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Abstract: Intended for computer experiments with both qualitative and quantitative

factors, marginally coupled designs were introduced by Deng, Hung and Lin (2015)

as a more economical strategy than the original, sliced space-filling designs. Among

the designs constructed in Deng, Hung and Lin (2015), the corresponding designs

for quantitative factors possess only the one-dimensional space-filling property with

respect to each level of any factor in designs for qualitative factors. In addition,

their designs for quantitative factors have clustered points. To avoid clustered

points and enhance two- and higher-dimensional space-filling property in designs for

quantitative factors, we propose three approaches to construct marginally coupled

designs. Theoretical results of marginally coupled designs are also derived.
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1. Introduction

Computer experiments are becoming ubiquitous in science, engineering, and

service for studying complex phenomena that might otherwise be too time-

consuming, expensive, or unethical to observe (Santner, Williams and Notz

(2003); Fang, Li and Sudjianto (2006)). They use computer codes to repre-

sent and implement the underlying physical mechanisms. It is not uncommon

that computer codes have both qualitative and quantitative factors (Qian, Wu

and Wu (2008); Han et al. (2009); Zhou, Qian and Zhou (2011)). For example,

Schmidt, Cruz and Iyengar (2005) describe a data center computer experiment

that involves qualitative factors (such as diffuser location and hot-air return-vent

location) and quantitative factors (such as rack power and diffuser flow rate).

A commonly used class of designs for computer experiments with quantita-

tive variables is space-filling designs, which aim to locate the design points evenly

over the entire design space. Space-filling properties are typically achieved by us-

ing such criteria as distance-based optimality (Johnson, Moore and Ylvisaker

(1990)), the low-dimensional projection property (Tang (1993)), discrepancy

(Fang and Lin (2003)), and orthogonality (Bingham, Sitter and Tang (2009)).

A special class of space-filling designs consists of Latin hypercube designs
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(McKay, Beckman and Conover (1979)). Their key feature is that, if the range of

each input variable is divided into the same number of equally-spaced intervals

as the design run size, there is precisely one point in each interval; this is known

as one-dimensional uniformity, or maximum stratification. There are numerous

Latin hypercube designs of a given run size. For a detailed account of Latin

hypercubes and other space-filling designs, we refer to the book chapter Lin and

Tang (2015).

For computer experiments with qualitative and quantitative factors, a naive

approach is to use an orthogonal array (known also as fractional factorial design,

see Hedayat, Sloane and Stufken (1999); Wu and Hamada (2011)) for qualitative

factors and a space-filling design for quantitative factors, and randomly combine

runs of an orthogonal array and runs of a space-filling design, where each run

of an orthogonal array is a level combination of the qualitative factors. Such an

approach is, in general, ineffective in accurately estimating interactions between

qualitative and quantitative factors.

As the first systematic solution to designs for computer experiments with

qualitative and quantitative factors, Qian and Wu (2009) introduced sliced space-

filling designs. Such a design consists of slices of space-filling designs with each

slice corresponding to a level combination of the qualitative factors. The run

sizes of such designs can be very large even for a moderate number of qualitative

factors. To address this issue, Deng, Hung and Lin (2015) proposed a new type of

designs, called marginally coupled designs, with the design points for quantitative

factors forming a Latin hypercube design, and for each level of any qualitative

factor, the corresponding design points for quantitative factors forming a small

Latin hypercube design. In their construction, this small Latin hypercube de-

sign does not guarantee two- or higher- dimensional projection property and

the whole design for quantitative factors can have clustered points. The two-

or higher-dimensional projection property is desirable because it can be viewed

as a stepping stone to construct space-filling designs, and designs with such a

property can achieve higher variance reduction in numerical integration (Tang

(1993)). Clustered points should be avoided in general, and they can create an

ill-conditioning issue (Ranjan, Haynes and Karsten (2011)). Motivated by these

observations, we introduce three methods for constructing marginally coupled

designs with improved space-filling property in designs for quantitative factors.

The first method offers a better two- or higher-dimensional projection prop-

erty in the design for quantitative factors in a marginally coupled design. This

construction couples a completely resolvable orthogonal array with a smaller or-

thogonal array. The second method provides marginally coupled designs in which

designs for quantitative factors do not have clustered points. A key tool in this
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method is the Rao-Hamming construction (Hedayat, Sloane and Stufken (1999)).

Our third method is a generalization of the second, and it allows marginally cou-

pled designs constructed to accommodate more quantitative factors while main-

taining the property that the whole design for the quantitative factors has no

clustered points.

We also provide some new existence results for s-level completely resolv-

able orthogonal arrays of λs2 runs, and summarize the existence of orthogonal

arrays of λs runs (Some of existence results are due to Hedayat, Sloane and

Stufken (1999)). These existence results are useful in obtaining the catalogue

of marginally coupled designs with better projection properties in designs for

quantitative factors.

This paper is organized as follows. Section 2 introduces definitions, notation,

and background. Section 3.1 provides a new way to characterize marginally cou-

pled designs. Sections 3.2 and 3.3 introduce three classes of marginally coupled

designs that have improved space-filling property in designs for quantitative fac-

tors. Section 3.2 also discusses the existence of completely resolvable orthogonal

arrays used in the construction. Concluding remarks are provided in Section 4.

Some proofs and tables of designs constructed are relegated to appendices.

2. Notation, Definitions and Background

An orthogonal array A of strength t is an n×m matrix with the jth column

taking sj distinct levels and, for every n× t submatrix of A, each of all possible

level combinations appears equally often (Hedayat, Sloane and Stufken (1999)).

When not all sj ’s are equal, the orthogonal array is mixed or asymmetric, and is

denoted by MOA(n, sm1
1 · · · smk

k , t), where the first m1 columns have s1 levels, the

nextm2 columns have s2 levels, and so on. If all sj ’s are equal to s, the orthogonal

array is symmetric and denoted by OA(n,m, s, t). Throughout, we denote the s

levels by 0, . . . , s− 1. An OA(n,m, s, 2), say A, is said to be α-resolvable if it can

be expressed as A = (AT

1 , . . . , A
T

n/(sα))
T such that each of A1, . . . , An/(sα) is an

OA(sα,m, s, 1). If α = 1, the orthogonal array is called completely resolvable and

denoted by CROA(n,m, s, 2). Table 1 displays an OA(9, 4, 3, 2) whose last three

columns form a CROA(9, 3, 3, 2).

A relevant concept for orthogonal arrays is difference schemes. It can be used

to construct orthogonal arrays and completely resolvable orthogonal arrays. An

r×c array is called a difference scheme if the entries are taken from s elements, and

for each vector of difference between any two distinct columns of the array, each of

s levels appears equally often (Bose and Bush (1952)). Such a difference scheme

is denoted by D(r, c, s). For example, consider columns 1, 2, 4 (or columns 1, 3, 4)
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(McKay, Beckman and Conover (1979)). Their key feature is that, if the range of

each input variable is divided into the same number of equally-spaced intervals

as the design run size, there is precisely one point in each interval; this is known

as one-dimensional uniformity, or maximum stratification. There are numerous

Latin hypercube designs of a given run size. For a detailed account of Latin

hypercubes and other space-filling designs, we refer to the book chapter Lin and

Tang (2015).

For computer experiments with qualitative and quantitative factors, a naive

approach is to use an orthogonal array (known also as fractional factorial design,

see Hedayat, Sloane and Stufken (1999); Wu and Hamada (2011)) for qualitative

factors and a space-filling design for quantitative factors, and randomly combine

runs of an orthogonal array and runs of a space-filling design, where each run

of an orthogonal array is a level combination of the qualitative factors. Such an

approach is, in general, ineffective in accurately estimating interactions between

qualitative and quantitative factors.

As the first systematic solution to designs for computer experiments with

qualitative and quantitative factors, Qian and Wu (2009) introduced sliced space-

filling designs. Such a design consists of slices of space-filling designs with each

slice corresponding to a level combination of the qualitative factors. The run

sizes of such designs can be very large even for a moderate number of qualitative

factors. To address this issue, Deng, Hung and Lin (2015) proposed a new type of

designs, called marginally coupled designs, with the design points for quantitative

factors forming a Latin hypercube design, and for each level of any qualitative

factor, the corresponding design points for quantitative factors forming a small

Latin hypercube design. In their construction, this small Latin hypercube de-

sign does not guarantee two- or higher- dimensional projection property and

the whole design for quantitative factors can have clustered points. The two-

or higher-dimensional projection property is desirable because it can be viewed

as a stepping stone to construct space-filling designs, and designs with such a

property can achieve higher variance reduction in numerical integration (Tang

(1993)). Clustered points should be avoided in general, and they can create an

ill-conditioning issue (Ranjan, Haynes and Karsten (2011)). Motivated by these

observations, we introduce three methods for constructing marginally coupled

designs with improved space-filling property in designs for quantitative factors.

The first method offers a better two- or higher-dimensional projection prop-

erty in the design for quantitative factors in a marginally coupled design. This

construction couples a completely resolvable orthogonal array with a smaller or-

thogonal array. The second method provides marginally coupled designs in which

designs for quantitative factors do not have clustered points. A key tool in this

ON CONSTRUCTION OF MARGINALLY COUPLED DESIGNS 3

method is the Rao-Hamming construction (Hedayat, Sloane and Stufken (1999)).

Our third method is a generalization of the second, and it allows marginally cou-

pled designs constructed to accommodate more quantitative factors while main-

taining the property that the whole design for the quantitative factors has no

clustered points.

We also provide some new existence results for s-level completely resolv-

able orthogonal arrays of λs2 runs, and summarize the existence of orthogonal

arrays of λs runs (Some of existence results are due to Hedayat, Sloane and

Stufken (1999)). These existence results are useful in obtaining the catalogue

of marginally coupled designs with better projection properties in designs for

quantitative factors.

This paper is organized as follows. Section 2 introduces definitions, notation,

and background. Section 3.1 provides a new way to characterize marginally cou-

pled designs. Sections 3.2 and 3.3 introduce three classes of marginally coupled

designs that have improved space-filling property in designs for quantitative fac-

tors. Section 3.2 also discusses the existence of completely resolvable orthogonal

arrays used in the construction. Concluding remarks are provided in Section 4.

