PENALIZED LIKELIHOOD FOR LOGISTIC-NORMAL
 MIXTURE MODELS WITH UNEQUAL VARIANCES

Juan Shen ${ }^{1}$, Yingchuan Wang ${ }^{2}$, and Xuming He^{3}
${ }^{1}$ Fudan University and ${ }^{2,3}$ University of Michigan

Supplementary Material

In this supplement, we provide the proofs for Theorem 1 and Theorem 2, and give more details for the analysis of the data in Section 4 in the main paper.

S1 Proofs

We first provide a useful lemma which is proved in the end of this section.

Lemma 1. Suppose $\left\{\left(P_{k}, Q_{k}\right)\right\}_{k=1}^{\infty}$ are i.i.d. continuous random variables with finite means. Also suppose that the density of Q_{k} and the conditional density of $P_{k} \mid Q_{k}$ are bounded by C, then uniformly in σ_{n} between n^{-1} and e^{-1}, there exists a constant C^{*} such that for sufficiently large n,

$$
P\left(\sup _{a, b \in R} n^{-1} \sum_{k=1}^{n} 1\left(\left|P_{k}-a Q_{k}-b\right| \leq\left|\sigma_{n} \log \sigma_{n}\right|\right)>C^{*}\left|\sigma_{n} \log \sigma_{n}\right|\right) \leq C n^{-2}
$$

S1.1 Proof of Theorem 1

We note that $\mathbf{S} 1$ and $\mathbf{S} 2$ play the role of Lemma 1 in Chen et al. (2008). With these two properties, it then follows from the Borel-Cantelli Lemma that as $n \rightarrow$ ∞ and almost surely,

1. for each given σ between n^{-1} and e^{-1},

$$
\sup _{\beta \in R^{q_{1}}} n^{-1} \sum_{i=1}^{n} 1\left(\left|Y_{i}-Z_{i}^{T} \boldsymbol{\beta}\right| \leq|\sigma \log \sigma|\right) \leq C|\sigma \log \sigma|,
$$

2. uniformly for σ between 0 and n^{-1},

$$
\sup _{\beta \in R^{q_{1}}} n^{-1} \sum_{i=1}^{n} 1\left(\left|Y_{i}-\boldsymbol{Z}_{i}^{T} \boldsymbol{\beta}\right| \leq|\sigma \log \sigma|\right) \leq 4(\log n)^{2} / n .
$$

These almost sure results are stated for a given σ. However, following the arguments in Lemma 2 of Chen et al. (2008), we have a stronger result as follows. Except for a zero-probability event not depending on σ, we have for all large enough n:

1. for σ between n^{-1} and $e^{-1}, \sup _{\beta \in R^{q_{1}}} n^{-1} \sum_{i=1}^{n} 1\left(\left|Y_{i}-Z_{i}^{T} \boldsymbol{\beta}\right| \leq|\sigma \log \sigma|\right) \leq$ $C|\sigma \log \sigma|$,
2. for σ between 0 and $n^{-1}, \sup _{\beta \in R^{q_{1}}} n^{-1} \sum_{i=1}^{n} 1\left(\left|Y_{i}-Z_{i}^{T} \beta\right| \leq|\sigma \log \sigma|\right) \leq 4(\log n)^{2} / n$.

We partition the parameter space with respect to σ as in Chen et al. (2008).

Let $\Gamma_{1}=\left\{\boldsymbol{\Theta}: \sigma_{1} \leq \sigma_{2} \leq \epsilon_{0}\right\}, \Gamma_{2}=\left\{\boldsymbol{\Theta}: \sigma_{1} \leq \tau_{0}, \sigma_{2} \geq \epsilon_{0}\right\}, \Gamma_{3}=\Gamma-\left(\Gamma_{1} \cup \Gamma_{2}\right)$, where ϵ_{0}, τ_{0} and Γ are specified in Chen et al. (2008). Note that $\boldsymbol{Z}_{i}^{T} \boldsymbol{\beta}$ in our setting plays the same role as θ in Chen et al. (2008), where the model has no covariates. Hence, with the above almost surely results and Theorem 1 and Theorem 2 of Chen et al. (2008), we have as $n \rightarrow \infty$ and almost surely, the penalized maximum likelihood estimators of our model will be attained in Γ_{3}. Note that σ is bounded away from zero in Γ_{3}, standard techniques of proving the consistency of the maximum likelihood estimators lead to the consistency of our proposed penalized maximum likelihood estimators.

Next, we show $\mathbf{S} 1$ and $\mathbf{S 2}$. Since the proof of $\mathbf{S} \mathbf{2}$ is essentially the same as that for \mathbf{S}, we only provide the details of the proof of $\mathbf{S} \mathbf{1}$. For convenience, we allow the constants used in the proofs vary line by line.

Recall that $\boldsymbol{Z}=(1, \boldsymbol{U}, \boldsymbol{V})$, where 1 represents the intercept in the model and \boldsymbol{U} consists of only discrete variables with a finite sample space and \boldsymbol{V} consists of only continuous variables. We prove $\mathbf{S 1}$ for the following three cases.

Case 1: If \boldsymbol{Z} only has three dimensions, that is, $\boldsymbol{Z}=(1, U, V)$. Further, we assume $U \sim \operatorname{Ber}(1 / 2)$.

Case 2: If $\boldsymbol{Z}=(1, \boldsymbol{U}, V)$, where \boldsymbol{U} is a random vector taking any finite values and V is one dimensional continuous variable.

Case 3: If $\boldsymbol{Z}=(1, \boldsymbol{U}, \boldsymbol{V})$, where \boldsymbol{U} is a random vector taking finite values and \boldsymbol{V}
ia a vector of continuous random variables.
From Case 1 to Case 3, we will prove $\mathbf{S} \mathbf{1}$ from the simplest case to the most general situation. Then we complete the proof of Theorem 1.

Next we provide the detailed proof under Cases 1-3.

Proof for Case 1: We prove $\mathbf{S 1}$ when \boldsymbol{Z} only has three dimensions, that is, $\boldsymbol{Z}=(1, U, V)$. Further, we assume $U \sim \operatorname{Ber}(1 / 2)$.

