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Abstract: Subgroup analysis with unspecified subgroup memberships has received

increasing attention in recent years. In Shen and He (2015), a structured logistic-

normal mixture model was proposed to characterize the subgroup distributions and

the subgroup membership simultaneously, but under the assumption that the sub-

groups differ only in the means. In this paper, we consider a penalized likelihood

approach for more general cases with heterogeneous subgroup variances. Despite

substantial technical complications in the development of the statistical theory, we

show that the penalized likelihood inference for the existence of subgroups and for

the estimation of subgroup membership can be carried out in the existing frame-

work. Empirical results with a simulation study and two data examples demon-

strate the usefulness of the proposed method.
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test; likelihood ratio test; mixture models; subgroup identification.

1. Introduction

Subgroup analysis is important in clinical trials and market segmentation.

In recent years, the extraction of unknown subgroups with distinct response

patterns to a treatment has gained increasing popularity. Much of the early

research in subgroup analysis has focused on pre-specified subgroups (Simon

(2002), Song and Chi (2007), and Altstein, Li and Elashoff (2011), among others).

Su et al. (2009) introduced an interaction tree procedure to obtain subpopulations

with heterogeneous treatment effects across subpopulations. Foster, Taylor and

Ruberg (2011) proposed the “Virtual Twins” method to identify a subgroup for

the binary response in a randomized clinical trial. A parametric scoring system

based on multiple covariates, Cai et al. (2011) and Zhao et al. (2013), assists

in assigning treatments to new patients. Lipkovich et al. (2011) and Lipkovicha

and Dmitrienkoa (2014) provided a recursive partitioning method for treatment

assignments to patient subpopulations. Berger, Wang and Shen (2014) proposed

a Bayesian method for subgroup analysis of multiple subgroups defined by a
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binary predictive variable. Kang, Janes and Huang (2014) relied on a novel

boosting algorithm to choose an optimal treatment. Besides interaction models,

methods based on mixture models have been proposed in Shen and He (2015)

and Van Horn et al. (2015). They showed that regression mixture models can be

effective in evaluating differential treatment effects.

A critical concern with various subgroup identification methods is that they

tend to identify a subgroup even when no meaningful subgroup exists. Sleight

(2000) described subgroup analyses as “fun to look at, but don’t believe them”.

Shen and He (2015) and Fan, Lu and Song (2016) have advocated the use of

hypothesis testing for the existence of subgroups.

Shen and He (2015) proposed a structured logistic-mixture model and con-

sidered a test based on the iterations in an Expectation-Maximization algorithm

for mixture models for the existence of subgroups. The model-based approach

has two distinctive features. First, it models simultaneously the subgroup mem-

bership and the treatment outcomes within each subgroup as functions of the

covariates. Second, it provides a model-based test for the existence of the sub-

groups with differential treatment effects. Such a test is not generally available

with other methods, making false discovery a real risk in subgroup identification.

The results of Shen and He (2015) assume the homogeneity in the subgroup

variances, which does not always hold in practice. When the equal subgroup

variance assumption is violated, it is unclear whether the EM test loses power

and whether the model estimation is biased. The purpose of this paper is to relax

the equal variance assumption in the logistic-normal mixture model. Allowing

unequal subgroup variances is highly valuable in practice, but brings technical

challenges in the theoretical development.

The first difficulty with mixture of normal models with possibly unequal

variances is that the likelihood is unbounded and the maximum likelihood esti-

mator (MLE) does not exist. To illustrate the issue, let Y1, · · · , Yn be i.i.d. from

a simple normal mixture model

π1N(θ1, σ
2
1) + (1− π1)N(θ2, σ

2
2). (1.1)
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goes to infinity by taking θ1 = Y1 and letting σ1 go to zero. To overcome

this difficulty, we work with a penalized likelihood following Chen, Tan and

Zhang (2008). We propose a data-driven strategy to select the penalty parameter
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that maximizes the potential overall subgroup effect and provide the asymptotic

theory for the penalized likelihood estimator and its associated EM tests.

The rest of this paper is organized as follows. We formulate the structured

logistic-normal model with unequal variances in Section 2.1. The penalized likeli-

hood estimation and the corresponding EM tests are proposed and studied from

Section 2.2 to Section 2.5, together with a discussion concerning the selection of

the penalty parameter in Section 2.6. Simulation studies and case studies are

reported in Section 3 and Section 4, respectively, with concluding remarks in

Section 5. Proofs for the theorems and additional information in the case studies

are presented in the supplemental materials.

2. Methodology

2.1. Structured logistic-normal mixture model with unequal variances

We consider a logistic-normal mixture model that allows unequal variances

in each component. For i = 1, . . . , n,

Yi | Xi,Zi, δi = ZT
i (β1 + β2δi) + εi(δiσ1 + (1− δi)σ2),

P (δi = 1 | Xi,Zi) = π(XT
i γ) ≡

exp(XT
i γ)

1 + exp(XT
i γ)

,

P (δi = 0 | Xi,Zi) = 1− P (δi = 1|Xi),

(2.1)

where n is the sample size, Yi ∈ R is the outcome, δi ∈ {0, 1} is the latent

subgroup indicator, Zi ∈ Rq1 is the covariate associated with the subgroup

mean, Xi ∈ Rq2 is the baseline covariate associated with the group member-

ship, β1 ∈ Rq1 ,β2 ∈ Rq1 ,γ ∈ Rq2 are the corresponding coefficients, εi ∼ N(0, 1)

are independent of Zi, Xi, and δi, and σ1 and σ2 are the standard derivations

within each subgroup. The first element of Xi and the first component of Zi

are taken to be 1 to allow intercepts in the model, and the second element of

Zi is the treatment indicator. We can have overlapping variables in the random

vectors of Xi and Zi.

In the two-component model, the overall model parameter is ηT = (γT , βT
1 ,

βT
2 , σ1, σ2). We use θT = (βT

1 , β
T
2 , σ1, σ2) as the parameters except for γ. We

observe a random sample {Wi = (Yi, Z
T
i , X

T
i ), i = 1, . . . n}, but δi’s are latent

variables.

Remark 1. In the model formulation, we assume that the first nonzero

component of β2 is positive, and in the case of β2 = 0 we assume that σ1 >

σ2, to ensure parameter identifiability. The model is degenerate if β2 = 0 and

σ1 = σ2. In our implementation, we identify the subgroups by taking the second
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component of β2 (the treatment effect difference) to be positive. We are not

concerned with the special case where the treatment effect difference is zero, in

which case the identification of subgroups is not practically important.

In the case ofXi = Zi, we can think of the proposed model as a special case of

the mixture-of-experts models (Jordan and Jacobs (1994)). This is well studied in

machine learning. Here we have distinct and clear interpretations of the variables

Xi and Zi. In particular, the covariates inXi are baseline measurements that are

available prior to the treatment and can be used to predict subgroup membership

for future subjects, while the covariates in Zi include any variables relevant to

the treatment effects within subgroups. The existence of meaningful subgroups

with differential treatment effects is our focus.

The proposed model with γ = 0 has been quite well studied in the liter-

ature; see, for instance, Goeffinet, Loisel and Laurent (1992), Chen, Chen and

Kalbfleisch (2001), and Chen and Li (2009). In subgroup analysis, the case of

γ = 0 is rather uninteresting, because even if subgroups exist, no covariates are

informative for predicting the subgroup membership; an important feature of

the proposed model is to characterize subgroup membership given the baseline

covariates X.