Some proofs and tables of designs constructed are relegated to appendices.

2. Notation, Definitions and Background

An orthogonal array A of strength t is an n×m matrix with the jth column

taking sj distinct levels and, for every n× t submatrix of A, each of all possible

level combinations appears equally often (Hedayat, Sloane and Stufken (1999)).

When not all sj ’s are equal, the orthogonal array is mixed or asymmetric, and is

denoted by MOA(n, sm1
1 · · · smk

k , t), where the first m1 columns have s1 levels, the

nextm2 columns have s2 levels, and so on. If all sj ’s are equal to s, the orthogonal

array is symmetric and denoted by OA(n,m, s, t). Throughout, we denote the s

levels by 0, . . . , s− 1. An OA(n,m, s, 2), say A, is said to be α-resolvable if it can

be expressed as A = (AT

1 , . . . , A
T

n/(sα))
T such that each of A1, . . . , An/(sα) is an

OA(sα,m, s, 1). If α = 1, the orthogonal array is called completely resolvable and

denoted by CROA(n,m, s, 2). Table 1 displays an OA(9, 4, 3, 2) whose last three

columns form a CROA(9, 3, 3, 2).

A relevant concept for orthogonal arrays is difference schemes. It can be used

to construct orthogonal arrays and completely resolvable orthogonal arrays. An

r×c array is called a difference scheme if the entries are taken from s elements, and

for each vector of difference between any two distinct columns of the array, each of

s levels appears equally often (Bose and Bush (1952)). Such a difference scheme
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Table 1. An orthogonal array OA(9, 4, 3, 2) and a Latin hypercube L(9, 4).

OA(9, 4, 3, 2) L(9, 4)
0 0 0 0
0 1 1 2
0 2 2 1
1 0 1 1
1 1 2 0
1 2 0 2
2 0 2 2
2 1 0 1
2 2 1 0

0 0 0 0
1 3 3 6
2 6 6 3
3 1 4 4
4 4 7 1
5 7 1 7
6 2 8 8
7 5 2 5
8 8 5 2

of the orthogonal array in Table 1, with rows 1−3, 4−6 or 7−9 corresponding to

a D(3, 3, 3).

A Latin hypercube L = (lij) with n runs and k factors, denoted by L(n, k), is

an n×k matrix in which each column is a random permutation of equally-spaced

n levels (McKay, Beckman and Conover (1979)). Table 1 provides an example of

a Latin hypercube design of 9 runs for 4 factors. Without loss of generality, we use

0, . . . , n− 1 to denote the n levels. A Latin hypercube has the feature that each

dimension achieves maximum stratification. To guarantee higher-dimensional

stratification, Tang (1993) introduced orthogonal array-based Latin hypercubes.

The procedure works as follows. Let A be an OA(n,m, s, t), and replace the

r = n/s positions having level i by a random permutation of {ir, . . . , (i+1)r−1},
for i = 0, . . . , s − 1. The resulting design, known as an OA(n,m, s, t)-based

Latin hypercube, achieves t-dimensional stratification. For the orthogonal array

OA(9, 4, 3, 2), say A, in Table 1, the Latin hypercube design in the table is an

example of Latin hypercubes based on A. Although the approach in Tang (1993)

was only applied to orthogonal arrays, it in principle can be applied to any array

to obtain Latin hypercubes. For simplicity, we refer this approach as to level

replacement-based Latin hypercube approach.

For a computer experiment with m qualitative factors and k quantitative

factors, let D1 = MOA(n, s1 · · · sm, t) and D2 = L(n, k) be the designs for quali-

tative and quantitative factors, respectively. A design D = (D1, D2) is called a

marginally coupled design if for j = 1, . . . ,m, and for each level of the jth factor

in D1, the corresponding rows in D2 have the property that when projected into

each quantitative factor, the resulting points have exactly one level from each of

the n/sj equally-spaced intervals. We use MCD(D1, D2) to denote such a design.

Lemma 1 is from Deng, Hung and Lin (2015).

Lemma 1. Given D1 is an OA(n,m, s, 2), a marginally coupled design exists if

and only if D1 is a completely resolvable orthogonal array.
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3. Main Results

This section provides a new way to characterize marginally coupled designs

and, inspired by this, we introduce three approaches to constructing marginally

coupled designs that have improved space-filling property in designs for quanti-

tative factors.

3.1. Characterization of marginally coupled designs

Lemma 1 establishes the condition of D1 in an MCD(D1, D2) when D1 is an

s-level orthogonal array. We further study the condition of D2 and provide a

unified result of the necessary and sufficient condition for a marginally coupled

design. To derive the result, we define a matrix D̃2 based on a D2 = L(n, k). For

i = 1, . . . , n and j = 1, . . . , k, let

D̃2,ij =
⌊D2,ij

s

⌋
, (3.1)

where D2,ij and D̃2,ij are the (i, j)th entry of D2 and D̃2, respectively, and

⌊x⌋ denotes the greatest integer less than or equal to x. Conversely, D2 can be

obtained from D̃2 via the level replacement-based Latin hypercube approach. Here

D̃2 is an OA(n, k, n/s, 1).

Proposition 1. Given D1 is an OA(n,m, s, 2), D2 is an L(n, k) and D̃2 is defined

via (3.1), then (D1, D2) is a marginally coupled design if and only if for j =

1, . . . , k, (D1, d̃j) is an MOA(n, sm(n/s), 2), where d̃j is the jth column of D̃2.

Proposition 1 follows by the definition ofMCD(D1, D2) and the relationship in

(3.1) between D̃2 and D2. This proposition provides the necessary and sufficient

condition on both D1 and D2 for (D1, D2) to be a marginally coupled design

when D1 is an s-level orthogonal array. The condition in Proposition 1 contains

the one in Lemma 1, because (D1, d̃j) = MOA(n, sm(n/s), 2) for j = 1, . . . , k

implies that D1 is a completely resolvable orthogonal array.

Constructions 1 and 2 in Deng, Hung and Lin (2015) provide marginally

coupled designs when D1’s are s-level orthogonal arrays of s2 runs and λs2 runs,

λ ≥ 2, respectively. Their Construction 1 yields (D1, D̃2) = OA(s2,m + k, s, 2),

and thus has restrictive run sizes and numbers of factors. Their Construction 2

obtains columns of D2 by applying the level replacement-based Latin hypercube

approach independently to the last column of the same MOA(n, sm(n/s), 2). Thus

the columns of the corresponding D̃2 can be obtained from one to another by

level permutations. This results in clustered points in D2. Motivated by this ob-

servation, we propose a method in Section 3.3 for constructing D2 whose columns

cannot be obtained from one to another by level permutations. We introduce a

668



4 YUANZHEN HE, C. DEVON LIN AND FASHENG SUN
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method for constructing D2 such that, for each level of each factor in D1, the

corresponding rows can achieve stratification in any two- or higher-dimensional

projections in Section 3.2. Throughout, two columns are said to be equivalent if

one can be obtained from the other by level permutations.

3.2. Construction of MCDs with low dimensional stratification

This section presents a construction for MCD(D1, D2)’s of n runs, m qual-
itative factors, and k quantitative factors through an MOA(n, sm(n/s), 2) and
an OA(n/s, k, s1, 2), where s1 and s can be different. The key feature of such
a design is that, with respect to each level of any column in D1, design D2

achieves stratification in any two- or higher-dimensional projection. Let A be an
MOA(n, sm(n/s), 2) and B be an OA(n/s, k, s1, 2). Construction 1 is as follows.

Step 1. Obtain an orthogonal array-based Latin hypercube L(n/s, k), say L, based
on a given B via the level replacement-based Latin hypercube approach.

Step 2. Obtain an n × k matrix D̃2 by replacing the levels 0, . . . , n/s − 1 of the
last column of a given A with the 1st, 2nd, . . ., and the (n/s)th row of the L
from Step 1, respectively.

Step 3. Obtain an n × k matrix D2 based on D̃2 from Step 2 by replacing
the s entries with level i in each column of D̃2 by a random permutation of
{is, . . . , (i+ 1)s− 1} for i = 0, . . . , n/s− 1.

Let D1 be the first m columns of A and D = (D1, D2).

Theorem 1. For design D = (D1, D2) obtained in Construction 1,

(i) design D is a marginally coupled design for m qualitative factors and k quan-
titative factors; and

(ii) the rows in D2 corresponding to each level of any factor in D1 can achieve
stratification on the s1 × s1 grids in any two-dimensional projection.

Proof. Each column of D̃2 can be obtained by level permutations from the
last column of A, so column-combining D1 and any column of D̃2 yields an
MOA(n, sm(n/s), 2). Part (i) follows immediately by Proposition 1. We now
show part (ii). The L from Step 1 is an orthogonal array-based Latin hypercube
based on a B = OA(n/s, k, s1, 2), so L achieves stratification on the s1 × s1 grids
in any two dimensions. Corresponding to each level of any factor of D1, the
last column of the MOA(n, sm(n/s), 2) is a permutation of {0, 1, . . . , n/s− 1}. In
addition, in Step 2, this permutation with n/s symbols is replaced by the n/s
rows of an L(n/s, k), which is an OA(n/s, k, s1, 2)-based Latin hypercube design.
This means corresponding to each level of any factor of D1, the design points in
D̃2 is an OA(n/s, k, s1, 2)-based Latin hypercube design. Because D̃2 = ⌊D2/s⌋,
the corresponding design inD2 has stratifications of s1×s1 in any two dimensions.
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Table 2. Array MOA(8, 2441, 2) and L(4, 3) in Example 1.

