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Abstract: Handling data with the missing not at random (MNAR) mechanism is

still a challenging problem in statistics. In this article, we propose a nonparamet-

ric imputation method based on the propensity score in a general class of semi-

parametric models for nonignorable missing data. Compared with the existing

imputation methods, the proposed imputation method is more flexible as it does

not require any model specification for the propensity score but rather a general

parametric model involving an unknown parameter which can be estimated con-

sistently. To obtain a consistent estimator of the parametric propensity score, two

approaches are proposed. One is based on a validation sample. The other is a

semi-empirical likelihood (SEL) method. By incorporating auxiliary information

from some calibration conditions under the MNAR assumption, we gain significant

efficiency with the SEL-based estimator. We investigate the asymptotic properties

of the proposed estimators based on either known or estimated propensity scores.

Our empirical studies show that that the resultant estimator is robust against the

misspecified response model. Simulation studies and data analysis are provided to

evaluate the finite sample performance of the proposed method.
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1. Introduction

Missing data arises frequently in surveys, social science, and biomedical re-

search. The commonly used methods for handling missing data include complete

case analysis, which can lead to a biased estimator and information loss (Little

and Rubin (2002); Kim and Shao (2013)), the imputation method (Rubin (1987);

Cheng (1994); Wang and Chen (2009)), and the augmented inverse probability

weighted (AIPW) method (Robins, Rotnitzky and Zhao (1994)). The implemen-

tation of the latter two methods is applicable for missingness at random (MAR),

but not suitable if the missing mechanism is missing not at random (MNAR),

nonignorable missingness.

Nonignorable missing models have been mainly studied using maximum like-

lihood, empirical likelihood (EL), and Bayesian approaches. For example, see
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Troxel, Lipsitz and Brennan’s (1997) weighted estimating equations for nonig-

norable nonresponse, Lipsitz et al.’s (1999) generalized linear models for nonig-

norable missing covariates, Tang, Little and Raghunathan’s (2003) multivariate

regression analysis with nonignorable nonresponse, and Lee and Tang’s (2006)

nonlinear structural equation models for nonignorable missing data. Recently,

Kim and Yu (2011) proposed the exponential tilting model and developed a semi-

parametric estimation procedure for nonignorable missing data. Tang, Zhao and

Zhu (2014) further extended the idea of Kim and Yu (2011) and Zhou, Wan and

Wang’s (2008) imputing estimating functions under MAR, and developed the

EL inference procedure through estimating equations for nonignorable missing

data. Zhao and Shao (2015) proposed a pseudo likelihood approach to general-

ized linear models in the presence of nonignorable missing data, and presented

a two-step iteration algorithm to implement the numerical maximization of the

pseudo likelihood.

The semiparametric estimating equations (SEEs) approach has been investi-

gated for missing data in recent years (Robins and Ritov (1997); Graham (2011)).

For example, Chen, Hong and Tarozzi (2008) provided semiparametric efficiency

bounds under missing data, Graham (2011) employed the AIPW approach to

study efficiency bounds under the semiparametric framework for ignorable miss-

ing, Chen and Van Keilegom (2013) discussed SEEs using the nonparametric

imputation method for response/covariates with MAR, and Wang, Cui and Li

(2013) presented an EL-based AIPW in SEEs. However, these approaches can-

not be used to make statistical inference directly for nonginorable missing data

due to the complexity of the nonignorable missing mechanism. To the best of

our knowledge, consistent estimation under the SEE framework for nonignorable

missing data has not been investigated.

In this article, we develop a general SEE approach for nonignorable missing

data, and provide consistent estimators for finite-dimensional parameters in the

presence of the nonparametric function with dimensions of nuisance parameters

infinite. The SEEs estimator is well known for its desirable unbiasedness when

the data is complete. To achieve unbiasedness of the SEEs estimation when ob-

servations are missing not at random, we propose a propensity-score-based and

kernel-assisted SEE imputation scheme for parameter estimations. The construc-

tion of the proposed imputation approach is motivated by the exponential tilting

model-based imputation procedure proposed by Kim and Yu (2011). To make

the propensity-score-based imputation applicable, it is important to estimate the

propensity score consistently. Once a consistent propensity score estimator is ob-

tained, we can formulate a basis for inferences using the imputed SEEs via the

generalized method of moments (GMM) (Hansen (1982)).

Specifically, a general parametric model is proposed for the response proba-

bility. To estimate the parametric propensity scores consistently, we first propose
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an estimation procedure based on validation samples, and apply the theory of

GMM to improve the efficiency. However, as the method of independent survey

using validation samples is often not realistic since budget or technical limitations

often restrict researchers to design studies that collect follow-up samples to gain

more information for estimating the response probability model. In addition, it

is important to utilize the calibration conditions presented in missing data prob-

lems. To this end, we employ a semi-empirical likelihood (SEL) procedure (Qin,

Leung and Shao (2002)) to estimate parametric propensity scores because of its

properties that its implementation needs only complete observations, and that

one can incorporate some auxiliary information from the calibration conditions

under nonignorable missing mechanism to gain a more efficient estimator for the

response probability.

Compared with the exponential tilting model-based imputation of Kim and

Yu (2011), our proposed parametric-propensity score-based imputation method

has the advantages of being more flexible so that one can develop an appropri-

ate approach for the estimation of parametric propensity score to improve the

efficiency of the resultant estimator. In addition, the use of parametrically esti-

mated propensity scores can alleviate the dimensionality issue to a certain extent.

Another advantage of our approach is that consistency and asymptotic normality

of the estimators are established under fairly mild conditions. In particular, we

do not require the criterion function to satisfy standard smoothness conditions.

The parameter identifiability issue (Robins and Ritov (1997)) is crucial and

challenging in nonignorable missing data analysis. Many authors have studied

this issue, see Tang, Little and Raghunathan (2003), Wang, Shao and Kim (2014),

and Zhao and Shao (2015). Their methods can be applied to our model. Hence,

throughout this article, we assume that the models considered are identifiable.

The rest of this article is organized as follows. We introduce the propensity-

score-based nonparametric imputation in Section 2. We construct a class of GMM

estimators of parameters defined via SEEs with nonignorable missing data, and

we show the consistency and asymptotic normality of the proposed estimators

in Section 3. A bootstrap procedure for approximating asymptotic variance of

the proposed estimators and a simple dimensionality reduction technique in re-

lation to the proposed kernel procedure are proposed in Section 4. An example

illustrating the proposed method and some extensions are discussed in Section 5.

Simulation studies conducted to investigate the finite sample performance of the

proposed estimators are presented in Section 6. Data from a Workplace Safety

& Insurance Board research study in Canada is used to illustrate the proposed

method in Section 7. Some concluding remarks are given in Section 8. Tech-

nical conditions and proofs of the theorems are reported in the Supplementary

Material.
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2. Propensity Score-based Nonparametric Imputation

Let Zi = (X⊤
i , Y ⊤

i )⊤, i = 1, . . . , n, be a set of (s + d)-dimensional indepen-

dent and identically distributed (i.i.d.) random variables with the cumulative

distribution function F (z). Let Θ be a finite-dimensional parameter set (a com-

pact subset of Rp) and H be an infinite dimensional parameter set. The function

in H is allowed to depend on θ. Suppose that ψ(Y,X, θ, h) is a vector of q esti-

mating equations, known up to the finite dimensional parameter θ ∈ Θ and the

infinite dimensional nuisance function h ∈ H. The only prior restriction on F (z)

is that E{ψ(Y,X, θ0, h0)} = 0 for some θ0 ∈ Θ ⊂ Rp and h0 ∈ H. Here, θ0 and

h0 are the true value of θ and the true function of h, respectively. That q > p

implies that ψ(Y,X, θ, h) is an over-identified system. Similar to Chen, Linton

and Van Keilegom (2003), it is assumed that the function h0 depends on θ and

the data X and/or Y . For simplicity, we write (θ, h) =: (θ, hθ), (θ, h0) =: (θ, h0θ),

and (θ0, h0) =: (θ0, h0θ0).

We assume that Yi is subject to missingness, whereas Xi is always available.

Generally, the missing components may vary across different individuals. For

simplicity, we suppose that the missing components have the same dimensions for

Z1, . . . , Zn. Further, a missing variable Yi may represent a response or covariate.

Let δi = 1 if Yi is observed and δi = 0 if Yi is missing. We assume that δi is

independent of δj for any i ̸= j and that Pr(δi = 1|Xi, Yi) =: π(Xi, Yi), which

allows that the missingness mechanism is MNAR. Let G(θ, h) = E{ψ(Y,X, θ, h)},
a non-random vector-valued function G: Θ × H → Rq such that G(θ0, h0) = 0.

The issue is to estimate θ in the presence of nonignorable missing data.

Let {(Xi, Yi, δi), i = 1, · · · , n} be i.i.d. random vectors having the same

distribution as (X,Y, δ). To incorporate the nonignorable missing data set, we

consider a set of semi-parametric estimating functions given by

ψ̌(Yi, Xi, θ, h) = δiψ(Yi, Xi, θ, h) + (1− δi)m
0
ψ(Xi, θ, h),

where m0
ψ(Xi, θ, h) = E{ψ(Yi, Xi, θ, h)|Xi, δi = 0}. Let f1(Yi|Xi) be the condi-

tional probability density of Yi given Xi and δi = 1, and f0(Yi|Xi) the conditional

probability density of Yi given Xi and δi = 0. We further assume that the re-

sponse probability model has the parametric form

π(Xi, Yi) = Pr(δi = 1|Xi, Yi) =: π(Xi, Yi, α0), (2.1)

where π(·) is a known smooth function in the finite-dimensional response model

parameter α0.

Following the reasoning of Kim and Yu (2011), we can obtain

f0(Yi|Xi) = f1(Yi|Xi)×
O(Xi, Yi, α0)

E{O(Xi, Yi, α0)|Xi, δi = 1}
, (2.2)
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where O(Xi, Yi, α0) = Pr(δi = 0|Xi, Yi)/Pr(δi = 1|Xi, Yi) = π−1(Xi, Yi, α0) − 1

is the conditional odds of nonresponse. Using (2.2), we obtain

m0
ψ(Xi, θ, h) =: m0

ψ(Xi, θ, h, α0) =
E{δiψ(Yi, Xi, θ, h)O(Xi, Yi, α0)|Xi}

E{δiO(Xi, Yi, α0)|Xi}
.