2.2. The Penalized likelihood

Unlike the equal variance case, even when Model (2.1) is well-defined, the

maximum likelihood estimator does not exist, and the key is to restrict the two

variances from being too close to zero. We consider penalty terms pn(σ1) and

pn(σ2) on the scale parameters. In particular, we use

pn(σ) = −λ[
S2
n

σ2
+ log(

σ2

S2
n

)], (2.2)

where S2
n is the estimator of σ2 from the equal variance model, and λ is a tuning

parameter. Given any positive λ, pn(σ) achieves its maximum at σ2 = S2
n, and

goes to negative infinity as σ approaches zero or infinity.

The penalized log-likelihood is

pl(η;W ) =

n∑
i=1

log[

1∑
j=0

f(Yi|Zi,Xi, δi = j;βj , σj)P (δi = j|Xi;γ)]

+ pn(σ1) + pn(σ2), (2.3)

which is also written as pl(η) without W later in the paper, and the maximum

penalized likelihood estimator of η is given by
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pl(η;W ). (2.4)

To maximize the penalized likelihood, a slightly modified EM algorithm of

Dempster, Laird and Rubin (1977) is described as follows.

At the kth step of the EM iteration, the objective function is
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,
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(k)
i , and the M step gives

γ(k+1) = argmax
γ

n∑
i=1

a
(k)
i log π(XT

i γ) + b
(k)
i log

(
1− π(XT

i γ)
)
,

(β
(k+1)
12 , σ

(k+1)
1 ) = argmax

β12,σ

n∑
i=1

a
(k)
i log

(
σ−1 exp

(
− (Yi −ZT

i β12)
2

2σ2

))
+ pn(σ),

(β
(k+1)
1 , σ

(k+1)
2 ) = argmax

β1,σ

n∑
i=1

b
(k)
i log

(
σ−1 exp

(
− (Yi −ZT

i β1)
2

2σ2

))
+ pn(σ),

and β
(k+1)
2 = β

(k+1)
12 − β

(k+1)
1 .

In the M step, the updating formula for θ(k+1) is a weighted least squares

solution. For the particular penalty (2.2), the calculations for σ
(k+1)
1 and σ

(k+1)
2
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(k+1)
1 and β

(k+1)
2 yield

σ
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We see that the two variances from the penalized likelihood are weighted sums

of S2
n and the corresponding estimators without the penalty.

Following Shen and He (2015), we consider testing the null hypothesis of

H0 : β2 = 0 and σ1 = σ2 against Ha = Hc
0 based on the penalized version of
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the EM test, hereinafter called the pEM test. If this null hypothesis is rejected,

we then proceed to examine the treatment effect as measured by the second

component of β2. The construction of a confidence interval on the parameter,

for example, can be carried out with the standard large-sample approximations.

It is possible that we have a mixture of two groups in the model but there are no

differential treatment effects. On the other hand, if the null hypothesis H0 is not

rejected, we suggest no further subgroup identification to avoid false discoveries.

Because the null hypothesis represents a singular point of the model space,

the standard asymptotic theory does not apply to the likelihood ratio test. The

proposed pEM test uses the penalized likelihood evaluated at a finite set of γ

values.

Given a compact set Γ̃ of γ whose intercept parameters are bounded away

from 0, we randomly choose γ1, · · · ,γJ ∈ Γ̃ for a small number J to form the

sets of starting values Γ = {γ1, · · · ,γJ}. For each γj , we obtain the maximum

penalized likelihood estimator of θ:

θ
(0)
j = argmaxθpl(θ,γj). (2.5)

With the starting value η
(0)
j = (θ

(0)
j ,γj), we perform the EM iterations described

for K times to obtain η
(1)
j , · · · ,η(K)

j , where K is a finite integer. If in the EM

process, the γ value goes beyond Γ̃, we stop the iteration so the effective number

of iterations might be less than K.

At each j = 1, 2, · · · , J , let

θ̂0 = argmaxθ∈H0
pl(θ,γj) (2.6)

be the maximum penalized likelihood estimator of θ under the null hypothesis

with γ = γj , and let

pEM
(K)
j = 2

(
pl(η

(K)
j )− pl(θ̂0,γj)

)
,

in which pl(·) is as defined in (2.3). Then we define the penalized EM test

statistic as

pEM (K) = max
{
pEM

(K)
j : j = 1, . . . , J

}
. (2.7)

For the choice of J , K, and Γ̃, we follow the suggestions made by Shen and He

(2015). If q2 is not very large, a typical choice is J = min{2q2 , 16} and K = 9 to

limit the computation time without sacrificing quality.

2.3. Convergence of the penalized likelihood estimator

We study the properties of the estimators η and θ from (2.4) and (2.6) under
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the alternative hypothesis and the null hypotheses, respectively. The consistency

of the estimator for η under the two-component model assures the validity for

further applications of the model, while the consistency of the estimator for θ

under the null hypothesis is needed for developing the limiting distribution of

the pEM test statistic. We give sufficient conditions on the penalty and on the

covariates in C1-C3 and C4-C5, respectively.

Conditions on the penalty.

C1. The penalty pn(σ) < 0 almost surely.

C2. For any given constant C, for almost all sample ω ∈ Ω, there exists n0(ω),

such that when n ≥ n0(ω),

inf
{
pn(σ)(logn)

−2(log σ)−1 : 0 < σ ≤ n−1
}
≥ C.

C3. If β2 = 0 and σ1 = σ2 = σ0, we have pn(σ0) = o(n) almost surely; otherwise

(under the alternative model), pn(σ1) = o(n) and pn(σ2) = o(n) almost

surely.

Remark 2. Condition C2 basically requires that the penalty should be

small when σ is small, and Condition C3 requires that the penalty should not

dominate the likelihood function evaluated at the true parameters. These two

conditions together guarantee that the penalized likelihood does not attain its

maximum when σ is near zero, and, therefore, the estimator of σ stays away from

zero. The conditions allow the penalties to depend on the data, which is quite

useful in numerical analysis in practice. We discuss how to choose the tuning

parameter λ for the penalty in (2.2) in Section 2.6.

Conditions on the covariates. We partition the covariate vector Z as

ZT = (1, UT ,V T ), where 1 corresponds to the intercept, U consists of only

discrete variables, and V consists of only continuous variables.

C4. The sample space of U is finite. For any unit vector α of the same dimension

as the vector V , the conditional distribution of V Tα|U is continuous and

the maximum of its density is uniformly bounded from above.

C5. The expectation E(∥V ∥1 | U = u) < ∞ uniformly in u, where ∥ · ∥1 is the

L1 norm.

Theorem 1. If Conditions C1-C5 hold, then

(i) under the null model that β2 = 0 and σ1 = σ2 = σ0 where σ0 is unknown,

for any fixed γ with nonzero slope the maximum penalized likelihood estimator
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of θT = (βT
1 ,β

T
2 , σ1, σ2) is consistent;

(ii) under the alternative model that β2 ̸= 0 or σ1 ̸= σ2, the maximum penalized

likelihood estimator of ηT = (γT ,βT
1 ,β

T
2 , σ1, σ2) from (2.4) is consistent.