A : MOA(8, 2441, 2) L : L(4, 3)

0 0 0 0 0 2 3 1
1 1 1 1 0 3 1 2
0 0 1 1 1 0 2 3
1 1 0 0 1 1 0 0
0 1 0 1 2
1 0 1 0 2
0 1 1 0 3
1 0 0 1 3

Remark 1. The space-filling property of the small L(n/s, k) plays a critical

role on the space-filling property of D2. More precisely, if the small L(n/s, k) is

based on an orthogonal array of strength t, the rows in the corresponding D2

with respect to each level of any factor in D1 will have stratification in any t

dimensions; if it is based on a strong orthogonal array SOA(n/s, k, s31, 3) (He and

Tang (2013)), the rows of D2 corresponding to each level of any column of D1

will achieve stratification on the s1 × s1 × s1 grids in any three dimensions, in

addition, it can achieve stratification on the s21 × s1 and the s1 × s21 grids in any

two dimensions.

Example 1. Let A be an MOA(8, 2441, 2) and B be an OA(4, 3, 2, 2). Consider

constructing an eight-run marginally coupled design MCD(D1, D2) for four qual-

itative factors and three quantitative factors via Construction 1 using A and B.

In this case, we have m = 4, k = 3, and s = s1 = 2. In Step 1, we obtain an

L(4, 3), say L, based on B. One such an L is given in the right part of Table 2.

In Step 2, an 8 × 3 D̃2 is obtained by replacing levels 0, 1, 2, 3 in the last

column of A by the first, second, third and fourth rows of L, respectively. Thus

D̃2 =




2 3 1

2 3 1

3 1 2

3 1 2

0 2 3

0 2 3

1 0 0

1 0 0




.

In Step 3, for each column of D̃2, replace the two positions having level i by

a random permutation of {2i, 2i + 1} for i = 0, 1, 2, 3. The resulting matrix
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method for constructing D2 such that, for each level of each factor in D1, the

corresponding rows can achieve stratification in any two- or higher-dimensional
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In this case, we have m = 4, k = 3, and s = s1 = 2. In Step 1, we obtain an

L(4, 3), say L, based on B. One such an L is given in the right part of Table 2.

In Step 2, an 8 × 3 D̃2 is obtained by replacing levels 0, 1, 2, 3 in the last

column of A by the first, second, third and fourth rows of L, respectively. Thus

D̃2 =
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


.

In Step 3, for each column of D̃2, replace the two positions having level i by

a random permutation of {2i, 2i + 1} for i = 0, 1, 2, 3. The resulting matrix
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Figure 1. Bivariate projections among the three columns x1, x2, x3 of D2.
Projected points of D2 corresponding to levels 0 and 1 of the first column of
D1 are represented by “+” and “o”, respectively.

is denoted by D2. Now let D1 consist of the first four columns of A. The

MCD(D1, D2) constructed is as follows.

D1 D2

0 0 0 0 5 7 2

1 1 1 1 4 6 3

0 0 1 1 6 2 4

1 1 0 0 7 3 5

0 1 0 1 0 4 6

1 0 1 0 1 5 7

0 1 1 0 2 1 1

1 0 0 1 3 0 0

The rows in D2 corresponding to each level of any factor in D1 achieve stratifi-

cation on 2× 2 grids in any two dimensions. (See Figure 1, for saving spaces we

only plot the rows in D2 corresponding to each level of the first factor in D1).

Theorem 1 has it that mixed orthogonal arrays MOA(n, sm(n/s), 2)’s and

orthogonal arrays OA(n/s, k, s1, 2)’s can be used to produce marginally coupled

designs with Property (ii). Theorem 2 shows that the reverse of the argument

holds.

ON CONSTRUCTION OF MARGINALLY COUPLED DESIGNS 9

Theorem 2. Suppose that there exists a marginally coupled design D = (D1, D2)

with D1 and D2 satisfying

(i) D1 is an OA(n,m, s, 2); and

(ii) the rows in D2 corresponding to each level of any factor in D1 can achieve

stratification on s1 × s1 grids in any two dimensions.

Then both MOA(n, sm(n/s), 2) and OA(n/s, k, s1, 2) exist.

Proof. First we show the existence of an MOA(n, sm(n/s), 2). According to

Proposition 1, the existence of an MCD(D1, D2) with D1 = OA(n,m, s, 2) implies

the existence of an MOA(n, sm(n/s), 2). Thus (i) follows. Now we show the exis-

tence of an OA(n/s, k, s1, 2). Without loss of generality, let D∗ be the submatrix

of D2 consisting of those rows of D2 corresponding to level 0 of the first factor

of D1. Then D∗ is an (n/s) × k matrix with entries from {0, 1, . . . , n − 1}. Let

λ∗ = n/s1. Because, (ii) of Theorem 2, that is, D∗ achieves stratification on

s1 × s1 grids in any two dimensions, ⌊D∗/λ∗⌋ must be an OA(n/s, k, s1, 2). Thus

an OA(n/s, k, s1, 2) exists.

We use Construction 1 to construct marginally coupled designs and tabu-

late the designs obtained. We first discuss the existence of orthogonal arrays,

MOA(n, sm(n/s), 2)’s and OA(n/s, k, s1, 2)’s, used in the construction. The exis-

tence of an MOA(n, sm(n/s), 2) is equivalent to the existence of a CROA(n,m, s, 2).

Thus, we first establish the existence of CROA(n,m, s, 2)’s. According to the de-

grees of freedom, an MOA(n, sm(n/s), 2) satisfies (s − 1)m + (n/s − 1) ≤ n − 1,

and thus we have

m ≤ n

s
, (3.2)

which is an upper bound for the number of columns in D1.

Theorem 3. For a prime power s = pv, there exist four types of completely

resolvable orthogonal arrays: (i) CROA(su, su−1, s, 2); (ii) CROA(2su, 2su−1, s, 2);

(iii) CROA(4su, 4su−1, s, 2); and (iv) CROA(pws2, pws, s, 2), where p is a prime,

and v, u, w are positive integers, with u ≥ 2.

The proof of Theorem 3 uses Theorems 6.6, 6.19, and 6.63, and Corollary

6.39 of Hedayat, Sloane and Stufken (1999). We relegate the proof, along with

the necessary Lemmas, to Appendix 1.

The four types of completely resolvable orthogonal arrays in Theorem 3

reach the upper bound in (3.2). To employ Construction 1, we need small

orthogonal arrays OA(su−1, k, s1, 2), OA(2su−1, k, s1, 2), OA(4su−1, k, s1, 2), and

OA(pws, k, s1, 2) corresponding to types (i) - (iv) of completely resolvable orthog-

onal arrays, respectively. That is, s1 and k in such orthogonal arrays can be

chosen as listed in Table 3.
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Figure 1. Bivariate projections among the three columns x1, x2, x3 of D2.
Projected points of D2 corresponding to levels 0 and 1 of the first column of
D1 are represented by “+” and “o”, respectively.

is denoted by D2. Now let D1 consist of the first four columns of A. The

MCD(D1, D2) constructed is as follows.
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1 1 1 1 4 6 3

0 0 1 1 6 2 4

1 1 0 0 7 3 5

0 1 0 1 0 4 6

1 0 1 0 1 5 7

0 1 1 0 2 1 1

1 0 0 1 3 0 0

The rows in D2 corresponding to each level of any factor in D1 achieve stratifi-

cation on 2× 2 grids in any two dimensions. (See Figure 1, for saving spaces we

only plot the rows in D2 corresponding to each level of the first factor in D1).

Theorem 1 has it that mixed orthogonal arrays MOA(n, sm(n/s), 2)’s and

orthogonal arrays OA(n/s, k, s1, 2)’s can be used to produce marginally coupled

designs with Property (ii). Theorem 2 shows that the reverse of the argument

holds.
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Theorem 2. Suppose that there exists a marginally coupled design D = (D1, D2)

with D1 and D2 satisfying

(i) D1 is an OA(n,m, s, 2); and

(ii) the rows in D2 corresponding to each level of any factor in D1 can achieve

stratification on s1 × s1 grids in any two dimensions.

Then both MOA(n, sm(n/s), 2) and OA(n/s, k, s1, 2) exist.

Proof. First we show the existence of an MOA(n, sm(n/s), 2). According to

Proposition 1, the existence of an MCD(D1, D2) with D1 = OA(n,m, s, 2) implies

the existence of an MOA(n, sm(n/s), 2). Thus (i) follows. Now we show the exis-

tence of an OA(n/s, k, s1, 2). Without loss of generality, let D∗ be the submatrix

of D2 consisting of those rows of D2 corresponding to level 0 of the first factor

of D1. Then D∗ is an (n/s) × k matrix with entries from {0, 1, . . . , n − 1}. Let

λ∗ = n/s1. Because, (ii) of Theorem 2, that is, D∗ achieves stratification on

s1 × s1 grids in any two dimensions, ⌊D∗/λ∗⌋ must be an OA(n/s, k, s1, 2). Thus

an OA(n/s, k, s1, 2) exists.

We use Construction 1 to construct marginally coupled designs and tabu-

late the designs obtained. We first discuss the existence of orthogonal arrays,

MOA(n, sm(n/s), 2)’s and OA(n/s, k, s1, 2)’s, used in the construction. The exis-

tence of an MOA(n, sm(n/s), 2) is equivalent to the existence of a CROA(n,m, s, 2).

Thus, we first establish the existence of CROA(n,m, s, 2)’s. According to the de-

grees of freedom, an MOA(n, sm(n/s), 2) satisfies (s − 1)m + (n/s − 1) ≤ n − 1,

and thus we have

m ≤ n

s
, (3.2)

which is an upper bound for the number of columns in D1.

Theorem 3. For a prime power s = pv, there exist four types of completely

resolvable orthogonal arrays: (i) CROA(su, su−1, s, 2); (ii) CROA(2su, 2su−1, s, 2);

(iii) CROA(4su, 4su−1, s, 2); and (iv) CROA(pws2, pws, s, 2), where p is a prime,

and v, u, w are positive integers, with u ≥ 2.

The proof of Theorem 3 uses Theorems 6.6, 6.19, and 6.63, and Corollary

6.39 of Hedayat, Sloane and Stufken (1999). We relegate the proof, along with

the necessary Lemmas, to Appendix 1.

