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Supplementary Material

In this supplement, we provide the proofs for Theorem 1 and Theorem 2, and give more details for the

analysis of the data in Section 4 in the main paper.

S1 Proofs

We first provide a useful lemma which is proved in the end of this section.

Lemma 1. Suppose {(Pk,Qk)}∞k=1 are i.i.d. continuous random variables with

finite means. Also suppose that the density of Qk and the conditional density of

Pk|Qk are bounded by C, then uniformly in σn between n−1 and e−1, there exists

a constant C∗ such that for sufficiently large n,

P
(

sup
a,b∈R

n−1
n∑

k=1

1
(
|Pk − aQk − b| ≤ |σn logσn|

)
> C∗|σn logσn|

)
≤ Cn−2.
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S1.1 Proof of Theorem 1

We note that S1 and S2 play the role of Lemma 1 in Chen et al. (2008). With

these two properties, it then follows from the Borel-Cantelli Lemma that as n→

∞ and almost surely,

1. for each given σ between n−1 and e−1,

sup
β∈Rq1

n−1
n∑

i=1

1
(
|Yi − ZT

i β| ≤ |σ logσ|
)
≤ C|σ logσ|,

2. uniformly for σ between 0 and n−1,

sup
β∈Rq1

n−1
n∑

i=1

1
(
|Yi − ZT

i β| ≤ |σ logσ|
)
≤ 4(log n)2/n.

These almost sure results are stated for a given σ. However, following the argu-

ments in Lemma 2 of Chen et al. (2008), we have a stronger result as follows.

Except for a zero-probability event not depending on σ, we have for all large

enough n:

1. for σ between n−1 and e−1, supβ∈Rq1 n−1 ∑n
i=1 1

(
|Yi − ZT

i β| ≤ |σ logσ|
)
≤

C|σ logσ|,

2. forσ between 0 and n−1, supβ∈Rq1 n−1 ∑n
i=1 1

(
|Yi−ZT

i β| ≤ |σ logσ|
)
≤ 4(log n)2/n.

We partition the parameter space with respect to σ as in Chen et al. (2008).
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Let Γ1 = {Θ : σ1 ≤ σ2 ≤ ε0}, Γ2 = {Θ : σ1 ≤ τ0, σ2 ≥ ε0}, Γ3 = Γ − (Γ1
⋃

Γ2),

where ε0, τ0 and Γ are specified in Chen et al. (2008). Note that ZT
i β in our

setting plays the same role as θ in Chen et al. (2008), where the model has no

covariates. Hence, with the above almost surely results and Theorem 1 and

Theorem 2 of Chen et al. (2008), we have as n → ∞ and almost surely, the

penalized maximum likelihood estimators of our model will be attained in Γ3.

Note that σ is bounded away from zero in Γ3, standard techniques of proving

the consistency of the maximum likelihood estimators lead to the consistency

of our proposed penalized maximum likelihood estimators.

Next, we show S1 and S2. Since the proof of S2 is essentially the same as

that for S1, we only provide the details of the proof of S1. For convenience, we

allow the constants used in the proofs vary line by line.

Recall that Z = (1, U,V), where 1 represents the intercept in the model and

U consists of only discrete variables with a finite sample space and V consists of

only continuous variables. We prove S1 for the following three cases.

Case 1: If Z only has three dimensions, that is, Z = (1,U,V). Further, we as-

sume U ∼ Ber(1/2).

Case 2: If Z = (1,U,V), where U is a random vector taking any finite values

and V is one dimensional continuous variable.

Case 3: If Z = (1,U,V), where U is a random vector taking finite values and V
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ia a vector of continuous random variables.

From Case 1 to Case 3, we will prove S1 from the simplest case to the most

general situation. Then we complete the proof of Theorem 1.

Next we provide the detailed proof under Cases 1-3.

Proof for Case 1: We prove S1 when Z only has three dimensions, that is,

Z = (1,U,V). Further, we assume U ∼ Ber(1/2).

Let Ūn = n−1 ∑n
i=1 Ui and let fX(x) and fX|Y(x|y) denote the density of X and

the conditional density of X|Y , respectively. Then, for any given σn ∈ (n−1, e−1),

let

εn = {n−1(8 log n)}1/2,

I = P
(

supβ∈R3 Wn(β) > C|σn logσn|
∣∣∣|Ūn − 1/2| ≤ εn

)
,

II = P(|Ūn − 1/2| > εn).