Then, SEEs ψ̌(Yi, Xi, θ, h) can be rewritten as

ψ̃(Yi, Xi, θ, h, α0) = δiψ(Yi, Xi, θ, h) + (1− δi)m
0
ψ(Xi, θ, h, α0). (2.3)

If the true response probability follows the parametric model given in (2.1), we

can show that E{ψ̃(Yi, Xi, θ0, h0, α0)} = 0. Thus (2.3) is unbiased, the key idea

of our approach.

Let K(·) be an s-dimensional kernel function of the mth order satisfying∫
K(u1, . . . , us)du1 . . . dus = 1,

∫
ulkK(u1, . . . , us)du1 . . . dus = 0 for any k =

1, . . . , s and 1 ≤ l < m, and
∫
umk K(u1, . . . , us)du1 . . . dus ̸= 0. Then, a nonpara-

metric regression estimator of m0
ψ(X, θ, h) can be expressed as

m̂0
ψ(X, θ, h, α0) =

n∑
i=1

δiO(Xi, Yi, α0)Ka(X −Xi)ψ(Yi, Xi, θ, h)

n∑
i=1

δiO(Xi, Yi, α0)Ka(X −Xi)

, (2.4)

where the weight δiO(Xi, Yi, α0)Ka(X −Xi)/
∑n

j=1 δjO(Xj , Yj , α0)Ka(X −Xj)

represents the point mass assigned to ψ(Yi, Xi, θ, h) when m0
ψ(X, θ, h) is approx-

imated by m̂0
ψ(X, θ, h, α0), Ka(u) = a−sK(u/a) and a is a bandwidth sequence.

Using the arguments of Devroye and Wagner (1980), we can show that, under the

true response model (2.1) and some regularity conditions, limn→∞ m̂0
ψ(X, θ, h, α0)

= m0
ψ(X, θ, h). Therefore, a set of the modified SEEs for the ith observation is

given by ψ̂(Yi, Xi, θ0, h0, α0) = δiψ(Yi, Xi, θ0, h0) + (1− δi)m̂
0
ψ(Xi, θ0, h0, α0).

3. Generalized Method of Moments Estimation

3.1. Nonparametric estimation

Let Gn(θ, h, α) = n−1
∑n

i=1 ψ̂(Yi, Xi, θ, h, α). Given an estimator ĥ of h and

a known propensity score, we define the nonparametric estimator of θ by

θ̂NP = argmin
θ∈Θ

∥Gn(θ, ĥ, α0)∥W ,

where ∥A∥W = {tr(A⊤WA)}1/2 for any q-dimensional vector A and some fixed

symmetric q × q positive definite matrix W ; here tr(·) stands for the trace of a

matrix.
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∥Gn(θ, ĥ, α0)∥W ,

where ∥A∥W = {tr(A⊤WA)}1/2 for any q-dimensional vector A and some fixed

symmetric q × q positive definite matrix W ; here tr(·) stands for the trace of a

matrix.

93



6 PUYING ZHAO, NIANSHENG TANG, ANNIE QU AND DEPENG JIANG

Theorem 1. If the conditions (A1)−(A3) and (C1)−(C4) given in the Sup-

plementary Material hold and the response probability π(X,Y ) is known, then

θ̂NP − θ0 = op(1). If the conditions (B1)−(B5) given in the Supplementary Ma-

terial also hold, we have

n1/2(θ̂NP − θ0)
L→ N (0,Σ1),

where Σ1 = (Λ⊤WΛ)−1Λ⊤WΓ1WΛ(Λ⊤WΛ)−1, Γ1 = Var{S(X,Y, θ0, h0)}, S(X,

Y, θ, h) = δ{π(X,Y )}−1{ψ(Y,X, θ, h)−m0
ψ(X, θ, h)}+m0

ψ(X, θ, h) +∇(X,Y, δ),

the function ∇(·) is defined in the condition (B4), and Λ = Λ(θ0, h0) with

Λ(θ, h0) =
∂

∂θ
G(θ, h0) = lim

κ→0

1

κ
{G(θ + κ, h0,θ+κ)− G(θ, h0θ)}.

Theorem 1 shows that using the nonparametric regression estimator of

m0
ψ(X, θ, h) with known response model can lead to an efficient influence function

of estimator θ̂NP , which has the AIPW form (Robins, Rotnitzky and Zhao (1994);

Graham (2011)). However, the nonparametric regression methods are impeded

by the curse of dimensionality.

3.2. Semiparametric estimation

Although θ̂NP is theoretically attractive, it is practically useless because the

parameter vector α0 in (2.1) is unknown in many applications. While we should

estimate α0 consistently before making inference on θ, it is difficult to obtain a

suitable estimator of α0 under the MNAR assumption because Yi is unobserved in

the set of nonrespondents. We use α̂ to denote a suitable estimator of α0. Then,

given estimators α̂ and ĥ, a semiparametric estimator of θ can be obtained as

θ̂SP = argmin
θ∈Θ

∥Gn(θ, ĥ, α̂)∥W . (3.1)

In what follows, we try to find some reasonable estimators α̂ to make the esti-

mating equations ψ̂(Yi, Xi, θ0, ĥ, α̂) applicable.

(1) Independent Survey and Validation Sample

Motivated by Kim and Yu (2011), we consider two approaches to compute

α̂: independent survey and a validation sample.

Theorem 2. If the conditions (A1)−(A3) and (C1)−(C4) of the Supplementary

Material hold, the response probability model π(X,Y, α0) is correctly specified

and α̂ is consistent, then θ̂SP − θ0 = op(1). If the conditions (B1)−(B5) given

in the Supplementary Material also hold, n1/2(α̂ − α0)
L→ N (0, Vα), and α̂ is

independent of ψ̂(Yi, Xi, θ0, h0, α0), we have

n1/2(θ̂SP − θ0)
L→ N (0,Σ2),
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where Σ2 = (Λ⊤WΛ)−1Λ⊤WΓ2WΛ(Λ⊤WΛ)−1, Γ2 = Var{S(X,Y, θ0, h0)}+
HVαH

⊤, H = E[(1−δ){ψ(Y,X, θ0, h0)−m0
ψ(X, θ0, h0, α0)}{z(X,Y, α0)−m0

z(X,

α0)}⊤] with z(X,Y, α) = ∂logit{π(X,Y, α)}/∂α and m0
z(X,α)=E{z(X,Y, α)|X,

δ = 0}, and logit(p) = log{p/(1− p)}.

It follows from Theorems 1 and 2 that θ̂SP has larger asymptotic variance

than θ̂NP due to estimating α0.

We consider then that α̂ is obtained from a validation sample, randomly

selected from the set of the nonrespondents. For clarity, we take Q(α, θ, h) =

E[(1− δi){ψ(Yi, Xi, θ, h)−m0
ψ(Xi, θ, h, α)}]. Under the MNAR assumption,

E{(1− δi)ψ(Yi, Xi, θ, h)} = E[E{(1− δi)ψ(Yi, Xi, θ, h)|Xi, δi = 0}]
= E{(1− δi)m

0
ψ(Xi, θ, h, α0)},

which leads to Q(α0, θ, h) = 0 for any θ ∈ Θ ⊂ Rp and h ∈ H. Therefore, a

consistent estimator α̂ of α0 can be obtained by solving

Qn(α0, θ, h) =
1

n

n∑
i=1

(1− δi)
ri
ν
{ψ(Yi, Xi, θ, h)− m̂0

ψ(Xi, θ, h, α0)} = 0

for α0, where ν = E(ri|δi = 0) and ri is 1 if individual i belongs to the follow-up

sample, and 0 otherwise.

It is noteworthy that a set of SEEsQn(α0, θ, h) may also be an over-identified

system with respect to α0. Hence, the GMM approach can again be used to

compute α0 to improve efficiency. Given an appropriate and symmetric q × q

positive definite matrix �W , an estimator of α0 can be obtained as

α̂v = argmin
θ∈Θ,α∈B

∥Qn(α, θ, ĥ)∥W̃ . (3.2)

Proposition 1. Suppose the conditions of the Supplementary Material hold, and

the response probability model π(X,Y, α0) is correctly specified. Then, α̂v −α0 =

op(1), and α̂v − α0 = −(H⊤�WH)−1H⊤�Wn−1
∑n

i=1Di(θ0, h0, α0) + op(n
−1/2),

equivalently n1/2(α̂v − α0)
L→ N (0,Σv), where

Σv = (H⊤�WH)−1H⊤�WVv
�WH(H⊤�WH)−1, Vv = Var{D(θ0, h0, α0)}, and

D(θ0, h0, α0) = [(1−δ)r/ν−δ{π−1(X,Y )−1}]{ψ(Y,X, θ0, h0)−m0
ψ(X, θ0, h0, α0)}.

Corollary 1. If q = dim(α0) or �W = V −1
v , then Σv = (H⊤V −1

v H)−1 and α̂v is

efficient among the class of GMM validation sample estimators.

Using the estimated parameter α̂v, we can construct Gn(θ, ĥθ, α̂v). Then, we

can obtain a semiparametric estimator θ̂SP of θ from (3.1).
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Theorem 1. If the conditions (A1)−(A3) and (C1)−(C4) given in the Sup-

plementary Material hold and the response probability π(X,Y ) is known, then

θ̂NP − θ0 = op(1). If the conditions (B1)−(B5) given in the Supplementary Ma-

terial also hold, we have

n1/2(θ̂NP − θ0)
L→ N (0,Σ1),

where Σ1 = (Λ⊤WΛ)−1Λ⊤WΓ1WΛ(Λ⊤WΛ)−1, Γ1 = Var{S(X,Y, θ0, h0)}, S(X,

Y, θ, h) = δ{π(X,Y )}−1{ψ(Y,X, θ, h)−m0
ψ(X, θ, h)}+m0

ψ(X, θ, h) +∇(X,Y, δ),

the function ∇(·) is defined in the condition (B4), and Λ = Λ(θ0, h0) with

Λ(θ, h0) =
∂

∂θ
G(θ, h0) = lim

κ→0

1

κ
{G(θ + κ, h0,θ+κ)− G(θ, h0θ)}.

Theorem 1 shows that using the nonparametric regression estimator of

m0
ψ(X, θ, h) with known response model can lead to an efficient influence function

of estimator θ̂NP , which has the AIPW form (Robins, Rotnitzky and Zhao (1994);

Graham (2011)). However, the nonparametric regression methods are impeded

by the curse of dimensionality.