The four types of completely resolvable orthogonal arrays in Theorem 3

reach the upper bound in (3.2). To employ Construction 1, we need small

orthogonal arrays OA(su−1, k, s1, 2), OA(2su−1, k, s1, 2), OA(4su−1, k, s1, 2), and

OA(pws, k, s1, 2) corresponding to types (i) - (iv) of completely resolvable orthog-

onal arrays, respectively. That is, s1 and k in such orthogonal arrays can be

chosen as listed in Table 3.

673



10 YUANZHEN HE, C. DEVON LIN AND FASHENG SUN

Table 3. Marginally coupled designs MCD(D1, D2)’s constructed by Construction 1.

Type

CROA(n,m, s, 2) OA(n/s, k, s1, 2) MCD(D1, D2)

s n m s1 k D1 D2

1 pv su su−1 su1
1 =su−1 (su1

1 −1)/(s1−1) OA(su, su−1, s, 2) L(su, k)

2 pv 2su 2su−1 su1
1 =su−1 2(su1

1 −1)/(s1−1)−1∗ OA(2su, 2su−1, s, 2) L(2su, k)

3 pv 4su 4su−1 su1
1 =su−1 4(su1

1 −1)/(s1−1)−3∗ OA(4su, 4su−1, s, 2) L(4su, k)

4 pv pws2 pws su1
1 =pws (su1

1 −1)/(s1−1) OA(pws2, pws, s, 2) L(pws2, k)

5 2 8λ 4λ 2 4λ−1 OA(8λ, 4λ, 2, 2) L(8λ, k)

Note: p is a prime, u, u1, v, w are positive integers and u, u1 ≥ 2.

*: the two families of orthogonal arrays refer to Theorems 6.40 and 6.63 of Hedayat, Sloane and

Stufken (1999).

In addition to the four types of completely resolvable orthogonal arrays in
Theorem 3, there is the fifth type, CROA(8λ, 4λ, 2, 2), provided a Hadamard ma-
trix of order 4λ exists (see Corollary 2 of Deng, Hung and Lin (2015)). This
fifth type implies the existence of an MOA(8λ, 24λ(4λ), 2). Coupled with an
OA(4λ, 4λ − 1, 2, 2), Construction 1 provides the fifth type of marginally cou-
pled designs with 8λ runs in which D1 is a two-level design. Table 3 summarizes
the designs that can be constructed via Construction 1 based on the five types of
completely resolvable orthogonal arrays. For practical use, we consider the pos-
sible settings of parameters in Table 3, and provide the corresponding marginally
coupled designs up to 100 runs in Table B.1 in Appendix 2. The actual designs
can be obtained from authors upon request.

Here is a property of a Latin hypercube D2 in an MCD(D1, D2) in Table 3:
it is a cascading Latin hypercube of n points with levels (n/s, s) (Handcock
(1991)). In Step 2 of Construction 1, we substitute the entries in the last column
of the MOA(n, sm(n/s), 2) by rows of the L(n/s, k) from Step 1. This implies that
the columns in the substituted array can be obtained from each other by level
permutations. That is, columns in D̃2 are equivalent to each other, and thus D2

is a cascading Latin hypercube.
A cascading Latin hypercube has clustered points which are undesirable

for computer experiments. This leads to the questions of when D2 must be
cascading, and when D2 can be non-cascading. Before answering the questions,
we cite a useful lemma on saturated orthogonal arrays MOA(n, sm1

1 sm2
2 , 2)’s. Such

a saturated orthogonal array has (s1 − 1)m1 + (s2 − 1)m2 = n− 1.

Lemma 2 (Mukerjee and Wu (1995)). Consider any two distinct rows of a
saturated orthogonal array MOA(n, sm1

1 sm2
2 , 2). For i = 1, 2, let ∆i be the number

of coincidences between these two rows arising from the si-symbol columns. Then
∆1 and ∆2 are nonnegative integers satisfying ∆1 ≤ m1,∆2 ≤ m2, and

s1∆1 + s2∆2 = m1 +m2 − 1.

ON CONSTRUCTION OF MARGINALLY COUPLED DESIGNS 11

Proposition 2. Let A be a CROA(n, n/s, s, 2). Then there is a unique (up to

equivalence) (n/s)-level column d such that (A, d) is an MOA(n, sm(n/s), 2) with

m = n/s.

Proof. If d1 and d2 are two columns of n/s levels such that both (A, d1) and

(A, d2) are MOA(n, sn/s(n/s), 2)’s, then both are saturated orthogonal arrays. Let

δij(A), δij(d1), and δij(d2) be the number of coincidences between the ith row

and the jth row of A, d1, and d2, respectively, for 1 ≤ i ̸= j ≤ n. By Lemma 2,

we have

sδij(A) + (
n

s
)δij(d1) =

n

s
+ 1− 1, (3.3)

sδij(A) + (
n

s
)δij(d2) =

n

s
+ 1− 1. (3.4)

Because δij(A) in (3.3) and (3.4) is fixed for a given A, we have δij(d1) = δij(d2)

for 1 ≤ i ̸= j ≤ n. That is, d1 and d2 are equivalent up to level permutations.

Proposition 2 implies that a marginally coupled design MCD(D1, D2) with

D1 a CROA(n, n/s, s, 2) satisfies that the columns of the corresponding D̃2 are

equivalent up to level permutations. Thus, D2 must be a cascading Latin hyper-

cube.

3.3. Construction of MCDs with non-cascading D2’s

This section introduces a method for constructing MCD(D1, D2)’s of s
u runs,

where D1 is an s-level orthogonal array for (s+1−k)su−2 qualitative factors and

D2 is a Latin hypercube for up to k (1 ≤ k ≤ s) quantitative factors. The key

feature of such marginally coupled designs is that D2 is not a cascading Latin

hypercube. The proposed method makes use of the Rao-Hamming construction.

For detail of the construction, refer to Section 3.4 of Hedayat, Sloane and Stufken

(1999).

For an integer u ≥ 2, a prime power s and j = 1, . . . , u, let ej be an s-

level column of length su with the entries taken from GF (s), the Galois field of

order s. Suppose that columns {e1, . . . , eu} are independent. The Rao-Hamming

construction provides OA(su, (su−1)/(s−1), s, 2)’s using these columns. We apply

the Rao-Hamming construction to obtain orthogonal arrays B0, . . . , Bs+1 in the

following way. The array B0 is generated by applying it to u − 2 independent

columns {e1, . . . , eu−2}, B0 = (e1, . . . , eu−2)C0 with C0 a (u−2)×[(su−2−1)/(s−
1)] matrix, by collecting all the nonzero column vectors (l1, l2, . . . , lu−2)

T where

lj ∈ GF (s), j = 1, . . . , u − 2, and the first nonzero entry in (l1, l2, . . . , lu−2)

is one. For i = 1, . . . , s + 1, the array Bi is generated by applying the Rao-

Hamming construction to u − 1 independent columns {e1, . . . , eu−2, wi}, Bi =

(e1, . . . , eu−2, wi)C with C a (u− 1)× [(su−1 − 1)/(s− 1)] matrix, by collecting
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Table 3. Marginally coupled designs MCD(D1, D2)’s constructed by Construction 1.

Type

CROA(n,m, s, 2) OA(n/s, k, s1, 2) MCD(D1, D2)

s n m s1 k D1 D2

1 pv su su−1 su1
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1 −1)/(s1−1) OA(su, su−1, s, 2) L(su, k)
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Note: p is a prime, u, u1, v, w are positive integers and u, u1 ≥ 2.
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sible settings of parameters in Table 3, and provide the corresponding marginally
coupled designs up to 100 runs in Table B.1 in Appendix 2. The actual designs
can be obtained from authors upon request.

Here is a property of a Latin hypercube D2 in an MCD(D1, D2) in Table 3:
it is a cascading Latin hypercube of n points with levels (n/s, s) (Handcock
(1991)). In Step 2 of Construction 1, we substitute the entries in the last column
of the MOA(n, sm(n/s), 2) by rows of the L(n/s, k) from Step 1. This implies that
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Lemma 2 (Mukerjee and Wu (1995)). Consider any two distinct rows of a
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D2 is a Latin hypercube for up to k (1 ≤ k ≤ s) quantitative factors. The key

feature of such marginally coupled designs is that D2 is not a cascading Latin

hypercube. The proposed method makes use of the Rao-Hamming construction.

For detail of the construction, refer to Section 3.4 of Hedayat, Sloane and Stufken

(1999).

For an integer u ≥ 2, a prime power s and j = 1, . . . , u, let ej be an s-

level column of length su with the entries taken from GF (s), the Galois field of

order s. Suppose that columns {e1, . . . , eu} are independent. The Rao-Hamming

construction provides OA(su, (su−1)/(s−1), s, 2)’s using these columns. We apply

the Rao-Hamming construction to obtain orthogonal arrays B0, . . . , Bs+1 in the

following way. The array B0 is generated by applying it to u − 2 independent

columns {e1, . . . , eu−2}, B0 = (e1, . . . , eu−2)C0 with C0 a (u−2)×[(su−2−1)/(s−
1)] matrix, by collecting all the nonzero column vectors (l1, l2, . . . , lu−2)

T where

lj ∈ GF (s), j = 1, . . . , u − 2, and the first nonzero entry in (l1, l2, . . . , lu−2)

is one. For i = 1, . . . , s + 1, the array Bi is generated by applying the Rao-

Hamming construction to u − 1 independent columns {e1, . . . , eu−2, wi}, Bi =

(e1, . . . , eu−2, wi)C with C a (u− 1)× [(su−1 − 1)/(s− 1)] matrix, by collecting
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all the nonzero column vectors (l1, l2, . . . , lu−1)
T, lj ∈ GF (s), j = 1, . . . , u − 1,

and the first nonzero entry in (l1, l2, . . . , lu−1) is one, where wi = (eu−1, eu)c
T

i ,

ci = (1, αi−1) for i = 1, . . . , s and cs+1 = (0, 1), αi ∈ GF (s) = {α0, . . . , αs−1}
with α0 = 0. Lemma 3 discusses the properties of the s + 2 orthogonal arrays

B0, . . . , Bs+1. For ease of expression, Bi \ B0 is the array that consists of all

columns in Bi but not in B0.