To illustrate the idea used in the proof for Theorem 1, we consider any sequence

of positive numbers σn and let Wn(β) = n−1
∑n

i=1 1
(
|Yi − ZT

i β| ≤ |σn log σn|
)
,

An(C) =
{
supβ∈Rq1 Wn(β) > C|σn log σn|

}
, and Bn =

{
supβ∈Rq1 Wn(β) >

4n−1(logn)2
}
. We show

S1. There exist C1, C2 > 0 such that uniformly for σn ∈
(
n−1, e−1

)
, P

(
An(C1)

)

≤ C2n
−2;

S2. There exists C3 > 0 such that uniformly in σn ∈ (0, n−1), P (Bn) ≤ C3n
−2.

As the log-likelihood of the normal mixture model becomes unbounded when

some sample points are close to one of the estimated component means and

when the corresponding variance estimator goes to zero, S1 and S2 actually give

an upper bound of the number of points that fall into such trouble regions. The

upper bound is approximately limited to the order of O((logn)2). The penalty

that satisfies C1-C3 ensures that the variance estimators stay away from zero.

Here S1 and S2 play the same role as Lemma 1 of Chen, Tan and Zhang

(2008) in a somewhat simpler setting. By Lemma 2 of Chen, Tan and Zhang

(2008), we can show that the number of sample points that fall within the range

of |σ log σ| to either one of the estimated component means is in the order of

O((logn)2). As a consequence, we can show that the estimates of σ1 and σ2 stay

away from zero. Standard techniques in the large sample theory can then be

applied to show the consistency of the maximum penalized likelihood estimators.

Since proving S2 is essentially the same as proving S1, we only provide the details

of the proof for S1 in the supplementary file.

2.4. Distribution of the penalized EM test statistic

The Fisher information matrix for θ given γ based on the penalized likeli-

hood is

I∗γ(θ) = −E
[

∂2

∂θ∂θT

pl(θT ,γT )

n

]
.

By direct calculations, for a given γ under the null hypothesis of β2 = 0, σ1 =

σ2 = σ,

I∗γ(θ) =
1

σ2

(
I1 02×2

02×2 I2

)
, (2.8)
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where

I1 =

(
E
(
ZZT

)
E
(
π(XTγ)ZZT

)
E
(
π(XTγ)ZZT

)
E
(
π2(XTγ)ZZT

)
)
,

I2 =

(
2E

(
π2(XTγ)

)
−n−1σ2E

(
p′′n(σ)

)
2E

(
π(XTγ)[1−π(XTγ)]

)
2E

(
π(XTγ)[1−π(XTγ)]

)
2E

(
[1−π(XTγ)]2

)
−n−1σ2E

(
p′′n(σ)

)
)
.

Here I∗ is positive definite if the variable vectors X and Z are non-degenerate,

E
(
p′′n(σ)

)
< 0, and γT = (γ−X ,γT

X) where γ−X refers to the intercept, and the

slope coefficient γT
X ̸= 0. If the slope γX is zero, the matrix is degenerate, so

we use only γ with nonzero slopes.

C6. Under the null model of (β2 = 0, σ1 = σ2 = σ > 0), we have Ep′′n(σ) < 0,

E
(
p′′n(σ)

)
= op(n), and p′n(σ) = op(n

−1/2).

Under C6, we have,

I∗γ(θ) = E
[
∂

∂θ

pl(θT ,γT )

n

∂

∂θT

pl(θT ,γT )

n

]
+ op(1),

and I∗γ(θ) works just like the usual Fisher information matrix for deriving the

limiting distribution of the likelihood ratio statistic.

Given γ with nonzero slope, with θ̂n = argmaxθ pl(θ,γ), and θ̂0 =

argmaxθ∈H0
pl(θ,γ), we have a quadratic approximation of the penalized likeli-

hood ratio statistic T ∗(γ) and

T ∗(γ) = 2[pl(θ̂n,γ)− pl(θ̂0,γ)] = ∥n−1/2ψ∗(Yi,Zi,Xi;γ)∥2 + op(1), (2.9)

where ψ∗(Yi,Zi,Xi;γ) = (ψ(Yi,Zi,Xi;γ)
T , ψ0(Yi,Zi,Xi;γ)), in which

ψ(Yi,Zi,Xi;γ) = σ−1
0 D(γ)−1/2{π(XT

i γ)Iq2−B(γ)A−1}(Yi−ZT
i β0)Zi, (2.10)

and

ψ0(Yi,Zi,Xi;γ) =
{
2[E

(
π2(XTγ)

)
− E2

(
π(XTγ)

)
]
}−1/2

{
E
(
π(XTγ)

)
− π(XTγ)

}{
σ−2(Yi −ZT

i β1)
2 − 1

}
,

with A = E
(
ZZT

)
, B(γ) = E

(
π(XTγ)ZZT

)
, C(γ) = E

(
π2(XTγ)ZZT

)
, and

D(γ) = C(γ)−B(γ)A−1B(γ). Direct calculations show that both ψ(Yi,Zi,Xi;γ)

and ψ0(Yi,Zi,Xi;γ) have mean zero, and the covariance matrix of ψ∗ is Iq1+1.

Therefore, T ∗(γ) has a χ2 limiting distribution with the degrees of freedom

q1 + 1. We have not updated the estimates through the EM iterations, so

T ∗(γ) = pEM (0) with only one starting value, γ.

Following similar arguments to those used for Theorem 1 of Shen and He

(2015), we see that the representation in (2.9) holds uniformly in γ ∈ Γ̃.
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Theorem 2. Under the null hypothesis and C1-C6, for any finite integers J > 0

and K ≥ 0, the penalized EM test statistic pEM (K) converges in distribution as

n → ∞. For J = 1 and K = 0, the limiting distribution is χ2
q1+1, where q1 is the

dimension of β2.

If the null hypothesis H0 is rejected, the model parameter estimator is con-

sistent from the penalized likelihood due to Theorem 1. Furthermore, from (2.9)

it follows that the bootstrap method can be used to compute the p value of the

pEM test. The limiting distribution of the test statistic under the null hypothe-

sis is not a simple chi-square distribution when J > 1 and K ≥ 1 and, moreover,

the convergence to the limiting distribution is very slow for the test statistic

even without covariates (Goeffinet, Loisel and Laurent (1992)). Therefore, we

recommend use of the bootstrap method for computing the p values.

2.5. Local power

We investigate the local power of the pEM test by considering hypothesis

testing of

H0 : β2 = 0, σ1 = σ2 = σ0 vs.H∗
a : β2 = n−1/2h, σ1 = σ2+n−1/2h1 = σ0+n−1/2h1,

for some fixed quantities h1 and h.

Theorem 3. Under H∗
a , the test statistic T ∗

K(γ), with any value γ ∈ Γ̃ and

for any positive integer K, converges to a noncentral chi-square distribution with

q1 + 1 degrees of freedom and the noncentrality parameter

λ∗(γ) = λ(γ) + λ1(γ), (2.11)

in which

λ(γ) = σ−2
0

��I−1/2
γ22·1

{
E[π(XTγ)π(XTγ0)ZZT ]−B(γ)A−1B(γ0)

}
h
��2, (2.12)

λ1(γ) = σ−2
0 2h21

{
E
(
π2(XTγ)

)
− E2

(
π(XTγ)

)}
. (2.13)

Remark 3. The local power of the test under the unequal variance model

can be compared with that under the equal variance model. Here λ(γ) is the

same as (15) of Shen and He (2015), the noncentral parameter of the noncentral

chi-square distribution of the test statistic under the local alternative for the

equal variance model. If the equal valiance model is actually true and h1 = 0,

the noncentral parameters are the same under two models, but the degree of

freedom is higher by one under the unequal variance model. Consequently the

test under the unequal variance model loses some power. The comparison reverses

in direction when h1 is sufficiently large.
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2.6. Choice of the tuning parameter

The choice of the tuning parameter λ is practically important. Our condi-

tions allow data-dependent penalties. For the specific penalty in (2.2), we show

that C1-C3 and C6 are satisfied with any choice of λ in the interval[
n−2+c1(logn)3, nc2

]
, (2.14)

where c1, c2 ∈ (0, 1) are any constants. In our empirical studies, we choose

c1 = c2 = 0.9.