3.2. Semiparametric estimation

Although θ̂NP is theoretically attractive, it is practically useless because the

parameter vector α0 in (2.1) is unknown in many applications. While we should

estimate α0 consistently before making inference on θ, it is difficult to obtain a

suitable estimator of α0 under the MNAR assumption because Yi is unobserved in

the set of nonrespondents. We use α̂ to denote a suitable estimator of α0. Then,

given estimators α̂ and ĥ, a semiparametric estimator of θ can be obtained as

θ̂SP = argmin
θ∈Θ

∥Gn(θ, ĥ, α̂)∥W . (3.1)

In what follows, we try to find some reasonable estimators α̂ to make the esti-

mating equations ψ̂(Yi, Xi, θ0, ĥ, α̂) applicable.

(1) Independent Survey and Validation Sample

Motivated by Kim and Yu (2011), we consider two approaches to compute

α̂: independent survey and a validation sample.

Theorem 2. If the conditions (A1)−(A3) and (C1)−(C4) of the Supplementary

Material hold, the response probability model π(X,Y, α0) is correctly specified

and α̂ is consistent, then θ̂SP − θ0 = op(1). If the conditions (B1)−(B5) given

in the Supplementary Material also hold, n1/2(α̂ − α0)
L→ N (0, Vα), and α̂ is

independent of ψ̂(Yi, Xi, θ0, h0, α0), we have

n1/2(θ̂SP − θ0)
L→ N (0,Σ2),
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where Σ2 = (Λ⊤WΛ)−1Λ⊤WΓ2WΛ(Λ⊤WΛ)−1, Γ2 = Var{S(X,Y, θ0, h0)}+
HVαH

⊤, H = E[(1−δ){ψ(Y,X, θ0, h0)−m0
ψ(X, θ0, h0, α0)}{z(X,Y, α0)−m0

z(X,

α0)}⊤] with z(X,Y, α) = ∂logit{π(X,Y, α)}/∂α and m0
z(X,α)=E{z(X,Y, α)|X,

δ = 0}, and logit(p) = log{p/(1− p)}.

It follows from Theorems 1 and 2 that θ̂SP has larger asymptotic variance

than θ̂NP due to estimating α0.

We consider then that α̂ is obtained from a validation sample, randomly

selected from the set of the nonrespondents. For clarity, we take Q(α, θ, h) =

E[(1− δi){ψ(Yi, Xi, θ, h)−m0
ψ(Xi, θ, h, α)}]. Under the MNAR assumption,

E{(1− δi)ψ(Yi, Xi, θ, h)} = E[E{(1− δi)ψ(Yi, Xi, θ, h)|Xi, δi = 0}]
= E{(1− δi)m

0
ψ(Xi, θ, h, α0)},

which leads to Q(α0, θ, h) = 0 for any θ ∈ Θ ⊂ Rp and h ∈ H. Therefore, a

consistent estimator α̂ of α0 can be obtained by solving

Qn(α0, θ, h) =
1

n

n∑
i=1

(1− δi)
ri
ν
{ψ(Yi, Xi, θ, h)− m̂0

ψ(Xi, θ, h, α0)} = 0

for α0, where ν = E(ri|δi = 0) and ri is 1 if individual i belongs to the follow-up

sample, and 0 otherwise.

It is noteworthy that a set of SEEsQn(α0, θ, h) may also be an over-identified

system with respect to α0. Hence, the GMM approach can again be used to

compute α0 to improve efficiency. Given an appropriate and symmetric q × q

positive definite matrix �W , an estimator of α0 can be obtained as

α̂v = argmin
θ∈Θ,α∈B

∥Qn(α, θ, ĥ)∥W̃ . (3.2)

Proposition 1. Suppose the conditions of the Supplementary Material hold, and

the response probability model π(X,Y, α0) is correctly specified. Then, α̂v −α0 =

op(1), and α̂v − α0 = −(H⊤�WH)−1H⊤�Wn−1
∑n

i=1Di(θ0, h0, α0) + op(n
−1/2),

equivalently n1/2(α̂v − α0)
L→ N (0,Σv), where

Σv = (H⊤�WH)−1H⊤�WVv
�WH(H⊤�WH)−1, Vv = Var{D(θ0, h0, α0)}, and

D(θ0, h0, α0) = [(1−δ)r/ν−δ{π−1(X,Y )−1}]{ψ(Y,X, θ0, h0)−m0
ψ(X, θ0, h0, α0)}.

Corollary 1. If q = dim(α0) or �W = V −1
v , then Σv = (H⊤V −1

v H)−1 and α̂v is

efficient among the class of GMM validation sample estimators.

Using the estimated parameter α̂v, we can construct Gn(θ, ĥθ, α̂v). Then, we

can obtain a semiparametric estimator θ̂SP of θ from (3.1).
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Theorem 3. If the conditions (A1)−(A3) and (C1)−(C4) of the Supplementary

Material hold, the response probability model π(X,Y, α0) is correctly specified, and

θ̂SP is the estimator of θ obtained by solving (3.1) with α̂ = α̂v, then θ̂SP − θ0 =

op(1). If the conditions (B1)−(B5) of the Supplementary Material also hold, we

have

n1/2(θ̂SP − θ0)
L→ N (0,Σ3),

where Σ3 = (Λ⊤WΛ)−1Λ⊤WΓ3WΛ(Λ⊤WΛ)−1, Γ3 = Var{O(X,Y, δ)}, O(X,

Y, δ) = S(X,Y, θ0, h0) +H(H⊤W̃H)−1H⊤W̃D(θ0, h0, α0).

Corollary 2. If q = p or W = Γ−1
3 , we have Σ3 = (Λ⊤Γ−1

3 Λ)−1, then θ̂SP is

efficient among the class of semiparametric estimators for θ based on the method

of validation sample.

Remark 1. If q = dim(α0), we have O(X,Y, δ)={(r/ν)(1− δ) + δ}{ψ(Y,X, θ0,

h0)−m0
ψ(X, θ0, h0, α0)}+m0

ψ(X, θ0, h0, α0) +∇(X,Y, δ), and Var{O(X,Y, δ)}=
Var{ψ(Y,X, θ0, h0)}+Var{∇(X,Y, δ)}+2Cov(ψ(Y,X, θ0, h0),∇(X,Y, δ))+(ν−1

−1)E[(1 − δ){ψ(Y,X, θ0, h0) − m0
ψ(X, θ0, h0, α0)}⊗2], where a⊗2 = aa⊤ for any

vector a. Using standard kernel regression theory, for any α∗ ∈ B (α∗ may

be the probability limit of α̂v when (2.1) is misspecified), m0
ψ(X, θ0, h0, α

∗) =

limn→∞ m̂0
ψ(X, θ0, h0, α

∗). If α∗ = α0, (2.1) is correctly specified, then m0
ψ(X, θ0,

h0, α
∗) = E{ψ(Y,X, θ0, h0)|X, δ = 0} = m0

ψ(X, θ0, h0). Here E[(1 − δ){ψ(Y,X,

θ0, h0) − m0
ψ(X, θ0, h0, α

∗)}⊗2] ≥ E[(1 − δ){ψ(Y,X, θ0, h0) − m0
ψ(X, θ0, h0)}⊗2]

indicates that Σ3 attains its minimum for this scenario. Thus, (2.1) can be used

to improve estimation efficiency (Kim and Yu (2011)).

Remark 2. Our asymptotic results are obtained under the correctly specified re-

sponse model. It is challenging to establish asymptotic properties of the proposed

semiparametric estimators when the response model is misspecified because of

the non-smoothness of the underlying SEEs and the infinite-dimensional nui-

sance function involved. To the best of our knowledge, this issue has not been

addressed for the estimation of over-identified moment conditions even under

the MAR assumption (e.g., Chen, Hong and Tarozzi (2008)). For two special

cases, including the population mean (Kim and Yu (2011)) and the distribution

function of the response variable, we investigate the robustness of the proposed

imputation approach to the selection of response model in the Supplementary

Material.

(2) Semi-empirical Likelihood Estimation

The advantages of using a validation sample to estimate α0 include robust-

ness properties and the parametric rate of convergence for the resulting α̂v, but
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budget or technical limitations may restrict researchers to design studies that
collect follow-up samples to evaluate α̂v. To overcome such difficulties, we em-
ploy an approach of semiparametric likelihood (Qin, Leung and Shao (2002))
based on complete observations to obtain an efficient estimator for the response
probability function. To this end, let F (X,Y ) be the unconditional joint distri-
bution of (X,Y ) and A = {j : δj = 1} be the set of respondents in the sample
{(Xj , Yj) : j = 1, . . . , n}; n1 = |A| denotes the size of the set A. The likelihood
of (α0, F ) based on complete observations {(Xj , Yj) : j ∈ A} is given by

∏
j∈A

π(Xj , Yj , α0)dF (Xj , Yj)
∏
j /∈A

∫∫
{1− π(Xj , Yj , α0)}dF (Xj , Yj),

which can be rewritten as{ ∏
j∈A

π(Xj , Yj , α0)dF (Xj , Yj)

ω

}
ωn1(1− ω)n−n1 , (3.3)

where ω = Pr(δ = 1) =
∫∫

π(X,Y, α0)dF (X,Y ) is the unconditional response
rate. The first term in (3.3) is the likelihood conditional on δ = 1, and the term
ωn1(1− ω)n−n1 is the binomial likelihood of δ.

Some auxiliary information on X of the form E{g(X)} = 0 is often available,
where g(X) = (g1(X), . . . , gl(X))⊤ is a known l ≥ 1 vector (or scalar) function.
Based on the auxiliary information from X, and without assuming any specific
form for F (X,Y ), we can maximize the semiparametric likelihood (3.3) subject
to the contraints

pj ≥ 0,
∑
j∈A

pj = 1,
∑
j∈A

pj{π(Xj , Yj , α0)− ω} = 0,
∑
j∈A

pjg(Xj) = 0,

where pj is the jump of F at {(Xj , Yj) : j ∈ A}. By introducing Langrange
multipliers λ1 and λ2, the log-likelihood with respect to α0 and ω is

l(α0, ω, λ1, λ2) =
∑
j∈A

log π(Xj , Yj , α0) + (n− n1) log(1− ω)

−
∑
j∈A

log{1 + λ1g(Xj) + λ2(π(Xj , Yj , α0)− ω)}. (3.4)

The solution of the constrained maximum likelihood can be obtained by maxi-
mizing the log-likelihood l(α0, ω, λ1, λ2). Denote the solution by (α̂s, ω̂, λ̂1, λ̂2),
and take ζ = λ1(1− ω), η0 = (α0, ω0, 0)

⊤, ζ̂ = λ̂1(1− ω̂), and η̂ = (α̂s, ω̂, ζ̂)
⊤.