Lemma 3. For B0, . . . , Bs+1 as above,

(i) B0 is an OA(su, (su−2 − 1)/(s − 1), s, 2), that consists of s2 replicates of

OA(su−2, (su−2 − 1)/(s− 1), s, 2);

(ii) for i = 1, . . . , s + 1, Bi is an OA(su, (su−1 − 1)/(s − 1), s, 2) that consists of

s replicates of OA(su−1, (su−1 − 1)/(s− 1), s, 2);

(iii) for 1 ≤ i ≤ s + 1, B0 ⊂ Bi, and for 1 ≤ i′ ̸= i ≤ s + 1, none of columns in

Bi′ \B0 can be generated by any linear combinations of columns in Bi;

(iv) if f1, . . . , fu−1 are any u − 1 independent columns from Bi and f is any

column of Bi′ \ B0, then (f1, . . . , fu−1, f) is an OA(su, u, s, u), where i ̸= i′;

and

(v) {B0, (B1\B0), (B2\B0), . . . , (Bs+1\B0)} form an OA(su, (su−1)/(s−1), s, 2),

and they are disjoint.

Given the orthogonal arrays B0, . . . , Bs+1, we propose Construction 2 to

construct MCD(D1, D2)’s.

Construction 2: For given u and s, let r = (su−2, su−3, . . . , s, 1)T. For a given

k (1 ≤ k ≤ s) and i = 1, . . . , k, let (fi,1, fi,2, . . . , fi,u−1) be u − 1 independent

columns from Bi \ B0 and d̃i = (fi,1, fi,2, . . . , fi,u−1)r. Obtain D̃2 = (d̃1, . . . , d̃k)

and D1 = ∪s+1
i=k+1(Bi \B0).

Theorem 4. For D1 and D̃2 = (d̃1, . . . , d̃k) generated by Construction 2 and

m = (s+ 1− k)su−2,

(i) D1 is an OA(su,m, s, 2) and D̃2 is an OA(su, k, su−1, 1) for u ≥ 2;

(ii) (D1, d̃i) is an MOA(su, sm(su−1), 2) for i = 1, . . . , k;

(iii) if k ≥ 2, no two distinct columns in D̃2 are equivalent; and

(iv) if k ≥ 2, the (d̃i, d̃i′) achieves stratification on su−1 × s grids and s × su−1

grids in two dimensions, where i, i′ = 1 . . . , k and i ̸= i′.

Proof. Here (i) follows from (v) of Lemma 3 by noting that each Bi \ B0

has su−2 columns for i = k + 1, . . . , s + 1. To show (ii), we need to show

that, for i = 1, . . . , k and any column b in D1, (b, d̃i) is an MOA(su, s(su−1), 2).

This follows from (iv) of Lemma 3 because it indicates that each of the su

ON CONSTRUCTION OF MARGINALLY COUPLED DESIGNS 13

level combinations of (b, d̃i) occurs exactly once. For (iii), consider any two

columns d̃i = (fi,1, fi,2, . . . , fi,u−1)r and d̃i′ = (fi′,1, fi′,2, . . . , fi′,u−1)r, i ̸= i′,

where (fi,1, fi,2, . . . , fi,u−1) and (fi′,1, fi′,2, . . . , fi′,u−1) are independent columns

from Bi \ B0 and Bi′ \ B0, respectively. Then (iv) of Lemma 3 indicates that

(fi,1, fi,2, . . . , fi,u−1, fi′,1) is an OA(su, u, s, u), so (d̃i, ⌊d̃i′/su−2⌋) = (d̃i, fi′,1) is an

MOA(su, (su−1)s, 2). Since each level of {0, 1, . . . , su−1 − 1} appears in d̃i at s

positions, without loss of generality suppose that the first s positions of d̃i have

the identical level. If d̃i and d̃i′ are equivalent, then the first s entries of d̃i′ must

be the same, and hence the first s entries of ⌊d̃i′/su−2⌋ must be the same. This

contradicts that (d̃i, ⌊d̃i′/su−2⌋) = (d̃i, fi′,1) is an MOA(su, (su−1)s, 2), where ev-

ery possible level combination can only appear once. So (iii) follows. Then (iv)

follows since both (d̃i, fi′,1) and (d̃i′ , fi,1) are MOA(su, (su−1)s, 2)’s.

Remark 2. Construction 1 in Deng, Hung and Lin (2015) corresponds to Con-

struction 2 with u = 2, with B0 an empty set.

Example 2. Consider the case s = 3, u = 3, k = 2, with GF (3) = {α0, α1, α2} =

{0, 1, 2}. Construction 2 provides an MCD(D1, D2) with D1 an OA(27, 6, 3, 2) and

D2 an L(27, 2), such that D2 can achieve stratification on 9 × 3 and 3 × 9 grids

in any two dimensions. To apply Construction 2, let e1, e2, e3 be independent

three-level columns of length 27, and ω1 = e2, ω2 = e2 + e3, ω3 = e2 + 2e3,

and ω4 = e3. Then the orthogonal arrays B0, B1, . . . , B4 are obtained as B0 =

{e1}, Bi = {e1, ωi, ωi + e1, ωi + 2e1}, for i = 1, 2, 3, 4. Now applying the Rao-

Hamming construction to e1, e2, and e3, we obtain an OA(27, 13, 3, 2), whose

column partition is displayed in Table 4(a). Let d̃1 = (ω1, ω1 + e1)(3, 1)
T, d̃2 =

(ω2, ω2 + e1)(3, 1)
T, and D̃2 = (d̃1, d̃2). Obtain D2 from D̃2 by substituting the

three entries with level i in each column by a permutation of (3i, 3i+ 1, 3i+ 2),

for i = 0, 1, . . . , 8. For ease of presentation, denote B0 by P0, and Bi \ B0 by Pi

for i = 1, . . . , 4. If D1 = (P3, P4), then (D1, D2) is a marginally coupled design,

see Table 4(b).

Construction 2 provides k columns for D2 in MCD(D1, D2)’s for 1 ≤ k ≤ s.

Some marginally coupled designs MCD(D1, D2), up to 100 runs, constructed by

Construction 2 are listed in Table B.2 in Appendix B. Construction 3 provides

MCD(D1, D2)’s in which D2’s have considerably more columns than those pro-

vided in Construction 2. Specifically, when constructing an MCD(D1, D2) with

su runs, a D2 in Construction 3 has (u− 1)k columns for a given k.

Construction 3: For a given k, 1 ≤ k ≤ s, and i = 1, . . . , k, let (fi,1, fi,2, . . . , fi,u−1)

be u−1 independent columns fromBi\B0 and D̃2 =
(
(f1,1, f1,2, . . . , f1,u−1)R, . . . ,
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all the nonzero column vectors (l1, l2, . . . , lu−1)
T, lj ∈ GF (s), j = 1, . . . , u − 1,

and the first nonzero entry in (l1, l2, . . . , lu−1) is one, where wi = (eu−1, eu)c
T

i ,

ci = (1, αi−1) for i = 1, . . . , s and cs+1 = (0, 1), αi ∈ GF (s) = {α0, . . . , αs−1}
with α0 = 0. Lemma 3 discusses the properties of the s + 2 orthogonal arrays

B0, . . . , Bs+1. For ease of expression, Bi \ B0 is the array that consists of all

columns in Bi but not in B0.

Lemma 3. For B0, . . . , Bs+1 as above,

(i) B0 is an OA(su, (su−2 − 1)/(s − 1), s, 2), that consists of s2 replicates of

OA(su−2, (su−2 − 1)/(s− 1), s, 2);

(ii) for i = 1, . . . , s + 1, Bi is an OA(su, (su−1 − 1)/(s − 1), s, 2) that consists of

s replicates of OA(su−1, (su−1 − 1)/(s− 1), s, 2);

(iii) for 1 ≤ i ≤ s + 1, B0 ⊂ Bi, and for 1 ≤ i′ ̸= i ≤ s + 1, none of columns in

Bi′ \B0 can be generated by any linear combinations of columns in Bi;

(iv) if f1, . . . , fu−1 are any u − 1 independent columns from Bi and f is any

column of Bi′ \ B0, then (f1, . . . , fu−1, f) is an OA(su, u, s, u), where i ̸= i′;

and

(v) {B0, (B1\B0), (B2\B0), . . . , (Bs+1\B0)} form an OA(su, (su−1)/(s−1), s, 2),

and they are disjoint.

Given the orthogonal arrays B0, . . . , Bs+1, we propose Construction 2 to

construct MCD(D1, D2)’s.

Construction 2: For given u and s, let r = (su−2, su−3, . . . , s, 1)T. For a given

k (1 ≤ k ≤ s) and i = 1, . . . , k, let (fi,1, fi,2, . . . , fi,u−1) be u − 1 independent

columns from Bi \ B0 and d̃i = (fi,1, fi,2, . . . , fi,u−1)r. Obtain D̃2 = (d̃1, . . . , d̃k)

and D1 = ∪s+1
i=k+1(Bi \B0).

Theorem 4. For D1 and D̃2 = (d̃1, . . . , d̃k) generated by Construction 2 and

m = (s+ 1− k)su−2,

(i) D1 is an OA(su,m, s, 2) and D̃2 is an OA(su, k, su−1, 1) for u ≥ 2;

(ii) (D1, d̃i) is an MOA(su, sm(su−1), 2) for i = 1, . . . , k;

(iii) if k ≥ 2, no two distinct columns in D̃2 are equivalent; and

(iv) if k ≥ 2, the (d̃i, d̃i′) achieves stratification on su−1 × s grids and s × su−1

grids in two dimensions, where i, i′ = 1 . . . , k and i ̸= i′.

Proof. Here (i) follows from (v) of Lemma 3 by noting that each Bi \ B0

has su−2 columns for i = k + 1, . . . , s + 1. To show (ii), we need to show

that, for i = 1, . . . , k and any column b in D1, (b, d̃i) is an MOA(su, s(su−1), 2).

