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S1. Simulation examples

We carry out simulation studies to evaluate the performance of TQCC in testing the

null hypothesis of tail independence versus the alternative hypothesis of tail dependence.

The performance of the proposed test is compared with two newly published tests in

Bacro et al. (2010) and Hüsler and Li (2009).

The approach proposed by Hüsler and Li (2009) originated from an extreme value

condition of maxima domain of an extreme value distribution which can be characterized

by a dependence function l(x, y) satisfying the inequalities

x ∨ y ≤ l(x, y) ≤ x+ y, x, y > 0.

Testing asymptotic independence is to test H0 : l(x, y) = x+y for all x, y > 0. Nonpara-
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metric estimators of l(x, y) were constructed and the limit distributions were derived.

Two tests, the integral test and the supremum test, were derived with critical quantile

values being numerically calculated. In our simulation examples, the integral test is

used, sub-sample sizes are all set as n/2 of the total sample size n in each case, and the

tuning parameter k is set as 0.075n respectively.

The test proposed by Bacro et al. (2010) is called the madogram test named after

the well-known madogram used in spatial statistics. The madogram test considers the

random variable

W =
1

2
|F (X)− F (Y )|,

and an empirical distribution based estimator of vW = E(W ) as

v̂W =
1

2n

n∑
i=1

|F (Xi)− F (Yi)|,

which results in the limit distribution

√
n
v̂W − 1

6

σ̂W

L→ N(0, 1),

and a normal test.

Six typical examples of simulated bivariate sequences are chosen as follows:

(1) Componentwise maxima over 10,000 realizations of bivariate normal random vari-

ables with ρ = 0.2, 0.4, 0.6, 0.8. Details of this example can be seen in Bacro

et al. (2010) Example (D4).
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(2) {(Xi, Yi)} in Example 1, where (Lni, Qni) follow (2.6) with ρ = 0.2, 0.4, 0.6, 0.8.

(3) Bivariate random samples drawn from (1/U, 1/(1− U)), where U ∼ Uniform(0, 1).

(4) Bivariate random samples drawn from (Z1E1, Z2E1), where

E1 ∼ Exponential(1), and Z1 and Z2 are independent unit Fréchet, and indepen-

dent of E1.

(5) Bivariate random samples with the joint distribution specified by a Gumbel copula,

Cθ(H(u1), H(u2)) = e−(
∑2

i=1[− log{H(ui)}]1/θ)θ , u1 > 0, u2 > 0, where H(u) is a

unit Fréchet distribution function, and θ =
√
1− ρ with ρ = 0.2, 0.4, 0.6, 0.8.

(6) Bivariate random samples drawn from two t4 (Student’s t distribution with 4 degrees

of freedom) random variables with correlation coefficients ρ = 0.2, 0.4, 0.6, 0.8.

Cases of tail independence are given in Examples (1)-(4), while cases of tail dependence

are in Examples (5) and (6). Example (5) is also used in Bacro et al. (2010) and Hüsler

and Li (2009). In our simulation study, for the simulated sample {(Xi, Yi)} in each

example, the threshold value is automatically chosen at the smaller one of two 100pth

percentiles of {Xi} and {Yi}, where p = .80, .825, .85, .875, .90, .925, .95, .975, respec-

tively. The number of simulation replications is 1000.

Tables 5-10 report the proportions of rejecting the null hypothesis of tail indepen-

dence with different sample sizes at the nominal level α = 0.05. Column HLT stands
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for the approach of Hüsler and Li (2009), while column MaD stands for the madogram

approach of Bacro et al. (2010). One can immediately see that HLT method well con-

trols Type I error rates within its nominal level. Their method is relatively conservative

and requires sample size as large as 2000 to get a good performance. In the mean time,

MaD method is relatively aggressive, and Type I error rates are not controlled within its

nominal level, which is also seen in Bacro et al. (2010) for Example (1). Overall, TQCC

controls Type I error rates within its nominal level, and it has a better detection per-

formance in tail dependent examples. These tables also show that the performances of