Computing the semiparametric likelihood estimator η̂ is computationally
challenging because too many constraints are involved. To address this, we
adopt the algorithm of Qin, Leung and Shao (2002). Step 1. Given (α, ω),
compute (λ1(α, ω), λ2(α, ω)) = argminλ1,λ2

l(α, ω, λ1, λ2); Step 2. Compute
(α̂s, ω̂) = argmaxα,ω l(α, ω, λ1(α, ω), λ2(α, ω)).

96



8 PUYING ZHAO, NIANSHENG TANG, ANNIE QU AND DEPENG JIANG

Theorem 3. If the conditions (A1)−(A3) and (C1)−(C4) of the Supplementary

Material hold, the response probability model π(X,Y, α0) is correctly specified, and

θ̂SP is the estimator of θ obtained by solving (3.1) with α̂ = α̂v, then θ̂SP − θ0 =

op(1). If the conditions (B1)−(B5) of the Supplementary Material also hold, we

have

n1/2(θ̂SP − θ0)
L→ N (0,Σ3),

where Σ3 = (Λ⊤WΛ)−1Λ⊤WΓ3WΛ(Λ⊤WΛ)−1, Γ3 = Var{O(X,Y, δ)}, O(X,

Y, δ) = S(X,Y, θ0, h0) +H(H⊤W̃H)−1H⊤W̃D(θ0, h0, α0).

Corollary 2. If q = p or W = Γ−1
3 , we have Σ3 = (Λ⊤Γ−1

3 Λ)−1, then θ̂SP is

efficient among the class of semiparametric estimators for θ based on the method

of validation sample.

Remark 1. If q = dim(α0), we have O(X,Y, δ)={(r/ν)(1− δ) + δ}{ψ(Y,X, θ0,

h0)−m0
ψ(X, θ0, h0, α0)}+m0

ψ(X, θ0, h0, α0) +∇(X,Y, δ), and Var{O(X,Y, δ)}=
Var{ψ(Y,X, θ0, h0)}+Var{∇(X,Y, δ)}+2Cov(ψ(Y,X, θ0, h0),∇(X,Y, δ))+(ν−1

−1)E[(1 − δ){ψ(Y,X, θ0, h0) − m0
ψ(X, θ0, h0, α0)}⊗2], where a⊗2 = aa⊤ for any

vector a. Using standard kernel regression theory, for any α∗ ∈ B (α∗ may

be the probability limit of α̂v when (2.1) is misspecified), m0
ψ(X, θ0, h0, α

∗) =

limn→∞ m̂0
ψ(X, θ0, h0, α

∗). If α∗ = α0, (2.1) is correctly specified, then m0
ψ(X, θ0,

h0, α
∗) = E{ψ(Y,X, θ0, h0)|X, δ = 0} = m0

ψ(X, θ0, h0). Here E[(1 − δ){ψ(Y,X,

θ0, h0) − m0
ψ(X, θ0, h0, α

∗)}⊗2] ≥ E[(1 − δ){ψ(Y,X, θ0, h0) − m0
ψ(X, θ0, h0)}⊗2]

indicates that Σ3 attains its minimum for this scenario. Thus, (2.1) can be used

to improve estimation efficiency (Kim and Yu (2011)).

Remark 2. Our asymptotic results are obtained under the correctly specified re-

sponse model. It is challenging to establish asymptotic properties of the proposed

semiparametric estimators when the response model is misspecified because of

the non-smoothness of the underlying SEEs and the infinite-dimensional nui-

sance function involved. To the best of our knowledge, this issue has not been

addressed for the estimation of over-identified moment conditions even under

the MAR assumption (e.g., Chen, Hong and Tarozzi (2008)). For two special

cases, including the population mean (Kim and Yu (2011)) and the distribution

function of the response variable, we investigate the robustness of the proposed

imputation approach to the selection of response model in the Supplementary

Material.

(2) Semi-empirical Likelihood Estimation

The advantages of using a validation sample to estimate α0 include robust-

ness properties and the parametric rate of convergence for the resulting α̂v, but
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budget or technical limitations may restrict researchers to design studies that
collect follow-up samples to evaluate α̂v. To overcome such difficulties, we em-
ploy an approach of semiparametric likelihood (Qin, Leung and Shao (2002))
based on complete observations to obtain an efficient estimator for the response
probability function. To this end, let F (X,Y ) be the unconditional joint distri-
bution of (X,Y ) and A = {j : δj = 1} be the set of respondents in the sample
{(Xj , Yj) : j = 1, . . . , n}; n1 = |A| denotes the size of the set A. The likelihood
of (α0, F ) based on complete observations {(Xj , Yj) : j ∈ A} is given by

∏
j∈A

π(Xj , Yj , α0)dF (Xj , Yj)
∏
j /∈A

∫∫
{1− π(Xj , Yj , α0)}dF (Xj , Yj),

which can be rewritten as{ ∏
j∈A

π(Xj , Yj , α0)dF (Xj , Yj)

ω

}
ωn1(1− ω)n−n1 , (3.3)

where ω = Pr(δ = 1) =
∫∫

π(X,Y, α0)dF (X,Y ) is the unconditional response
rate. The first term in (3.3) is the likelihood conditional on δ = 1, and the term
ωn1(1− ω)n−n1 is the binomial likelihood of δ.

Some auxiliary information on X of the form E{g(X)} = 0 is often available,
where g(X) = (g1(X), . . . , gl(X))⊤ is a known l ≥ 1 vector (or scalar) function.
Based on the auxiliary information from X, and without assuming any specific
form for F (X,Y ), we can maximize the semiparametric likelihood (3.3) subject
to the contraints

pj ≥ 0,
∑
j∈A

pj = 1,
∑
j∈A

pj{π(Xj , Yj , α0)− ω} = 0,
∑
j∈A

pjg(Xj) = 0,

where pj is the jump of F at {(Xj , Yj) : j ∈ A}. By introducing Langrange
multipliers λ1 and λ2, the log-likelihood with respect to α0 and ω is

l(α0, ω, λ1, λ2) =
∑
j∈A

log π(Xj , Yj , α0) + (n− n1) log(1− ω)

−
∑
j∈A

log{1 + λ1g(Xj) + λ2(π(Xj , Yj , α0)− ω)}. (3.4)

The solution of the constrained maximum likelihood can be obtained by maxi-
mizing the log-likelihood l(α0, ω, λ1, λ2). Denote the solution by (α̂s, ω̂, λ̂1, λ̂2),
and take ζ = λ1(1− ω), η0 = (α0, ω0, 0)

⊤, ζ̂ = λ̂1(1− ω̂), and η̂ = (α̂s, ω̂, ζ̂)
⊤.

Computing the semiparametric likelihood estimator η̂ is computationally
challenging because too many constraints are involved. To address this, we
adopt the algorithm of Qin, Leung and Shao (2002). Step 1. Given (α, ω),
compute (λ1(α, ω), λ2(α, ω)) = argminλ1,λ2

l(α, ω, λ1, λ2); Step 2. Compute
(α̂s, ω̂) = argmaxα,ω l(α, ω, λ1(α, ω), λ2(α, ω)).
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Remark 3. One can also obtain a consistent estimator of α0 by solving
n∑

i=1

g(Xi, Yi, α0) =
n∑

i=1

{
δi

π(Xi, Yi, α0)
− 1

}
τ(Xi) = 0, (3.5)

where τ(·) is a user-specified vector function with the same dimension as α0 or

with the dimension being greater than that of α0. Condition (3.5) is often called

the calibration condition, and has been widely used in survey sampling as well as

in nonignorable missing problem (e.g., Chang and Kott (2008); Wang, Shao and

Kim (2014); Kim and Shao (2013); Riddles, Kim and Im (2015)). Based on (3.5),

an alternative semiparametric empirical likelihood function can be constructed

by using g(Xj , Yj , α0) to replace g(Xj) at (3.4).

Proposition 2. If the conditions in the Supplementary Material hold and the

matrix U defined in the Appendix is nonsingular, then η̂
p→ η0 and n1/2(η̂−η0)

L→
N (0, U−1V (U−1)⊤), where V is defined in the Supplementary Material.

Remark 4. Compared with the GMM-based validation sample method, the SEL

method is more efficient because it easily incorporates the auxiliary information

and is easy to implement as it uses only the complete observations. The auxiliary

information g(X) should be carefully selected such that the EL procedure works

because U , defined in Proposition 2, will fail to be invertible if the dimension of

the parameter α0 is too high whilst the dimension of g(X) is too low. This issue

can be addressed by utilizing a nonresponse instrumental variable that does not

relate to the response mechanism but can be used to identify the parameters in

the nonignorable response mechanism. More details on nonresponse instrumental

variables can be found in Wang, Shao and Kim (2014) and Zhao and Shao (2015).

From Proposition 2, we can obtain an asymptotic linear expansion for α̂s:

n1/2(α̂s − α0) = n−1/2
∑n

i=1Ψi(α0) + op(1), where Ψi(α0) := Ψ(Xi, Yi, α0) is an

influence function that is defined in the Supplementary Material.

Theorem 4. If the conditions (A1)−(A3) and (C1)−(C4) of the Supplementary

Material hold, the response probability model π(X,Y, α0) is correctly specified,

the solution α̂s for maximizing (3.4) exists almost everywhere, and θ̂SP is the

estimator of θ obtained by solving equation (3.1) with α̂ = α̂s, then θ̂SP − θ0 =

op(1). If the conditions (B1)−(B5) of the Supplementary Material also hold,

n1/2(θ̂SP − θ0)
L→ N (0,Σ4),

where Σ4 = (Λ⊤WΛ)−1Λ⊤WΓ4WΛ(Λ⊤WΛ)−1, Γ4 = Var{S(X,Y, θ0, h0)

−HΨ(α0)} and H is given in Theorem 2.
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Corollary 3. If q = p or W = Γ−1
4 , we have Σ4 = (Λ⊤Γ−1

4 Λ)−1, and the

estimator θ̂SP is efficient among the class of semiparametric estimator of θ using

the approach of semiparametric likelihood.

