × 1 sub-vector βgj used to describe the component mean profile of

outcome j, big = (bT
ig,1, . . . ,b

T
ig,r)

T is a q×1 vector of (unobservable) component

random effects with each qj ×1 sub-vector big,j corresponding to subject-specific

features on yij , Dg and Rig are scale-covariance matrices for component random

effects and component within-subject errors, respectively, and νg is the compo-

nent DOF.

For the sake of parsimony, we can assume that eij,g ∼ Tsi(0, σjj,gCig, νg) for

j = 1, . . . , r, and ei·k,g ∼ Tr(0,Σg, νg) for k = 1, . . . , si, where Σg = [σjj′,g] ∈
Rr×r is used to describe the variances and covariances among r outcome vari-

ables, and Cig ∈ [−1, 1]si×si is a time-dependence correlation matrix used to

address possibly serial correlation among si irregularly observed occasions. Ac-

cordingly, the within-subject error matrix Eig follows the matrix-t distribution

(Kibria (2006)), and thereby the stacked ni×1 vector εig follows the multivariate

t distribution with the DOF νg, location vector zero, and scale-covariance matrix

of having a Kronecker product (KP) structure, written as Rig = Σg⊗Cig, which

helps us to estimate Rig more accurately. As suggested by Galecki (1994), to

avoid the non-identifiability problem resulting from non-unique solutions of Σg

and Cig in estimating Rig with a KP structure (Lee et al. (2013)), we need to

specify Cig as a correlation matrix rather than a covariance matrix. To make

estimation of Cig more precise, we could choose a parsimonious structure on this

correlation matrix, which can be a function of parameters ρg as well as time

points ti, denoted by Cig = Ci(ρg), based on the characteristics of the data at

hand.
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Under (3.1) and (3.2), the marginal density of yi is

f(yi) =

G∑
g=1

wgtni(yi|Xiβg,Λig, νg), (3.3)

where Λig = ZiDgZ
T
i + Σg ⊗ Cig, and td(·|µ,Σ, ν) is the probability density

function (pdf) of d-variate t distribution with location vector µ, scale-covariance

matrix Σ, and DOF ν. Summing over the natural logarithm of the marginal den-

sities of y = {yi}ni=1 gives the log-likelihood function of the full model parameter

Θ = {wg,βg,Dg,Σg, ρg, νg}Gg=1, denoted by ℓ(Θ|y) =
∑n

i=1 log f(yi). As there

is no explicit analytical solution for the ML estimator Θ̂ through a direct maxi-

mization of ℓ(Θ|y), we utilize the AECM algorithm described in Section 4.1.

To develop the AECM algorithm, we present several hierarchies of the FM-

MtLMM by introducing the allocation indicator vector ui = (ui1, . . . , uiG), in

which the entry uig = 1 if yi belongs to the gth group and uig = 0 otherwise.

Accordingly, the vector ui independently follows a multinomial distribution with

one trial and cell probabilities (w1, . . . , wG) subject to
∑G

g=1wg = 1. As such, a

two-level hierarchy of the FM-MtLMM takes the form of

yi|(uig = 1) ∼ Tni(Xiβg,Λig, νg), (3.4)

ui ∼M(1, w1, . . . , wG).

Using the definition of the multivariate t distribution in conjunction with the

marginal distribution of ui in (3.4), we obtain a flexible three-level hierarchy:

yi|(τi, uig = 1) ∼Nni(Xiβg, τ
−1
i Λig), (3.5)

τi|(uig = 1) ∼ Gamma
(νg
2
,
νg
2

)
,

where the τi’s are independent and identically distributed (i.i.d.) latent inverse

variances that follow the gamma distribution with shape νg/2 and rate νg/2 given

uig = 1. Combining the conditional distribution of τi given uig = 1 in (3.5) and

the marginal distribution of ui in (3.4) leads to the four-level hierarchy:

yi|(big, τi, uig = 1) ∼Nni(Xiβg + Zibig, τ
−1
i Rig), (3.6)

big|(τi, uig = 1) ∼Nq(0, τ
−1
i Dg).

4. Computation Methodology

4.1. Parameter estimation via the AECM algorithm

The AECM algorithm (Meng and van Dyk (1997)), a variant of the EM

algorithm (Dempster, Laird and Rubin (1977)), uses different complete data of
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the model in order to obtain simple closed-form expressions of updating estima-

tors and achieve acceleration of the algorithm. To employ the AECM algorithm

for the fitting of FM-MtLMM, we partition the set of unknown parameters Θ

into the subsets Θ1 = {wg, ρg, νg}Gg=1, Θ2 = {βg}Gg=1 and Θ3 = {Dg,Σg}Gg=1.

In each iteration, the AECM algorithm consists of three cycles with each cycle

updating different subsets of parameters based on three hierarchical forms of

the FM-MtLMM, say (3.4), (3.5) and (3.6). The following result is useful for the

evaluation of required conditional expectations involved in Q[1] and Q[2] functions

described in detail in Supplementary Material.

Proposition 1. From (3.4) to (3.6), the conditional probability of the alloca-

tion indicator uig given yi, and the conditional distributions of random inverse

variance τi and random effects big given yi and uig = 1 are

pig = P (uig = 1|yi) =
wgtni(yi|Xiβg,Λig, νg)∑G
l=1wltni(yi|Xiβl,Λil, νl)

, (4.1)

τi|(yi, uig = 1) ∼ Gamma
(νg + ni

2
,
νg +∆ig

2

)
,

big|(yi, uig = 1) ∼ Tq
(
DgZ

T
i Λ

−1
ig (yi −Xiβg),

(νg +∆ig

νg + ni

)
Vbig , νg + ni

)
,

where ∆ig = (yi −Xiβg)
TΛ−1

ig (yi −Xiβg) and Vbig = (D−1
g + ZT

i R
−1
ig Zi)

−1.

Proof: The proof of the proposition is straightforward based on the Bayes’

rule and standard matrix factorizations (Anderson (2003)).

Given an appropriate initial value of the model parameter Θ̂(0), the AECM

algorithm proceeds as follows.

The 1st cycle

E-step: Evaluate the conditional expectation of complete-data log-likelihood

function (S.1) given the observed data y and current values Θ̂(h) =

(Θ̂
(h)
1 , Θ̂

(h)
2 , Θ̂

(h)
3 ), which gives the Q[1] function.