Under the null model, C1 and C3 are satisfied by the choice of c2. Also, nc2 =

o(n) and nc2−1/2 = o(n1/2) imply E
(
p′′n(σ0)

)
= −4λ/σ2

0 = o(n) and p′n(σ0) =

2(n−1/2λ){n1/2(S2
n−σ2

0)}/σ3
0 = 2(n−1/2λ)Op(1) = op(n

1/2); hence C6 is satisfied.

For C2, under the null hypothesis S2
n → σ2

0 almost surely. Write S2
n = σ2

0+ϵn,

where ϵn → 0 almost surely. Then for any σ ∈ (0, n−1) and sufficiently large n,

we have

pn(σ)[(logn)
2 log σ]−1 = −λ[

σ2
0 + ϵn
σ2

+ log(
σ2

σ2
0 + ϵn

)][(logn)2 log σ]−1

≥ −λ

2

σ2
0

σ2
[(logn)2 log σ]−1. (2.15)

If fn(σ) = (−λ/2)(σ2
0/σ

2)[(logn)2 log σ]−1, then

inf
{
pn(σ)[(logn)

2 log σ]−1 : 0 < σ ≤ n−1
}
≥ inf

{
fn(σ) : 0 < σ ≤ n−1

}
.

Because fn(σ) is decreasing in σ ∈ (0, n−1) for large n, we have

inf
{
pn(σ)[(logn)

2 log σ]−1 : 0 < σ ≤ n−1
}
≥ fn(n

−1) = O
(
λn2(logn)−3

)
.

By the choice of λ, for sufficiently large n, inf{pn(σ){(log n)2 log σ}−1 : 0 < σ ≤
n−1} ≥ O(nc1) > C, for any given constant C. Then, C2 is satisfied under

the null hypothesis. The same results can be obtained under the alternative

hypothesis due to the fact that S2
n is almost surely bounded.

In practice, we can choose λ from (2.14) for a specific purpose. For subgroup

analysis, we suggest a 5-fold cross validation, where roughly 4/5 of the data are

used as the training set.

For each λ, from the training set, we obtain the estimator and the resultant

mixture model:

π(XT γ̂)N
(
ZT (β̂1 + β̂2), σ̂

2
1

)
+ [1− π(XT γ̂)]N

(
ZT β̂1, σ̂

2
2

)
,

where we suppose without loss of generality that the second component of β̂2,

denoted as β̂2(trt) (as a measure of the treatment effect difference between two
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n−2+c1(logn)3, nc2

]
, (2.14)

where c1, c2 ∈ (0, 1) are any constants. In our empirical studies, we choose

c1 = c2 = 0.9.

Under the null model, C1 and C3 are satisfied by the choice of c2. Also, nc2 =

o(n) and nc2−1/2 = o(n1/2) imply E
(
p′′n(σ0)

)
= −4λ/σ2

0 = o(n) and p′n(σ0) =

2(n−1/2λ){n1/2(S2
n−σ2

0)}/σ3
0 = 2(n−1/2λ)Op(1) = op(n

1/2); hence C6 is satisfied.

For C2, under the null hypothesis S2
n → σ2

0 almost surely. Write S2
n = σ2

0+ϵn,

where ϵn → 0 almost surely. Then for any σ ∈ (0, n−1) and sufficiently large n,

we have

pn(σ)[(logn)
2 log σ]−1 = −λ[

σ2
0 + ϵn
σ2

+ log(
σ2

σ2
0 + ϵn

)][(logn)2 log σ]−1

≥ −λ

2

σ2
0

σ2
[(logn)2 log σ]−1. (2.15)

If fn(σ) = (−λ/2)(σ2
0/σ

2)[(logn)2 log σ]−1, then

inf
{
pn(σ)[(logn)

2 log σ]−1 : 0 < σ ≤ n−1
}
≥ inf

{
fn(σ) : 0 < σ ≤ n−1

}
.

Because fn(σ) is decreasing in σ ∈ (0, n−1) for large n, we have

inf
{
pn(σ)[(logn)

2 log σ]−1 : 0 < σ ≤ n−1
}
≥ fn(n

−1) = O
(
λn2(logn)−3

)
.

By the choice of λ, for sufficiently large n, inf{pn(σ){(log n)2 log σ}−1 : 0 < σ ≤
n−1} ≥ O(nc1) > C, for any given constant C. Then, C2 is satisfied under

the null hypothesis. The same results can be obtained under the alternative

hypothesis due to the fact that S2
n is almost surely bounded.

In practice, we can choose λ from (2.14) for a specific purpose. For subgroup

analysis, we suggest a 5-fold cross validation, where roughly 4/5 of the data are

used as the training set.

For each λ, from the training set, we obtain the estimator and the resultant

mixture model:

π(XT γ̂)N
(
ZT (β̂1 + β̂2), σ̂

2
1

)
+ [1− π(XT γ̂)]N

(
ZT β̂1, σ̂

2
2

)
,

where we suppose without loss of generality that the second component of β̂2,

denoted as β̂2(trt) (as a measure of the treatment effect difference between two
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subgroups), is positive, so the treatment effect is higher for subjects with higher

π values.

For each quantile level q ∈ (0, 1), we rank the subjects in the testing set by

their π̂ (referred to as membership scores, S(X;λ)), and then choose the subjects

whose membership scores are above the top q-th quantile Qq(S) to form a target

subpopulation. Then, we evaluate the treatment effect difference in the selected

subpopulation as

TT (λ; q) = E
{
Y | [trt = 1, S(X;λ) > Qq(S)]

}

− E
{
Y | [trt = 0, S(X;λ) > Qq(S)]

}
. (2.16)

We choose the tuning parameter λ by maximizing the overall treatment effect

difference as given by

TT (λ) =

∫ qu

ql

TT (λ; q)dq (2.17)

for pre-specified values ql and qu. The intuition behind it is that, for each q

corresponding to the size of the subgroup, the larger TT (λ; q) is, the larger

the treatment effect difference is between the selected subgroup and the rest.

Subgroups that are associated with larger TT (λ) are more practically useful to

identify.

In practice, we use the empirical analogs for both (2.16) and (2.17). For

the data analysis of Section 4, we evaluate the integral in (2.17) by an average

over N equally spaced q values using N = 12, ql = 0.2, qu = 0.8, and the q’s are

0.2, 0.25, · · · , 0.8.

3. Simulations

We studied the performance of the proposed methods through Monte Carlo

simulations. We compared the parameter estimates from the structured logistic-

normal mixture model with equal and unequal variances, and the performance

of the proposed pEM test versus the EM test of Shen and He (2015). We used

q2 = 2 and Γ̃ = [−5, 5] × ([0.2, 5]
∪
[−5,−0.2]), and other parameters are given

below. The bootstrap method was used to compute the p values of the tests for

the empirical studies.