Remark 5. It is easy to show that Γ4 = Var{S(X,Y, θ0, h0)}+HVar{Ψ(α0)}H⊤

−2HCov{S(X,Y, θ0, h0),Ψ(α0)}, so the efficiency of the proposed semiparamet-

ric estimator in Theorem 4 depends on the correlation between the score func-

tion S(·) and the influence function Ψ(·). Particularly, if HVar{Ψ(α0)}H⊤

< 2HCov{S(X,Y, θ0, h0),Ψ(α0)}, the semiparametric estimator achieves effi-

ciency gain over the nonparametric estimator.

4. Asymptotic Variance Estimation and Dimension Reduction

In Theorems 1-4, the asymptotic covariance matrices of the proposed non-

parametric/semiparametric estimators have complicated forms, so it is difficult

to directly estimate them. We adopt a bootstrap procedure to approximate their

asymptotic variances.

1. Let X ∗
n = {(X∗

i , Y
∗
i , δ

∗
i ) : i = 1, . . . , n} be a bootstrap sample drawn from

{(Xj , Yj , δj) : j = 1, . . . , n}. Based on the bootstrap sample X ∗
n , compute the

bootstrap estimators ĥ∗θ and α̂∗ via the proposed approaches.

2. Let ψ̂(Y ∗
i , X

∗
i , θ, ĥ

∗
θ, α̂

∗) be the bootstrap version of ψ̂(Yi, Xi, θ, ĥθ, α̂). Define

the recentered SEEs

ψ̂c(Y ∗
i , X

∗
i , θ, ĥ

∗
θ, α̂

∗) = ψ̂(Y ∗
i , X

∗
i , θ, ĥ

∗
θ, α̂

∗)− ψ̂(Yi, Xi, θ̂SP , ĥθ, α̂)

and G∗
n(θ, ĥ

∗
θ, α̂

∗) = n−1
∑n

i=1 ψ̂
c(Y ∗

i , Z
∗
i , θ, ĥ

∗
θ, α̂

∗). Obtain the bootstrap θ̂∗ =

argminθ∈Θ ||G∗
n(θ, ĥ

∗
θ, α̂

∗)||W .

3. Repeat the two steps B times to get θ̂∗1, . . . , θ̂∗B. Take ̂var(θ̂SP ) = B−1
∑B

j=1

(θ̂∗j − θ̄∗)(θ̂∗j − θ̄∗)⊤ with θ̄∗ = B−1
∑B

j=1 θ̂
∗j , and the 100(1−α)% confidence

interval for θ to be (θ̂∗([Bα/2]), θ̂
∗
([B(1−α/2)])), where θ̂∗(1), . . . , θ̂

∗
(B) denote the

ordered values of θ̂∗1, . . . , θ̂∗B and [d] represents the integer part of d.

When the dimension of variate X is high, it is difficult to get an accurate

estimator of m0
ψ(Xi, θ, h, α0) by a kernel-smoothing procedure. Here we propose

a dimension reduction technique such that our method is still effective for high-

dimensional data.

Let S be a continuous function from Rs to R, such that E{ψ(Yi, Xi, θ, h)|Si,

δi = 0} = E{ψ(Yi, Xi, θ, h)|Xi, δi = 0} with Si = S(Xi). Then E{δiψ(Yi, Xi, θ, h)

+(1 − δi)m
0
ψ(Si, θ, h, α)} = 0, where m0

ψ(Si, θ, h, α) = E{δiψ(Yi, Xi, θ, h)O(Xi,

Yi, α)|Si}/E{δiO(Xi, Yi, α)|Si}. Consequently, the kernel-assisted SEEs can be

constructed as ψ̂R(Yi, Xi, θ, h, α) = δiψ(Yi, Xi, θ, h)+(1−δi)m̂
0
ψ(Si, θ, h, α), where
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Remark 3. One can also obtain a consistent estimator of α0 by solving
n∑

i=1
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n∑

i=1

{
δi

π(Xi, Yi, α0)
− 1

}
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where τ(·) is a user-specified vector function with the same dimension as α0 or
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matrix U defined in the Appendix is nonsingular, then η̂
p→ η0 and n1/2(η̂−η0)

L→
N (0, U−1V (U−1)⊤), where V is defined in the Supplementary Material.

Remark 4. Compared with the GMM-based validation sample method, the SEL

method is more efficient because it easily incorporates the auxiliary information

and is easy to implement as it uses only the complete observations. The auxiliary

information g(X) should be carefully selected such that the EL procedure works

because U , defined in Proposition 2, will fail to be invertible if the dimension of

the parameter α0 is too high whilst the dimension of g(X) is too low. This issue

can be addressed by utilizing a nonresponse instrumental variable that does not

relate to the response mechanism but can be used to identify the parameters in

the nonignorable response mechanism. More details on nonresponse instrumental

variables can be found in Wang, Shao and Kim (2014) and Zhao and Shao (2015).

From Proposition 2, we can obtain an asymptotic linear expansion for α̂s:

n1/2(α̂s − α0) = n−1/2
∑n

i=1Ψi(α0) + op(1), where Ψi(α0) := Ψ(Xi, Yi, α0) is an

influence function that is defined in the Supplementary Material.

Theorem 4. If the conditions (A1)−(A3) and (C1)−(C4) of the Supplementary

Material hold, the response probability model π(X,Y, α0) is correctly specified,

the solution α̂s for maximizing (3.4) exists almost everywhere, and θ̂SP is the

estimator of θ obtained by solving equation (3.1) with α̂ = α̂s, then θ̂SP − θ0 =

op(1). If the conditions (B1)−(B5) of the Supplementary Material also hold,

n1/2(θ̂SP − θ0)
L→ N (0,Σ4),

where Σ4 = (Λ⊤WΛ)−1Λ⊤WΓ4WΛ(Λ⊤WΛ)−1, Γ4 = Var{S(X,Y, θ0, h0)

−HΨ(α0)} and H is given in Theorem 2.
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Corollary 3. If q = p or W = Γ−1
4 , we have Σ4 = (Λ⊤Γ−1

4 Λ)−1, and the

estimator θ̂SP is efficient among the class of semiparametric estimator of θ using

the approach of semiparametric likelihood.

Remark 5. It is easy to show that Γ4 = Var{S(X,Y, θ0, h0)}+HVar{Ψ(α0)}H⊤

−2HCov{S(X,Y, θ0, h0),Ψ(α0)}, so the efficiency of the proposed semiparamet-

ric estimator in Theorem 4 depends on the correlation between the score func-

tion S(·) and the influence function Ψ(·). Particularly, if HVar{Ψ(α0)}H⊤

< 2HCov{S(X,Y, θ0, h0),Ψ(α0)}, the semiparametric estimator achieves effi-

ciency gain over the nonparametric estimator.

4. Asymptotic Variance Estimation and Dimension Reduction

In Theorems 1-4, the asymptotic covariance matrices of the proposed non-

parametric/semiparametric estimators have complicated forms, so it is difficult

to directly estimate them. We adopt a bootstrap procedure to approximate their

asymptotic variances.

1. Let X ∗
n = {(X∗

i , Y
∗
i , δ

∗
i ) : i = 1, . . . , n} be a bootstrap sample drawn from

{(Xj , Yj , δj) : j = 1, . . . , n}. Based on the bootstrap sample X ∗
n , compute the

bootstrap estimators ĥ∗θ and α̂∗ via the proposed approaches.

2. Let ψ̂(Y ∗
i , X

∗
i , θ, ĥ

∗
θ, α̂

∗) be the bootstrap version of ψ̂(Yi, Xi, θ, ĥθ, α̂). Define

the recentered SEEs

ψ̂c(Y ∗
i , X

∗
i , θ, ĥ

∗
θ, α̂

∗) = ψ̂(Y ∗
i , X

∗
i , θ, ĥ

∗
θ, α̂

∗)− ψ̂(Yi, Xi, θ̂SP , ĥθ, α̂)

and G∗
n(θ, ĥ

∗
θ, α̂

∗) = n−1
∑n

i=1 ψ̂
c(Y ∗

i , Z
∗
i , θ, ĥ

∗
θ, α̂

∗). Obtain the bootstrap θ̂∗ =

argminθ∈Θ ||G∗
n(θ, ĥ

∗
θ, α̂

∗)||W .

3. Repeat the two steps B times to get θ̂∗1, . . . , θ̂∗B. Take ̂var(θ̂SP ) = B−1
∑B

j=1

(θ̂∗j − θ̄∗)(θ̂∗j − θ̄∗)⊤ with θ̄∗ = B−1
∑B

j=1 θ̂
∗j , and the 100(1−α)% confidence

interval for θ to be (θ̂∗([Bα/2]), θ̂
∗
([B(1−α/2)])), where θ̂∗(1), . . . , θ̂

∗
(B) denote the

ordered values of θ̂∗1, . . . , θ̂∗B and [d] represents the integer part of d.

When the dimension of variate X is high, it is difficult to get an accurate

estimator of m0
ψ(Xi, θ, h, α0) by a kernel-smoothing procedure. Here we propose

a dimension reduction technique such that our method is still effective for high-

dimensional data.

Let S be a continuous function from Rs to R, such that E{ψ(Yi, Xi, θ, h)|Si,

δi = 0} = E{ψ(Yi, Xi, θ, h)|Xi, δi = 0} with Si = S(Xi). Then E{δiψ(Yi, Xi, θ, h)

+(1 − δi)m
0
ψ(Si, θ, h, α)} = 0, where m0

ψ(Si, θ, h, α) = E{δiψ(Yi, Xi, θ, h)O(Xi,

Yi, α)|Si}/E{δiO(Xi, Yi, α)|Si}. Consequently, the kernel-assisted SEEs can be

constructed as ψ̂R(Yi, Xi, θ, h, α) = δiψ(Yi, Xi, θ, h)+(1−δi)m̂
0
ψ(Si, θ, h, α), where
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m̂0
ψ(Si, θ, h, α) is structurally identical to m̂0

ψ(Xi, θ, h, α) at (2.4) except that X

is replaced by S. Given α̂, one can obtain a semiparametric dimension reduction

GMM estimator θ̂R = argminθ∈Θ ∥n−1
∑n

i=1 ψ̂R(Yi, Xi, θ, ĥθ, α̂)∥W .