We have,

P
(
An(C)

)
= P

(
supβ∈R3 Wn(β) > C|σn logσn|

)
≤ P

(
supβ∈R3 Wn(β) > C|σn logσn|

∣∣∣|Ūn − 1/2| ≤ εn

)
+

P(|Ūn − 1/2| > εn)

= I + II.

(S1.1)
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We verify the following two claims:

CL1 II ≤ Cn−2;

CL2 I ≤ Cn−2.

Proof of CL1: By Bernstein’s inequality, for sufficient large n,

II = 2P
( n∑

i=1

Ui/n − 1/2 > εn

)
≤ exp

{
−

n2ε2
n/2

n + nεn/3

}
≤ Cn−2.

Proof of CL2: Note that

I = P
(

supβ∈R3 Wn(β) > C|σn logσn|
∣∣∣|Ūn − 1/2| ≤ εn

)
=

∑
u1,··· ,un

P
(

supβ∈R3 Wn(β) > C|σn logσn|
∣∣∣U1 = u1, · · · ,Un = un, |Ūn − 1/2| ≤ εn

)
× f(u1,··· ,un |Ūn)(u1, · · · , un).

For any u1, · · · , un such that Ūn = n−1 ∑n
i=1 ui ∈ [2−1 − εn, 2−1 + εn], let U =

(U1, · · · ,Un), u = (u1, · · · , un), and {i1, · · · , inŪn} are indices for u = 1, and

{ j1, · · · , jn−nŪn} are indices for u = 0. Also let Uik = (Ui1 , · · · ,UinŪn
), U jk =

(U j1 , · · · ,U jn−nŪn
) and let the variables (Pk,Qk) and (P′k,Q

′
k) be specified with the

following distributions:

{(P
′

k,Q
′

k)}
nŪn
k=1

D
= {(Yik ,Vik)}

nŪn
k=1 |Uik = 1
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and

{(Pk,Qk)}
n−nŪn
k=1

D
= {(Y jk ,V jk)}

n−nŪn
k=1 |U jk = 0.

By the independence of {Zk}
n
k=1 = {(1,Uk,Vk)}nk=1, we have

P
(

supβ∈R3 Wn(β) > C|σn logσn|
∣∣∣U1 = u1, · · · ,Un = un, |Ūn − 1/2| ≤ εn

)
= P

(
supβ∈R3 Wn(β) > C|σn logσn|

∣∣∣U1 = u1, · · · ,Un = un

)
= P

(
supβ∈R3{n−1 ∑nŪn

k=1 1(|Yik − β1 − β2 − β3Vik | ≤ |σn logσn|)

+n−1 ∑n−nŪn
k=1 1(|Y jk − β1 − β3V jk | ≤ |σn logσn|)} > C|σn logσn|

∣∣∣U = u
)

≤ P
(

supβ∈R3 n−1 ∑nŪn
k=1 1(|Yik − β1 − β2 − β3Vik | ≤ |σn logσn|) > (C/2)|σn logσn|

∣∣∣Uik = 1
)

+P
(

supβ∈R3 n−1 ∑n−nŪn
k=1 1(|Y jk − β1 − β3V jk | ≤ |σn logσn|) > (C/2)|σn logσn|

∣∣∣U jk = 0
)

≤ P
(

supa,b∈R(nŪn)−1 ∑nŪn
k=1 1(|(P

′

k − aQ
′

k − b| ≤ |σn logσn|) > (C/2)|σn logσn|
)

+P
(

supa,b∈R(n − nŪn)−1 ∑n−nŪn
k=1 1(|Pk − aQk − b| ≤ |σn logσn|) > (C/2)|σn logσn|

)
.

Since {Yi, Zi, Xi}
n
i=1 are i.i.d., {(Pk,Qk)}

n−nŪn
k=1 are i.i.d. and so are {(P

′

k,Q
′

k)}
nŪn
k=1 .

We now prove the following two properties under both the null hypothesis and

the alternative hypothesis.