3.1. Estimation

We evaluated the parameter estimates when the mixture model parameters

were all well defined. Data as random samples of sizes n = 400 were generated

NORMAL MIXTURE WITH UNEQUAL VARIANCES 13

from

Yi | (Xi, Zi, δi) = β11 + β12Ti + β13Zi + (β21 + β22Ti + β23Zi)δi

+ ε1iδi + ε2i(1− δi),

P (δi = 1 | Xi) = π(γ11 + γ12Xi),

for i = 1, . . . , n, where ε1i ∼ N(0, σ2
1) and ε2i ∼ N(0, σ2

2), independent of Xi, Zi

and Ti. We generated Xi = Zi from Uniform (0, 4), and Ti ∈ {0, 1}, used

to mimic the treatment indicator, was generated from the Bernoulli distribu-

tion with P (Ti = 1) = 0.5. We fixed β1 = (β11, β12, β13) = (2, 0, 2),β2 =

(β21, β22, β23) = (1, 2, 0),γ = (γ11, γ12) = (2,−1), σ1 = 1.5, and σ2 = 0.5. In the

computations, we adopted the constraint β22 > 0 to guarantee the uniqueness

of the parameters. We show in Figure 1 the boxplots of the absolute bias of

the parameter estimates based on 100 data sets. Not surprisingly, the estimates

from the equal variance model have larger biases than those from the unequal

variances model, so it is helpful to take the heterogeneity in the variances into

consideration.

3.2. Type I errors

To evaluate the validity of the pEM test, we generated data from Model

(2.1) with q1 = 3, q2 = 2, β1 = (1, 0, 2)T , β2 = (0, 0, 0)T , Z = (1, t, x)T , X =

(1, x)T , where t was a treatment indicator distributed as Bernoulli(0.5), x was

independent of t with the distribution N(−1, 1), and the error ε was N(0, 0.52).

The pEM test used Γ = {(1,−2)T , (1, 2)T }. The resulting type I errors at n = 60

and 100 are summarized in Table 1, from which we can see the type I errors are

quite close to the nominal levels for K = 0, 3, and 9, even for relatively small

sample sizes. The tuning parameter was set as λ = 1 here, but the results are

similar for other choices of λ. For instance, the results for λ = 50 are given in

Table S1 in the supplement.

3.3. Power comparison

We used the same model and the same pEM test as in the previous subsec-

tion, except that β2 = (1, a, b)T , γ = (1, 1)T for some non-negative values of a

and b to be given in the tables and for different sets of σ values. In particular,

we considered (σ1 = 0.5, σ2 = 0.5), (σ1 = 0.4, σ2 = 0.6), (σ1 = 0.5, σ2 = 1.0),

and (σ1 = 0.5, σ2 = 1.5) in Table 2 to represent different levels of heterogeneity.

The power was obtained from the EM or pEM test under the equal or unequal

variance model. We only show the comparisons at the iterations times K = 9 as
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subgroups), is positive, so the treatment effect is higher for subjects with higher

π values.

For each quantile level q ∈ (0, 1), we rank the subjects in the testing set by

their π̂ (referred to as membership scores, S(X;λ)), and then choose the subjects

whose membership scores are above the top q-th quantile Qq(S) to form a target

subpopulation. Then, we evaluate the treatment effect difference in the selected

subpopulation as

TT (λ; q) = E
{
Y | [trt = 1, S(X;λ) > Qq(S)]

}

− E
{
Y | [trt = 0, S(X;λ) > Qq(S)]

}
. (2.16)

We choose the tuning parameter λ by maximizing the overall treatment effect

difference as given by

TT (λ) =

∫ qu

ql

TT (λ; q)dq (2.17)

for pre-specified values ql and qu. The intuition behind it is that, for each q

corresponding to the size of the subgroup, the larger TT (λ; q) is, the larger

the treatment effect difference is between the selected subgroup and the rest.

Subgroups that are associated with larger TT (λ) are more practically useful to

identify.

In practice, we use the empirical analogs for both (2.16) and (2.17). For

the data analysis of Section 4, we evaluate the integral in (2.17) by an average

over N equally spaced q values using N = 12, ql = 0.2, qu = 0.8, and the q’s are

0.2, 0.25, · · · , 0.8.

3. Simulations

We studied the performance of the proposed methods through Monte Carlo

simulations. We compared the parameter estimates from the structured logistic-

normal mixture model with equal and unequal variances, and the performance

of the proposed pEM test versus the EM test of Shen and He (2015). We used

q2 = 2 and Γ̃ = [−5, 5] × ([0.2, 5]
∪
[−5,−0.2]), and other parameters are given

below. The bootstrap method was used to compute the p values of the tests for

the empirical studies.

3.1. Estimation

We evaluated the parameter estimates when the mixture model parameters

were all well defined. Data as random samples of sizes n = 400 were generated

NORMAL MIXTURE WITH UNEQUAL VARIANCES 13

from

Yi | (Xi, Zi, δi) = β11 + β12Ti + β13Zi + (β21 + β22Ti + β23Zi)δi

+ ε1iδi + ε2i(1− δi),

P (δi = 1 | Xi) = π(γ11 + γ12Xi),

for i = 1, . . . , n, where ε1i ∼ N(0, σ2
1) and ε2i ∼ N(0, σ2

2), independent of Xi, Zi

and Ti. We generated Xi = Zi from Uniform (0, 4), and Ti ∈ {0, 1}, used

to mimic the treatment indicator, was generated from the Bernoulli distribu-

tion with P (Ti = 1) = 0.5. We fixed β1 = (β11, β12, β13) = (2, 0, 2),β2 =

(β21, β22, β23) = (1, 2, 0),γ = (γ11, γ12) = (2,−1), σ1 = 1.5, and σ2 = 0.5. In the

computations, we adopted the constraint β22 > 0 to guarantee the uniqueness

of the parameters. We show in Figure 1 the boxplots of the absolute bias of

the parameter estimates based on 100 data sets. Not surprisingly, the estimates

from the equal variance model have larger biases than those from the unequal

variances model, so it is helpful to take the heterogeneity in the variances into

consideration.

3.2. Type I errors

To evaluate the validity of the pEM test, we generated data from Model

(2.1) with q1 = 3, q2 = 2, β1 = (1, 0, 2)T , β2 = (0, 0, 0)T , Z = (1, t, x)T , X =

(1, x)T , where t was a treatment indicator distributed as Bernoulli(0.5), x was

independent of t with the distribution N(−1, 1), and the error ε was N(0, 0.52).

The pEM test used Γ = {(1,−2)T , (1, 2)T }. The resulting type I errors at n = 60

and 100 are summarized in Table 1, from which we can see the type I errors are

quite close to the nominal levels for K = 0, 3, and 9, even for relatively small

sample sizes. The tuning parameter was set as λ = 1 here, but the results are

similar for other choices of λ. For instance, the results for λ = 50 are given in

Table S1 in the supplement.

3.3. Power comparison

We used the same model and the same pEM test as in the previous subsec-

tion, except that β2 = (1, a, b)T , γ = (1, 1)T for some non-negative values of a

and b to be given in the tables and for different sets of σ values. In particular,

we considered (σ1 = 0.5, σ2 = 0.5), (σ1 = 0.4, σ2 = 0.6), (σ1 = 0.5, σ2 = 1.0),

and (σ1 = 0.5, σ2 = 1.5) in Table 2 to represent different levels of heterogeneity.

The power was obtained from the EM or pEM test under the equal or unequal

variance model. We only show the comparisons at the iterations times K = 9 as
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Figure 1. The boxplots of the absolute biases in 100 experiments discussed in Section
3.1. In each sub-panel, the left and the right boxes are for the estimates under the equal
and the unequal variance models, respectively.