TQCC are relatively less sensitive to choices of p in calculating TQCC. We recommend

the use of the 95th percentile of transformed sample data. We note that in Example (5)

with ρ = 0.2, corresponding to θ = 0.8944, (note θ = 1 corresponds to independence),

the empirical testing powers are low although the results also show an increasing trend of

the empirical testing powers as sample sizes increase. This example suggests that when

the null hypothesis is not rejected, cautions should be taken, and a further analysis is

recommended.
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Table 5: Empirical Type I error rates for Examples (1)-(4)

Sample size n=300

Example HLT MaD TQCC

.80 .825 .85 .875 .90 .925 .95 .975

(1) 0.2 .03 .04 .04 .04 .03 .03 .03 .02 .02 .02

ρ 0.4 .04 .05 .03 .03 .03 .03 .03 .02 .02 .01

0.6 .03 .16 .05 .04 .04 .03 .03 .03 .03 .02

0.8 .03 .94 .11 .10 .09 .09 .07 .05 .04 .02

(2) 0.2 .02 .11 .03 .03 .03 .03 .03 .03 .03 .02

ρ 0.4 .03 .32 .04 .03 .03 .03 .03 .03 .03 .02

0.6 .03 .65 .03 .03 .03 .03 .03 .02 .02 .02

0.8 .04 .91 .03 .03 .03 .03 .03 .02 .02 .02

(3) .03 0.00 .01 .01 .01 .01 .01 .01 .01 .01

(4) .04 1.00 .07 .06 .06 .06 .05 .05 .04 .03
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Table 6: Empirical Type I error rates for Examples (1)-(4)

Sample size n=500

Example HLT MaD TQCC

.80 .825 .85 .875 .90 .925 .95 .975

(1) 0.2 .03 .03 .02 .03 .03 .02 .02 .02 .02 .01

ρ 0.4 .03 .05 .04 .04 .04 .03 .03 .03 .03 .02

0.6 .05 .19 .05 .05 .05 .05 .04 .04 .03 .03

0.8 .05 1.00 .13 .12 .11 .09 .08 .07 .05 .03

(2) 0.2 .03 .14 .04 .04 .04 .04 .03 .03 .03 .02

ρ 0.4 .02 .45 .03 .03 .03 .03 .03 .03 .03 .02

0.6 .03 .86 .04 .04 .04 .04 .04 .03 .03 .03

0.8 .02 .99 .06 .06 .05 .05 .05 .05 .04 .03

(3) .02 .00 .02 .02 .03 .03 .03 .03 .03 .03

(4) .03 1.00 .06 .06 .06 .06 .05 .05 .04 .04
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Table 7: Empirical Type I error rates for Examples (1)-(4)

Sample size n=1000

Example HLT MaD TQCC

.80 .825 .85 .875 .90 .925 .95 .975

(1) 0.2 .04 .02 .04 .04 .04 .04 .04 .04 .04 .03

ρ 0.4 .03 .05 .05 .05 .05 .05 .05 .04 .04 .03

0.6 .04 .29 .06 .06 .06 .06 .05 .05 .05 .04

0.8 .07 1.00 .18 .17 .14 .12 .11 .10 .08 .06

(2) 0.2 .03 .24 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.03

ρ 0.4 .03 .74 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03

0.6 .04 .99 0.04 0.04 0.03 0.04 0.03 0.03 0.03 0.03

0.8 .03 1.00 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.04

(3) .04 0.00 .03 .04 .04 .04 .04 .04 .04 .04

(4) .05 1.00 .07 .07 .07 .06 .06 .05 .05 .04
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Table 8: Empirical Type I error rates for Examples (1)-(4)

Sample size n=2000

Example HLT MaD TQCC

.80 .825 .85 .875 .90 .925 .95 .975

(1) 0.2 .06 .02 .04 .04 .04 .05 .05 .04 .04 .03

ρ 0.4 .06 .05 .06 .06 .06 .06 .06 .06 .06 .05

0.6 .06 .43 .06 .06 .06 .06 .05 .04 .04 .03

0.8 .14 1.00 .25 .24 .22 .19 .15 .14 .10 .06

(2) 0.2 .03 .40 .04 .04 .04 .04 .04 .04 .05 .04

ρ 0.4 .04 .96 .05 .05 .05 .04 .05 .05 .04 .04

0.6 .05 1.00 .04 .04 .04 .05 .05 .05 .04 .04

0.8 .04 1.00 .05 .05 .05 .06 .05 .05 .05 .05

(3) .03 .00 .03 .04 .04 .04 .04 .04 .04 .04

(4) .08 1.00 .09 .08 .07 .07 .07 .07 .06 .06
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Table 9: Empirical powers for Examples (5) and (6)