Let $\bar{U}_{n}=n^{-1} \sum_{i=1}^{n} U_{i}$ and let $f_{X}(x)$ and $f_{X \mid Y}(x \mid y)$ denote the density of X and the conditional density of $X \mid Y$, respectively. Then, for any given $\sigma_{n} \in\left(n^{-1}, e^{-1}\right)$, let

$$
\begin{aligned}
& \epsilon_{n}=\left\{n^{-1}(8 \log n)\right\}^{1 / 2}, \\
& I=P\left(\sup _{\beta \in R^{3}} W_{n}(\beta)>C\left|\sigma_{n} \log \sigma_{n}\right|\left|\bar{U}_{n}-1 / 2\right| \leq \epsilon_{n}\right), \\
& I I=P\left(\left|\bar{U}_{n}-1 / 2\right|>\epsilon_{n}\right) .
\end{aligned}
$$

We have,

$$
\begin{align*}
P\left(A_{n}(C)\right)= & P\left(\sup _{\beta \in R^{3}} W_{n}(\beta)>C\left|\sigma_{n} \log \sigma_{n}\right|\right) \\
\leq & P\left(\sup _{\beta \in R^{3}} W_{n}(\beta)>C\left|\sigma_{n} \log \sigma_{n}\right|| | \bar{U}_{n}-1 / 2 \mid \leq \epsilon_{n}\right)+ \tag{S1.1}\\
& P\left(\left|\bar{U}_{n}-1 / 2\right|>\epsilon_{n}\right) \\
= & I+I I .
\end{align*}
$$

We verify the following two claims:

CL1 $I I \leq \mathrm{Cn}^{-2}$;

CL2 $I \leq \mathrm{Cn}^{-2}$.

Proof of CL1: By Bernstein's inequality, for sufficient large n,

$$
I I=2 P\left(\sum_{i=1}^{n} U_{i} / n-1 / 2>\epsilon_{n}\right) \leq \exp \left\{-\frac{n^{2} \epsilon_{n}^{2} / 2}{n+n \epsilon_{n} / 3}\right\} \leq C n^{-2} .
$$

Proof of CL2: Note that

$$
\begin{aligned}
I= & P\left(\sup _{\beta \in R^{3}} W_{n}(\beta)>C\left|\sigma_{n} \log \sigma_{n}\right|| | \bar{U}_{n}-1 / 2 \mid \leq \epsilon_{n}\right) \\
= & \sum_{u_{1}, \cdots, u_{n}} P\left(\sup _{\beta \in R^{3}} W_{n}(\boldsymbol{\beta})>C\left|\sigma_{n} \log \sigma_{n}\right|\left|U_{1}=u_{1}, \cdots, U_{n}=u_{n},\left|\bar{U}_{n}-1 / 2\right| \leq \epsilon_{n}\right)\right. \\
& \times f_{\left(u_{1}, \cdots, u_{n} \mid \bar{U}_{n}\right)}\left(u_{1}, \cdots, u_{n}\right) .
\end{aligned}
$$

For any u_{1}, \cdots, u_{n} such that $\bar{U}_{n}=n^{-1} \sum_{i=1}^{n} u_{i} \in\left[2^{-1}-\epsilon_{n}, 2^{-1}+\epsilon_{n}\right]$, let $\boldsymbol{U}=$ $\left(U_{1}, \cdots, U_{n}\right), \boldsymbol{u}=\left(u_{1}, \cdots, u_{n}\right)$, and $\left\{i_{1}, \cdots, i_{n \bar{U}_{n}}\right\}$ are indices for $\boldsymbol{u}=1$, and $\left\{j_{1}, \cdots, j_{n-n \bar{U}_{n}}\right\}$ are indices for $\boldsymbol{u}=0$. Also let $\boldsymbol{U}_{i_{k}}=\left(U_{i_{1}}, \cdots, U_{i_{n U_{n}}}\right), \boldsymbol{U}_{j_{k}}=$ $\left(U_{j_{1}}, \cdots, U_{j_{n-n U_{n}}}\right)$ and let the variables $\left(P_{k}, Q_{k}\right)$ and $\left(P_{k}^{\prime}, Q_{k}^{\prime}\right)$ be specified with the following distributions:

$$
\left\{\left(P_{k}^{\prime}, Q_{k}^{\prime}\right)\right\}_{k=1}^{n \bar{U}_{n}} \stackrel{D}{=}\left\{\left(Y_{i_{k}}, V_{i_{k}}\right)\right\}_{k=1}^{n \bar{U}_{n}} \mid \boldsymbol{U}_{i_{k}}=\mathbf{1}
$$

and

$$
\left\{\left(P_{k}, Q_{k}\right)\right\}_{k=1}^{n-n \bar{U}_{n}} \stackrel{D}{=}\left\{\left(Y_{j_{k}}, V_{j_{k}}\right)\right\}_{k=1}^{n-n \bar{U}_{n}} \mid \boldsymbol{U}_{j_{k}}=\mathbf{0} .
$$

By the independence of $\left\{\boldsymbol{Z}_{k}\right\}_{k=1}^{n}=\left\{\left(1, U_{k}, V_{k}\right)\right\}_{k=1}^{n}$, we have