CL3 (Pk,Qk) and (P
′

k,Q
′

k) have finite means;

CL4 The densities of Pk, P
′

k and the conditional densities of Pk|Qk, P
′

k|Q
′

k are

bounded.

Then, by the choice of Ūn, nŪn = O(n/2) and n − nŪn = O(n/2) almost surely.
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Taken CL3 and CL4 and Lemma 1 together, we conclude that there exist con-

stant C′ such that I ≤ C′n−2 for sufficiently large n. The proof for CL1 and CL2

is then complete.

Proof of CL3 and CL4: Recall

Y |{(U,V), X} ∼ π(XTγ)N
(
ZT (β1 + β2), σ2

1
)

+ (1 − π(XTγ))N
(
ZTβ1, σ

2
2
)
.

Note that the null model is just a special case of the above in that β2 = 0 andσ1 =

σ2. By the definitions of (Pk,Qk) and (P
′

k,Q
′

k), for any βT = (γT ,βT
1 ,β

T
2 , σ1, σ2),

if suffices to show the following two statements:

S(i) E
(
|Y |

∣∣∣U)
< ∞, E

(
|V |

∣∣∣U)
< ∞;

S(ii) the conditional densities of V | U and Y | U,V are bounded.

The statement S(ii) is obvious, since Y | V,U, X follows the logistic mixture

of normals, its density is uniformly bounded by {(2π)1/2 min{σ1, σ2}}
−1, where

σ1, σ2 are the true parameters in the model. Therefore, the conditional density

of Y |V,U is bounded, and by Condition C4, the conditional density of V | U is

bounded. For S(i), by Condition C5, E
(
|V |

∣∣∣U)
< ∞, again because Y | V,U, X
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follows logistic mixture of normals,

E
(
|Y |

∣∣∣U)
= E

{
E
(
|Y |

∣∣∣U,V, X)∣∣∣U}
= E

{
(E

(
π(XTγ

)
|Y1| + [1 − π(XTγ)]|Y2|

∣∣∣U,V, X))
∣∣∣U}

= E
{
[π(XTγ)E

(
|Y1|

∣∣∣U,V, X)
+[1 − π(XTγ)]E

(
|Y2|

∣∣∣U,V, X)
]
∣∣∣U}

where Y1 | (U,V, X) ∼ N(ZT (β1 + β2), σ2
1), Y2 | (U,V, X) ∼ N(ZTβ1, σ

2
2), and

Z = (1,U,V). Note that

E
(
|Y1|

∣∣∣U,V, X)
≤ σ1E

(
|
Y1−ZTβ1−ZTβ2

σ1
|
∣∣∣U,V, X)

+ (1 + |V | + |U |)||β1 + β2||∞

= 2
√

2π
σ1 + (1 + |V | + |U |)||β1 + β2||∞,

where || · ||∞ is the supreme norm and the last equation is due to the fact that

E|Z| = 2(2π)−1/2 if Z ∼ N(0, 1). Similarly,

E
(
|Y2|

∣∣∣U,V, X)
≤

2
√

2π
σ2 + (1 + |V | + |U |)||β1||∞.

Therefore,

E
(
|Y |

∣∣∣U)
≤

2
√

2π
max{σ1, σ2} + max{||β1||∞, ||β1 + β2||∞}E

(
1 + |V | + |U |

∣∣∣U)
< ∞,

where the last inequality is due to Condition C5.

We have now verified properties CL3 and CL4 for any βT = (γT ,βT
1 ,β

T
2 , σ1, σ2),
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under both the null and the alternative hypotheses. By the results from CL1,

CL2 and Equation (S1.1), we finished the proof of Case 1.

Proof for Case 2: We prove S1 with Z = (1,U,V), where U is a random

vector taking any finite values and V is one dimensional continuous variable.

Let P(U = ut) = pt > 0, t = 1, 2, · · · , r, and
∑r

t=1 pt = 1. Also let

Ū t
n = n−1 ∑n

i=1 1(Ui = ut), t = 1, 2, · · · , r. As in the earlier proof, we set

εnt = {n−1(8 log n)}1/2, and we bound P(An(C)) by

P
(
An(C)

∣∣∣Ū t
n ∈ [pt − εnt, pt + εnt], t = 1, · · · , r

)
+

r∑
t=1

P
(
|Ū t

n − pt| > εnt

)
4
= I + II.