Sample size n=300

Example HLT MaD TQCC

.80 .825 .85 .875 .90 .925 .95 .975

(5) 0.2 .03 .86 .14 .13 .12 .10 .09 .08 .07 .05

ρ 0.4 .06 1.00 .44 .42 .40 .37 .33 .27 .18 .10

0.6 .07 1.00 .79 .77 .75 .70 .63 .55 .40 .20

0.8 .12 1.00 1.00 .99 .99 .99 .97 .94 .85 .53

(6) 0.2 .03 1.00 .75 .75 .75 .74 .73 .72 .69 .65

ρ 0.4 .04 1.00 .85 .85 .84 .82 .81 .79 .76 .71

0.6 .05 1.00 .95 .95 .94 .93 .93 .92 .89 .85

0.8 .11 1.00 1.00 1.00 1.00 .99 .99 .99 .98 .95

Sample size n=500

(5) 0.2 .04 .96 .17 .16 .15 .14 .13 .12 .10 .06

ρ 0.4 .07 1.00 .49 .46 .42 .39 .37 .31 .25 .14

0.6 .15 1.00 .88 .87 .85 .81 .77 .70 .61 .38

0.8 .25 1.00 1.00 1.00 1.00 .99 .99 .98 .95 .77

(6) 0.2 .03 1.00 0.80 0.79 0.78 0.77 0.77 0.76 0.74 0.72

ρ 0.4 .06 1.00 0.88 0.87 0.87 0.87 0.86 0.84 0.83 0.79

0.6 .11 1.00 0.96 0.96 0.96 0.95 0.95 0.94 0.92 0.89

0.8 .22 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98
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Table 10: Empirical powers for Examples (5) and (6)

Sample size n=1000

Example HLT MaD TQCC

.80 .825 .85 .875 .90 .925 .95 .975

(5) 0.2 .09 1.00 .20 .20 .20 .19 .18 .17 .15 .11

ρ 0.4 .15 1.00 .59 .58 .56 .53 .50 .46 .40 .28

0.6 .34 1.00 .94 .93 .92 .90 .87 .84 .79 .61

0.8 .63 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .97

(6) 0.2 .07 1.00 .84 .84 .83 .83 .83 .82 .81 .79

ρ 0.4 .14 1.00 .91 .91 .91 .91 .91 .90 .89 .86

0.6 .29 1.00 .97 .97 .97 .96 .96 .96 .94 .92

0.8 .52 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .99

Sample size n=2000

(5) 0.2 .14 1.00 .25 .25 .24 .23 .22 .21 .19 .15

ρ 0.4 .35 1.00 .70 .68 .66 .64 .61 .57 .52 .42

0.6 .70 1.00 .97 .96 .96 .95 .94 .92 .88 .77

0.8 .93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(6) 0.2 .15 1.00 .86 .86 .86 .86 .86 .85 .84 .83

ρ 0.4 .30 1.00 .92 .92 .92 .92 .91 .91 .90 .88

0.6 .59 1.00 .99 .99 .99 .98 .98 .98 .97 .97

0.8 .86 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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S2. Appendix

Proof of Proposition 1. First, we have

P (max(X,Tnt) > u,max(Y, Tnt) > u)

P (max(X,Tnt) > u)

=
P (Tnt ≤ u)P (X > u, Y > u)/P (X > u) + P (Tnt > u)/P (X > u)

P (Tnt ≤ u) + P (Tnt > u)/P (X > u)

=O (1/g(u)) +O
(
nu1−t

)
(S2.1)

=O
(
max

(
1/g(u), nu1−t

))
. (S2.2)

The first equality from the above identities directly proves (2.7). Notice that g(u)→∞

as u→∞. For any h(u) satisfying h(u)→∞ when u→∞, we have

g∗(u) =
P (max(X ′, Tnt) > h(u),max(Y ′, Tnt) > h(u))