CM-step: Update ŵ
(h)
g by maximizing the Q[1] function, yielding ŵ

(h+1)
g =

∑n
i=1

û
(h)
ig /n.

CML-step: Update ρ̂
(h)
g and ν̂

(h)
g by maximizing the constrained actual log-likeli-

hood functions evaluated at wg = ŵ
(h)
g , βg = β̂

(h)
g , Dg = D̂

(h)
g and

Σg = Σ̂
(h)
g .

This can be done by carrying out the default-install R optim function (R Devel-

opment Core Team. (2014)) subject to a two-dimensional box constraint. The
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optim command is a general-purpose optimization routine based on Nelder-Mead,
quasi-Newton and conjugate-gradient algorithms.

The 2nd cycle

E-step: Given y and Θ̂(h+1/3) = (Θ̂
(h+1)
1 , Θ̂

(h)
2 , Θ̂

(h)
3 ), evaluate the conditional

expectation of complete-data log-likelihood function (S.3), which gives
the Q[2] function.

CM-step: Update β̂
(h)
g by maximizing the Q[2] function, yielding

β̂(h+1)
g =

( n∑
i=1

û
(h)
ig τ̂

(h)
ig XT

i Λ̂
(h)−1

ig Xi

)−1( n∑
i=1

û
(h)
ig τ̂

(h)
ig XT

i Λ̂
(h)−1

ig yi

)
,

(4.2)

where û
(h)
ig is calculated by (4.1) evaluated at Θ = Θ̂(h+1/3), and τ̂

(h)
ig =

(ν̂
(h)
g +ni)

/
(ν̂

(h)
g +∆̂

(h)
ig ) with ∆̂

(h)
ig being ∆ig evaluated atΘ = Θ̂(h+1/3).

The 3rd cycle

E-step: Evaluating the conditional expectation of the complete-data log-likelihood
function (S.7), given y and Θ̂(h+2/3) = (Θ̂

(h+1)
1 , Θ̂

(h+1)
2 , Θ̂

(h)
3 ), leads to

the Q[3] function.

CM-step: Updating D̂
(h)
g and Σ̂

(h)
g = [σ̂

(h)
g,ls] by maximizing the Q[3] function gives

D̂(h+1)
g =

n∑
i=1

û
(h)
ig

�τB(h)

ig∑n
i=1 û

(h)
ig

, (4.3)

σ̂
(h+1)
g,ls =




( n∑
i=1

siû
(h)
ig

)−1
n∑

i=1

û
(h)
ig tr

(
Ĉ−1

i (ρ̂(h)g )ψ̂
(h)
ig,ls(β̂

(h+1)
g )

)
, l = s,

(
2

n∑
i=1

siû
(h)
ig

)−1
n∑

i=1

û
(h)
ig tr

(
Ĉ−1

i (ρ̂(h)g )
[
ψ̂

(h)
ig,ls(β̂

(h+1)
g )

+ψ̂
(h)
ig,sl(β̂

(h+1)
g )

])
, l ̸= s,

(4.4)

for l, s = 1, . . . , r, where �τB(h)

ig = τ̂
(h)
ig b̂

(h)
ig b̂

(h)T

ig +V̂
(h)
big

, and ψ̂
(h)
ig,ls(βg) =

τ̂
(h)
ig ê

(h)
ig,lê

(h)T
ig,s + ZilV̂

(h)
big,ls

ZT
is is a si × si square submatrix of �τE(h)

ig (βg)

given in (S.9) with b̂
(h)
ig = D̂

(h)
g ZT

i Λ̂
(h)−1

ig (yi − Xiβ̂
(h)
g ), V̂

(h)
big

being

Vbig defined in Proposition 1 and evaluated at Θ = Θ̂(h+2/3), ê
(h)
ig,l =

yil − Xilβgl − Zilb̂
(h)
ig,l, and V̂

(h)
big,ls

a ql × qs submatrix consisting of

the (
∑l−1

j=1 qj + 1)th to (
∑l

j=1 qj)th rows and the (
∑s−1

j=1 qj + 1)th to

(
∑s

j=1 qj)th columns of V̂
(h)
big

.
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the model in order to obtain simple closed-form expressions of updating estima-

tors and achieve acceleration of the algorithm. To employ the AECM algorithm

for the fitting of FM-MtLMM, we partition the set of unknown parameters Θ

into the subsets Θ1 = {wg, ρg, νg}Gg=1, Θ2 = {βg}Gg=1 and Θ3 = {Dg,Σg}Gg=1.

In each iteration, the AECM algorithm consists of three cycles with each cycle

updating different subsets of parameters based on three hierarchical forms of

the FM-MtLMM, say (3.4), (3.5) and (3.6). The following result is useful for the

evaluation of required conditional expectations involved in Q[1] and Q[2] functions

described in detail in Supplementary Material.

Proposition 1. From (3.4) to (3.6), the conditional probability of the alloca-

tion indicator uig given yi, and the conditional distributions of random inverse

variance τi and random effects big given yi and uig = 1 are

pig = P (uig = 1|yi) =
wgtni(yi|Xiβg,Λig, νg)∑G
l=1wltni(yi|Xiβl,Λil, νl)

, (4.1)

τi|(yi, uig = 1) ∼ Gamma
(νg + ni

2
,
νg +∆ig

2

)
,

big|(yi, uig = 1) ∼ Tq
(
DgZ

T
i Λ

−1
ig (yi −Xiβg),

(νg +∆ig

νg + ni

)
Vbig , νg + ni

)
,

where ∆ig = (yi −Xiβg)
TΛ−1

ig (yi −Xiβg) and Vbig = (D−1
g + ZT

i R
−1
ig Zi)

−1.

Proof: The proof of the proposition is straightforward based on the Bayes’

rule and standard matrix factorizations (Anderson (2003)).

Given an appropriate initial value of the model parameter Θ̂(0), the AECM

algorithm proceeds as follows.

The 1st cycle

E-step: Evaluate the conditional expectation of complete-data log-likelihood

function (S.1) given the observed data y and current values Θ̂(h) =

(Θ̂
(h)
1 , Θ̂

(h)
2 , Θ̂

(h)
3 ), which gives the Q[1] function.

CM-step: Update ŵ
(h)
g by maximizing the Q[1] function, yielding ŵ

(h+1)
g =

∑n
i=1

û
(h)
ig /n.