By Bernstein’s inequality, we know II < Cn−2. For part I, we use arguments

conditional on Ui = ui, i = 1, 2, · · · , n, such that the values of ui satisfy Ū t
n ∈

[pt − εnt, pt + εnt], t = 1, · · · , r. We then group the Ui = ui which have the same

value of ut. Note that the number of the items in each group is of the order

of O(ptn), and by the independence of the vectors of Zi, we can directly apply

Lemma 1 and get the desired results.

Proof for Case 3: We prove S1 for general Z = (1,U,V), where U is

a random vector taking finite values and V ia a vector of continuous random

variables.
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We bound P(An(C)) by conditioning on the possible values of U as we did

previously, then it suffices to show

P
(

sup
b∈R,ρ∈R+,||α||=1

n−1
n∑

k=1

1
(
|Pk−ρα

T Qk−b| ≤ |σn logσn|
)
> C∗|σn logσn|

)
≤ Cn−2,

for some C∗ and C and sufficiently large n. However, the set of α with ||α|| = 1

is a compact set, we can prove it by using standard empirical process argument

and the same techniques as those used to prove Lemma 1 in the next subsection.

S1.2 Proof of Lemma 1

In this subsection, we prove Lemma 1 which is needed for the proof of Theorem

1. We allow the constants below to vary line by line. Let

Gn(a, b, σn) = n−1 ∑n
k=1 1

(
|Pk − aQk − b| ≤ |σn logσn|

)
,

Ln1 = P(sup|a|≤n2,b∈R Gn(a, b, σn) > C∗|σn logσn|),

Ln2 = P(sup|a|>n2,b∈R Gn(a, b, σn) > C∗|σn logσn|).

Note that

sup
a,b∈R

Gn(a, b, σn) = max
{

sup
|a|≤n2,b∈R

Gn(a, b, σn), sup
|a|>n2,b∈R

Gn(a, b, σn)
}
.
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Thus we have,

P
(

sup
a,b∈R

Gn(a, b, σn) > C∗|σn logσn|
)
≤ Ln1 + Ln2. (S1.2)

Step 1: We show Ln2 ≤ Cn−2.

Note that for any given σn ∈ (n−1, e−1), |σn logσn| ≥ n−1 log n. We have

Gn(a, b, σn) ≤ n−1 ∑n
k=1 1

(
Pk
|a| −

|σn logσn |

|a| ≤ Qk + b
|a| ≤

Pk
|a| +

|σn logσn |

|a|

)
×1

(
|Pk| ≤ (|a| − 1)|σn logσn|

)
+n−1 ∑n

k=1 1
(
|Pk| > (|a| − 1)|σn logσn|

)
.

Therefore,

sup|a|>n2,b∈R Gn(a, b, σn)

≤ sup|a|>n2,b∈R

{
n−1 ∑n

k=1 1
(

Pk
|a| −

|σn logσn |

|a| ≤ Qk + b
|a| ≤

Pk
|a| +

|σn logσn |

|a|

)
×1(|Pk| ≤ (|a| − 1)|σn logσn|)

}
+ sup|a|>n2

{
n−1 ∑n

k=1 1
(
|Pk| > (|a| − 1)|σn logσn|

)}
≤ supθ∈R n−1

{∑n
k=1 1(−|σn logσn| ≤ Qk − θ ≤ |σn logσn|)

}
+n−1 ∑n

k=1 1(|Pk| > n).

Let

Ln21 = P
(

sup
θ∈R

{
n−1

n∑
k=1

1(−|σn logσn| ≤ Qk−θ ≤ |σn logσn|)
}
> (C∗/2)|σn logσn|

)
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and

Ln22 = P
(
n−1

n∑
k=1

1(|Pk| > n) > (C∗/2)|σn logσn|
)
.

Then,

Ln2 = P
(

sup
|a|>n2,b∈R

Gn(a, b, σn) > C∗|σn logσn|

)
≤ Ln21 + Ln22. (S1.3)

Step 1-1: We show Ln21 ≤ Cn−2.