In many applications, we assume that the working index S = S(X, γ) in-

volves an unknown parameter vector γ. Given an estimator γ̂ of γ, a set of

semiparametric dimension reduction kernel-assisted SEEs can be constructed as

ψ̂S(Yi, Xi, θ, h, α) = δiψ(Yi, Xi, θ, h) + (1 − δi)m̂
0
ψ(Ŝi, θ, h, α) with Ŝi = S(X, γ̂).

Using the arguments of Hu, Follmann and Qin (2010), we can show that the

resultant GMM estimator based on ψ̂S is asymptotically equivalent to θ̂R when

γ̂ − γ = Op(n
−1/2).

5. An Example and Some Extensions

In the Supplemental Material, we consider an example of a partial linear re-

gression model to illustrate the proposed strategy for dealing with non-ignorable

missing values. We discuss some extensions. Without considering the infinite-

dimensional nuisance function h ∈ H, the prior restriction on F (z) reduces to

E{ψ(Y,X, θ0)} = 0 for some θ0 ∈ Θ ⊂ Rp. Under an MNAR assumption such

as (2.1), and given an estimator α̂ of α, a GMM estimator of θ can be obtained

as θ̂SP = argminθ∈Θ ∥Gn(θ, α̂)∥W , where Gn(θ, α) = n−1
∑n

i=1 ψ̂(Yi, Xi, θ, α) and

ψ̂(Yi, Xi, θ0, α0) = δiψ(Yi, Xi, θ0)+ (1− δi)m̂
0
ψ(Xi, θ0, α0), m̂

0
ψ(Xi, θ0, α0) is iden-

tical to m̂0
ψ(Xi, θ0, h0, α0) at (2.4) except that ψ(Yi, Xi, θ0, h0) is replaced by

ψ(Yi, Xi, θ0).

Let m0
ψ(Xi, θ) = E{ψ(Yi, Xi, θ)|Xi, δi = 0}, ψ̃(Yi, Xi, θ, α0) = δiψ(Yi, Xi, θ)

+(1− δi)m
0
ψ(Xi, θ, α0), �Gn(θ, α) = n−1

∑n
i=1 ψ̃(Yi, Xi, θ, α), and Λ(θ) be the par-

tial derivative of G(θ) = E{ψ(Y,X, θ)} with respect to θ. Define a generic neigh-

borhood Θϱ =: {θ ∈ Θ : ∥θ − θ0∥ ≤ ϱ} of θ0 for some constant ϱ > 0.

Theorem 5. Suppose the conditions (C1)−(C4) of the Supplementary Material

hold, except that ψ(Y,X, θ0, h0) and m0
ψ(Xi, θ0, h0, α0) are, respectively, replaced

by ψ(Y,X, θ0) and m0
ψ(Xi, θ0, α0), and that the response probability model (2.1)

is correctly specified.

(a) If the function class {ψ(Y,X, θ) : θ ∈ Θ} is Glivenko-Cantelli, α̂ is a consis-

tent estimator of α and supθ∈Θ ∥Gn(θ, α̂)− �Gn(θ, α0)∥ = op(1), so θ̂SP − θ0 =

op(1).

(b) Assume that n1/2(α̂− α0) = n−1/2
∑n

i=1 C (Xi, Yi, α0) + op(1), where C (·) is

an influence function. If the function class {ψ(Y,X, θ) : θ ∈ Θϱ} is Donsker,

for some constant K > 0 and ς ∈ (0, 1] each component of ψ(Yi, Xi, θ) is

uniformly L2(P )-continuous with respect to θ in the sense that

E{supθ,θ′∈Θϱ
|ψj(Y,X, θ) − ψj(Y,X, θ′)|2} ≤ Kϱ2ς ; for all sequences ϱn =
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op(1), sup∥θ−θ0∥≤ϱn ∥Gn(θ, α̂)−G̃n(θ, α0)−Gn(θ0, α̂)+G̃n(θ0, α0)∥ = op(n
−1/2),

then

n1/2(θ̂SP − θ0)
L→ N (0,Σ5),

where Σ5=(Λ⊤WΛ)−1Λ⊤WΓ5WΛ(Λ⊤WΛ)−1, Γ5=Var{S(X,Y, θ)−HC (X,

Y, α0)}, S(X,Y, θ) = δ{π(X,Y )}−1{ψ(Y,X, θ) − m0
ψ(X, θ)} + m0

ψ(X, θ),

H = E[(1 − δ){ψ(Y,X, θ0) − m0
ψ(X, θ0, α0)}{z(X,Y, α0) − m0

z(X,α0)}⊤],
z(X,Y, α) = ∂logit{π(X,Y, α)}/∂α, m0

z(X,α) = E{z(X,Y, α)|X, δ = 0},
and logit(p) = log{p/(1− p)}.

It follows from Theorem 4 and Theorem 5 that the estimation of the infinite-

dimensional nuisance function leads to the limiting distributions of estimators of

parameters of interest defined via SEEs depending on the used nuisance param-

eter estimator.

For the parametric models E{ψ(Y,X, θ0)} = 0 with ignorable missing co-

variates, Qin, Zhang and Leung (2009) presented an EL procedure to estimate

unknown parameter θ0 when the response probability model is known or para-

metrically estimated. We can extend this approach to our semiparametric models

with nonignorable missing data by letting

ξ1(Yi, Xi, θ, h, α) =
δiψ(Yi, Xi, θ, h)

π(Xi, Yi, α)
,

ξ2(Yi, Xi, θ, h, α) =
δi − π(Xi, Yi, α)

π(Xi, Yi, α)
m0

ψ(Xi, θ, h, α). (5.1)

In this case, we have E{ξj(Yi, Xi, θ0, h0, α0)} = 0 for j = 1 and 2. In particu-

lar, the unbiasedness of the second equation does not depend on the selection

of m0
ψ(Xi, θ, h, α). Here, ξ2 can be regarded as auxiliary information, used to

improve upon the Horvitz-Thompson estimating function ξ1. Also, the number

of the SEEs ξ = (ξ⊤1 , ξ
⊤
2 )

⊤ is greater than the dimension of parameter vector

θ regardless of whether SEEs ψ(Yi, Xi, θ, h) is just-identified or over-identified.

Thus, the EL method (Owen (1990); Qin and Lawless (1994)) can be used to

combine these over-identified unbiased SEEs to obtain an improved inference.

6. Simulation Studies

We used two simulation studies, including a partial nonlinear regression

model, and a partial linear regression model, to evaluate the finite sample per-

formance of the proposed methodologies.

Experiment 1 (Partial nonlinear regression model) In this experiment,

the data were generated from the model Yi = exp(X⊤
i θ) + h(Ti) + εi for i =

1, . . . , n, where h(t) = cos(4πt), Xi = (1, Xi1, Xi2)
⊤, (X1i, X2i)

⊤, and Ti were
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m̂0
ψ(Si, θ, h, α) is structurally identical to m̂0

ψ(Xi, θ, h, α) at (2.4) except that X

is replaced by S. Given α̂, one can obtain a semiparametric dimension reduction

GMM estimator θ̂R = argminθ∈Θ ∥n−1
∑n

i=1 ψ̂R(Yi, Xi, θ, ĥθ, α̂)∥W .

In many applications, we assume that the working index S = S(X, γ) in-

volves an unknown parameter vector γ. Given an estimator γ̂ of γ, a set of

semiparametric dimension reduction kernel-assisted SEEs can be constructed as

ψ̂S(Yi, Xi, θ, h, α) = δiψ(Yi, Xi, θ, h) + (1 − δi)m̂
0
ψ(Ŝi, θ, h, α) with Ŝi = S(X, γ̂).

Using the arguments of Hu, Follmann and Qin (2010), we can show that the

resultant GMM estimator based on ψ̂S is asymptotically equivalent to θ̂R when

γ̂ − γ = Op(n
−1/2).

5. An Example and Some Extensions

In the Supplemental Material, we consider an example of a partial linear re-

gression model to illustrate the proposed strategy for dealing with non-ignorable

missing values. We discuss some extensions. Without considering the infinite-

dimensional nuisance function h ∈ H, the prior restriction on F (z) reduces to

E{ψ(Y,X, θ0)} = 0 for some θ0 ∈ Θ ⊂ Rp. Under an MNAR assumption such
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tical to m̂0
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borhood Θϱ =: {θ ∈ Θ : ∥θ − θ0∥ ≤ ϱ} of θ0 for some constant ϱ > 0.
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hold, except that ψ(Y,X, θ0, h0) and m0
ψ(Xi, θ0, h0, α0) are, respectively, replaced

by ψ(Y,X, θ0) and m0
ψ(Xi, θ0, α0), and that the response probability model (2.1)

is correctly specified.

(a) If the function class {ψ(Y,X, θ) : θ ∈ Θ} is Glivenko-Cantelli, α̂ is a consis-

tent estimator of α and supθ∈Θ ∥Gn(θ, α̂)− �Gn(θ, α0)∥ = op(1), so θ̂SP − θ0 =

op(1).

(b) Assume that n1/2(α̂− α0) = n−1/2
∑n

i=1 C (Xi, Yi, α0) + op(1), where C (·) is

an influence function. If the function class {ψ(Y,X, θ) : θ ∈ Θϱ} is Donsker,

for some constant K > 0 and ς ∈ (0, 1] each component of ψ(Yi, Xi, θ) is

uniformly L2(P )-continuous with respect to θ in the sense that

E{supθ,θ′∈Θϱ
|ψj(Y,X, θ) − ψj(Y,X, θ′)|2} ≤ Kϱ2ς ; for all sequences ϱn =
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op(1), sup∥θ−θ0∥≤ϱn ∥Gn(θ, α̂)−G̃n(θ, α0)−Gn(θ0, α̂)+G̃n(θ0, α0)∥ = op(n
−1/2),

then

n1/2(θ̂SP − θ0)
L→ N (0,Σ5),

where Σ5=(Λ⊤WΛ)−1Λ⊤WΓ5WΛ(Λ⊤WΛ)−1, Γ5=Var{S(X,Y, θ)−HC (X,

Y, α0)}, S(X,Y, θ) = δ{π(X,Y )}−1{ψ(Y,X, θ) − m0
ψ(X, θ)} + m0

ψ(X, θ),

H = E[(1 − δ){ψ(Y,X, θ0) − m0
ψ(X, θ0, α0)}{z(X,Y, α0) − m0

z(X,α0)}⊤],
z(X,Y, α) = ∂logit{π(X,Y, α)}/∂α, m0

z(X,α) = E{z(X,Y, α)|X, δ = 0},
and logit(p) = log{p/(1− p)}.