CML-step: Update ρ̂
(h)
g and ν̂

(h)
g by maximizing the constrained actual log-likeli-

hood functions evaluated at wg = ŵ
(h)
g , βg = β̂

(h)
g , Dg = D̂

(h)
g and

Σg = Σ̂
(h)
g .

This can be done by carrying out the default-install R optim function (R Devel-

opment Core Team. (2014)) subject to a two-dimensional box constraint. The
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optim command is a general-purpose optimization routine based on Nelder-Mead,
quasi-Newton and conjugate-gradient algorithms.

The 2nd cycle

E-step: Given y and Θ̂(h+1/3) = (Θ̂
(h+1)
1 , Θ̂

(h)
2 , Θ̂

(h)
3 ), evaluate the conditional

expectation of complete-data log-likelihood function (S.3), which gives
the Q[2] function.

CM-step: Update β̂
(h)
g by maximizing the Q[2] function, yielding

β̂(h+1)
g =

( n∑
i=1

û
(h)
ig τ̂

(h)
ig XT

i Λ̂
(h)−1

ig Xi

)−1( n∑
i=1
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(h)−1
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)
,

(4.2)

where û
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ig is calculated by (4.1) evaluated at Θ = Θ̂(h+1/3), and τ̂

(h)
ig =

(ν̂
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/
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g +∆̂
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ig ) with ∆̂
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ig being ∆ig evaluated atΘ = Θ̂(h+1/3).
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function (S.7), given y and Θ̂(h+2/3) = (Θ̂
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g,ls] by maximizing the Q[3] function gives
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û
(h)
ig

�τB(h)
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, (4.3)
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(h)
ig

)−1
n∑

i=1

û
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for l, s = 1, . . . , r, where �τB(h)

ig = τ̂
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, and ψ̂
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given in (S.9) with b̂
(h)
ig = D̂
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(h)−1

ig (yi − Xiβ̂
(h)
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being

Vbig defined in Proposition 1 and evaluated at Θ = Θ̂(h+2/3), ê
(h)
ig,l =

yil − Xilβgl − Zilb̂
(h)
ig,l, and V̂

(h)
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a ql × qs submatrix consisting of

the (
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j=1 qj + 1)th to (
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j=1 qj)th rows and the (
∑s−1

j=1 qj + 1)th to

(
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j=1 qj)th columns of V̂
(h)
big

.
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The E-steps and CM/CML-steps within each cycle continue until a user’s

specified tolerance or the default maximum number of iterations is met. Upon

convergence, we obtain the ML estimates, denoted by Θ̂ = {ŵg, β̂g, D̂g, Σ̂g, ρ̂g,

ν̂g}Gg=1. Additional details on the implementation of AECM algorithm for the

proposed FM-MtLMM are sketched in Supplementary S.1. In most cases, the

EM-type algorithm is not guaranteed to find the global optimum. A poor con-

vergence criterion might lead to premature convergence and subsequently trap

one in a spurious solution. These typically are present when the artifactual com-

ponents are needed to add to cover very small-scale groups of extremely outlying

observations (McLachlan and Peel (2000)). Following the strategy adopted in

Wang, Ng and McLachlan (2009), we have made a slight modification of the

algorithm by adding a simple singularity handling procedure to rule out the oc-

currence of spurious maxima. To assess the convergence of the AECM algorithm

in a strict manner, we make use of Aitken’s acceleration method (Aitken (1926);

and McLachlan and Krishnan (2008)) for alleviating a premature termination.

Letting ℓ(h) be the likelihood value evaluated at θ̂(h), the Aitken accelerated

estimate of the log-likelihood at iteration h is calculated as

ℓ(h+1)
∞ = ℓ(h) +

ℓ(h+1) − ℓ(h)

1− a(h)
,

where a(h) = (ℓ(h+1) − ℓ(h))/(ℓ(h) − ℓ(h−1)) is the Aitken acceleration factor. The

algorithm is stopped as soon as ℓ
(h)
∞ − ℓ(h) < ϵ, where ϵ = 10−5 was used in our

numerical experiments.

Rewrite Θ = (θ1, · · · ,θG), where θg = (wg,βg,αg, νg) represents the param-

eter vector involved in the gth component with αg = (vech(Dg), vech(Σg), ρg),

for g = 1, · · · , G. The natural logarithm of the multiplication of the pdfs of

hierarchy (3.5) for all subjects leads to the complete-data log-likelihood function

of parameters Θ. Taking the first and second derivatives of which with respect

to each entry of parameters, we have the score vector and Hessian matrix for Θ,

s(Θ;y,u) =
(
sTθ1 , . . . , s

T
θG

)T
and H(Θ;y,u) = diag

(
{Hθgθg}Gg=1

)
,

where the sub-entry sθg and the block-diagonal submatrixHθgθg , for g = 1, · · · , G,

can be expressed by sθg =
∑n

i=1 uigs
(i)
θ =

∑n
i=1 uig

[
s
(i)
wg , s

(i)T

βg
, s

(i)T

αg , s
(i)
νg

]T
, and

Hθgθg = −
∑n

i=1 uigH
(i)
θgθg

, respectively. The detailed expressions of the individ-

ual first-two order derivatives, say s
(i)
θg

andH
(i)
θgθg

, are given in Supplementary S.2.

The notation diag({Hg}Gg=1) expresses a aG×aG block-diagonal matrix com-

posed of G sub-matrices with each Hg having dimension a×a, where a is the

number of unknown parameters in component g. Using the method proposed
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by Guo and Thompson (1994), the inverse of the asymptotic variance-covariance

matrix of ML estimates can be approximated by

Var(Θ;y)−1 = diag
({ n∑

i=1

pigH
(i)
θgθg

}G

g=1

)
−

n∑
i=1

Cov(s(i)(Θ;yi,ui)|yi), (4.5)

where pig is given in (4.1) and the individual covariance Cov
(
s(i)(Θ;yi,ui)|yi

)
can be calculated as



pi1(1− pi1)s
(i)
θ1
s
(i)T
θ1

−pi1pi2s
(i)
θ1
s
(i)T
θ2

· · · −pi1piGs
(i)
θ1
s
(i)T
θG

−pi2pi1s
(i)
θ2
s
(i)T
θ1

pi2(1− pi2)s
(i)
θ2
s
(i)T
θ2

· · · −pi2piGs
(i)
θ2
s
(i)T
θG

...
...