$$
\begin{aligned}
& P\left(\sup _{\beta \in R^{3}} W_{n}(\boldsymbol{\beta})>C\left|\sigma_{n} \log \sigma_{n}\right|\left|U_{1}=u_{1}, \cdots, U_{n}=u_{n},\left|\bar{U}_{n}-1 / 2\right| \leq \epsilon_{n}\right)\right. \\
= & P\left(\sup _{\beta \in R^{3}} W_{n}(\boldsymbol{\beta})>C\left|\sigma_{n} \log \sigma_{n}\right| \mid U_{1}=u_{1}, \cdots, U_{n}=u_{n}\right) \\
= & P\left(\operatorname { s u p } _ { \beta \in R ^ { 3 } } \left\{n^{-1} \sum_{k=1}^{n \bar{U}_{n}} 1\left(\left|Y_{i_{k}}-\beta_{1}-\beta_{2}-\beta_{3} V_{i_{k}}\right| \leq\left|\sigma_{n} \log \sigma_{n}\right|\right)\right.\right. \\
& \left.\left.+n^{-1} \sum_{k=1}^{n-n \bar{U}_{n}} 1\left(\left|Y_{j_{k}}-\beta_{1}-\beta_{3} V_{j_{k}}\right| \leq\left|\sigma_{n} \log \sigma_{n}\right|\right)\right\}>C\left|\sigma_{n} \log \sigma_{n}\right| \mid \boldsymbol{U}=\boldsymbol{u}\right) \\
\leq & P\left(\sup _{\beta \in R^{3}} n^{-1} \sum_{k=1}^{n \bar{U}_{n}} 1\left(\left|Y_{i_{k}}-\beta_{1}-\beta_{2}-\beta_{3} V_{i_{k}}\right| \leq\left|\sigma_{n} \log \sigma_{n}\right|\right)>(C / 2)\left|\sigma_{n} \log \sigma_{n}\right| \mid \boldsymbol{U}_{i_{k}}=\mathbf{1}\right) \\
& +P\left(\sup _{\beta \in R^{3}} n^{-1} \sum_{k=1}^{n-n \bar{U}_{n}} 1\left(\left|Y_{j_{k}}-\beta_{1}-\beta_{3} V_{j_{k}}\right| \leq\left|\sigma_{n} \log \sigma_{n}\right|\right)>(C / 2)\left|\sigma_{n} \log \sigma_{n}\right| \mid \boldsymbol{U}_{j_{k}}=\mathbf{0}\right) \\
\leq & P\left(\operatorname { s u p } _ { a , b \in R ^ { \prime } } (n \overline { U } _ { n }) ^ { - 1 } \sum _ { k = 1 } ^ { n \overline { U } _ { n } } 1 \left(\left|\left(P_{k}^{\prime}-a Q_{k}^{\prime}-b\left|\leq\left|\sigma_{n} \log \sigma_{n}\right|\right)>(C / 2)\left|\sigma_{n} \log \sigma_{n}\right|\right)\right.\right.\right. \\
& +P\left(\sup _{a, b \in R}\left(n-n \bar{U}_{n}\right)^{-1} \sum_{k=1}^{n-n \bar{U}_{n}} 1\left(\left|P_{k}-a Q_{k}-b\right| \leq\left|\sigma_{n} \log \sigma_{n}\right|\right)>(C / 2)\left|\sigma_{n} \log \sigma_{n}\right|\right) .
\end{aligned}
$$

Since $\left\{Y_{i}, \boldsymbol{Z}_{i}, \boldsymbol{X}_{i}\right\}_{i=1}^{n}$ are i.i.d., $\left\{\left(P_{k}, Q_{k}\right)\right\}_{k=1}^{n-n \bar{U}_{n}}$ are i.i.d. and so are $\left\{\left(P_{k}^{\prime}, Q_{k}^{\prime}\right)\right\}_{k=1}^{n \bar{U}_{n}}$. We now prove the following two properties under both the null hypothesis and the alternative hypothesis.
$\mathbf{C L} 3\left(P_{k}, Q_{k}\right)$ and $\left(P_{k}^{\prime}, Q_{k}^{\prime}\right)$ have finite means;

CL4 The densities of P_{k}, P_{k}^{\prime} and the conditional densities of $P_{k}\left|Q_{k}, P_{k}^{\prime}\right| Q_{k}^{\prime}$ are bounded.

Then, by the choice of $\bar{U}_{n}, n \bar{U}_{n}=O(n / 2)$ and $n-n \bar{U}_{n}=O(n / 2)$ almost surely.

Taken CL3 and CL4 and Lemma 1 together, we conclude that there exist constant C^{\prime} such that $I \leq C^{\prime} n^{-2}$ for sufficiently large n. The proof for CL1 and CL2 is then complete.

Proof of CL3 and CL4: Recall

$$
Y \mid\{(U, V), \boldsymbol{X}\} \sim \pi\left(\boldsymbol{X}^{T} \boldsymbol{\gamma}\right) N\left(\boldsymbol{Z}^{T}\left(\boldsymbol{\beta}_{1}+\boldsymbol{\beta}_{2}\right), \sigma_{1}^{2}\right)+\left(1-\pi\left(\boldsymbol{X}^{T} \boldsymbol{\gamma}\right)\right) N\left(\boldsymbol{Z}^{T} \boldsymbol{\beta}_{1}, \sigma_{2}^{2}\right) .
$$

Note that the null model is just a special case of the above in that $\boldsymbol{\beta}_{2}=0$ and $\sigma_{1}=$ σ_{2}. By the definitions of $\left(P_{k}, Q_{k}\right)$ and $\left(P_{k}^{\prime}, Q_{k}^{\prime}\right)$, for any $\boldsymbol{\beta}^{T}=\left(\boldsymbol{\gamma}^{T}, \boldsymbol{\beta}_{1}^{T}, \boldsymbol{\beta}_{2}^{T}, \sigma_{1}, \sigma_{2}\right)$, if suffices to show the following two statements:

S(i) $E(|Y| \mid U)<\infty, E(|V| \mid U)<\infty$;
$\mathbf{S}(\mathbf{i i})$ the conditional densities of $V \mid U$ and $Y \mid U, V$ are bounded.

The statement $\mathbf{S}(\mathbf{i i})$ is obvious, since $Y \mid V, U, \boldsymbol{X}$ follows the logistic mixture of normals, its density is uniformly bounded by $\left\{(2 \pi)^{1 / 2} \min \left\{\sigma_{1}, \sigma_{2}\right\}\right\}^{-1}$, where σ_{1}, σ_{2} are the true parameters in the model. Therefore, the conditional density of $Y \mid V, U$ is bounded, and by Condition C 4 , the conditional density of $V \mid U$ is bounded. For $\mathbf{S}(\mathbf{i})$, by Condition C5, $E(|V| \mid U)<\infty$, again because $Y \mid V, U, \boldsymbol{X}$
follows logistic mixture of normals,

$$
\begin{aligned}
E(|Y| \mid U)=E\{E(|Y| \mid U, V, \boldsymbol{X}) \mid U\}= & E\left\{\left(E\left(\pi\left(\boldsymbol{X}^{T} \gamma\right)\left|Y_{1}\right|+\left[1-\pi\left(\boldsymbol{X}^{T} \boldsymbol{\gamma}\right)\right]\left|Y_{2}\right| \mid U, V, \boldsymbol{X}\right)\right) \mid U\right\} \\
= & E\left\{\left[\pi\left(\boldsymbol{X}^{T} \boldsymbol{\gamma}\right) E\left(\left|Y_{1}\right| \mid U, V, \boldsymbol{X}\right)\right.\right. \\
& \left.\left.+\left[1-\pi\left(\boldsymbol{X}^{T} \boldsymbol{\gamma}\right)\right] E\left(\left|Y_{2}\right| \mid U, V, \boldsymbol{X}\right)\right] \mid U\right\}
\end{aligned}
$$