Observe that in Ln21,

n−1 ∑n
k=1 1

(
− |σn logσn| ≤ Qk − θ ≤ |σn logσn|

)
= Fn(θ + |σn logσn|) − Fn(θ − |σn logσn|),

where Fn is the empirical distribution for Q. Since the density of Q is bounded,

a direct application of Lemma 1 of Chen et al. (2008) yields Ln21 ≤ Cn−2.

Step 1-2: We show Ln22 ≤ Cn−2.

Note that E{1(|Pk| > n)} ≤ n−1E(|Pk|) ≤ n−1 log n ≤ |σn logσn|, for suffi-

ciently large n. Then, by Bernstein’s inequality, we have

Ln22 ≤ P
(∑n

k=1

[
1{|Pk| > n} − E

(
1{|Pk| > n}

)]
> C̃n|σn logσn|

)
≤ exp

{
−

(C̃n)2 |σn logσn |
2

2n|σn logσn |+2C̃n|σn logσn |

}
≤ Cn−2,

where C̃ = C∗/2 − 1.
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By Step 1-1, Step 1-2 and Equation (S1.3), we have

Ln2 ≤ Ln21 + Ln22 ≤ Cn−2, (S1.4)

which completes the proof of Step 1.

Step 2: We show Ln1 ≤ Cn−2.

Let δn = n−1|σn logσn| ≥ n−2(log n). Divide |a| ≤ n2 into the union of kn

subsets {Ωn j}
kn
j=1, such that, the distance between any two points in each subset is

no greater than δn. It is clear that we can achieve this with kn ≤ (log n)−12n4 ≤

O(n4). Let Uk(a, b, σn) = 1(|Pk − aQk − b| ≤ |σn logσn|), then

sup|a|≤n2,b∈R Gn(a, b, σn)

= max1≤ j≤kn

[
supa∈Ωn j,b∈R{Gn(a, b, σn)}

]
≤ max1≤ j≤kn

[
supb∈R Gn(a j, b, σn) + sup|a−a j |≤δn,b∈R

{
|Gn(a, b, σn) −Gn(a j, b, σn)|

}]
≤ max1≤ j≤kn

[
supb∈R Gn(a j, b, σn) + sup|a−a j |≤δn,b∈R

{
n−1 ∑n

k=1 |Uk(a, b, σn)

−Uk(a j, b, σn)|
}]
,

where a j is any fixed point in Ωn j. Let

Ln11 = kn sup
a∈R

P
{

sup
b∈R

Gn(a, b, σn) > (C∗/2)|σn logσn|
}
,
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and

Ln12 = kn sup
a′∈R

P
{

sup
|a−a′ |≤δn,b∈R

n−1
n∑

k=1

|Uk(a, b, σn)−Uk(a
′

, b, σn)| > (C∗/2)|σn logσn|
}
.

Then we have

Ln1 ≤ Ln11 + Ln12. (S1.5)

Step 2-1: We show Ln11 ≤ Cn−2.

In Ln11, for any a ∈ R, let Ra
k = Pk − aQk. Since Pk,Qk are continuous, and

Ra
k is continuous and its density fRa

k
(r) =

∫
fRa

k |Qk(r|qk) fQk(qk)dqk =
∫

fPk |Qk(r +

aqk|qk) fQk(qk)dqk ≤ C. Therefore,

Gn(a, b, σn) = n−1 ∑n
k=1 1

(
|Ra

k − b| ≤ |σn logσn|
)

= Fn(b + |σn logσn|) − Fn(b − |σn logσn|),

where Fn is the empirical distribution for Ra
k , k = 1, · · · , n. Since the density of

Ra
k is uniformly bounded over a, a direct application of Lemma 1 of Chen et al.

(2008) yields

P
(

sup
b∈R

n−1
n∑

k=1

1
(
|Ra

k − b| ≤ |σn logσn|
)
> (C∗/2)|σn logσn|

)
< Cn−6,

for any a ∈ R and for some fixed constant C∗. By using the order of kn, we have
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for some C∗,

Ln11 ≤ C∗n−2 (S1.6)

for sufficiently large n.

Step 2-2: We show Ln12 ≤ Cn−2.