. . .
...

−piGpi1s
(i)
θG

s
(i)T
θ1

−piGpi2s
(i)
θg
s
(i)T
θ2

· · · piG(1− piG)s
(i)
θG

s
(i)T
θG



.

Under certain regularity conditions, the construction of confidence intervals or the

hypothesis tests for parameters can be explicitly established by the asymptotic

theory of ML estimators. The asymptotic standard errors are obtained as the

square root of the diagonal entries of Var(Θ;y) in (4.5), with Θ replaced by its

ML estimates.

4.2. Clustering

Once the FM-MtLMM has been fitted, it is of interest to determine to which

group a subject should belong on the basis of the optimal Bayes’ rule. With the

estimated model parameters, a probabilistic clustering of the data into G clusters

is performed by comparing estimated pig’s in (4.1) evaluated at Θ̂, denoted by

ûig. Thus yi is assigned to the group s if maxg{ûig} occurs at the sth component.

When the group labels of subjects are predefined, the evaluation of classifica-

tion accuracy can be treated as an alternative measure of fitness of the data. To

assess the agreement between a clustering of the data and their true group labels,

we adopt two commonly used indices: the correct classification rate (CCR; Lee,

Chen and Hsieh (2003)) and the adjusted Rand index (ARI; Hubert and Arabie

(1985)). The CCR value, ranging between zero and one, is measured as one

minus the lowest classification error among all permutations of predicted cluster

memberships against the predefined (true) group labels. The ARI takes into

account the effect of agreement due to chance. Loosely speaking, the larger the

values of CCR and ARI, the higher the quality of classification: a value of close

to 0 indicates a poor classification, a value of near 1 signifies an ideal agreement

between two clusterings.
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Under certain regularity conditions, the construction of confidence intervals or the

hypothesis tests for parameters can be explicitly established by the asymptotic

theory of ML estimators. The asymptotic standard errors are obtained as the

square root of the diagonal entries of Var(Θ;y) in (4.5), with Θ replaced by its

ML estimates.

4.2. Clustering

Once the FM-MtLMM has been fitted, it is of interest to determine to which

group a subject should belong on the basis of the optimal Bayes’ rule. With the

estimated model parameters, a probabilistic clustering of the data into G clusters

is performed by comparing estimated pig’s in (4.1) evaluated at Θ̂, denoted by

ûig. Thus yi is assigned to the group s if maxg{ûig} occurs at the sth component.

When the group labels of subjects are predefined, the evaluation of classifica-

tion accuracy can be treated as an alternative measure of fitness of the data. To

assess the agreement between a clustering of the data and their true group labels,

we adopt two commonly used indices: the correct classification rate (CCR; Lee,

Chen and Hsieh (2003)) and the adjusted Rand index (ARI; Hubert and Arabie

(1985)). The CCR value, ranging between zero and one, is measured as one

minus the lowest classification error among all permutations of predicted cluster

memberships against the predefined (true) group labels. The ARI takes into

account the effect of agreement due to chance. Loosely speaking, the larger the

values of CCR and ARI, the higher the quality of classification: a value of close

to 0 indicates a poor classification, a value of near 1 signifies an ideal agreement

between two clusterings.
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4.3. Estimation for random effects and fitted responses

In addition to the estimation of fixed effects, it is important to estimate the

random effects as they are useful for evaluating such subject-specific quantities

of interest as individually changed intercepts and slopes. The empirical Bayes

estimates of random effects bi are derived from the Bayesian specification of the

model (Laird and Ware (1982)). Specifically,

b̂i = E(bi | yi, Θ̂) =
G∑

g=1

ûigb̂ig, (i = 1, . . . , n), (4.6)

where b̂ig is b̂
(h)
ig in (S.10) with Θ̂(h) replaced by Θ̂. Consequently, the resulting

fitted response for yi is calculated as

ŷi =
G∑

g=1

ûig(Xiβ̂g + Zib̂ig). (4.7)

Alternative estimates of (4.6) and (4.7) relying on the classification ML approach

(McLachlan and Peel (2000)) are defined by replacing ûig with ũig, where ũig = 1

if ûig ≥ ûsg for s ̸= g and ũig = 0 otherwise.

4.4. Discriminant analysis

Discriminant analysis (Fisher (1936)) is a classical technique that explores a

rule for classifying new individuals into one of the predefined groups. Previous

extensions of the traditional discriminant analysis to multivariate repeated mea-

sure data have been investigated in a number of papers (Albert (1983); Tomasko,

Helms and Snapinn (1999); Morrell et al. (2005); Roy (2006); Roy and Leiva

(2007)). Recently, Komárek et al. (2010) developed a Bayesian approach for

classification of multiple longitudinal markers using the MLMM with a normal

mixture for the random effects. Marshall et al. (2009) described a discrimination

procedure based on the MNLMM with possible missing values.

Suppose that we have a training data set where the memberships of the

involved subjects to prognostic groups (g = 1, . . . , G) are known. Given a pri-

ori probabilities π1, . . . , πG, each prognostic group is characterized by a single

component FM-MtLMM, written as

yi = Xg
iβ

g + Zg
ib

g
i + εgi , with

[
bg
i

εgi

]
∼ Tq+ni

([
0

0

]
,

[
Dg 0

0 Rg
i

]
, νg

)
. (4.8)

Let θg = (βg,Dg,Rg
i , ν

g) consist of unknown parameters for group g. Before

creating the classification rule, the ML estimates of θg must be obtained by

fitting model (4.8) to observations from the respective training samples.
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Now, let ynew = vec([ynew1 : · · · : ynewr]) be a snewr×1 response vector for a

new subject. Without loss of generality, we assume that all of the snew occasions

for ynew are not larger than the maximized history time of the training data.

Then, the strength of the allocation of ynew to the gth group is characterized by

a marginal predictive density p(ynew|θg), estimated as

p̂(ynew|θ̂g) = tsnewr(ynew | Xnewβ̂
g, ZnewD̂

gZT
new + R̂g

i , ν̂
g).

Under the zero-one loss function which minimizes the expected error rate (Hastie,

Tibshirani and Friedman (2001)), the estimated posterior probability of allocat-

ing ynew to group g is given by

P̂g,new =
πgp̂(ynew|θ̂g)∑G
l=1 πlp̂(ynew|θ̂l)

, (g = 1, . . . , G).