where $Y_{1}\left|(U, V, \boldsymbol{X}) \sim N\left(\boldsymbol{Z}^{T}\left(\boldsymbol{\beta}_{1}+\boldsymbol{\beta}_{2}\right), \sigma_{1}^{2}\right), Y_{2}\right|(U, V, \boldsymbol{X}) \sim N\left(\boldsymbol{Z}^{T} \boldsymbol{\beta}_{1}, \sigma_{2}^{2}\right)$, and $Z=(1, U, V)$. Note that

$$
\begin{aligned}
E\left(\left|Y_{1}\right| \mid U, V, \boldsymbol{X}\right) & \leq \sigma_{1} E\left(\left|\frac{Y_{1}-\mathbf{Z}^{T} \boldsymbol{\beta}_{1}-\mathbf{Z}^{T} \boldsymbol{\beta}_{2}}{\sigma_{1}}\right| U, V, \boldsymbol{X}\right)+(1+|V|+|U|)\left\|\boldsymbol{\beta}_{1}+\boldsymbol{\beta}_{2}\right\|_{\infty} \\
& =\frac{2}{\sqrt{2 \pi}} \sigma_{1}+(1+|V|+|U|)\left\|\boldsymbol{\beta}_{1}+\boldsymbol{\beta}_{2}\right\|_{\infty}
\end{aligned}
$$

where $\|\cdot\|_{\infty}$ is the supreme norm and the last equation is due to the fact that $E|Z|=2(2 \pi)^{-1 / 2}$ if $Z \sim N(0,1)$. Similarly,

$$
E\left(\left|Y_{2}\right| \mid U, V, \boldsymbol{X}\right) \leq \frac{2}{\sqrt{2 \pi}} \sigma_{2}+(1+|V|+|U|)\left\|\beta_{1}\right\|_{\infty}
$$

Therefore,
$E(|Y| \mid U) \leq \frac{2}{\sqrt{2 \pi}} \max \left\{\sigma_{1}, \sigma_{2}\right\}+\max \left\{\left\|\boldsymbol{\beta}_{1}\right\|_{\infty},\left\|\boldsymbol{\beta}_{1}+\boldsymbol{\beta}_{2}\right\|_{\infty}\right\} E(1+|V|+|U| \mid U)<\infty$,
where the last inequality is due to Condition C5.
We have now verified properties CL3 and CL4 for any $\boldsymbol{\beta}^{T}=\left(\boldsymbol{\gamma}^{T}, \boldsymbol{\beta}_{1}^{T}, \boldsymbol{\beta}_{2}^{T}, \sigma_{1}, \sigma_{2}\right)$,
under both the null and the alternative hypotheses. By the results from CL1, $\mathbf{C L} 2$ and Equation (S1.1), we finished the proof of Case 1.

Proof for Case 2: We prove $\mathbf{S} 1$ with $\boldsymbol{Z}=(1, \boldsymbol{U}, V)$, where \boldsymbol{U} is a random vector taking any finite values and V is one dimensional continuous variable.

Let $P\left(\boldsymbol{U}=\boldsymbol{u}^{t}\right)=p_{t}>0, t=1,2, \cdots, r$, and $\sum_{t=1}^{r} p_{t}=1$. Also let $\bar{U}_{n}^{t}=n^{-1} \sum_{i=1}^{n} 1\left(\boldsymbol{U}_{i}=\boldsymbol{u}^{t}\right), t=1,2, \cdots, r$. As in the earlier proof, we set $\epsilon_{n t}=\left\{n^{-1}(8 \log n)\right\}^{1 / 2}$, and we bound $P\left(A_{n}(C)\right)$ by

$$
P\left(A_{n}(C) \mid \bar{U}_{n}^{t} \in\left[p_{t}-\epsilon_{n t}, p_{t}+\epsilon_{n t}\right], t=1, \cdots, r\right)+\sum_{t=1}^{r} P\left(\left|\bar{U}_{n}^{t}-p_{t}\right|>\epsilon_{n t}\right) \triangleq I+I I .
$$

By Bernstein's inequality, we know $I I<\mathrm{Cn}^{-2}$. For part I, we use arguments conditional on $\boldsymbol{U}_{i}=\boldsymbol{u}_{i}, i=1,2, \cdots, n$, such that the values of \boldsymbol{u}_{i} satisfy $\bar{U}_{n}^{t} \in$ $\left[p_{t}-\epsilon_{n t}, p_{t}+\epsilon_{n t}\right], t=1, \cdots, r$. We then group the $\boldsymbol{U}_{i}=\boldsymbol{u}_{i}$ which have the same value of \boldsymbol{u}^{t}. Note that the number of the items in each group is of the order of $O\left(p_{t} n\right)$, and by the independence of the vectors of \mathbf{Z}_{i}, we can directly apply Lemma 1 and get the desired results.

Proof for Case 3: We prove $\mathbf{S 1}$ for general $\boldsymbol{Z}=(1, \boldsymbol{U}, \boldsymbol{V})$, where \boldsymbol{U} is a random vector taking finite values and \boldsymbol{V} ia a vector of continuous random variables.

We bound $P\left(A_{n}(C)\right)$ by conditioning on the possible values of \boldsymbol{U} as we did previously, then it suffices to show
$P\left(\sup _{b \in R, \rho \in R^{+},\||\||=1} n^{-1} \sum_{k=1}^{n} 1\left(\left|P_{k}-\rho \alpha^{T} \boldsymbol{Q}_{k}-b\right| \leq\left|\sigma_{n} \log \sigma_{n}\right|\right)>C^{*}\left|\sigma_{n} \log \sigma_{n}\right|\right) \leq C n^{-2}$,
for some C^{*} and C and sufficiently large n. However, the set of α with $\|\alpha\|=1$ is a compact set, we can prove it by using standard empirical process argument and the same techniques as those used to prove Lemma 1 in the next subsection.