This follows from (iv) of Lemma 3 because it indicates that each of the su

ON CONSTRUCTION OF MARGINALLY COUPLED DESIGNS 13

level combinations of (b, d̃i) occurs exactly once. For (iii), consider any two

columns d̃i = (fi,1, fi,2, . . . , fi,u−1)r and d̃i′ = (fi′,1, fi′,2, . . . , fi′,u−1)r, i ̸= i′,

where (fi,1, fi,2, . . . , fi,u−1) and (fi′,1, fi′,2, . . . , fi′,u−1) are independent columns

from Bi \ B0 and Bi′ \ B0, respectively. Then (iv) of Lemma 3 indicates that

(fi,1, fi,2, . . . , fi,u−1, fi′,1) is an OA(su, u, s, u), so (d̃i, ⌊d̃i′/su−2⌋) = (d̃i, fi′,1) is an

MOA(su, (su−1)s, 2). Since each level of {0, 1, . . . , su−1 − 1} appears in d̃i at s

positions, without loss of generality suppose that the first s positions of d̃i have

the identical level. If d̃i and d̃i′ are equivalent, then the first s entries of d̃i′ must

be the same, and hence the first s entries of ⌊d̃i′/su−2⌋ must be the same. This

contradicts that (d̃i, ⌊d̃i′/su−2⌋) = (d̃i, fi′,1) is an MOA(su, (su−1)s, 2), where ev-

ery possible level combination can only appear once. So (iii) follows. Then (iv)

follows since both (d̃i, fi′,1) and (d̃i′ , fi,1) are MOA(su, (su−1)s, 2)’s.

Remark 2. Construction 1 in Deng, Hung and Lin (2015) corresponds to Con-

struction 2 with u = 2, with B0 an empty set.

Example 2. Consider the case s = 3, u = 3, k = 2, with GF (3) = {α0, α1, α2} =

{0, 1, 2}. Construction 2 provides an MCD(D1, D2) with D1 an OA(27, 6, 3, 2) and

D2 an L(27, 2), such that D2 can achieve stratification on 9 × 3 and 3 × 9 grids

in any two dimensions. To apply Construction 2, let e1, e2, e3 be independent

three-level columns of length 27, and ω1 = e2, ω2 = e2 + e3, ω3 = e2 + 2e3,

and ω4 = e3. Then the orthogonal arrays B0, B1, . . . , B4 are obtained as B0 =

{e1}, Bi = {e1, ωi, ωi + e1, ωi + 2e1}, for i = 1, 2, 3, 4. Now applying the Rao-

Hamming construction to e1, e2, and e3, we obtain an OA(27, 13, 3, 2), whose

column partition is displayed in Table 4(a). Let d̃1 = (ω1, ω1 + e1)(3, 1)
T, d̃2 =

(ω2, ω2 + e1)(3, 1)
T, and D̃2 = (d̃1, d̃2). Obtain D2 from D̃2 by substituting the

three entries with level i in each column by a permutation of (3i, 3i+ 1, 3i+ 2),

for i = 0, 1, . . . , 8. For ease of presentation, denote B0 by P0, and Bi \ B0 by Pi

for i = 1, . . . , 4. If D1 = (P3, P4), then (D1, D2) is a marginally coupled design,

see Table 4(b).

Construction 2 provides k columns for D2 in MCD(D1, D2)’s for 1 ≤ k ≤ s.

Some marginally coupled designs MCD(D1, D2), up to 100 runs, constructed by

Construction 2 are listed in Table B.2 in Appendix B. Construction 3 provides

MCD(D1, D2)’s in which D2’s have considerably more columns than those pro-

vided in Construction 2. Specifically, when constructing an MCD(D1, D2) with

su runs, a D2 in Construction 3 has (u− 1)k columns for a given k.

Construction 3: For a given k, 1 ≤ k ≤ s, and i = 1, . . . , k, let (fi,1, fi,2, . . . , fi,u−1)

be u−1 independent columns fromBi\B0 and D̃2 =
(
(f1,1, f1,2, . . . , f1,u−1)R, . . . ,
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Table 4. A marginally coupled design of 27 runs in Example 2.

(a) The partition of OA(27, 13, 3, 2). (b) MCD(D1, D2).

P
#

0 P
∗

1 P
∗

2 P
∗

3 P
∗

4

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 2 2 2 1 1 1 2
0 0 0 0 2 2 1 1 1 2 2 2 1
0 1 1 2 1 1 2 1 1 2 0 0 0
0 1 1 2 2 2 1 0 0 0 1 1 2
0 1 1 2 0 0 0 2 2 1 2 2 1
0 2 2 1 2 2 1 2 2 1 0 0 0
0 2 2 1 0 0 0 1 1 2 1 1 2
0 2 2 1 1 1 2 0 0 0 2 2 1
1 0 1 1 0 1 1 0 1 1 0 1 1
1 0 1 1 1 2 0 2 0 2 1 2 0
1 0 1 1 2 0 2 1 2 0 2 0 2
1 1 2 0 1 2 0 1 2 0 0 1 1
1 1 2 0 2 0 2 0 1 1 1 2 0
1 1 2 0 0 1 1 2 0 2 2 0 2
1 2 0 2 2 0 2 2 0 2 0 1 1
1 2 0 2 0 1 1 1 2 0 1 2 0
1 2 0 2 1 2 0 0 1 1 2 0 2
2 0 2 2 0 2 2 0 2 2 0 2 2
2 0 2 2 1 0 1 2 1 0 1 0 1
2 0 2 2 2 1 0 1 1 1 2 1 0
2 1 0 1 1 0 1 1 0 1 0 2 2
2 1 0 1 2 1 0 0 2 2 1 0 1
2 1 0 1 0 2 2 2 1 0 2 1 0
2 2 1 0 2 1 0 2 1 0 0 2 2
2 2 1 0 0 2 2 1 0 1 1 0 1
2 2 1 0 1 0 1 0 2 2 2 1 0

D̃2 D2 D1

0 0 2 0 0 0 0 0 0 0
0 4 1 12 2 2 1 1 1 2
0 8 0 26 1 1 2 2 2 1
4 4 13 14 1 1 2 0 0 0
4 8 14 24 0 0 0 1 1 2
4 0 12 2 2 2 1 2 2 1
8 8 24 25 2 2 1 0 0 0
8 0 25 1 1 1 2 1 1 2
8 4 26 13 0 0 0 2 2 1
1 1 3 4 0 1 1 0 1 1
1 5 5 16 2 0 2 1 2 0
1 6 4 20 1 2 0 2 0 2
5 5 15 15 1 2 0 0 1 1
5 6 17 18 0 1 1 1 2 0
5 1 16 5 2 0 2 2 0 2
6 6 18 19 2 0 2 0 1 1
6 1 19 3 1 2 0 1 2 0
6 5 20 17 0 1 1 2 0 2
2 2 8 8 0 2 2 0 2 2
2 3 6 10 2 1 0 1 0 1
2 7 7 22 1 0 1 2 1 0
3 3 11 9 1 0 1 0 2 2
3 7 10 23 0 2 2 1 0 1
3 2 9 7 2 1 0 2 1 0
7 7 23 21 2 1 0 0 2 2
7 2 22 6 1 0 1 1 0 1
7 3 21 11 0 2 2 2 1 0

# : P0 = B0;
∗ : Pi = Bi \B0 for i = 1, 2, 3, 4.

(fk,1, fk,2, . . . , fk,u−1)R
)
,where

R =




su−2 1 · · · su−4 su−3

su−3 su−2 · · · su−5 su−4

...
...

...
...

...

s s2 · · · su−2 1

1 s · · · su−3 su−2




.

Furthermore, let D1 = ∪s+1
i=k+1(Bi \B0).

Theorem 5 summarizes the properties of D1 and D̃2 in Construction 3. It

ON CONSTRUCTION OF MARGINALLY COUPLED DESIGNS 15

follows directly from Lemma 3 and Theorem 4 and thus we skip the proof. Our

result has it that D̃2 in Construction 3 can be partitioned into groups such that

any two columns from the same group are equivalent and any two columns from

different groups are not equivalent. In other words, D2 in Construction 3 is not

a cascading Latin hypercube, but its columns can be partitioned into groups

of cascading Latin hypercubes. The parameter settings of marginally coupled

designs constructed by Construction 3 are the same as those in Table B.2 in

Appendix B except that the number of quantitative factors should be (u − 1)k

for a given k in the table.

Theorem 5. For D1 and D̃2 generated by Construction 3 and m = (s + 1 −
k)su−2,

(i) D1 is an OA(su,m, s, 2) and D̃2 is an OA(su, k(u− 1), su−1, 1) for u ≥ 2;

(ii) (D1, d̃i) is an MOA(su, sm(su−1), 2) for i = 1, . . . , k(u− 1);

(iii) for any two distinct columns d̃i and d̃i′ from D̃2 with ⌊(i − 1)/(u − 1)⌋ =

⌊(i′ − 1)/(u− 1)⌋, d̃i and d̃i′ are equivalent and they achieve stratification on

s× s grids in two dimensions; and

(iv) if d̃i and d̃i′ are from D̃2 with ⌊(i− 1)/(u− 1)⌋ ̸= ⌊(i′ − 1)/(u− 1)⌋, then d̃i
and d̃i′ are not equivalent and they achieve stratification on su−1 × s grids

and s× su−1 grids in two dimensions.

Example 3 (Example 2 continued). Applying Construction 3, we have

D̃2 =
(
(ω1, ω1 + e1)R, (ω2, ω2 + e1)R

)
, where R =

(
3 1

1 3

)
.

Obtain D2 from D̃2 by substituting the three entries with level i in each col-

umn by a permutation of (3i, 3i + 1, 3i + 2), for i = 0, 1, . . . , 8. As in Ex-

ample 2, if D1 = (P3, P4), then (D1, D2) is a marginally coupled design for

six qualitative factors and four quantitative factors with these properties of

D̃2 = (d̃1, d̃2, d̃3, d̃4)): (d̃i, d̃j) achieves stratification on 3× 3 grids in two dimen-

sions for ⌊(i− 1)/2⌋ = ⌊(j − 1)/2⌋; (d̃i, d̃j) achieves stratification on 9 × 3 and

3× 9 grids in two dimensions for ⌊(i− 1)/2⌋ ̸= ⌊(j − 1)/2⌋, i ̸= j, i, j = 1, . . . , 4.