If P̂s,new > P̂g,new for s ̸= g, g = 1 . . . , G, then ynew is classified to group s.

5. Analysis of PBCseq Data

We applied the proposed FM-MtLMM approach to analyzing the PBCseq

data described in Section 2. Let yi = (yi1,yi2) be the response vector for the

ith patient, where yi1 and yi2 represent lbili and lalbumin levels, respectively.

Apart from the time effect, it is particular of interest to take into account the

relationship between the longitudinal evolutions of the two markers and the co-

variates of interest, including gender, drug treatment, and age. Thus, the design

matrix for fixed effects is

Xi = I2 ⊗ [1si : ti : sexi1si : drugi1si : agei1si ],

where 1si is a si × 1 vector of ones, ti = (ti1, . . . , tisi) with tik = monthik/12

(years), sexi is a gender indicator (0 = male and 1 = female), drugi is a drug

treatment indicator (0 = patient treated with placebo, and 1 = patient treated

with D-penicillamine); and agei is the age of patient i at entry in years. The

design matrices for random effects are considered to be random intercept (RI),

Zi = I2 ⊗ 1si , and random intercept plus slope (RIS), Zi = I2 ⊗ [1si : ti]. To

address the possible serial correlation among irregularly observed occasions, we

considered the uncorrelated (UNC), the continuous-type autoregressive order 1

(CAR(1)), and the damped exponential correlation (DEC) structures for Cig.

The DEC structure (Muñoz et al. (1992)) is defined as Cig =
[
ϕ
|tik−tik′ |

γg

g

]
,

where the component autoregressive coefficient ϕg ranges between 0 to 1, and

the component damping parameter γg is a nonnegative value.
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relationship between the longitudinal evolutions of the two markers and the co-

variates of interest, including gender, drug treatment, and age. Thus, the design
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address the possible serial correlation among irregularly observed occasions, we
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Table 1. Summary of model selection criteria of 12 candidate models.

Zi Cig
m −2ℓmax AIC BIC

MN MT MN MT MN MT MN MT

UNC 33 35 -16.440 -225.942 49.560 -155.942 173.079 -24.937
RI CAR(1) 35 37 -242.734 -435.686 -172.735 -361.686 -41.729 -223.195

DEC 37 39 -391.422 -557.750 -317.422 -479.750 -178.931 -333.773

UNC 47 49 -440.686 -561.638 -346.686 -463.638 -170.765 -280.231
RIS CAR(1) 49 51 -477.186 -588.346 -379.186 -486.346 -195.778 -295.453

DEC 51 53 -534.166 -666.360 -432.166 -560.360 -241.273 -361.981

MN: FM-MLMM; MT: FM-MtLMM; RI: random intercept; RIS: random intercept plus slope;

m: number of model parameters.

For comparison purposes, the fitting results of finite mixtures of multivariate

linear mixed-effects models (FM-MLMM), which can be treated as the limiting

case of FM-MtLMM when the component DOFs are infinity, are also presented.

We implemented the AECM algorithm presented in Section 4.1 for fitting the

twelve candidate models with 10 random starts for initial clustering. After-

ward, we fit the MLMM (Shah, Laird and Schoenfeld (1997)) to each partitioned

samples across G = 2 different groups and took the resulting ML solutions as

the stating values. Moreover, the initial wgs were taken as the sample pro-

portions and the initial values for νg were given as relatively large values, say

νg = 50, corresponding to an assumption of near-normality. If there existed

multiple modes, the global ML solution was chosen as the one providing the

highest likelihood. For model selection, we adopted the Akaike Information Cri-

terion (AIC= 2m − 2ℓmax; Akaike (1973)) and Bayesian Information Criterion

(BIC= m log n−2ℓmax; Schwarz (1978)), where m is the number of model param-

eters, and ℓmax is the maximized log-likelihood value. Accordingly, the smaller

value of AIC or BIC indicates a better fit of the model. The ML estimation

results of twelve candidate models, including the values of −2ℓmax, AIC and BIC

together with number of parameters m, are listed in Table 1. According to the

AIC or BIC values, the FM-MtLMMs generally provide a better fitting perfor-

mance than their normal counterparts. Among models considered, the scenario of

RIS plus DEC errors gives the best fit under both FM-MLMM and FM-MtLMM.

Table 2 summarizes the ML estimates of model parameters and the stan-

dard errors (SE) of the fixed effects under the ‘best’ fitted FM-MLMM and

FM-MtLMM. The SE of the fixed effects were calculated via the approximate

observed information matrix Var(Θ;y)−1 given in (4.5). From this table, we ob-

serve that the SE of fixed effects under FM-MtLMM are smaller than those under

the FM-MLMM. Focusing on the fitted FM-MtLMM, the patients in Group 0
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(Group 1) receiving D-penicillamine have 0.087 higher (0.143 lower) lbili levels

than those who were treated with placebo. The patients in Group 0 (Group 1)

receiving D-penicillamine have 0.016 higher (0.020 lower) lalbumin levels than

those who were treated with placebo. However, the differences of lbili and lal-

bumin levels between placebo and drug treatments are not highly statistically

significant for patients in either Group 0 or Group 1. It can be found from

the parameters involving the ‘Time’ covariate that the increasing trend of lbili

levels (β̂111 = 0.040, β̂211 = 0.266) and the decreasing trend of lalbumin levels

(β̂121 = −0.014, β̂221 = −0.051) are significantly apparent. The range of changes

over time for Group 1 is much larger than that for Group 0. In addition to the

parameters involving the ‘Time’ and ‘Drug’ covariates, other significant parame-

ters include the intercepts (β120, β210, β220), sex (β112, β222) and age (β224). The

results suggest that the baseline levels of lalbumin marker for both groups are

significantly different from zero, while only that of the lbili marker for Group 1

differs from zero significantly. In Group 0, the female patients show 0.345 lower

lbili levels than the male patients at baseline, while the lalbumin levels of female

and male patients show no significant difference. In Group 1, male and female

patients have no significantly different lbili levels, while female patients show

0.089 lower lalbumin levels than male patients at baseline. Besides, the lalbumin

levels for Group-1 patients decrease 0.005 unit when the age increases one year.