S1.2 Proof of Lemma 1

In this subsection, we prove Lemma 1 which is needed for the proof of Theorem

1. We allow the constants below to vary line by line. Let

$$
\begin{aligned}
& G_{n}\left(a, b, \sigma_{n}\right)=n^{-1} \sum_{k=1}^{n} 1\left(\left|P_{k}-a Q_{k}-b\right| \leq\left|\sigma_{n} \log \sigma_{n}\right|\right), \\
& L_{n 1}=P\left(\sup _{|a| \leq n^{2}, b \in R} G_{n}\left(a, b, \sigma_{n}\right)>C^{*}\left|\sigma_{n} \log \sigma_{n}\right|\right), \\
& L_{n 2}=P\left(\sup _{|a|>n^{2}, b \in R} G_{n}\left(a, b, \sigma_{n}\right)>C^{*}\left|\sigma_{n} \log \sigma_{n}\right|\right) .
\end{aligned}
$$

Note that

$$
\sup _{a, b \in R} G_{n}\left(a, b, \sigma_{n}\right)=\max \left\{\sup _{|a| \leq n^{2}, b \in R} G_{n}\left(a, b, \sigma_{n}\right), \sup _{|a|>n^{2}, b \in R} G_{n}\left(a, b, \sigma_{n}\right)\right\} .
$$

Thus we have,

$$
\begin{equation*}
P\left(\sup _{a, b \in R} G_{n}\left(a, b, \sigma_{n}\right)>C^{*}\left|\sigma_{n} \log \sigma_{n}\right|\right) \leq L_{n 1}+L_{n 2} \tag{S1.2}
\end{equation*}
$$

Step 1: We show $L_{n 2} \leq C^{-2}$.
Note that for any given $\sigma_{n} \in\left(n^{-1}, e^{-1}\right),\left|\sigma_{n} \log \sigma_{n}\right| \geq n^{-1} \log n$. We have

$$
\begin{aligned}
G_{n}\left(a, b, \sigma_{n}\right) \leq & n^{-1} \sum_{k=1}^{n} 1\left(\frac{P_{k}}{|a|}-\frac{\left|\sigma_{n} \log \sigma_{n}\right|}{|a|} \leq Q_{k}+\frac{b}{|a|} \leq \frac{P_{k}}{|a|}+\frac{\left|\sigma_{n} \log \sigma_{n}\right|}{|a|}\right) \\
& \times 1\left(\left|P_{k}\right| \leq(|a|-1)\left|\sigma_{n} \log \sigma_{n}\right|\right) \\
& +n^{-1} \sum_{k=1}^{n} 1\left(\left|P_{k}\right|>(|a|-1)\left|\sigma_{n} \log \sigma_{n}\right|\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \sup _{|a|>n^{2}, b \in R} G_{n}\left(a, b, \sigma_{n}\right) \\
\leq & \sup _{|a|>n^{2}, b \in R}\left\{n^{-1} \sum_{k=1}^{n} 1\left(\frac{P_{k}}{|a|}-\frac{\left|\sigma_{n} \log \sigma_{n}\right|}{|a|} \leq Q_{k}+\frac{b}{|a|} \leq \frac{P_{k}}{|a|}+\frac{\left|\sigma_{n} \log \sigma_{n}\right|}{|a|}\right)\right. \\
& \left.\times 1\left(\left|P_{k}\right| \leq(|a|-1)\left|\sigma_{n} \log \sigma_{n}\right|\right)\right\} \\
& +\sup _{|a|>n^{2}}\left\{n^{-1} \sum_{k=1}^{n} 1\left(\left|P_{k}\right|>(|a|-1)\left|\sigma_{n} \log \sigma_{n}\right|\right)\right\} \\
\leq & \sup _{\theta \in R} n^{-1}\left\{\sum_{k=1}^{n} 1\left(-\left|\sigma_{n} \log \sigma_{n}\right| \leq Q_{k}-\theta \leq\left|\sigma_{n} \log \sigma_{n}\right|\right)\right\} \\
& +n^{-1} \sum_{k=1}^{n} 1\left(\left|P_{k}\right|>n\right) .
\end{aligned}
$$

Let
$L_{n 21}=P\left(\sup _{\theta \in R}\left\{n^{-1} \sum_{k=1}^{n} 1\left(-\left|\sigma_{n} \log \sigma_{n}\right| \leq Q_{k}-\theta \leq\left|\sigma_{n} \log \sigma_{n}\right|\right)\right\}>\left(C^{*} / 2\right)\left|\sigma_{n} \log \sigma_{n}\right|\right)$
and

$$
L_{n 22}=P\left(n^{-1} \sum_{k=1}^{n} 1\left(\left|P_{k}\right|>n\right)>\left(C^{*} / 2\right)\left|\sigma_{n} \log \sigma_{n}\right|\right) .
$$

Then,

$$
\begin{equation*}
L_{n 2}=P\left(\sup _{|a|>n^{2}, b \in R} G_{n}\left(a, b, \sigma_{n}\right)>C^{*}\left|\sigma_{n} \log \sigma_{n}\right|\right) \leq L_{n 21}+L_{n 22} . \tag{S1.3}
\end{equation*}
$$

Step 1-1: We show $L_{n 21} \leq \mathrm{Cn}^{-2}$.
Observe that in $L_{n 21}$,

$$
\begin{aligned}
& n^{-1} \sum_{k=1}^{n} 1\left(-\left|\sigma_{n} \log \sigma_{n}\right| \leq Q_{k}-\theta \leq\left|\sigma_{n} \log \sigma_{n}\right|\right) \\
= & F_{n}\left(\theta+\left|\sigma_{n} \log \sigma_{n}\right|\right)-F_{n}\left(\theta-\left|\sigma_{n} \log \sigma_{n}\right|\right),
\end{aligned}
$$

where F_{n} is the empirical distribution for Q. Since the density of Q is bounded, a direct application of Lemma 1 of Chen et al. (2008) yields $L_{n 21} \leq \mathrm{Cn}^{-2}$.

Step 1-2: We show $L_{n 22} \leq \mathrm{Cn}^{-2}$.
Note that $E\left\{1\left(\left|P_{k}\right|>n\right)\right\} \leq n^{-1} E\left(\left|P_{k}\right|\right) \leq n^{-1} \log n \leq\left|\sigma_{n} \log \sigma_{n}\right|$, for sufficiently large n. Then, by Bernstein's inequality, we have

$$
\begin{aligned}
L_{n 22} & \leq P\left(\sum_{k=1}^{n}\left[1\left\{\left|P_{k}\right|>n\right\}-E\left(1\left\{\left|P_{k}\right|>n\right\}\right)\right]>\tilde{C} n\left|\sigma_{n} \log \sigma_{n}\right|\right) \\
& \leq \exp \left\{-\frac{(\tilde{C} n)^{2}\left|\sigma_{n} \log \sigma_{n}\right|^{2}}{2 n\left|\sigma_{n} \log \sigma_{n}\right|+2 \tilde{C} n\left|\sigma_{n} \log \sigma_{n}\right|}\right\} \leq C n^{-2},
\end{aligned}
$$

where $\tilde{C}=C^{*} / 2-1$.