We do not list the generated design here.

4. Conclusion and Remarks

We provide three methods to construct MCD(D1, D2)’s, where D1 is an s-

level orthogonal array. The design feature of MCD(D1, D2)’s in the first method

is that the rows in D2 corresponding to each level of any factor in D1 achieve

stratification in any two or higher dimensions. The run size n of such designs
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Table 4. A marginally coupled design of 27 runs in Example 2.

(a) The partition of OA(27, 13, 3, 2). (b) MCD(D1, D2).

P
#

0 P
∗

1 P
∗

2 P
∗

3 P
∗

4

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 2 2 2 1 1 1 2
0 0 0 0 2 2 1 1 1 2 2 2 1
0 1 1 2 1 1 2 1 1 2 0 0 0
0 1 1 2 2 2 1 0 0 0 1 1 2
0 1 1 2 0 0 0 2 2 1 2 2 1
0 2 2 1 2 2 1 2 2 1 0 0 0
0 2 2 1 0 0 0 1 1 2 1 1 2
0 2 2 1 1 1 2 0 0 0 2 2 1
1 0 1 1 0 1 1 0 1 1 0 1 1
1 0 1 1 1 2 0 2 0 2 1 2 0
1 0 1 1 2 0 2 1 2 0 2 0 2
1 1 2 0 1 2 0 1 2 0 0 1 1
1 1 2 0 2 0 2 0 1 1 1 2 0
1 1 2 0 0 1 1 2 0 2 2 0 2
1 2 0 2 2 0 2 2 0 2 0 1 1
1 2 0 2 0 1 1 1 2 0 1 2 0
1 2 0 2 1 2 0 0 1 1 2 0 2
2 0 2 2 0 2 2 0 2 2 0 2 2
2 0 2 2 1 0 1 2 1 0 1 0 1
2 0 2 2 2 1 0 1 1 1 2 1 0
2 1 0 1 1 0 1 1 0 1 0 2 2
2 1 0 1 2 1 0 0 2 2 1 0 1
2 1 0 1 0 2 2 2 1 0 2 1 0
2 2 1 0 2 1 0 2 1 0 0 2 2
2 2 1 0 0 2 2 1 0 1 1 0 1
2 2 1 0 1 0 1 0 2 2 2 1 0

D̃2 D2 D1

0 0 2 0 0 0 0 0 0 0
0 4 1 12 2 2 1 1 1 2
0 8 0 26 1 1 2 2 2 1
4 4 13 14 1 1 2 0 0 0
4 8 14 24 0 0 0 1 1 2
4 0 12 2 2 2 1 2 2 1
8 8 24 25 2 2 1 0 0 0
8 0 25 1 1 1 2 1 1 2
8 4 26 13 0 0 0 2 2 1
1 1 3 4 0 1 1 0 1 1
1 5 5 16 2 0 2 1 2 0
1 6 4 20 1 2 0 2 0 2
5 5 15 15 1 2 0 0 1 1
5 6 17 18 0 1 1 1 2 0
5 1 16 5 2 0 2 2 0 2
6 6 18 19 2 0 2 0 1 1
6 1 19 3 1 2 0 1 2 0
6 5 20 17 0 1 1 2 0 2
2 2 8 8 0 2 2 0 2 2
2 3 6 10 2 1 0 1 0 1
2 7 7 22 1 0 1 2 1 0
3 3 11 9 1 0 1 0 2 2
3 7 10 23 0 2 2 1 0 1
3 2 9 7 2 1 0 2 1 0
7 7 23 21 2 1 0 0 2 2
7 2 22 6 1 0 1 1 0 1
7 3 21 11 0 2 2 2 1 0

# : P0 = B0;
∗ : Pi = Bi \B0 for i = 1, 2, 3, 4.

(fk,1, fk,2, . . . , fk,u−1)R
)
,where

R =




su−2 1 · · · su−4 su−3

su−3 su−2 · · · su−5 su−4

...
...

...
...

...

s s2 · · · su−2 1

1 s · · · su−3 su−2




.

Furthermore, let D1 = ∪s+1
i=k+1(Bi \B0).

Theorem 5 summarizes the properties of D1 and D̃2 in Construction 3. It
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follows directly from Lemma 3 and Theorem 4 and thus we skip the proof. Our

result has it that D̃2 in Construction 3 can be partitioned into groups such that

any two columns from the same group are equivalent and any two columns from

different groups are not equivalent. In other words, D2 in Construction 3 is not

a cascading Latin hypercube, but its columns can be partitioned into groups

of cascading Latin hypercubes. The parameter settings of marginally coupled

designs constructed by Construction 3 are the same as those in Table B.2 in

Appendix B except that the number of quantitative factors should be (u − 1)k

for a given k in the table.

Theorem 5. For D1 and D̃2 generated by Construction 3 and m = (s + 1 −
k)su−2,

(i) D1 is an OA(su,m, s, 2) and D̃2 is an OA(su, k(u− 1), su−1, 1) for u ≥ 2;

(ii) (D1, d̃i) is an MOA(su, sm(su−1), 2) for i = 1, . . . , k(u− 1);

(iii) for any two distinct columns d̃i and d̃i′ from D̃2 with ⌊(i − 1)/(u − 1)⌋ =

⌊(i′ − 1)/(u− 1)⌋, d̃i and d̃i′ are equivalent and they achieve stratification on

s× s grids in two dimensions; and

(iv) if d̃i and d̃i′ are from D̃2 with ⌊(i− 1)/(u− 1)⌋ ̸= ⌊(i′ − 1)/(u− 1)⌋, then d̃i
and d̃i′ are not equivalent and they achieve stratification on su−1 × s grids

and s× su−1 grids in two dimensions.

Example 3 (Example 2 continued). Applying Construction 3, we have

D̃2 =
(
(ω1, ω1 + e1)R, (ω2, ω2 + e1)R

)
, where R =

(
3 1

1 3

)
.

Obtain D2 from D̃2 by substituting the three entries with level i in each col-

umn by a permutation of (3i, 3i + 1, 3i + 2), for i = 0, 1, . . . , 8. As in Ex-

ample 2, if D1 = (P3, P4), then (D1, D2) is a marginally coupled design for

six qualitative factors and four quantitative factors with these properties of

D̃2 = (d̃1, d̃2, d̃3, d̃4)): (d̃i, d̃j) achieves stratification on 3× 3 grids in two dimen-

sions for ⌊(i− 1)/2⌋ = ⌊(j − 1)/2⌋; (d̃i, d̃j) achieves stratification on 9 × 3 and

3× 9 grids in two dimensions for ⌊(i− 1)/2⌋ ̸= ⌊(j − 1)/2⌋, i ̸= j, i, j = 1, . . . , 4.

We do not list the generated design here.

4. Conclusion and Remarks

We provide three methods to construct MCD(D1, D2)’s, where D1 is an s-

level orthogonal array. The design feature of MCD(D1, D2)’s in the first method

is that the rows in D2 corresponding to each level of any factor in D1 achieve

stratification in any two or higher dimensions. The run size n of such designs
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is a multiple of s2. In addition, D1 can have as many as n/s factors. The
disadvantage of such designs is that D2 is a cascading Latin hypercube and
thus has clustered points. To construct D2 without clustered points, the second
method allows marginally coupled designs of su runs to be constructed, where s
is a prime power and u ≥ 2. The third construction extends the second and it can
accommodate more quantitative factors, where the whole design for quantitative
factors keeps the non-cascading property.

For future work, one direction is to introduce methods for constructing
designs with more flexible run sizes. Another direction is the construction of
marginally coupled designs with improved space-filling properties in designs for
quantitative factors when designs for qualitative factors are mixed orthogonal ar-
rays. In addition, it is important to study the sampling property of the marginally
coupled designs constructed (Qian (2012)).
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Appendix A

Before presenting the proof of Theorem 3, we cite four lemmas for later
development; they are due to Theorem 6.6, Corollary 6.39, Theorem 6.63, and
Theorem 6.19 of Hedayat, Sloane and Stufken (1999).

Lemma A.1. A difference scheme D(pm, pm, pv) exists for any prime p and any
integer m ≥ v ≥ 1.

Lemma A.2. A difference scheme D(2sm, 2sm, s) exists for any prime power s
and any integer m ≥ 1.

Lemma A.3. A difference scheme D(4sm, 4sm, s) exists for any prime power s
and any integer m ≥ 1.

Lemma A.4. The existence of a D(r, c, s) implies the existence of a
CROA(rs, c, s, 2).

Proof of Theorem 3. For a prime power s = pv, by setting m = uv, or
m = v + w, Lemma A.1 indicates that a difference scheme of D(su, su, s), or
D(pws, pws, s) exists. Then combining them with Lemma A.1, one can obtain
the existence of the first and fourth types of completely resolvable orthogonal
arrays, respectively. Again, by combining Lemma A.4 with Lemmas A.2 and
A.3, one can obtain the existence of completely resolvable orthogonal array of
the second and third types. Therefore, the proof is complete.
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Appendix B

Tables B.1 and B.2 present some marginally coupled designs MCD(D1, D2)

up to 100 runs, using Constructions 1 and 2.

Table B.1. Some marginally coupled designs MCD(D1, D2) of n runs for m qual-

itative factors and k quantitative factors constructed by Construction 1, n ≤ 100.