For any a
′

∈ R, let

Mn1(a, b, a
′

, σn) = n−1 ∑n
k=1 1

(
Pk − a

′

Qk − b ≥ −|σn logσn|
)
1
(
Pk − aQk − b ≤ −|σn logσn|

)
,

Mn2(a, b, a
′

, σn) = n−1 ∑n
k=1 1

(
Pk − a

′

Qk − b ≤ |σn logσn|
)
1
(
Pk − aQk − b ≥ |σn logσn|

)
,

Mn3(a, b, a
′

, σn) = n−1 ∑n
k=1 1

(
Pk − a

′

Qk − b ≤ −|σn logσn|
)
1
(
Pk − aQk − b ≥ −|σn logσn|

)
,

Mn4(a, b, a
′

, σn) = n−1 ∑n
k=1 1

(
Pk − a

′

Qk − b ≥ |σn logσn|
)
1
(
Pk − aQk − b ≤ |σn logσn|

)
;

Nn1(b, a
′

, σn) = n−1 ∑n
k=1 1

(
− |σn logσn| + δn|Qk| ≥ Pk − a

′

Qk − b ≥ −|σn logσn|
)
,

Nn2(b, a
′

, σn) = n−1 ∑n
k=1 1

(
− |σn logσn| − δn|Qk| ≤ Pk − a

′

Qk − b ≤ −|σn logσn|
)
,

Nn3(b, a
′

, σn) = n−1 ∑n
k=1 1

(
|σn logσn| − δn|Qk| ≤ Pk − a

′

Qk − b ≤ |σn logσn|
)
,

Nn4(b, a
′

, σn) = n−1 ∑n
k=1 1

(
|σn logσn| + δn|Qk| ≥ Pk − a

′

Qk − b ≥ |σn logσn|
)
.
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Then,

n−1 ∑n
k=1 |Uk(a, b, σn) − Uk(a

′

, b, σn)|

= n−1 ∑n
k=1 |Uk(a, b, σn) − Uk(a

′

, b, σn)|Uk(a
′

, b, σn)

+n−1 ∑n
k=1 |Uk(a, b, σn) − Uk(a

′

, b, σn)|(1 − Uk(a
′

, b, σn))

≤ Mn1(a, b, a
′

, σn) + Mn2(a, b, a
′

, σn)

+Mn3(a, b, a
′

, σn) + Mn4(a, b, a
′

, σn).

Note that for any a, such that |a − a
′

| ≤ δn,

Pk−a
′

Qk−b = Pk−aQk−b−(a
′

−a)Qk ∈ [Pk−aQk−b−δn|Qk|, Pk−aQk−b+δn|Qk|].

Thus, for any a, such that |a − a
′

| ≤ δn,

Mn1(a, b, a
′

, σn) + Mn2(a, b, a
′

, σn) + Mn3(a, b, a
′

, σn) + Mn4(a, b, a
′

, σn)

≤ Nn1(b, a
′

, σn) + Nn2(b, a
′

, σn) + Nn3(b, a
′

, σn) + Nn4(b, a
′

, σn).

Therefore, for any a
′

∈ R,

sup|a−a′ |≤δn,b∈R n−1 ∑n
k=1 |Uk(a, b, σn) − Uk(a

′

, b, σn)|

≤ supb∈R Nn1(b, a
′

, σn) + supb∈R Nn2(b, a
′

, σn) + supb∈R Nn3(b, a
′

, σn)

+ supb∈R Nn4(b, a
′

, σn).
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Let Ln12i = kn supa′∈R P(Nni(b, a
′

, σn) > (C∗/8)|σn logσn|), i = 1, 2, 3, 4. Then

Ln12 ≤

4∑
i=1

Ln12i. (S1.7)

By the choice of δn,

Nn1(b, c, σn) ≤ supb∈R n−1 ∑n
k=1 1

(
− |σn logσn| + δn|Qk| ≥ Pk − a

′

Qk − b

≥ −|σn logσn|
)
× 1(|Qk| ≤ n) + n−1 ∑n

k=1 1(|Qk| > n)

≤ supb∈R n−1 ∑n
k=1 1

(
0 ≥ Pk − a

′

Qk − b ≥ −|σn logσn|
)

+n−1 ∑n
k=1 1(|Qk| > n).