P (max(X ′, Tnt) > h(u))

=
P (Tnt ≤ h(u))P (X ′ > h(u)) + P (Tnt > h(u))/P (X ′ > h(u))

P (Tnt ≤ h(u)) + P (Tnt > h(u))/P (X ′ > h(u))

=O
(
max

(
1/h(u), nh1−t(u)

))
. (S2.3)

In particular, when h(u) = min
(
g(u), n−1ut−1, (ng(u))

1
t−1 , u

)
, we have

g∗(u) = O
(
max

(
1/g(u), nu1−t

))
. (S2.4)

Eq (S2.4) gives

P (X > u, Y > u)

P (X > u)
= O(g∗(u)). (S2.5)

Combining Eq (S2.2) and (S2.4), we have

P (max(X,Tnt) > u,max(Y, Tnt) > u)

P (max(X,Tnt) > u)
= O (g∗(u)) . (S2.6)
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�

Proof of Proposition 2. Denote K(u) = 1/g(u). The results follow from proving

Pnt = P
(
∪ni=1

{Xi

n
>
Tn,t
n
,
Yi
n
>
Tn,t
n

})
= 1− P

(
∩ni=1

{Xi

n
>
Tn,t
n
,
Yi
n
>
Tn,t
n

}c
)

= 1− P c
nt →


0, when tη < 1;

1, when η = 1, t > 1,

as n→∞. We have

P c
nt = P

(
∩ni=1

{Xi

n
>
Tn,t
n
,
Yi
n
>
Tn,t
n

}c
)

=

∫ ∞

0

[
1− P (Xi

n
> x,

Yi
n
> x)

]n
de−

n1−t

xt

=

∫ ∞

0

[
1− P (Xi > nx, Yi > nx)

]n
de−

n1−t

xt

=

∫ ∞

0

[
1−K(nx)(1− e− 1

nx )
]n
de−

n1−t

xt , set nx = n1/ty

=

∫ ∞

0

[
1−K(n

1
t y)(1− e−

1

n1/ty )
]n
de

− 1
yt

=

∫ ∞

0

fnt(y)de
− 1

yt .

Note that fnt(y) ≤ 1, and n1/ty(1− e−
1

n1/ty )→ 1 as n→∞, we have

fnt =
[
1− K(n

1
t y)

n1/ty
n1/ty(1− e−

1

n1/ty )
]n

=
[
1− K(n

1
t y)

n1/ty
n1/ty(1− e−

1

n1/ty )
] n1/ty

K(n
1
t y)n1/ty(1−e

− 1

n1/ty )

n
1− 1

t K(n
1
t y)n1/ty(1−e

− 1

n1/ty )
y

.

The proof is then completed by noticing the limit of n1−
1
tK(n

1
t y) and the limit of Pnt.

�

Proof of Theorem 1. For z > 0, we have

P (Tn,t/n
1/t < z) = P (Tn,t < n1/tz) = exp{−n/(nzt)} = exp(−1/zt).
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Denote X∗
i = Xi/n

1/t, Y ∗
i = Yi/n

1/t, T ∗
t = Tn,t/n

1/t and bn = n1/t. We have

P
(Tn,t
n

{
max
1≤i≤n

max(Xi, Tn,t)

max(Yi, Tn,t)
+ 1

}
< z

)
= P

(
T ∗
t

{
max
1≤i≤n

max(X∗
i , T

∗
t )

max(Y ∗
i , T

∗
t )

+ 1
}
< n1−1/tz

)
=

∫ ∞

0

[
P
{max(X∗

i , x)

max(Y ∗
i , x)

<
n1−1/tz

x
− 1

}]n
d exp(−1/xt). (S2.7)

We now calculate the integrand in (S2.7). For w > 1 and x > 0, we have

P
{max(X∗

i , x)

max(Y ∗
i , x)

< w
}

= P (X∗
i /Y

∗
i < w, X∗

i > x, Y ∗
i > x) + P (X∗

i /x < w, X∗
i > x, Y ∗

i ≤ x)

+P (x/x < w, X∗
i ≤ x, Y ∗

i ≤ x) + P (x/Y ∗
i < w, X∗

i ≤ x, Y ∗
i > x)

≡ I1 + I2 + I3 + I4,

where

I1 =
w

1 + w
[1− exp{−(1 + w)/(wbnx)}]− exp{−1/(bnx)}+ exp{−2/(bnx)}.