Table 1. Type I errors of the pEM tests with bootstrap approximations in 1,000 data
sets with standard errors in the parenthesis, with λ = 1.

n Nominal level α pEM (0) pEM (3) pEM (9)

n = 60
0.01 0.012(0.003) 0.011(0.003) 0.011(0.003)
0.05 0.055(0.007) 0.055(0.007) 0.050(0.007)
0.10 0.102(0.010) 0.103(0.010) 0.106(0.010)

n = 100
0.01 0.010(0.003) 0.011(0.003) 0.010(0.003)
0.05 0.049(0.007) 0.051(0.007) 0.050(0.007)
0.10 0.102(0.010) 0.099(0.009) 0.104(0.010)

this is our recommended choice. When the two component variances are close,

the EM test based on the equal variance assumption is slightly more powerful,

but when the two σ’s differ with their ratios equal to 2 and 3, the pEM test

under the unequal variance model is significantly more powerful.

NORMAL MIXTURE WITH UNEQUAL VARIANCES 15

Table 2. Power (%) of the (penalized) EM tests at the 5% level. The (penalized) EM
test used Γ = {(1, 2)T , (1,−2)T }, with K = 9 iterations. The parameters of Model (2.1)
were β1 = (1, 0, 2)T , β2 = (1, a, b)T , γ = (1, 1)T , and the tuning parameter was λ = 1.0.

n a b pEM (9) EM (9) pEM (9) EM (9)

(σ1 = 0.5, σ2 = 0.5) (σ1 = 0.4, σ2 = 0.6)
60 0.5 1 71.2 77.8 73.4 73.6
60 0.5 0 35.6 36.0 42.2 37.6
60 1.0 1 85.2 87.8 86.6 87.8
60 1.0 0 81.4 84.8 82.8 82.0
100 0.5 1 92.0 96.8 92.8 94.8
100 0.5 0 57.8 54.8 74.6 49.6
100 1.0 1 96.8 99.4 97.8 98.8
100 1.0 0 95.8 97.6 97.2 96.0

(σ1 = 0.5, σ2 = 1.0) (σ1 = 0.5, σ2 = 1.5)
60 0.5 1 49.0 38.4 53.8 31.0
60 0.5 0 36.8 27.2 55.0 40.8
60 1.0 1 63.4 47.2 63.8 39.6
60 1.0 0 63.0 44.8 70.8 47.8

100 0.5 1 77.6 60.6 81.2 42.0
100 0.5 0 65.8 34.2 81.8 51.2
100 1.0 1 87.6 75.4 86.6 51.8
100 1.0 0 89.8 58.6 90.0 58.6

4. Applications

We applied the proposed model and the pEM test to two studies and discuss

our findings in comparison with what have been known from earlier investiga-

tions.

4.1. NSW data

The National Supported Work (NSW) study was used to examine whether

the job training program was beneficial to certain disadvantaged workers from

1975 to 1978 in the United States. We focused on the same subset of the data

as previously used in Imai and Ratkovic (2013) where the treatment and control

groups were randomly selected. As in Imai and Ratkovic (2013), we used the

earning difference from 1975 to 1978 (log scale) as the response variable Y . More

specifically, we considered Y = log(RE78+1) − log(RE75+1), in which RE78 and

RE75 are the earning of each individual in 1975 and in 1978, respectively. From

preliminary studies, we narrowed down to these variables: trt: the treatment

indicator whether the subject joins the training program; X1: education in years;

X2: race indicator (1 for Black and 0 otherwise); X3: binary indicator for whether
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Figure 1. The boxplots of the absolute biases in 100 experiments discussed in Section
3.1. In each sub-panel, the left and the right boxes are for the estimates under the equal
and the unequal variance models, respectively.

Table 1. Type I errors of the pEM tests with bootstrap approximations in 1,000 data
sets with standard errors in the parenthesis, with λ = 1.

n Nominal level α pEM (0) pEM (3) pEM (9)

n = 60
0.01 0.012(0.003) 0.011(0.003) 0.011(0.003)
0.05 0.055(0.007) 0.055(0.007) 0.050(0.007)
0.10 0.102(0.010) 0.103(0.010) 0.106(0.010)

n = 100
0.01 0.010(0.003) 0.011(0.003) 0.010(0.003)
0.05 0.049(0.007) 0.051(0.007) 0.050(0.007)
0.10 0.102(0.010) 0.099(0.009) 0.104(0.010)

this is our recommended choice. When the two component variances are close,

the EM test based on the equal variance assumption is slightly more powerful,

but when the two σ’s differ with their ratios equal to 2 and 3, the pEM test

under the unequal variance model is significantly more powerful.
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Table 2. Power (%) of the (penalized) EM tests at the 5% level. The (penalized) EM
test used Γ = {(1, 2)T , (1,−2)T }, with K = 9 iterations. The parameters of Model (2.1)
were β1 = (1, 0, 2)T , β2 = (1, a, b)T , γ = (1, 1)T , and the tuning parameter was λ = 1.0.

n a b pEM (9) EM (9) pEM (9) EM (9)

(σ1 = 0.5, σ2 = 0.5) (σ1 = 0.4, σ2 = 0.6)
60 0.5 1 71.2 77.8 73.4 73.6
60 0.5 0 35.6 36.0 42.2 37.6
60 1.0 1 85.2 87.8 86.6 87.8
60 1.0 0 81.4 84.8 82.8 82.0
100 0.5 1 92.0 96.8 92.8 94.8
100 0.5 0 57.8 54.8 74.6 49.6
100 1.0 1 96.8 99.4 97.8 98.8
100 1.0 0 95.8 97.6 97.2 96.0

(σ1 = 0.5, σ2 = 1.0) (σ1 = 0.5, σ2 = 1.5)
60 0.5 1 49.0 38.4 53.8 31.0
60 0.5 0 36.8 27.2 55.0 40.8
60 1.0 1 63.4 47.2 63.8 39.6
60 1.0 0 63.0 44.8 70.8 47.8

100 0.5 1 77.6 60.6 81.2 42.0
100 0.5 0 65.8 34.2 81.8 51.2
100 1.0 1 87.6 75.4 86.6 51.8
100 1.0 0 89.8 58.6 90.0 58.6

4. Applications

We applied the proposed model and the pEM test to two studies and discuss

our findings in comparison with what have been known from earlier investiga-

tions.

4.1. NSW data

The National Supported Work (NSW) study was used to examine whether

the job training program was beneficial to certain disadvantaged workers from

1975 to 1978 in the United States. We focused on the same subset of the data

as previously used in Imai and Ratkovic (2013) where the treatment and control

groups were randomly selected. As in Imai and Ratkovic (2013), we used the

earning difference from 1975 to 1978 (log scale) as the response variable Y . More

specifically, we considered Y = log(RE78+1) − log(RE75+1), in which RE78 and

RE75 are the earning of each individual in 1975 and in 1978, respectively. From

preliminary studies, we narrowed down to these variables: trt: the treatment

indicator whether the subject joins the training program; X1: education in years;

X2: race indicator (1 for Black and 0 otherwise); X3: binary indicator for whether
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Figure 2. NSW data. The overall treatment effect in (2.17) with different choices of λ’s.
In the left figure, we plot the values TT (λ) against λ ∈ [0.2, 374]; in the right figure, we
narrow down to a small region with λ = 0.2, 0.4, · · · , 1 to show that TT (λ) achieves the
maximum at λ = 0.4 among the selected λ values.

the baseline income is zero; X4: binary indicator for whether the baseline income

is above the median of the nonzero income group.