By Step 1-1, Step 1-2 and Equation (S1.3), we have

$$
\begin{equation*}
L_{n 2} \leq L_{n 21}+L_{n 22} \leq C n^{-2}, \tag{S1.4}
\end{equation*}
$$

which completes the proof of Step 1.
Step 2: We show $L_{n 1} \leq \mathrm{Cn}^{-2}$.
Let $\delta_{n}=n^{-1}\left|\sigma_{n} \log \sigma_{n}\right| \geq n^{-2}(\log n)$. Divide $|a| \leq n^{2}$ into the union of k_{n} subsets $\left\{\Omega_{n j}\right\}_{j=1}^{k_{n}}$, such that, the distance between any two points in each subset is no greater than δ_{n}. It is clear that we can achieve this with $k_{n} \leq(\log n)^{-1} 2 n^{4} \leq$ $O\left(n^{4}\right)$. Let $U_{k}\left(a, b, \sigma_{n}\right)=1\left(\left|P_{k}-a Q_{k}-b\right| \leq\left|\sigma_{n} \log \sigma_{n}\right|\right)$, then

$$
\begin{aligned}
& \sup _{|a| \leq n^{2}, b \in R} G_{n}\left(a, b, \sigma_{n}\right) \\
= & \max _{1 \leq j \leq k_{n}}\left[\sup _{a \in \Omega_{n j}, b \in R}\left\{G_{n}\left(a, b, \sigma_{n}\right)\right\}\right] \\
\leq & \max _{1 \leq j \leq k_{n}}\left[\sup _{b \in R} G_{n}\left(a_{j}, b, \sigma_{n}\right)+\sup _{\mid a-a_{j} \leq \delta_{n}, b \in R}\left\{\left|G_{n}\left(a, b, \sigma_{n}\right)-G_{n}\left(a_{j}, b, \sigma_{n}\right)\right|\right\}\right] \\
\leq & \max _{1 \leq j \leq k_{n}}\left[\sup _{b \in R} G_{n}\left(a_{j}, b, \sigma_{n}\right)+\sup _{\mid a-a_{j} \leq \delta_{n}, b \in R}\left\{n^{-1} \sum_{k=1}^{n} \mid U_{k}\left(a, b, \sigma_{n}\right)\right.\right. \\
& \left.\left.-U_{k}\left(a_{j}, b, \sigma_{n}\right) \mid\right\}\right],
\end{aligned}
$$

where a_{j} is any fixed point in $\Omega_{n j}$. Let

$$
L_{n 11}=k_{n} \sup _{a \in R} P\left\{\sup _{b \in R} G_{n}\left(a, b, \sigma_{n}\right)>\left(C^{*} / 2\right)\left|\sigma_{n} \log \sigma_{n}\right|\right\},
$$

and
$L_{n 12}=k_{n} \sup _{a^{\prime} \in R} P\left\{\sup _{\left|a-a^{\prime}\right| \leq \delta_{n}, b \in R} n^{-1} \sum_{k=1}^{n}\left|U_{k}\left(a, b, \sigma_{n}\right)-U_{k}\left(a^{\prime}, b, \sigma_{n}\right)\right|>\left(C^{*} / 2\right)\left|\sigma_{n} \log \sigma_{n}\right|\right\}$.

Then we have

$$
\begin{equation*}
L_{n 1} \leq L_{n 11}+L_{n 12} \tag{S1.5}
\end{equation*}
$$

Step 2-1: We show $L_{n 11} \leq \mathrm{Cn}^{-2}$.
In $L_{n 11}$, for any $a \in R$, let $R_{k}^{a}=P_{k}-a Q_{k}$. Since P_{k}, Q_{k} are continuous, and R_{k}^{a} is continuous and its density $f_{R_{k}^{a}}(r)=\int f_{R_{k}^{a} \mid Q_{k}}\left(r \mid q_{k}\right) f_{Q_{k}}\left(q_{k}\right) d q_{k}=\int f_{P_{k} \mid Q_{k}}(r+$ $\left.a q_{k} \mid q_{k}\right) f_{Q_{k}}\left(q_{k}\right) d q_{k} \leq C$. Therefore,

$$
\begin{aligned}
G_{n}\left(a, b, \sigma_{n}\right) & =n^{-1} \sum_{k=1}^{n} 1\left(\left|R_{k}^{a}-b\right| \leq\left|\sigma_{n} \log \sigma_{n}\right|\right) \\
& =F_{n}\left(b+\left|\sigma_{n} \log \sigma_{n}\right|\right)-F_{n}\left(b-\left|\sigma_{n} \log \sigma_{n}\right|\right)
\end{aligned}
$$

where F_{n} is the empirical distribution for $R_{k}^{a}, k=1, \cdots, n$. Since the density of R_{k}^{a} is uniformly bounded over a, a direct application of Lemma 1 of Chen et al. (2008) yields

$$
P\left(\sup _{b \in R} n^{-1} \sum_{k=1}^{n} 1\left(\left|R_{k}^{a}-b\right| \leq\left|\sigma_{n} \log \sigma_{n}\right|\right)>\left(C^{*} / 2\right)\left|\sigma_{n} \log \sigma_{n}\right|\right)<C n^{-6},
$$

for any $a \in R$ and for some fixed constant C^{*}. By using the order of k_{n}, we have
for some C^{*},

$$
\begin{equation*}
L_{n 11} \leq C^{*} n^{-2} \tag{S1.6}
\end{equation*}
$$

for sufficiently large n.
Step 2-2: We show $L_{n 12} \leq \mathrm{Cn}^{-2}$.
For any $a^{\prime} \in R$, let