Similarly,

I2 = exp{−1/(bnx)}[exp{−1/(wbnx)}−exp{−1/(bnx)}] = exp{−(1+w)/(wbnx)}−

exp{−2/(bnx)}, I3 = exp{−2/(bnx)}, I4 = exp{−1/(bnx)}[1−exp{−1/(bnx)}] = exp{−1/(bnx)}−

exp{−2/(bnx)}, thus

I1 + I2 + I3 + I4 = 1− 1

1 + w
[1− exp{−(1 + w)/(wbnx)}].

Setting w = nz/(bnx)− 1 gives

(I1 + I2 + I3 + I4)
n =

[
1− 1

nz − bnx
{1 + o(1)}

]n
→ exp(−1/z).

This concludes

lim
n→∞

[
P
{max(X∗

i , x)

max(Y ∗
i , x)

< n1−1/tz/x− 1
}]n

= exp(−1/z).
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This, together with the dominated convergence theorem and Tn,t/nAn,t
P→ 1 proves the

first part of (i). The proof of the second part of (i) uses similar arguments. For part (ii),

letting ∆i = A−1
n,tmax(Xi, Tn,t)/max(Yi, Tn,t) and Θi = A−1

n,tmax(Yi, Tn,t)/max(Xi, Tn,t),

we have

An,tqTn,t
=

max(∆i) + max(Θi)− 2/An,t

max(∆i)max(Θi)− 1/A2
n,t

=
{max(∆i) + max(Θi)}{1 + oP (1)}

max(∆i)max(Θi){1 + oP (1)}
.

This together with part (i) and Slutsky’s theorem proves part (ii). �

Proof of Corollary 1. Following the proofs in Theorem 1, we get

P
{max(X∗

i , x)

x
< w

}
= exp{− 1

xwn1/t
}.

Setting w = n1−1/tz/x, then all proofs follow the same proofs as in Theorem 1.

Proof of Theorem 2. Before proving Theorem 2, we need Lemma 1.

Lemma 1. Suppose that X, X1, X2, . . . are positive random variables. Then Xn
P→ X

if and only if there are two sequences of positive random variables ξ
(1)
n and ξ

(2)
n such that

ξ
(1)
n

P→ 1, ξ
(2)
n

P→ 1, and ξ
(1)
n X ≤ Xn ≤ ξ(2)n X, n = 1, 2, . . ..

Proof. The sufficient part is obvious. For the necessary part, define X̃
(1)
n =

max(Xn, X) and X̃
(2)
n = min(Xn, X). Then for j = 1, 2, X̃

(j)
n are measurable and

X̃
(j)
n

P→ X as n→∞. Setting ξ
(j)
n = X̃

(j)
n /X, j = 1, 2, completes the proof. �

We now show Theorem 2. By Lemma 1, there exist ξ
(j)
n > 0, ξ

(j)
n

P→ 1, j = 1, 2, as

n→∞, and ξ
(1)
n u∗ ≤ u∗n ≤ ξ

(2)
n u∗, which imply

min(1, ξ(1)n )max(Xi, u
∗an) ≤ max(Xi, un) ≤ max(1, ξ(2)n )max(Xi, u

∗an),
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min(1, ξ(1)n )max(Yi, u
∗an) ≤ max(Yi, un) ≤ max(1, ξ(2)n )max(Yi, u

∗an).

Then we have

min(1, ξ
(1)
n )max(Xi, u

∗an)

max(1, ξ
(2)
n )max(Yi, u∗an)

≤ max(Xi, un)

max(Yi, un)
≤ max(1, ξ

(2)
n )max(Xi, u

∗an)

min(1, ξ
(1)
n )max(Yi, u∗an)

,

min(1, ξ
(1)
n )max(Yi, u

∗an)

max(1, ξ
(2)
n )max(Xi, u∗an)

≤ max(Yi, un)

max(Xi, un)
≤ max(1, ξ

(2)
n )max(Yi, u

∗an)

min(1, ξ
(1)
n )max(Xi, u∗an)

.