They are summarized in Table S2 in the supplement. If we fit a linear re-

gression model to all the covariates and their two-way interactions, the treatment

effect is estimated at −0.17 with a p-value 0.94. We ask whether there exists a

subgroup for which the training program is effective, using the structured logistic-

normal mixture model, with X= (1, X1, X2, X3, X4) and Z consists of trt and

X.

The EM and pEM tests rejected the null hypothesis of no subgroup, with p-

values< 0.001. The parameter estimates from the equal variance and the unequal

variance models are shown in Table 3. For the tuning parameter in the penalized

likelihood, we used the range of λ of [0.2, 374] by setting c1 = 0.9 and c2 =

0.9 in (2.14). Using the proposed criterion in Section 2.6, we plot TT (λ) in

Figure 2 from which we choose λ = 0.4. Although the EM test assuming equal

variances rejects the null hypothesis of no subgroups, the coefficient estimates

and their standard errors in Table 3 suggest that the treatment effect difference,

β2(trt), with the value of 0.11 and standard error of 0.15, is not significant. In

contrast, the estimate based on the unequal variance model gives the treatment

NORMAL MIXTURE WITH UNEQUAL VARIANCES 17

Table 3. Parameter estimates and their standard errors when the equal/unequal variance
structured logistic-normal mixture model was used to fit the NSW data.

From equal variance structured logistic-normal mixture model
β1(1) β1(trt) β1(X1) β1(X2) β1(X3) β1(X4)

est 1.25 −0.05 0.04 −8.59 7.11 −1.85
se 0.39 0.12 0.04 0.12 0.14 0.15

β2(1) β2(trt) β2(X1) β2(X2) β2(X3) β2(X4)
est −8.53 0.11 0.00 16.83 0.05 0.25
se 0.54 0.15 0.05 0.28 0.18 0.19

γ(1) γ(X1) γ(X2) γ(X3) γ(X4)
est −1.70 −0.02 2.75 −0.26 0.08
se 0.58 0.05 0.27 0.20 0.22

σ
est 0.98
se 0.03
From unequal variance structured logistic−normal mixture model

β1(1) β1(trt) β1(X1) β1(X2) β1(X3) β1(X4)
est 1.13 0.01 0.04 −0.03 7.20 −1.64
se 1.71 0.47 0.15 0.76 0.54 0.61

β2(1) β2(trt) β2(X1) β2(X2) β2(X3) β2(X4)
est −3.45 1.15 0.03 −1.37 −1.46 −0.30
se 2.04 0.56 0.17 0.86 0.65 0.73

γ(1) γ(X1) γ(X2) γ(X3) γ(X4)
est −1.45 0.04 1.14 −0.24 −0.6
se 0.52 0.05 0.22 0.19 0.2

σ1 σ2

est 3.92 0.77
se 0.19 0.03

effects difference, β2(trt), with a value of 1.15 and standard error 0.56, is indeed

significant. Furthermore, the estimated γ coefficients indicate that those who are

black, more educated, and have low (but nonzero) baseline salary are more likely

to benefit from the program, which is different from the conclusion of Imai and

Ratkovic (2013) that “unemployed Hispanics and highly educated, low-earning

non-Hispanics are predicted to benefit from the program”. From each model,

we can score individuals based on the estimated probabilities π of belonging to

the subgroup with better treatment effects. Based on the equal variance and the

unequal variance models, the membership scores are

S1(X) = π
(
− 1.70− 0.02X1 + 2.75X2 − 0.26X3 + 0.08X4

)
; (4.1)

S2(X) = π
(
− 1.45 + 0.04X1 + 1.14X2 − 0.24X3 − 0.6X4

)
. (4.2)
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Figure 2. NSW data. The overall treatment effect in (2.17) with different choices of λ’s.
In the left figure, we plot the values TT (λ) against λ ∈ [0.2, 374]; in the right figure, we
narrow down to a small region with λ = 0.2, 0.4, · · · , 1 to show that TT (λ) achieves the
maximum at λ = 0.4 among the selected λ values.

the baseline income is zero; X4: binary indicator for whether the baseline income

is above the median of the nonzero income group.

They are summarized in Table S2 in the supplement. If we fit a linear re-

gression model to all the covariates and their two-way interactions, the treatment

effect is estimated at −0.17 with a p-value 0.94. We ask whether there exists a

subgroup for which the training program is effective, using the structured logistic-

normal mixture model, with X= (1, X1, X2, X3, X4) and Z consists of trt and

X.

The EM and pEM tests rejected the null hypothesis of no subgroup, with p-

values< 0.001. The parameter estimates from the equal variance and the unequal

variance models are shown in Table 3. For the tuning parameter in the penalized

likelihood, we used the range of λ of [0.2, 374] by setting c1 = 0.9 and c2 =

0.9 in (2.14). Using the proposed criterion in Section 2.6, we plot TT (λ) in

Figure 2 from which we choose λ = 0.4. Although the EM test assuming equal

variances rejects the null hypothesis of no subgroups, the coefficient estimates

and their standard errors in Table 3 suggest that the treatment effect difference,

β2(trt), with the value of 0.11 and standard error of 0.15, is not significant. In

contrast, the estimate based on the unequal variance model gives the treatment
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Table 3. Parameter estimates and their standard errors when the equal/unequal variance
structured logistic-normal mixture model was used to fit the NSW data.

From equal variance structured logistic-normal mixture model
β1(1) β1(trt) β1(X1) β1(X2) β1(X3) β1(X4)

est 1.25 −0.05 0.04 −8.59 7.11 −1.85
se 0.39 0.12 0.04 0.12 0.14 0.15

β2(1) β2(trt) β2(X1) β2(X2) β2(X3) β2(X4)
est −8.53 0.11 0.00 16.83 0.05 0.25
se 0.54 0.15 0.05 0.28 0.18 0.19

γ(1) γ(X1) γ(X2) γ(X3) γ(X4)
est −1.70 −0.02 2.75 −0.26 0.08
se 0.58 0.05 0.27 0.20 0.22

σ
est 0.98
se 0.03
From unequal variance structured logistic−normal mixture model

β1(1) β1(trt) β1(X1) β1(X2) β1(X3) β1(X4)
est 1.13 0.01 0.04 −0.03 7.20 −1.64
se 1.71 0.47 0.15 0.76 0.54 0.61

β2(1) β2(trt) β2(X1) β2(X2) β2(X3) β2(X4)
est −3.45 1.15 0.03 −1.37 −1.46 −0.30
se 2.04 0.56 0.17 0.86 0.65 0.73

γ(1) γ(X1) γ(X2) γ(X3) γ(X4)
est −1.45 0.04 1.14 −0.24 −0.6
se 0.52 0.05 0.22 0.19 0.2

σ1 σ2

est 3.92 0.77
se 0.19 0.03

effects difference, β2(trt), with a value of 1.15 and standard error 0.56, is indeed

significant. Furthermore, the estimated γ coefficients indicate that those who are

black, more educated, and have low (but nonzero) baseline salary are more likely

to benefit from the program, which is different from the conclusion of Imai and

Ratkovic (2013) that “unemployed Hispanics and highly educated, low-earning

non-Hispanics are predicted to benefit from the program”. From each model,

we can score individuals based on the estimated probabilities π of belonging to

the subgroup with better treatment effects. Based on the equal variance and the

unequal variance models, the membership scores are

S1(X) = π
(
− 1.70− 0.02X1 + 2.75X2 − 0.26X3 + 0.08X4

)
; (4.1)

S2(X) = π
(
− 1.45 + 0.04X1 + 1.14X2 − 0.24X3 − 0.6X4

)
. (4.2)
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Figure 3. NSW data. Treatment effects in selected subgroups determined by membership
score from the equal and the unequal variance models. The circles denote the results
from the equal variance model, and the + signs denote the results from the unequal
variance model.