From the estimates of variance components Dg and Σg, we found that the

between-patient variation for patients in Group 1 is larger than that in Group 0.

The estimated correlation coefficients of within-patient errors between the two

markers are around σ121/
√
σ111σ122 = 0.04 and σ221/

√
σ211σ222 = −0.15 for

Group 0 and Group 1, respectively. The estimates of autoregressive and damping

parameters are 0.391 and 0.387, respectively, confirming the existence of positive

serial correlations among occasions for both markers. The estimates of DOFs

are small (ν̂1 = 6.500 and ν̂2 = 11.805), suggesting that the patient-specific

variability for deviating from the mean profiles of both groups exhibits fat-tailed

behaviors. We displayed the estimated mean profiles of male (female) patients

treated with placebo (Drug=0) and D-penicillamine (Drug=1) in different styles

and colors superimposed on the trajectory curves depicted in Figure 1. As can

bee seen, the differences in baseline measurements between male and female as

well as drug treatments are relatively minor, consistent with the significance of

fixed effects for sex and drug covariates shown in Table 2.

Since the group levels for 312 patients are predefined, it is of interest to

compare the classification results using the two ‘best’ fitted models shown in

Table 3. The proposed classification method assigns patients to one cluster ac-

cording to the estimated posterior probabilities of allocation indicators, which

can be obtained immediately as a by-product of the AECM algorithm. As can
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Table 1. Summary of model selection criteria of 12 candidate models.

Zi Cig
m −2ℓmax AIC BIC

MN MT MN MT MN MT MN MT
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RI CAR(1) 35 37 -242.734 -435.686 -172.735 -361.686 -41.729 -223.195
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RIS CAR(1) 49 51 -477.186 -588.346 -379.186 -486.346 -195.778 -295.453
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m: number of model parameters.
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We implemented the AECM algorithm presented in Section 4.1 for fitting the

twelve candidate models with 10 random starts for initial clustering. After-

ward, we fit the MLMM (Shah, Laird and Schoenfeld (1997)) to each partitioned

samples across G = 2 different groups and took the resulting ML solutions as
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variability for deviating from the mean profiles of both groups exhibits fat-tailed

behaviors. We displayed the estimated mean profiles of male (female) patients

treated with placebo (Drug=0) and D-penicillamine (Drug=1) in different styles

and colors superimposed on the trajectory curves depicted in Figure 1. As can

bee seen, the differences in baseline measurements between male and female as

well as drug treatments are relatively minor, consistent with the significance of

fixed effects for sex and drug covariates shown in Table 2.

Since the group levels for 312 patients are predefined, it is of interest to

compare the classification results using the two ‘best’ fitted models shown in

Table 3. The proposed classification method assigns patients to one cluster ac-

cording to the estimated posterior probabilities of allocation indicators, which

can be obtained immediately as a by-product of the AECM algorithm. As can
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Table 2. Summary of parameter estimates along with standard errors of fixed
effects (in parentheses) under the fitted FM-MLMM (MN) and FM-MtLMM
(MT) with RIS and DEC errors for the PBCseq data.

Variances for Variances for

Fixed effects Random Within-subject

effects errors

MN MT MN MT MN MT

Group 0

β110(Intercept) 0.345(0.285) 0.072(0.239) d111 0.217 0.149 σ111 0.043 0.068

β111(Time) 0.053(0.009) 0.040(0.007) d121 0.004 0.001 σ121 0.001 0.001

β112(Sex) -0.276(0.166) -0.345(0.129) d122 0.006 0.003 σ122 0.005 0.009

β113(Drug) 0.060(0.094) 0.087(0.067) d131 -0.006 -0.008 ϕ1 10−6 0.391

β114(Age) -0.006(0.005) 0.00040(0.004) d132 -0.000035 0.00011 γ1 0.740 0.387

β120(Intercept) 1.386(0.037) 1.381(0.034) d133 0.003 0.001 ν1 — 6.500

β121(Time) -0.017(0.002) -0.014(0.001) d141 -0.001 -0.00041

β122(Sex) -0.030(0.021) -0.025(0.020) d142 -0.001 -0.00044

β123(Drug) 0.007(0.012) 0.016(0.012) d143 -0.00010 0.000026

β124(Age) -0.001(0.001) -0.001(0.001) d144 0.00014 0.000064

Group 1

β210(Intercept) 0.843(0.485) 0.917(0.450) d211 0.831 0.721 σ211 0.304 0.267

β211(Time) 0.253(0.021) 0.266(0.018) d221 0.027 -0.007 σ221 -0.008 -0.009

β212(Sex) -0.050(0.233) -0.061(0.222) d222 0.020 0.014 σ222 0.023 0.013

β213(Drug) -0.192(0.159) -0.143(0.123) d231 -0.045 -0.038 ϕ2 0.398 0.391

β214(Age) 0.006(0.008) 0.005(0.006) d232 -0.002 0.00043 γ2 0.461 0.387

β220(Intercept) 1.488(0.063) 1.548(0.052) d233 0.003 0.002 ν2 — 11.805

β221(Time) -0.046(0.004) -0.051(0.003) d241 -0.008 -0.006

β222(Sex) -0.060(0.030) -0.089(0.025) d242 -0.002 -0.001

β223(Drug) 0.007(0.020) -0.020(0.015) d243 0.001 0.001

β224(Age) -0.004(0.001) -0.005(0.001) d244 0.00040 0.001

be seen from Table 3, the FM-MtLMM provides more accurate classification per-

formance than the FM-MLMM in terms of the CCR and ARI values. As an

alternative way to summarize the classification results, the sensitivity and speci-

ficity can be readily evaluated. If A = {the patient is assigned into Cluster 1},
and B = {the patient actually belongs to Group 0}, the sensitivity and speci-

ficity can be calculated as P (A|B) and P (Ā|B̄), respectively. From the results

listed in Table 3, the FM-MLMM gives 63.37% sensitivity and 84.29% speci-

ficity, while the FM-MtLMM produces 69.77% sensitivity and 82.14% specificity.

Figure 3 shows the “smoothed” receiver operating characteristic (ROC) curves

(Fawcett (2006); Robin et al. (2011)) and the area under the ROC curve (AUC)

for the FM-MLMM and FM-MtLMM. The value of AUC measure ranges from

zero to one, has an expected value of 0.5 under random classification, and takes

the value one for perfect classification. From Figure 3, the ROC curves reveal
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Table 3. Agreements and differences between the clinical and model clas-
sifications using the FM-MLMM (RIS-DEC) and FM-MtLMM (RIS-DEC)
scenarios.