Noticing that for bn = n(1− exp{−1/(u∗an)}), we have

P
{

max
1≤i≤n

min(1, ξ
(1)
n )max(Xi, u

∗an)

max(1, ξ
(2)
n )max(Yi, u∗an)

≤ bnx− 1, max
1≤i≤n

min(1, ξ
(1)
n )max(Yi, u

∗an)

max(1, ξ
(2)
n )max(Xi, u∗an)

≤ bny − 1
}

≥ P
{

max
1≤i≤n

max(Xi, un)

max(Yi, un)
≤ bnx− 1, max

1≤i≤n

max(Yi, un)

max(Xi, un)
≤ bny − 1

}
≥ P

{
max
1≤i≤n

max(1, ξ
(2)
n )max(Xi, u

∗an)

min(1, ξ
(1)
n )max(Yi, u∗an)

≤ bnx− 1, max
1≤i≤n

max(1, ξ
(2)
n )max(Yi, u

∗an)

min(1, ξ
(1)
n )max(Xi, u∗an)

≤ bny − 1
}
.

Since max(1, ξ
(k)
n )/min(1, ξ

(j)
n )

P→ 1 for all j, k = 1, 2, and by Theorem 5.2 of Zhang

(2008b), max1≤i≤n{max(Xi, u
∗an)/max(Yi, u

∗an)} and max1≤i≤n{max(Yi, u
∗an)/max(Xi, u

∗an)}

are tail independent, we have by Slutsky’s theorem that both the first and the last proba-

bility in the above inequalities converge to exp(−1/x−1/y) as n→∞, hence the middle

one converges to the same limit. The rest of the proof is similar to the proof in Theorem

1. �

Proof of Corollary 2 is obvious.

Proof of Theorem 3. It can be shown that c1 ≤ Xi/Yi ≤ c2. Using the fact min(c1, 1) ≤

max(Xi, un)/max(Yi, un) ≤ max(1, c2), we have that with probability tending to 1,

1 ≤ max
1≤i≤n

max(Xi, un)

max(Yi, un)
≤ max(1, c2), 1 ≤ max

1≤i≤n

max(Yi, un)

max(Xi, un)
≤ max(1, 1/c1).
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So qun
≥ f(max(1, c2),max(1, 1/c1)) > 0 (for f in (2.5)) completes the proof. �

Proof of Proposition 3. Under Condition A1 and α1 + α2 = 1 and β1 + β2 = 1 in

(2.15), let α = α1, β = 1− β1, then the corresponding bivariate distribution is

F (x, y) = exp
[
−max{α/x, (1− β)/y} −max{(1− α)/x, β/y}

]
.

Notice that α, β ≥ 0, α+ β < 1 imply β/(1− α) < (1− β)/α. Thus,

F (x, y) =



exp (−1/y), y/x ≤ β/(1− α),

exp {−(1− β)/y − (1− α)/x}, β/(1− α) < y/x < (1− β)/α,

exp (−1/x), (1− β)/α ≤ y/x.

(S2.8)

We have

lim
u→∞

P (X > u, Y > u)

P (X > u)
= lim

u→∞

1− F (u)− F (u) + F (u, u)

1− F (u)
= 1− lim

u→∞

F (u)− F (u, u)
1− F (u)

,

= 1− lim
u→∞

e−1/u − e−(2−(α+β))/u

1− e−1/u

= 1− lim
u→∞

− 1
u2 e

−1/u + 2−(α+β)
u2 e−(2−(α+β))/u

1
u2 e−1/u

= 1 + lim
u→∞

(1− (2− (α+ β))e1−(α+β)/u) = α+ β.

By (S2.8), we have

max
Yi
Xi

P→ 1− β
α

, max
Xi

Yi

P→ 1− α
β

.

Then we have

q
un=0

P→
1−β
α + 1−α

β − 2

(1−α)(1−β)
αβ − 1

= α+ β.
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Similar to the proof of Theorem 3, we have that with probability tending to 1,

1 ≤ max
1≤i≤n

max(Xi, un)

max(Yi, un)
≤ 1− β

α
, 1 ≤ max

1≤i≤n

max(Yi, un)

max(Xi, un)
≤ 1− α

β
,

which shows qun
→ α+ β. �

Proof of Proposition 4. Notice that {ϵi1/ϵi2} is a Cauchy random variable having its

density function and distribution function as:

p(z) =
1

π

√
1− ρ2

(z − ρ)2 + (1− ρ2)
, F (z) =

1

2
+

1

π
tan−1 z − ρ√

1− ρ2
.