If we select the subjects whose membership scores are in the top q × 100% to

form a subgroup for q = 0.2, 0.25, . . . , 0.8, respectively, we then show the aver-

age treatment effects in the selected subgroup in Figure 3. It is clear from the

figure that, across different subgroup sizes, the subgroup assignment based on

the membership scores from the unequal variance model leads to high treatment

effects for the selected subgroup. This is another piece of evidence that subgroup

identification from the unequal variance model did better in this example.

4.2. AIDS data

We revisited the ACTG 320 clinical trial for AIDS patients that has been

analyzed in Zhao et al. (2013) and Shen and He (2015). The AIDS patients

were randomly assigned to a standard two drug combination and a new three

drug combination in this randomized trial. We used the CD4 count changes at

the 24th week (cd4.24) as the response variable, following the previous studies.

Three baseline variables, age: in years; log(cd4.0): baseline CD4 counts on the

log scale; log10(rna.0), baseline RNA concentration on the log10 scale were used

with the treatment indicator trt. Since there was a concern regarding the side
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effect of the newly-added component in the three drug combination, we were

interested in examining whether there exists a subgroup in which the treatment

effect (compared to the standard two drug combination) is high enough to com-

pensate for the side effect. In addition, if the subgroup exists, we would predict

the subgroup membership based on the baseline variables for individual patients.

In the logistic-normal mixture model (2.1) with Z = (1, trt, log(cd4.0),

log10(rna.0), Age) for the normal component andX = (1, log(cd4.0), log10(rna.0),

Age) for the logistic component, we used the criterion of the preceding section

to select λ = 400 for the penalized likelihood. The same choices of Γ and Γ̃ were

used as in the analysis of Shen and He (2015). Then, the pEM test rejected

the null hypothesis of one component only (p-value < 0.001). The parameter

estimates are given in Table S3 of the supplement.

The difference of the treatment effects (51.74) is smaller than that (112.98)

under the equal variance model. The mean probability of falling into the sub-

group of higher treatment is around 0.42. The ratio of the two σ’s is around 1.2.

Just as what we did in the NSW example, we computed the membership scores

from the equal variance model,

S3(X) = π
(
− 7.89 + 0.44 log(cd4.0) + 1.10 log10(rna.0)− 0.02Age

)
(4.3)

and the membership scores from the unequal variance model

S4(X) = π
(
− 9.16 + 0.67 log(cd4.0) + 1.40 log10(rna.0)− 0.02Age

)
. (4.4)

In Figure S1 in the supplement, we present the membership scores for all the

subjects estimates by (4.3) and (4.4). Compared to the estimated S3(X) values,

the estimated S4(X) values are more spread out on both sides of 0.5, which give

more meaningful interpretations in subgroup applications.

In this case, the two sets of membership scores have linear and rank cor-

relations around 0.99, so the two models lead to very similar subgroups. The

unequal variance model however allows a more relaxed condition on the model,

and results in more interpretable π values for subgroup assignments.

5. Discussions

As with any model-based method, if the underlying data generating mecha-

nism differs much from our proposed logistic-normal mixture model, the estima-

tors can be biased and the test results untrustworthy. Model diagnostics tools

are certainly worth developing. Another useful extension of our work is to allow

the number of covariates to be large, in which case feature selection is needed.
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Figure 3. NSW data. Treatment effects in selected subgroups determined by membership
score from the equal and the unequal variance models. The circles denote the results
from the equal variance model, and the + signs denote the results from the unequal
variance model.

If we select the subjects whose membership scores are in the top q × 100% to

form a subgroup for q = 0.2, 0.25, . . . , 0.8, respectively, we then show the aver-

age treatment effects in the selected subgroup in Figure 3. It is clear from the

figure that, across different subgroup sizes, the subgroup assignment based on

the membership scores from the unequal variance model leads to high treatment

effects for the selected subgroup. This is another piece of evidence that subgroup

identification from the unequal variance model did better in this example.

4.2. AIDS data

We revisited the ACTG 320 clinical trial for AIDS patients that has been

analyzed in Zhao et al. (2013) and Shen and He (2015). The AIDS patients

were randomly assigned to a standard two drug combination and a new three

drug combination in this randomized trial. We used the CD4 count changes at

the 24th week (cd4.24) as the response variable, following the previous studies.

Three baseline variables, age: in years; log(cd4.0): baseline CD4 counts on the

log scale; log10(rna.0), baseline RNA concentration on the log10 scale were used

with the treatment indicator trt. Since there was a concern regarding the side
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effect of the newly-added component in the three drug combination, we were

interested in examining whether there exists a subgroup in which the treatment

effect (compared to the standard two drug combination) is high enough to com-

pensate for the side effect. In addition, if the subgroup exists, we would predict

the subgroup membership based on the baseline variables for individual patients.

In the logistic-normal mixture model (2.1) with Z = (1, trt, log(cd4.0),

log10(rna.0), Age) for the normal component andX = (1, log(cd4.0), log10(rna.0),

Age) for the logistic component, we used the criterion of the preceding section

to select λ = 400 for the penalized likelihood. The same choices of Γ and Γ̃ were

used as in the analysis of Shen and He (2015). Then, the pEM test rejected

the null hypothesis of one component only (p-value < 0.001). The parameter

estimates are given in Table S3 of the supplement.

The difference of the treatment effects (51.74) is smaller than that (112.98)

under the equal variance model. The mean probability of falling into the sub-

group of higher treatment is around 0.42. The ratio of the two σ’s is around 1.2.

Just as what we did in the NSW example, we computed the membership scores

from the equal variance model,

S3(X) = π
(
− 7.89 + 0.44 log(cd4.0) + 1.10 log10(rna.0)− 0.02Age

)
(4.3)

and the membership scores from the unequal variance model

S4(X) = π
(
− 9.16 + 0.67 log(cd4.0) + 1.40 log10(rna.0)− 0.02Age

)
. (4.4)

In Figure S1 in the supplement, we present the membership scores for all the

subjects estimates by (4.3) and (4.4). Compared to the estimated S3(X) values,

the estimated S4(X) values are more spread out on both sides of 0.5, which give

more meaningful interpretations in subgroup applications.

In this case, the two sets of membership scores have linear and rank cor-

relations around 0.99, so the two models lead to very similar subgroups. The

unequal variance model however allows a more relaxed condition on the model,

and results in more interpretable π values for subgroup assignments.

5. Discussions

As with any model-based method, if the underlying data generating mecha-

nism differs much from our proposed logistic-normal mixture model, the estima-

tors can be biased and the test results untrustworthy. Model diagnostics tools

are certainly worth developing. Another useful extension of our work is to allow

the number of covariates to be large, in which case feature selection is needed.
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Here we only considered modeling two subgroups, but large studies may require

more than two subgroups.

Supplementary Materials

In the Supplementary Material, we provide the proofs for Theorem 1 and

Theorem 2, and give more details for the analysis of the data in Section 4.
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