FM-MLMM FM-MtLMM
Total

Classify to: 1 2 1 2

True
Group 0 109 63 120 52 172
Group 1 22 118 25 115 140

Total 131 181 145 167 312

CCR 0.728 0.753
ARI 0.204 0.254

Figure 3. ROC curves with areas for FM-MtLMM with RIS-DEC and FM-
MLMM with RIS-DEC scenarios fitted to lbili and lalbumin markers.

that both models provide predictive ability for determining alive or dead patients

in this population because their AUC values are larger than 0.5.

6. Simulation Study

We conducted a small simulation study to compare the proposed FM-MtLMM

with the existing FM-tLMM approach (Bai, Chen and Yao (2016)) in terms of

parameter estimation and clustering performance. The two issues to be explored

were how badly the FM-tLMM could perform if the outcome variables of longi-

tudinal data are intrinsically correlated with each other, and whether the pro-

posed FM-MtLMM can produce similar or even better performances than the

FM-tLMM when any two outcome variables are uncorrelated.
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β223(Drug) 0.007(0.020) -0.020(0.015) d243 0.001 0.001

β224(Age) -0.004(0.001) -0.005(0.001) d244 0.00040 0.001

be seen from Table 3, the FM-MtLMM provides more accurate classification per-

formance than the FM-MLMM in terms of the CCR and ARI values. As an

alternative way to summarize the classification results, the sensitivity and speci-

ficity can be readily evaluated. If A = {the patient is assigned into Cluster 1},
and B = {the patient actually belongs to Group 0}, the sensitivity and speci-

ficity can be calculated as P (A|B) and P (Ā|B̄), respectively. From the results

listed in Table 3, the FM-MLMM gives 63.37% sensitivity and 84.29% speci-

ficity, while the FM-MtLMM produces 69.77% sensitivity and 82.14% specificity.

Figure 3 shows the “smoothed” receiver operating characteristic (ROC) curves

(Fawcett (2006); Robin et al. (2011)) and the area under the ROC curve (AUC)

for the FM-MLMM and FM-MtLMM. The value of AUC measure ranges from

zero to one, has an expected value of 0.5 under random classification, and takes

the value one for perfect classification. From Figure 3, the ROC curves reveal
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Total

Classify to: 1 2 1 2

True
Group 0 109 63 120 52 172
Group 1 22 118 25 115 140

Total 131 181 145 167 312
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Figure 3. ROC curves with areas for FM-MtLMM with RIS-DEC and FM-
MLMM with RIS-DEC scenarios fitted to lbili and lalbumin markers.

that both models provide predictive ability for determining alive or dead patients

in this population because their AUC values are larger than 0.5.

6. Simulation Study

We conducted a small simulation study to compare the proposed FM-MtLMM

with the existing FM-tLMM approach (Bai, Chen and Yao (2016)) in terms of

parameter estimation and clustering performance. The two issues to be explored

were how badly the FM-tLMM could perform if the outcome variables of longi-

tudinal data are intrinsically correlated with each other, and whether the pro-

posed FM-MtLMM can produce similar or even better performances than the

FM-tLMM when any two outcome variables are uncorrelated.
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We generated the Yi’s with r = 3 outcome variables in two cases. In (a),

the data were generated from (3.1) with G = 2 groups, the design matrices Xi’s

including an intercept and scheduled visits of time (1 to 7), and Zi’s containing

an intercept only. The presumed parameters are

β1 = (β111, β112, β121, β122, β131, β132)
T = (1, 2,−2,−4,−1, 2)T, (6.1)

β2 = (β211, β212, β221, β222, β231, β232)
T = (1, 3,−1,−3,−4, 1.5)T,

Dg =




2 0.25 0.25

0.25 2 0.25

0.25 0.25 2


 ,Σg =




2 1.414 1.225

1.414 4 1.732

1.225 1.732 3


 , Cig = Isi ,

and νg = ν, for g = 1, 2. Two DOFs were considered for each component: a low

value (ν = 5) that yields heavy tails and a high value (ν = 50) that resembles the

normal distribution except for a slightly heavier tail. In (b), the three outcomes

yi1,yi2 and yi3 were generated from three 2-component FM-tLMMs, separately,

in which the true values for fixed effects, including β11 = (β111, β112) and β21 =

(β211, β212) for the first outcome yi1, β12 = (β121, β122) and β22 = (β221, β222)

for the second outcome yi2, and β13 = (β131, β132) and β23 = (β231, β232) for

the third outcome yi3, are the same as those specified in (6.1). Besides, the

assumption for component random effects was bijg ∼ Tqj (0, 2, ν), and that for

component within-subject errors was ei1g ∼ Tsi(0, 2Isi , ν), ei2g ∼ Tsi(0, 4Isi , ν),
and ei3g ∼ Tsi(0, 3Isi , ν), for i = 1, . . . , n, j = 1, 2, 3, and g = 1, 2. The values

of DOF were the same as those considered in case (a). The specification of

Dg and Σg in (6.1) yields a positive correlation between two responses, while the

generation process under (b) results in nearly uncorrelated responses. The sample

sizes were small (n = 20), moderate (n = 50) and relatively large (n = 100),

and each simulated data set was fitted under the FM-MtLMM and FM-tLMM

approaches. Under the FM-tLMM approach, each of the three outcome variables

was assumed to be independent and fitted separately one at a time, while the

FM-MtLMM could be applied to analyze multiple responses simultaneously. The

estimation accuracy for model parameters was evaluated by the mean square

errors (MSE) and mean absolute relative errors (MARE), and the classification

performance was measured by CCR and ARI. A total of 100 replications were

run across each combination of DOFs ν and sample sizes n. In the estimation

procedure, the algorithm failed, though seldom, to achieve convergence for a

particular data set. To ensure that we were comparing different methods based

on the same simulated data, an additional data set would be regenerated if one of

the model fittings did not converge. To this end, we handled the error-recovery

problem by using the R try() function.