Considering 1−F (γn) = 1
n , we have 1−

1
n = 1

2+
1
π tan

−1 γn−ρ√
1−ρ2

, i.e., tan(π2−
π
n ) =

γn−ρ√
1−ρ2

,

which implies √
1− ρ2
γn − ρ

= cot(
π

n
) ∼ π

n
.

Then we have

γn ≈
√
1− ρ2n
π

+ ρ ≈
√
1− ρ2n
π

,

which implies

π

n
√

1− ρ2
max
1≤i≤n

{ϵi1/ϵi2}
L→ e−1/x, for x > 0,

and the proof follows the same steps of the proof for Theorem 1. �

Proof of Theorem 4. The following lemma facilitates the proof of Theorem 4.

Lemma 2. Suppose that {Xi}ni=1 is a random sample from the distribution

Fγ0
(x) = exp(−1/xγ0 ), with x > 0, and the true shape parameter γ0 . Suppose that

the estimator of γ
0
is γ̂ = γ̂(X1, . . . , Xn) satisfying nα(γ̂ − γ

0
)

L→ W , for some α > 0
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and some random variable W . Then as n→∞,

max
1≤i≤n

| log{Fγ0
(Xi)}/ log{Fγ̂(Xi)} − 1| P→ 0.

Proof. We only prove the case of γ
0
> 0; cases of γ

0
= 0 and γ

0
< 0 can be similarly

treated. We have that for any finite integer k > 0,

max
1≤i≤n

| log(Fγ0
(Xi))/ log(Fγ̂(Xi))− 1| = max

1≤i≤n
|X γ̂

i /X
γ0
i − 1|

≤ nα|γ̂ − γ0 | ·
1

nα
max
1≤i≤n

| log(Xi)|+ · · ·

+n(k−1)α |γ̂ − γ0 |k−1

(k − 1)!
· 1

n(k−1)α
max
1≤i≤n

| log(Xi)|k−1

+nkα
|γ̂ − γ0 |k

k!
· 1

nkα
max
1≤i≤n

| log(Xi)|kX
γ−γ0
i ,

where γ is between γ0 and γ̂. It suffices to show two parts:

1

nα
max
1≤i≤n

| log(Xi)|
P→ 0,

1

nkα
max
1≤i≤n

| log(Xi)|kX
γ−γ0
i

P→ 0.

For the first part, we can show a more general result. For any ϵ > 0, β > 0 and

1 ≤ ℓ ≤ k, we have that as n→∞,

P
( 1

nℓβ
max
1≤i≤n

| log(Xi)|ℓ ≥ ϵ
)
= 1− [P{exp(−ϵ1/ℓnβ) ≤ Xi ≤ exp(ϵ1/ℓnβ)}]n

= 1− [exp{− exp(−ϵγ0/ℓ nγ0β)} − exp{− exp(ϵγ0/ℓ nγ0β)}]n → 0. (S2.9)

Now we show the second part. We assume that s is a large enough positive constant.
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Then

P ( max
1≤i≤n

X
γ−γ0
i ≥ nsαϵ) = P ( max

1≤i≤n
X

γ−γ0
i ≥ nsαϵ, γ − γ0 > 0)

+P ( max
1≤i≤n

X
γ−γ0
i ≥ nsαϵ, γ − γ0 < 0)

= P (γ − γ0 > 0)− P ( max
1≤i≤n

X
γ−γ0
i ≤ nsαϵ, γ − γ0 > 0)

+P (γ − γ0 < 0)− P ( max
1≤i≤n

1

X
γ0−γ
i

≤ nsαϵ, γ − γ0 < 0)

= P (γ̂ − γ0 > 0)− P ( max
1≤i≤n

X
γ−γ0
i ≤ nsαϵ, γ̂ − γ0 > 0)