Therefore,

Ln121 ≤ kn supa′∈R P
(

supb∈R n−1 ∑n
k=1 1(0 ≥ Pk − a

′

Qk − b ≥ −|σn logσn|)

> (C∗/16)|σn logσn|
)

+ knP
(
n−1 ∑n

k=1 1(|Qk| > n) > (C∗/16)|σn logσn|
)
.

Analogous to the proof for (S1.4), we have Ln121 ≤ Cn−2. Similarly, the results

hold for Ln12i, i = 2, 3, 4. Therefore, by (S1.7), Ln12 ≤
∑4

i=1 Ln12i ≤ Cn−2.

By Step 2-1, Step 2-2 and Equation (S1.5), we have

Ln1 ≤

2∑
i=1

Ln1i ≤ Cn−2, (S1.8)

which completes the proof of Step 2.
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By Step1, Step 2 and Equation (S1.2), we complete the proof of Lemma 1.

S1.3 Proof of Theorem 2

For Theorem 2, we note that the Taylor expansion of pEM(K)
j together with Con-

dition C6 which implies that the penalty vanishes almost surely. Then, the results

follow from similar arguments to those for Theorem 2 in Shen and He (2015).

S2 Additional Results for Empirical Studies

In this section, we provide additional tables and figures for the simulation and

real data examples in Section 4 of the paper.

Firstly, we show the type-1 errors of the pEM test with λ = 50, which gives

similar results to Table 1 in the main paper.

Table 1: Type I errors of the pEM test with bootstrap approximations in 1000 data sets with
standard errors in the parenthesis, with λ = 50.

n Nominal level α pEM(0) pEM(3) pEM(9)

n=60 0.01 0.013(0.004) 0.013 ( 0.004) 0.014( 0.004)
0.05 0.044(0.006) 0.050( 0.007) 0.051( 0.007)
0.10 0.089 (0.009) 0.088( 0.009) 0.094( 0.009)

n=100 0.01 0.010(0.003) 0.010( 0.003) 0.008( 0.003)
0.05 0.049(0.007) 0.049( 0.007) 0.048( 0.007)
0.10 0.103 (0.010) 0.116( 0.010) 0.113( 0.010)

For the NSW data, we have the descriptions of the variables in Table 2.

For the AIDS data, we have the estimates from the unequal variance model
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Table 2: Summary statistics for the NSW study. In the first six rows, we give the mean and
quantiles for the continuous variables, and in the last two rows we give the frequencies of the
four binary variables. In the table, Y: log(RE78+1)-log(RE75+1) in which RE78 and RE75 is
the earning of the individual in 1975 and in 1978, respectively; trt: treatment indicator, that is, if
the subject joins the training program; X1: education years; X2: whether the subject is Black; X3:
whether the baseline income is zero; and X4: whether the baseline income is above the median
of the positive part.

Y X1
Min. -9.81 3
1st Qu. -0.38 9
Median 0.41 10
Mean 1.43 10
3rd Qu. 6.94 11
Max. 10.44 16

trt X2 X3 X4

0 425 144 433 506
1 297 578 289 216

in Table 3, and the plot of estimated membership scores from (4.3) and (4.4) in

Figure 1.
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Table 3: Parameter estimates and their standard errors when the unequal variance structured
logistic-normal mixture model was used to fit the data in the ACTG study with λ = 400.

β1(1) β1(trt) β1

(
log(cd4.0)

)
β1

(
log10(rna.0)

)
β1(Age)

est -46.00 41.76 -0.68 7.41 0.72
se 44.46 6.34 3.59 6.73 0.38

β2(1) β2(trt) β2

(
log(cd4.0)

)
β2

(
log10(rna.0)

)
β2(Age)

est 3.23 51.74 8.75 -1.23 -0.71
se 63.63 9.73 5.79 10.23 1.06

γ(1) γ
(

log(cd4.0)
)
γ
(

log10(rna.0)
)
γ ( Age)

est -9.16 0.67 1.40 -0.02
se 1.02 0.08 0.16 0.01

σ1 σ2
est 57.65 48.29
se 1.24 0.97
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Figure 1: AIDS data. Membership scores for all the subjects estimates from the equal vari-
ance structured mixture model (4.3) and the unequal variance structured mixture model (4.4),
respectively.
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