For finite mixture models, there is a non-identifiability problem due to possi-

ble label switching (McLachlan and Peel (2000)), which means that the likelihood
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is invariant under a permutation of the class labels. A number of authors have

sought distinct strategies to solve this problem from both the likelihood-based

and Bayesian perspectives. See, for example, Celeux, Hurn and Robert (2000),

Stephens (2000), Yao (2015), and Yao and Lindsay (2009). However, the label

switching is not a concern when carrying out ML estimation via the EM-type

algorithm with only one replication. Yet the switching of class labels is an impor-

tant issue when carrying out a series of Monte Carlo simulations or a single trial

with different initial values to calculate the component-related quantities such as

the SE for parameters or CCR and ARI. As adopted by Lin, McLachlanc and Lee

(2016), we considered all permutations of the class labels for the estimated com-

ponent parameters and chose the one that gave the minimum Euclidean distance

to the true parameter values.

For the accuracy in parameter estimation, we focus on the estimates of fixed

effects. Web Tables S2 and S3 summarize the averages of MSE and MARE

of estimated fixed effects (β1,β2) under cases (a) and (b) for a total of 100

replications. For (a), the FM-MtLMM almost gives relatively smaller MSE and

MARE for the estimates of fixed effects compared with the FM-tLMMs because

it takes into account the correlations among outcome variables. In (b), the FM-

MtLMM and FM-tLMMs provide similarly accurate estimates of the fixed effects

due to a very weak correlation among the generated responses. In both cases,

the MSE and MARE values decrease as the sample size increases, revealing the

finite-sample property of ML estimators.

Figure 4 shows the boxplots of CCR and ARI values of 100 trails for different

DOFs and sample sizes under the settings of (a) and (b). It is readily observed

that the CCR and ARI values given by the FM-MtLMM are higher than the best

clustering result given by the FM-tLMMs. Even if the outcome variables are un-

correlated with each other, the clustering performance of FM-MtLMM could

perform better than that of FM-tLMMs, especially when the random effects and

errors exhibit heavy tails. Although this simulation seems limited, the results

apparently reveal that the FM-tLMM may fail to perform satisfactorily in esti-

mating parameters and clustering observations because of a lack of mechanism

to take into account the correlation between variables.

7. Conclusion

This paper proposes a robust extension of FM-MLMM using the multivariate

t distribution, called the FM-MtLMM, that is expected to provide more reliable

clustering structure for multivariate longitudinal data in the presence of popu-

lation heterogeneity and heavy-tailed noises. A computationally flexible AECM

algorithm is developed by borrowing attractive data augmentation schemes for

parameter estimation. Techniques for estimation of random effects, clustering,
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correlated with each other, the clustering performance of FM-MtLMM could

perform better than that of FM-tLMMs, especially when the random effects and

errors exhibit heavy tails. Although this simulation seems limited, the results

apparently reveal that the FM-tLMM may fail to perform satisfactorily in esti-

mating parameters and clustering observations because of a lack of mechanism

to take into account the correlation between variables.

7. Conclusion

This paper proposes a robust extension of FM-MLMM using the multivariate

t distribution, called the FM-MtLMM, that is expected to provide more reliable

clustering structure for multivariate longitudinal data in the presence of popu-

lation heterogeneity and heavy-tailed noises. A computationally flexible AECM

algorithm is developed by borrowing attractive data augmentation schemes for

parameter estimation. Techniques for estimation of random effects, clustering,
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Figure 4. Boxplots for the CCR and ARI values under the fitted FM-
MtLMM (MT) and FM-tLMMs (UT) for various DOFs ν and sample sizes
n under cases (a) and (b).

and discriminant analysis are also provided and convenient to implement. Nu-

merical results have highlighted the effectiveness of FM-MtLMM on the provision

of an improved model fit and classification accuracy.

It is widely acknowledged that the likelihood function in finite mixture mod-

els can be unbounded, at least in normal mixtures with unequal variances (Hath-

away (1985)), such that the ML solution is not well defined. For multivariate

mixture models such as that defined in (3.3), a degraded component due to the

unboundedness of the likelihood function might cause degenerate or spurious so-

lutions. There have been some strategies proposed to deal with such ill-posed

problems by imposing constraints on the parameter space (Hathaway (1986);

MIXTURE OF MULTIVARIATE t LINEAR MIXED MODELS 23

Ingrassia (2004)) or using the penalized ML methods (Chen, Tan and Zhang
(2008)). Under different constraint conditions, Yao (2010) offered an alternative
maximizer based on the profile log-likelihood method. Further investigations
along these directions would be helpful in pursuing an improved procedure. The
topic is beyond the scope of the present paper and is left for future work.

We foresee several possibilities for future research along these lines in terms
of methodology and application. The proposed model can be extended to deal
with multivariate longitudinal data with censored observations following the ap-
proaches developed by Vaida, Fitzgerald and DeGruttola (2007), Vaida and Liu
(2009), Lachos, Bandyopadhyay and Dey (2011), and Wang, Lin and Lachos
(2015). Missing data are unavoidable in many longitudinal studies for such rea-
sons as missed visits, withdrawal from a study, loss to follow-up, adverse side
effects, and so on. Although the FM-MtLMM has shown its robustness to ac-
commodate heavy tails, inferential procedures can still be dramatically obscured
in the presence of highly asymmetric observations (Lin and Lee (2008); Ho and
Lin (2010)). Thus, it is of interest to establish a broader framework for fitting the
FM-MtLMM that allows one to simultaneously address population heterogeneity,
missingness, censored responses, or impacts of skewness and heavy tails. With
increased computer power, it would be worthwhile to develop modern MCMC
methods (Hastings (1970); Richardson and Green (1997)) coupled with the in-
verse Bayes formulae (Tan, Tian and Ng (2003, 2006); Wang and Fan (2012);
Wang and Lin (2015)) for efficient Bayesian estimation of the FM-MtLMM.
When the observed covariates carry group information, incorporating the de-
pendence of mixing weights wg’s on the observed covariates might improve the
performance in data clustering. Some authors, for example Fokoué (2005) and
Tan and Nott (2014), have considered the logit function with an identifiable con-
straint to model the relationship between prior classification probabilities and
covariates in the frameworks of FMM and FM-LMM. Finally, it would be in-
teresting to extend the current approach by taking into account the effect of
covariates on mixing weights.

Supplementary Materials

Some detailed derivations and results for the preliminary analysis of PBCseq
data and simulation studies are available online at the Statistica Sinica website.
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