MOA(n, sm(n/s), 2) OA(n/s, k, s1, t)
MCD(D1, D2)

D1 D2

MOA(8, 2441) OA(4, 3, 2, 2) OA(8, 4, 2, 2) L(8, 3)

MOA(16, 2881)
OA(8, 7, 2, 2) OA(16, 8, 2, 2) L(16, 7)

OA(8, 4, 2, 3) OA(16, 8, 2, 2) L(16, 4)

MOA(24, 212121) OA(12, 11, 2, 2) OA(24, 12, 2, 2) L(24, 11)

MOA(27, 3991) OA(9, 4, 3, 2) OA(27, 9, 3, 2) L(27, 4)

MOA(32, 216161)

OA(16, 15, 2, 2) OA(32, 16, 2, 2) L(32, 15)

OA(16, 8, 2, 3) OA(32, 16, 2, 2) L(32, 8)

OA(16, 5, 2, 4) OA(32, 16, 2, 2) L(32, 5)

OA(16, 5, 4, 2) OA(32, 16, 2, 2) L(32, 5)

MOA(32, 4881)
OA(8, 7, 2, 2) OA(32, 8, 4, 2) L(32, 7)

OA(8, 4, 2, 3) OA(32, 8, 4, 2) L(32, 4)

MOA(40, 220201) OA(20, 19, 2, 2) OA(40, 20, 2, 2) L(40, 19)

MOA(48, 224241)
OA(24, 23, 2, 2) OA(48, 24, 2, 2) L(48, 23)

OA(24, 12, 2, 3) OA(48, 24, 2, 2) L(48, 12)

MOA(54, 318181) OA(18, 7, 3, 2) OA(54, 18, 3, 2) L(54, 7)

MOA(56, 228281) OA(28, 27, 2, 2) OA(56, 28, 2, 2) L(56, 27)

MOA(64, 232321)

OA(32, 31, 2, 2) OA(64, 32, 2, 2) L(64, 31)

OA(32, 16, 2, 3) OA(64, 32, 2, 2) L(64, 16)

OA(32, 6, 2, 5) OA(64, 32, 2, 2) L(64, 6)

MOA(64, 416161)

OA(16, 15, 2, 2) OA(64, 16, 4, 2) L(64, 15)

OA(16, 8, 2, 3) OA(64, 16, 4, 2) L(64, 8)

OA(16, 5, 2, 4) OA(64, 16, 4, 2) L(64, 5)

OA(16, 5, 4, 2) OA(64, 16, 4, 2) L(64, 5)

MOA(72, 236361) OA(36, 35, 2, 2) OA(72, 36, 2, 2) L(72, 35)

MOA(80, 240401)
OA(40, 39, 2, 2) OA(80, 40, 2, 2) L(80, 39)

OA(40, 20, 2, 3) OA(80, 40, 2, 2) L(80, 20)

MOA(81, 327271)
OA(27, 13, 3, 2) OA(81, 27, 3, 2) L(81, 13)

OA(27, 4, 3, 3) OA(81, 27, 3, 2) L(81, 4)

MOA(88, 244441) OA(44, 43, 2, 2) OA(88, 44, 2, 2) L(88, 43)

MOA(96, 248481)

OA(48, 47, 2, 2) OA(96, 48, 2, 2) L(96, 47)

OA(48, 24, 2, 3) OA(96, 48, 2, 2) L(96, 24)

OA(48, 13, 4, 2) OA(96, 48, 2, 2) L(96, 13)

MOA(100, 520201) OA(20, 19, 2, 2) OA(100, 20, 5, 2) L(100, 19)

In these MCD(D1, D2)’s, the rows in D2 corresponding to each level of any factor in D1

can achieve stratification on the s1 × · · · × s1︸ ︷︷ ︸
t

grids in any t-dimensional projection.
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is a multiple of s2. In addition, D1 can have as many as n/s factors. The
disadvantage of such designs is that D2 is a cascading Latin hypercube and
thus has clustered points. To construct D2 without clustered points, the second
method allows marginally coupled designs of su runs to be constructed, where s
is a prime power and u ≥ 2. The third construction extends the second and it can
accommodate more quantitative factors, where the whole design for quantitative
factors keeps the non-cascading property.

For future work, one direction is to introduce methods for constructing
designs with more flexible run sizes. Another direction is the construction of
marginally coupled designs with improved space-filling properties in designs for
quantitative factors when designs for qualitative factors are mixed orthogonal ar-
rays. In addition, it is important to study the sampling property of the marginally
coupled designs constructed (Qian (2012)).
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development; they are due to Theorem 6.6, Corollary 6.39, Theorem 6.63, and
Theorem 6.19 of Hedayat, Sloane and Stufken (1999).

Lemma A.1. A difference scheme D(pm, pm, pv) exists for any prime p and any
integer m ≥ v ≥ 1.

Lemma A.2. A difference scheme D(2sm, 2sm, s) exists for any prime power s
and any integer m ≥ 1.
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and any integer m ≥ 1.

Lemma A.4. The existence of a D(r, c, s) implies the existence of a
CROA(rs, c, s, 2).

Proof of Theorem 3. For a prime power s = pv, by setting m = uv, or
m = v + w, Lemma A.1 indicates that a difference scheme of D(su, su, s), or
D(pws, pws, s) exists. Then combining them with Lemma A.1, one can obtain
the existence of the first and fourth types of completely resolvable orthogonal
arrays, respectively. Again, by combining Lemma A.4 with Lemmas A.2 and
A.3, one can obtain the existence of completely resolvable orthogonal array of
the second and third types. Therefore, the proof is complete.
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Appendix B

Tables B.1 and B.2 present some marginally coupled designs MCD(D1, D2)

up to 100 runs, using Constructions 1 and 2.

Table B.1. Some marginally coupled designs MCD(D1, D2) of n runs for m qual-

itative factors and k quantitative factors constructed by Construction 1, n ≤ 100.

MOA(n, sm(n/s), 2) OA(n/s, k, s1, t)
MCD(D1, D2)

D1 D2

MOA(8, 2441) OA(4, 3, 2, 2) OA(8, 4, 2, 2) L(8, 3)

MOA(16, 2881)
OA(8, 7, 2, 2) OA(16, 8, 2, 2) L(16, 7)

OA(8, 4, 2, 3) OA(16, 8, 2, 2) L(16, 4)

MOA(24, 212121) OA(12, 11, 2, 2) OA(24, 12, 2, 2) L(24, 11)

MOA(27, 3991) OA(9, 4, 3, 2) OA(27, 9, 3, 2) L(27, 4)

MOA(32, 216161)

OA(16, 15, 2, 2) OA(32, 16, 2, 2) L(32, 15)

OA(16, 8, 2, 3) OA(32, 16, 2, 2) L(32, 8)

OA(16, 5, 2, 4) OA(32, 16, 2, 2) L(32, 5)

OA(16, 5, 4, 2) OA(32, 16, 2, 2) L(32, 5)

MOA(32, 4881)
OA(8, 7, 2, 2) OA(32, 8, 4, 2) L(32, 7)

OA(8, 4, 2, 3) OA(32, 8, 4, 2) L(32, 4)

MOA(40, 220201) OA(20, 19, 2, 2) OA(40, 20, 2, 2) L(40, 19)

MOA(48, 224241)
OA(24, 23, 2, 2) OA(48, 24, 2, 2) L(48, 23)

OA(24, 12, 2, 3) OA(48, 24, 2, 2) L(48, 12)

MOA(54, 318181) OA(18, 7, 3, 2) OA(54, 18, 3, 2) L(54, 7)

MOA(56, 228281) OA(28, 27, 2, 2) OA(56, 28, 2, 2) L(56, 27)

MOA(64, 232321)

OA(32, 31, 2, 2) OA(64, 32, 2, 2) L(64, 31)

OA(32, 16, 2, 3) OA(64, 32, 2, 2) L(64, 16)

OA(32, 6, 2, 5) OA(64, 32, 2, 2) L(64, 6)

MOA(64, 416161)

OA(16, 15, 2, 2) OA(64, 16, 4, 2) L(64, 15)

OA(16, 8, 2, 3) OA(64, 16, 4, 2) L(64, 8)

OA(16, 5, 2, 4) OA(64, 16, 4, 2) L(64, 5)

OA(16, 5, 4, 2) OA(64, 16, 4, 2) L(64, 5)

MOA(72, 236361) OA(36, 35, 2, 2) OA(72, 36, 2, 2) L(72, 35)

MOA(80, 240401)
OA(40, 39, 2, 2) OA(80, 40, 2, 2) L(80, 39)

OA(40, 20, 2, 3) OA(80, 40, 2, 2) L(80, 20)

MOA(81, 327271)
OA(27, 13, 3, 2) OA(81, 27, 3, 2) L(81, 13)

OA(27, 4, 3, 3) OA(81, 27, 3, 2) L(81, 4)

MOA(88, 244441) OA(44, 43, 2, 2) OA(88, 44, 2, 2) L(88, 43)

MOA(96, 248481)

OA(48, 47, 2, 2) OA(96, 48, 2, 2) L(96, 47)

OA(48, 24, 2, 3) OA(96, 48, 2, 2) L(96, 24)

OA(48, 13, 4, 2) OA(96, 48, 2, 2) L(96, 13)

MOA(100, 520201) OA(20, 19, 2, 2) OA(100, 20, 5, 2) L(100, 19)

In these MCD(D1, D2)’s, the rows in D2 corresponding to each level of any factor in D1

can achieve stratification on the s1 × · · · × s1︸ ︷︷ ︸
t

grids in any t-dimensional projection.
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Table B.2. Some marginally coupled designs MCD(D1, D2) of n = su runs for m =

(s+ 1− k)su−2 qualitative factors and k quantitative factors, using Construction

2, n < 100.

D1 = OA(su,m, s, 2) D̃2 = OA(su, k, su−1, 1) Constraint

OA( 8, 2(3− k), 2, 2) OA( 8, k, 4, 1)

1 ≤ k ≤ 2
OA(16, 4(3− k), 2, 2) OA(16, k, 8, 1)
OA(32, 8(3− k), 2, 2) OA(32, k, 16, 1)
OA(64, 16(3− k), 2, 2) OA(64, k, 32, 1)

OA(27, 3(4− k), 3, 2) OA(27, k, 9, 1)
1 ≤ k ≤ 3

OA(81, 9(4− k), 3, 2) OA(81, k, 27, 1)

OA(64, 4(5− k), 4, 2) OA(64, k, 16, 1) 1 ≤ k ≤ 4
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Table B.2. Some marginally coupled designs MCD(D1, D2) of n = su runs for m =
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