It follows from Theorem 4 and Theorem 5 that the estimation of the infinite-

dimensional nuisance function leads to the limiting distributions of estimators of

parameters of interest defined via SEEs depending on the used nuisance param-

eter estimator.

For the parametric models E{ψ(Y,X, θ0)} = 0 with ignorable missing co-

variates, Qin, Zhang and Leung (2009) presented an EL procedure to estimate

unknown parameter θ0 when the response probability model is known or para-

metrically estimated. We can extend this approach to our semiparametric models

with nonignorable missing data by letting

ξ1(Yi, Xi, θ, h, α) =
δiψ(Yi, Xi, θ, h)

π(Xi, Yi, α)
,

ξ2(Yi, Xi, θ, h, α) =
δi − π(Xi, Yi, α)

π(Xi, Yi, α)
m0

ψ(Xi, θ, h, α). (5.1)

In this case, we have E{ξj(Yi, Xi, θ0, h0, α0)} = 0 for j = 1 and 2. In particu-

lar, the unbiasedness of the second equation does not depend on the selection

of m0
ψ(Xi, θ, h, α). Here, ξ2 can be regarded as auxiliary information, used to

improve upon the Horvitz-Thompson estimating function ξ1. Also, the number

of the SEEs ξ = (ξ⊤1 , ξ
⊤
2 )

⊤ is greater than the dimension of parameter vector

θ regardless of whether SEEs ψ(Yi, Xi, θ, h) is just-identified or over-identified.

Thus, the EL method (Owen (1990); Qin and Lawless (1994)) can be used to

combine these over-identified unbiased SEEs to obtain an improved inference.

6. Simulation Studies

We used two simulation studies, including a partial nonlinear regression

model, and a partial linear regression model, to evaluate the finite sample per-

formance of the proposed methodologies.

Experiment 1 (Partial nonlinear regression model) In this experiment,

the data were generated from the model Yi = exp(X⊤
i θ) + h(Ti) + εi for i =

1, . . . , n, where h(t) = cos(4πt), Xi = (1, Xi1, Xi2)
⊤, (X1i, X2i)

⊤, and Ti were
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independently generated as N (0,Σx) and U(0, 1), respectively, and the εi were

independently generated as N (0, 1) and U(0, 1). We took the true values of

θ = (θ1, θ2, θ3)
⊤ and Σx = (σxij) to be θ = (1, 1.5, 0.5)⊤ and σxij = 0.5|i−j| for

1 ≤ i, j ≤ 2, respectively. We assumed Zi = (X1i, X2i, Ti)
⊤’s were completely

observed, but Yi’s were subject to missingness. With δ = 1 if Y was observed

and δ = 0 if Y was missing, δi of Yi was Bernoulli with probability πi(α) :=

π(Zi, Yi, α),

πi(α) =
exp(0.5 + 0.01X1i + 0.01X2i + 0.25Ti + 0.01Yi)

1 + exp(0.5 + 0.01X1i + 0.01X2i + 0.25Ti + 0.01Yi)
.

The response rate was about 67% for the above missingness data mechanism.

We took sample size n = 200, and simulated 1,000 datasets. To estimate the

propensity score, we considered a correctly specified model (C)

πi(α) =
exp(α0 + α1X1i + α2X2i + α3Ti + α4Yi)

1 + exp(α0 + α1X1i + α2X2i + α3Ti + α4Yi)
,

and a misspecified model (M)

πi(α) = Φ(α0 + α1X1i + α2X2i + α3Ti + α4Yi),

where Φ(·) is the cumulative density function of the standard normal. Model (M)

was used to investigate the robustness of the proposed Propensity-Score-Based

Nonparametric Imputation procedure to the misspecified response probability

model.

To illustrate the proposed methods, we constructed the SEEs

E1 : ψ(Yi, Zi, θ, h) = X̃i

{
Yi − exp(X⊤

i θ)− h(Ti)
}
,

E2 : ψ(Yi, Zi, θ, h) = X̃i

{
Yi − exp(X⊤

i θ)− h(Ti)
}
,

where X̃i = X̃i − E(X̃i|Ti), and X̃i = Xi exp(X
⊤
i θ). Here, SEEs E1 was con-

structed by using the first-order-condition for minimizing the objective function

Q1(θ) =
∑n

i=1(Yi− exp(X⊤
i θ)−hθ(Ti))

2 in which hθ(T ) = E{Y − exp(X⊤θ)|T},
whilst SEEs E2 was constructed by using the first-order-condition for minimiz-

ing the objective function Q2(θ) =
∑n

i=1(Yi − exp(X⊤
i θ) − h(Ti))

2. Clearly,

E{ψ(Yi, Zi, θ, h)} = 0 for E1 and E2.

Let O(Zi, Yi, α) = π−1(Zi, Yi, α)−1 and Kb(·) be a univariate kernel function.
We considered as estimator of h(t),

ĥθ(t) =

n∑
i=1

δiO(Zi, Yi, α)Kb(t− Ti){Yi − exp(X⊤
i θ)}

n∑
i=1

δiO(Zi, Yi, α)Kb(t− Ti)

, (6.1)
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a nonparametric regression estimator of

h̃0θ(t) =
E{δ(Y − exp(X⊤θ))O(Z, Y, α)|T = t}

E{δO(Z, Y, α)|T = t}
.

Here ĥθ(t) is not a consistent estimator of h(t) because limn→∞ ĥθ(T ) = h̃0θ(T ) ̸=
E{(Y − exp(X⊤θ))|T} = h(T ) a.s. The conditional expectation E(X̃i|Ti) can be

estimated via the same nonparametric method. Let

m̂0
ψ(Z, θ, ĥθ, α) =

n∑
i=1

δiO(Zi, Yi, α)Ka(Z − Zi)ψ(Yi, Zi, θ, ĥθ(Ti))

n∑
i=1

δiO(Zi, Yi, α)Ka(Z − Zi)

, (6.2)

where Ka(·) is a dz-dimensional kernel function. Then, the modified SEEs for θ

is given by

Gn(θ, ĥθ, α) =
1

n

n∑
i=1

{δiψ(Yi, Zi, θ, ĥθ(Ti)) + (1− δi)m̂
0
ψ(Zi, θ, ĥθ, α)}.

Two approaches are employed to estimate α: a GMM-based validation sample

method with 25% follow-up rate; an SEL method by incorporating the following

auxiliary information

g(Zi, Yi, α) =

(
δiπ

−1(Zi, Yi, α)(X1i − X̄1)

δiπ
−1(Zi, Yi, α)(X2i − X̄2)

)
,

where X̄1 = n−1
∑n

i=1X1i, and X̄2 = n−1
∑n

i=1X2i.

Given an estimator of α, we considered three estimators of θ: a validation

sample-based estimator (vse), an SEL-based estimator (sel), Chen and Van Kei-

legom’s (2013) estimator under MAR assumption (mar). The kernel function

was taken to be the Gaussian kernel, and κ = 20 observations were imputed

for each of missing Yi’s in computing Chen and Van Keilegom’s (2013) estima-

tor. The bandwidths b relating to (6.1) and a relating to (6.2) were taken to be

a = b = n−1/5.

Results are reported in Table 1, where ‘Bias’ denotes the absolute difference

between the true value and the mean of the estimates based on 1,000 replications,

‘RMS’ is the root mean square between the estimates based on 1,000 replications

and its true value, ‘Std’ is the standard deviation of estimates based on 1,000

replications. Examination of Table 1 reveals the following findings: under the

considered settings, our proposed semiparametric estimators vse and sel perform

well in the sense that their corresponding Biases are quite close to zero and their

corresponding values of RMS are relatively close to those of Std; the performances

of our proposed semiparametric estimators computed using the misspecified re-

sponse probability model (M) do not differ much from that of using the correctly
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tor. The bandwidths b relating to (6.1) and a relating to (6.2) were taken to be
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Results are reported in Table 1, where ‘Bias’ denotes the absolute difference

between the true value and the mean of the estimates based on 1,000 replications,

‘RMS’ is the root mean square between the estimates based on 1,000 replications

and its true value, ‘Std’ is the standard deviation of estimates based on 1,000

replications. Examination of Table 1 reveals the following findings: under the

considered settings, our proposed semiparametric estimators vse and sel perform

well in the sense that their corresponding Biases are quite close to zero and their

corresponding values of RMS are relatively close to those of Std; the performances

of our proposed semiparametric estimators computed using the misspecified re-

sponse probability model (M) do not differ much from that of using the correctly
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specified response probability model (C), our proposed estimators are robust to

the misspecified response probability model; the proposed semiparametric es-

timator sel has a slight advantage over the estimator vse because sel provides

smaller RMS and Std than vse in most cases; the mar estimator has larger values

of Bias and RMS than of the vse and sel estimators.

We also investigated the performance of the proposed estimators for the

response model parameter α under the correctly specified response probability

model (C). Their corresponding values of Bias, RMS, and Std are in Table 2.

Inspection of Table 2 indicates that the proposed two estimators are nearly un-

biased, and the semi-empirical likelihood method outperforms the GMM-based

validation sample method in terms of RMS and Std.

Experiment 2 (Partial linear regression model) To investigate the per-

formance of the proposed bootstrapping approach to approximate variance es-

timation of our estimators, we conducted a second simulation study. Here, the

data were generated from the model Yi = Xiθ + h(Ti) + εi for i = 1, . . . , n,

where h(t) = cos(4πt), Xi’s were independently N (0, 1), Ti’s were independently

U(0, 1) and then sorted in ascending order, εi’s were independently N (0, 1) and

U(0, 1). The true value of θ was set to 1. We assumed the Zi = (Xi, Ti)
⊤’s were

completely observed, but the Yi’s subject to missingness. With δi = 1 if Yi was

observed, and δi = 0 if not. The δi were independently Bernoulli with probability

πi(α) := π(Zi, Yi, α) specified by

Model I: πi(α) = exp(α̃0 + α̃1Yi)/(1 + exp(α̃0 + α̃1Yi)), where α = (α̃0, α̃1)
⊤,

and the true value of α̃1 was α̃1 = 0.2;

Model II: πi(α) = exp(α̃0 + α̃1Xi + α̃2Yi)/(1 + exp(α̃0 + α̃1Xi + α̃2Yi)), where

α = (α̃0, α̃1, α̃2)
⊤, and the true values of α̃1 and α̃2 were α̃1 = 0.5 and α̃2 = 0.2.