+P (γ̂ − γ0 < 0)− P ( max
1≤i≤n

1

X
γ0−γ
i

≤ nsαϵ, γ̂ − γ0 < 0). (S2.10)

For sufficiently large n, we have nϵ > 1. Denote s = s∗α+ 1, where s∗ > 0. Then

P (γ̂ − γ0 > 0) ≥ P ( max
1≤i≤n

X
γ0
i ≤ n

s∗αγ0
γ−γ0 (nϵ)

γ0
γ−γ0 , γ̂ − γ0 > 0)

≥ P ( max
1≤i≤n

X
γ0
i ≤ n

s∗αγ0
|γ̂−γ0 | (nϵ)

γ0
|γ̂−γ0 | , γ̂ − γ0 > 0) (S2.11)

= P (n−1 max
1≤i≤n

X
γ0
i ≤ n

nαs∗αγ0
nα|γ̂−γ

0
|−1

(nϵ)
nαγ0

nα|γ̂−γ
0
| , nα(γ̂ − γ0) > 0);

similarly,

P (γ̂ − γ0 < 0) ≥ P ( max
1≤i≤n

X
−γ

0
i ≤ n

s∗αγ0
γ0−γ (nϵ)

γ0
γ0−γ , γ̂ − γ0 < 0)

≥ P ( max
1≤i≤n

X
−γ0
i ≤ n

s∗αγ0
|γ0−γ̂| (nϵ)

γ0
|γ0−γ̂| , γ̂ − γ0 < 0) (S2.12)

= P ( max
1≤i≤n

X
−γ0
i − log(n) ≤ n

nαs∗αγ0
nα|γ0−γ̂| (nϵ)

nαγ0
nα|γ0−γ̂| − log(n), nα(γ̂ − γ0) < 0).

Note that X
γ0
i and X

−γ0
i are standard Fréchet and exponential random variables respec-

tively, and we have n−1 max1≤i≤nX
γ0
i

L→ X
γ0
1 , and max1≤i≤nX

−γ0
i −log(n) L→ log(X

γ0
1 ).
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It is obvious that n
nαs∗αγ0
nα|γ̂−γ0 |−1

(nϵ)
nαγ0

nα|γ̂−γ0 | P→∞, and n
nαs∗αγ0
nα|γ0−γ̂| (nϵ)

nαγ0
nα|γ0−γ̂|−log(n) P→∞.

Applying these relations to (S2.10)-(S2.12), we have P (max1≤i≤nX
γ−γ0
i ≥ nsαϵ) → 0

as n→∞. Note that as n→∞, for k > s, we have

P ( max
1≤i≤n

| log(Xi)|kX
γ−γ0
i ≤ nkαϵ)

≥ P ( max
1≤i≤n

| log(Xi)|k ≤ nkα−sαϵ1/2, max
1≤i≤n

X
γ−γ0
i ≤ nsαϵ1/2)→ 1

which completes the proof. �

We now prove Theorem 4. By Lemma 2, for any ϵ > 0, as n→∞,

P (1− ϵ < X ξ̂X
i /X

ξ0,X
i < 1 + ϵ, i = 1, . . . , n)→ 1

which implies that for any un > 0,

P (1− ϵ < max(X ξ̂X
i , un)/max(X

ξ0,X
i , un) < 1 + ϵ, i = 1, . . . , n)→ 1

and thus

P
(
1− ϵ < min

1≤i≤n

max(X ξ̂X
i , un)

max(X
ξ0,X
i , un)

≤ max
1≤i≤n

max(X ξ̂X
i , un)

max(X
ξ0,X
i , un)

< 1 + ϵ
)
→ 1.

Therefore, by a similar argument in Lemma 1, there exist two sequences of positive

random variables ξ
(1)
n and ξ

(2)
n such that ξ

(1)
n

P→ 1, ξ
(2)
n

P→ 1, and ξ
(1)
n max(X

ξ0,X
i , un) ≤

max(X ξ̂X
i , un) ≤ ξ

(2)
n max(X

ξ0,X
i , un), i = 1, . . . , n; n = 1, 2, . . . A similar argument is

true for marginally transformed Y ξ̂Y
i . With these established notations, the proof of the

theorem can be completed by following the same procedure used in the proof of Theorem

2. �
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