$$
\begin{aligned}
& M_{n 1}\left(a, b, a^{\prime}, \sigma_{n}\right)=n^{-1} \sum_{k=1}^{n} 1\left(P_{k}-a^{\prime} Q_{k}-b \geq-\left|\sigma_{n} \log \sigma_{n}\right|\right) 1\left(P_{k}-a Q_{k}-b \leq-\left|\sigma_{n} \log \sigma_{n}\right|\right), \\
& M_{n 2}\left(a, b, a^{\prime}, \sigma_{n}\right)=n^{-1} \sum_{k=1}^{n} 1\left(P_{k}-a^{\prime} Q_{k}-b \leq\left|\sigma_{n} \log \sigma_{n}\right|\right) 1\left(P_{k}-a Q_{k}-b \geq\left|\sigma_{n} \log \sigma_{n}\right|\right), \\
& M_{n 3}\left(a, b, a^{\prime}, \sigma_{n}\right)=n^{-1} \sum_{k=1}^{n} 1\left(P_{k}-a^{\prime} Q_{k}-b \leq-\left|\sigma_{n} \log \sigma_{n}\right|\right) 1\left(P_{k}-a Q_{k}-b \geq-\left|\sigma_{n} \log \sigma_{n}\right|\right), \\
& M_{n 4}\left(a, b, a^{\prime}, \sigma_{n}\right)=n^{-1} \sum_{k=1}^{n} 1\left(P_{k}-a^{\prime} Q_{k}-b \geq\left|\sigma_{n} \log \sigma_{n}\right|\right) 1\left(P_{k}-a Q_{k}-b \leq\left|\sigma_{n} \log \sigma_{n}\right|\right), \\
& N_{n 1}\left(b, a^{\prime}, \sigma_{n}\right)=n^{-1} \sum_{k=1}^{n} 1\left(-\left|\sigma_{n} \log \sigma_{n}\right|+\delta_{n}\left|Q_{k}\right| \geq P_{k}-a^{\prime} Q_{k}-b \geq-\left|\sigma_{n} \log \sigma_{n}\right|\right), \\
& N_{n 2}\left(b, a^{\prime}, \sigma_{n}\right)=n^{-1} \sum_{k=1}^{n} 1\left(-\left|\sigma_{n} \log \sigma_{n}\right|-\delta_{n}\left|Q_{k}\right| \leq P_{k}-a^{\prime} Q_{k}-b \leq-\left|\sigma_{n} \log \sigma_{n}\right|\right), \\
& N_{n 3}\left(b, a^{\prime}, \sigma_{n}\right)=n^{-1} \sum_{k=1}^{n} 1\left(\left|\sigma_{n} \log \sigma_{n}\right|-\delta_{n}\left|Q_{k}\right| \leq P_{k}-a^{\prime} Q_{k}-b \leq\left|\sigma_{n} \log \sigma_{n}\right|\right), \\
& N_{n 4}\left(b, a^{\prime}, \sigma_{n}\right)=n^{-1} \sum_{k=1}^{n} 1\left(\left|\sigma_{n} \log \sigma_{n}\right|+\delta_{n}\left|Q_{k}\right| \geq P_{k}-a^{\prime} Q_{k}-b \geq\left|\sigma_{n} \log \sigma_{n}\right|\right) .
\end{aligned}
$$

Then,

$$
\begin{aligned}
& n^{-1} \sum_{k=1}^{n}\left|U_{k}\left(a, b, \sigma_{n}\right)-U_{k}\left(a^{\prime}, b, \sigma_{n}\right)\right| \\
= & n^{-1} \sum_{k=1}^{n}\left|U_{k}\left(a, b, \sigma_{n}\right)-U_{k}\left(a^{\prime}, b, \sigma_{n}\right)\right| U_{k}\left(a^{\prime}, b, \sigma_{n}\right) \\
& +n^{-1} \sum_{k=1}^{n}\left|U_{k}\left(a, b, \sigma_{n}\right)-U_{k}\left(a^{\prime}, b, \sigma_{n}\right)\right|\left(1-U_{k}\left(a^{\prime}, b, \sigma_{n}\right)\right) \\
\leq & M_{n 1}\left(a, b, a^{\prime}, \sigma_{n}\right)+M_{n 2}\left(a, b, a^{\prime}, \sigma_{n}\right) \\
& +M_{n 3}\left(a, b, a^{\prime}, \sigma_{n}\right)+M_{n 4}\left(a, b, a^{\prime}, \sigma_{n}\right) .
\end{aligned}
$$

Note that for any a, such that $\left|a-a^{\prime}\right| \leq \delta_{n}$,
$P_{k}-a^{\prime} Q_{k}-b=P_{k}-a Q_{k}-b-\left(a^{\prime}-a\right) Q_{k} \in\left[P_{k}-a Q_{k}-b-\delta_{n}\left|Q_{k}\right|, P_{k}-a Q_{k}-b+\delta_{n}\left|Q_{k}\right|\right]$.

Thus, for any a, such that $\left|a-a^{\prime}\right| \leq \delta_{n}$,

$$
\begin{aligned}
& M_{n 1}\left(a, b, a^{\prime}, \sigma_{n}\right)+M_{n 2}\left(a, b, a^{\prime}, \sigma_{n}\right)+M_{n 3}\left(a, b, a^{\prime}, \sigma_{n}\right)+M_{n 4}\left(a, b, a^{\prime}, \sigma_{n}\right) \\
\leq & N_{n 1}\left(b, a^{\prime}, \sigma_{n}\right)+N_{n 2}\left(b, a^{\prime}, \sigma_{n}\right)+N_{n 3}\left(b, a^{\prime}, \sigma_{n}\right)+N_{n 4}\left(b, a^{\prime}, \sigma_{n}\right) .
\end{aligned}
$$

Therefore, for any $a^{\prime} \in R$,

$$
\begin{aligned}
& \sup _{\left|a-a^{\prime}\right| \leq \delta_{n}, b \in R} n^{-1} \sum_{k=1}^{n}\left|U_{k}\left(a, b, \sigma_{n}\right)-U_{k}\left(a^{\prime}, b, \sigma_{n}\right)\right| \\
\leq & \sup _{b \in R} N_{n 1}\left(b, a^{\prime}, \sigma_{n}\right)+\sup _{b \in R} N_{n 2}\left(b, a^{\prime}, \sigma_{n}\right)+\sup _{b \in R} N_{n 3}\left(b, a^{\prime}, \sigma_{n}\right) \\
& +\sup _{b \in R} N_{n 4}\left(b, a^{\prime}, \sigma_{n}\right) .
\end{aligned}
$$

Let $L_{n 12 i}=k_{n} \sup _{a^{\prime} \in R} P\left(N_{n i}\left(b, a^{\prime}, \sigma_{n}\right)>\left(C^{*} / 8\right)\left|\sigma_{n} \log \sigma_{n}\right|\right), i=1,2,3,4$. Then

$$
\begin{equation*}
L_{n 12} \leq \sum_{i=1}^{4} L_{n 12 i} \tag{S1.7}
\end{equation*}
$$

By the choice of δ_{n},

$$
\begin{aligned}
N_{n 1}\left(b, c, \sigma_{n}\right) \leq & \sup _{b \in R} n^{-1} \sum_{k=1}^{n} 1\left(-\left|\sigma_{n} \log \sigma_{n}\right|+\delta_{n}\left|Q_{k}\right| \geq P_{k}-a^{\prime} Q_{k}-b\right. \\
& \left.\geq-\left|\sigma_{n} \log \sigma_{n}\right|\right) \times 1\left(\left|Q_{k}\right| \leq n\right)+n^{-1} \sum_{k=1}^{n} 1\left(\left|Q_{k}\right|>n\right) \\
\leq & \sup _{b \in R} n^{-1} \sum_{k=1}^{n} 1\left(0 \geq P_{k}-a^{\prime} Q_{k}-b \geq-\left|\sigma_{n} \log \sigma_{n}\right|\right) \\
& +n^{-1} \sum_{k=1}^{n} 1\left(\left|Q_{k}\right|>n\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
L_{n 121} & \leq k_{n} \sup _{a^{\prime} \in R} P\left(\sup _{b \in R} n^{-1} \sum_{k=1}^{n} 1\left(0 \geq P_{k}-a^{\prime} Q_{k}-b \geq-\left|\sigma_{n} \log \sigma_{n}\right|\right)\right. \\
& \left.>\left(C^{*} / 16\right)\left|\sigma_{n} \log \sigma_{n}\right|\right)+k_{n} P\left(n^{-1} \sum_{k=1}^{n} 1\left(\left|Q_{k}\right|>n\right)>\left(C^{*} / 16\right)\left|\sigma_{n} \log \sigma_{n}\right|\right) .
\end{aligned}
$$

Analogous to the proof for $(\mathbf{S 1 . 4})$, we have $L_{n 121} \leq \mathrm{Cn}^{-2}$. Similarly, the results hold for $L_{n 12 i}, i=2,3,4$. Therefore, by (S1.7), $L_{n 12} \leq \sum_{i=1}^{4} L_{n 12 i} \leq \mathrm{Cn}^{-2}$.

By Step 2-1, Step 2-2 and Equation (S1.5), we have

$$
\begin{equation*}
L_{n 1} \leq \sum_{i=1}^{2} L_{n 1 i} \leq C n^{-2} \tag{S1.8}
\end{equation*}
$$

which completes the proof of Step 2.

By Step1, Step 2 and Equation (S1.2), we complete the proof of Lemma 1.

S1.3 Proof of Theorem 2

For Theorem 2, we note that the Taylor expansion of $p E M_{j}^{(K)}$ together with Condition C6 which implies that the penalty vanishes almost surely. Then, the results follow from similar arguments to those for Theorem 2 in Shen and He (2015).

S2 Additional Results for Empirical Studies

In this section, we provide additional tables and figures for the simulation and real data examples in Section 4 of the paper.

Firstly, we show the type- 1 errors of the $p E M$ test with $\lambda=50$, which gives similar results to Table 1 in the main paper.

Table 1: Type I errors of the $p E M$ test with bootstrap approximations in 1000 data sets with standard errors in the parenthesis, with $\lambda=50$.

n	Nominal level α	$p E M^{(0)}$	$p E M^{(3)}$	$p E M^{(9)}$
$n=60$	0.01	$0.013(0.004)$	$0.013(0.004)$	$0.014(0.004)$
	0.05	$0.044(0.006)$	$0.050(0.007)$	$0.051(0.007)$
	0.10	$0.089(0.009)$	$0.088(0.009)$	$0.094(0.009)$
$n=100$	0.01	$0.010(0.003)$	$0.010(0.003)$	$0.008(0.003)$
	0.05	$0.049(0.007)$	$0.049(0.007)$	$0.048(0.007)$
	0.10	$0.103(0.010)$	$0.116(0.010)$	$0.113(0.010)$

For the NSW data, we have the descriptions of the variables in Table 2
For the AIDS data, we have the estimates from the unequal variance model

Table 2: Summary statistics for the NSW study. In the first six rows, we give the mean and quantiles for the continuous variables, and in the last two rows we give the frequencies of the four binary variables. In the table, $Y: \log ($ RE78 +1$)-\log ($ RE75 +1$)$ in which RE78 and RE75 is the earning of the individual in 1975 and in 1978, respectively; trt: treatment indicator, that is, if the subject joins the training program; X_{1} : education years; X_{2} : whether the subject is Black; X_{3} : whether the baseline income is zero; and X_{4} : whether the baseline income is above the median of the positive part.

in Table 3, and the plot of estimated membership scores from (4.3) and (4.4) in Figure 1.

Bibliography

Chen, J., Tan, X., and Zhang, R. (2008). Inference for normal mixtures in mean and variance. Statistica Sinica 18, 443-465.

Shen, J. and He, X. (2015). Inference for subgroup analysis with a structured logistic-normal mixture model. Journal of the American Statistical Associa-
tion 110, 303-312.

Table 3: Parameter estimates and their standard errors when the unequal variance structured logistic-normal mixture model was used to fit the data in the ACTG study with $\lambda=400$.

	$\boldsymbol{\beta}_{1}(1)$	$\boldsymbol{\beta}_{1}($ trt $)$	$\boldsymbol{\beta}_{1}(\log (c d 4.0))$	$\boldsymbol{\beta}_{1}\left(\log _{10}(\right.$ rna.0 $)$	$\boldsymbol{\beta}_{1}$ (Age)
est	-46.00	41.76	-0.68	7.41	0.72
se	44.46	6.34	3.59	6.73	0.38
	$\boldsymbol{\beta}_{2}(1)$	$\boldsymbol{\beta}_{2}($ trt $)$	$\boldsymbol{\beta}_{2}(\log (c d 4.0))$	$\boldsymbol{\beta}_{2}\left(\log _{10}(\right.$ rna.0) $)$	$\boldsymbol{\beta}_{2}$ (Age)
est	3.23	51.74	8.75	-1.23	-0.71
se	63.63	9.73	5.79	10.23	1.06
	$\boldsymbol{\gamma}(1)$		$\boldsymbol{\gamma}(\log (c d 4.0))$	$\boldsymbol{\gamma}\left(\log _{10}(\right.$ rna.0) $)$	$\boldsymbol{\gamma}$ (Age)
est	-9.16		0.67	1.40	-0.02
se	1.02		0.08	0.16	0.01
	σ_{1}	σ_{2}			
est	57.65	48.29			
se	1.24	0.97			

Figure 1: AIDS data. Membership scores for all the subjects estimates from the equal variance structured mixture model (4.3) and the unequal variance structured mixture model (4.4), respectively.