For these models, considered in Qin, Leung and Shao (2002), we took the true

value of α̃0 to be 2.5, 1.5, 1.0, 0.5, 0.01, leading to the average missing proportions

7%, 17%, 25%, 36% and 47% for Model I, and 10%, 21%, 29%, 39% and 50% for

Model II, respectively.

The proposed SEL method was adopted to estimate α in Model I and Model

II by incorporating the auxiliary information g(Xi, Ti) = (Xi − X̄, Ti − T̄ ) with

X̄ = n−1
∑n

i=1Xi and T̄ = n−1
∑n

i=1 Ti. Under the MNAR assumption, h(t) =

E{(δY + (1 − δ)m0
Y (Z) − Xθ)|T = t}, where m0

Y (Z) = E(Y |X,T, δ = 0), and

a nonparametric estimator of m0
Y (Z) is m̂0

Y (Z) =
∑n

j=1 δjO(Zj , Yj , α)Ka(Z −
Zj)Yj/

∑n
ℓ=1 δℓO(Zℓ, Yℓ, α)Ka(Z − Zℓ), where O(Zj , Yj , α) = π−1(Zj , Yj , α) − 1.

Then, a consistent nonparametric estimator of h(t) is

ĥθ(t) =

n∑
i=1

Wni(t){δiYi + (1− δi)m̂
0
Y (Zi)−Xiθ}, (6.3)
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Table 1. Performance of various estimators in the simulation study: Exper-
iment 1.

ε ∼ N (0, 1) ε ∼ U(0, 1)

SEEs Model Methods Est. θ̂1 θ̂2 θ̂3 θ̂1 θ̂2 θ̂3

E1 C vse Bias 0.000 0.000 0.000 0.000 0.000 0.000

RMS 0.022 0.009 0.006 0.014 0.006 0.004

Std 0.022 0.009 0.006 0.014 0.006 0.004

sel Bias 0.000 0.000 0.000 0.000 0.000 0.000

RMS 0.022 0.009 0.006 0.013 0.006 0.004

Std 0.022 0.009 0.006 0.013 0.006 0.004

mar Bias -0.850 0.248 0.087 -0.862 0.216 0.125

RMS 1.397 0.417 0.300 2.645 0.370 1.139

Std 1.110 0.335 0.287 2.503 0.301 1.133

M vse Bias 0.001 0.000 0.000 0.000 0.000 0.000

RMS 0.024 0.010 0.006 0.014 0.006 0.004

Std 0.024 0.010 0.006 0.014 0.006 0.004

sel Bias 0.001 0.000 0.000 0.000 0.000 0.000

RMS 0.023 0.009 0.006 0.013 0.006 0.004

Std 0.023 0.009 0.006 0.013 0.006 0.004

E2 C vse Bias 0.006 -0.002 -0.001 0.004 -0.001 -0.001

RMS 0.034 0.013 0.006 0.019 0.008 0.004

Std 0.033 0.013 0.006 0.018 0.008 0.004

sel Bias 0.003 -0.001 0.000 0.002 0.000 0.000

RMS 0.022 0.009 0.006 0.014 0.006 0.004

Std 0.022 0.009 0.006 0.014 0.006 0.004

mar Bias -0.387 0.057 0.078 -0.385 0.057 0.077

RMS 2.725 0.332 1.223 2.688 0.330 1.207

Std 2.700 0.328 1.222 2.663 0.326 1.205

M vse Bias 0.008 -0.003 -0.001 0.009 -0.003 -0.001

RMS 0.086 0.034 0.012 0.069 0.026 0.010

Std 0.086 0.034 0.012 0.069 0.025 0.010

sel Bias 0.013 -0.004 -0.002 0.012 -0.004 -0.002

RMS 0.083 0.033 0.012 0.070 0.027 0.010

Std 0.082 0.033 0.012 0.069 0.026 0.010

where Wni(t) = Kb(t − Ti)/
∑n

j=1Kb(t − Tj), and Kb(·) is a univariate kernel

function. To use the method to estimate θ, we consider SEEs: ψ(Y, Z, θ, h) =

X(Y −Xθ − h(t)).

For comparison, we considered two approaches to estimate θ:

(i) the Propensity-Score-Based Nonparametric Imputation estimator θ̂sp: the so-
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specified response probability model (C), our proposed estimators are robust to

the misspecified response probability model; the proposed semiparametric es-
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smaller RMS and Std than vse in most cases; the mar estimator has larger values

of Bias and RMS than of the vse and sel estimators.

We also investigated the performance of the proposed estimators for the
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model (C). Their corresponding values of Bias, RMS, and Std are in Table 2.
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timation of our estimators, we conducted a second simulation study. Here, the
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ĥθ(t) =

n∑
i=1

Wni(t){δiYi + (1− δi)m̂
0
Y (Zi)−Xiθ}, (6.3)

SEMIPARAMETRIC MODELS WITH NONIGNORABLE MISSING DATA 17

Table 1. Performance of various estimators in the simulation study: Exper-
iment 1.

ε ∼ N (0, 1) ε ∼ U(0, 1)

SEEs Model Methods Est. θ̂1 θ̂2 θ̂3 θ̂1 θ̂2 θ̂3

E1 C vse Bias 0.000 0.000 0.000 0.000 0.000 0.000

RMS 0.022 0.009 0.006 0.014 0.006 0.004

Std 0.022 0.009 0.006 0.014 0.006 0.004

sel Bias 0.000 0.000 0.000 0.000 0.000 0.000

RMS 0.022 0.009 0.006 0.013 0.006 0.004

Std 0.022 0.009 0.006 0.013 0.006 0.004

mar Bias -0.850 0.248 0.087 -0.862 0.216 0.125

RMS 1.397 0.417 0.300 2.645 0.370 1.139

Std 1.110 0.335 0.287 2.503 0.301 1.133

M vse Bias 0.001 0.000 0.000 0.000 0.000 0.000

RMS 0.024 0.010 0.006 0.014 0.006 0.004

Std 0.024 0.010 0.006 0.014 0.006 0.004

sel Bias 0.001 0.000 0.000 0.000 0.000 0.000

RMS 0.023 0.009 0.006 0.013 0.006 0.004

Std 0.023 0.009 0.006 0.013 0.006 0.004

E2 C vse Bias 0.006 -0.002 -0.001 0.004 -0.001 -0.001

RMS 0.034 0.013 0.006 0.019 0.008 0.004

Std 0.033 0.013 0.006 0.018 0.008 0.004

sel Bias 0.003 -0.001 0.000 0.002 0.000 0.000

RMS 0.022 0.009 0.006 0.014 0.006 0.004

Std 0.022 0.009 0.006 0.014 0.006 0.004

mar Bias -0.387 0.057 0.078 -0.385 0.057 0.077

RMS 2.725 0.332 1.223 2.688 0.330 1.207

Std 2.700 0.328 1.222 2.663 0.326 1.205

M vse Bias 0.008 -0.003 -0.001 0.009 -0.003 -0.001

RMS 0.086 0.034 0.012 0.069 0.026 0.010

Std 0.086 0.034 0.012 0.069 0.025 0.010

sel Bias 0.013 -0.004 -0.002 0.012 -0.004 -0.002

RMS 0.083 0.033 0.012 0.070 0.027 0.010

Std 0.082 0.033 0.012 0.069 0.026 0.010

where Wni(t) = Kb(t − Ti)/
∑n

j=1Kb(t − Tj), and Kb(·) is a univariate kernel

function. To use the method to estimate θ, we consider SEEs: ψ(Y, Z, θ, h) =

X(Y −Xθ − h(t)).

For comparison, we considered two approaches to estimate θ:

(i) the Propensity-Score-Based Nonparametric Imputation estimator θ̂sp: the so-
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Table 2. Performance of α̂ under model C in the simulation study: Experi-
ment 1.

ε ∼ N (0, 1) ε ∼ U(0, 1)
Parameter Method vse sel vse sel

α̂0 Bias 0.080 0.080 0.089 0.089
RMS 0.315 0.315 0.302 0.302
Std 0.305 0.305 0.289 0.289

α̂1 Bias 0.018 0.038 0.004 0.026
RMS 0.354 0.186 0.251 0.152
Std 0.354 0.182 0.251 0.150

α̂2 Bias 0.005 0.002 -0.003 0.010
RMS 0.232 0.101 0.304 0.098
Std 0.232 0.101 0.305 0.098

α̂3 Bias -0.013 -0.018 0.014 0.009
RMS 0.427 0.390 0.386 0.366
Std 0.427 0.390 0.386 0.366

α̂4 Bias 0.013 -0.005 0.014 -0.005
RMS 0.102 0.018 0.091 0.016
Std 0.101 0.017 0.090 0.015

lution to Gn(θ, ĥθ, α̂) = 0, where

Gn(θ, ĥθ, α) =
1

n

n∑
i=1

{δiψ(Yi, Zi, θ, ĥθ(Ti)) + (1− δi)m̂
0
ψ(Zi, θ, ĥθ, α)} (6.4)

in which m̂0
ψ(Zi, θ, ĥθ, α) is defined at (6.2);

(ii) Qin, Zhang and Leung’s (2009) estimator θ̂el, an EL estimator of θ found by

maximizing the EL ratio function

ℓ̂e(θ) = −
n∑

i=1

log
{
1 + λ⊤ξ(Yi, Zi, θ, ĥθ, α̂)

}
,

where ξ(Yi, Zi, θ, ĥθ, α̂) = (ξ1(Yi, Zi, θ, ĥθ, α̂), ξ2(Yi, Zi, θ, ĥθ, α̂))
⊤, in which ξ1

and ξ2 are defined at (5.1) except that m0
ψ(Xi, θ, h, α) is replaced by m̂0

ψ(Zi, θ, ĥθ,

α̂) and π(Xi, Yi, α) is replaced by π(Xi, Yi, α̂), and λ = λ(θ) is a solution to

1

n

n∑
i=1

ξ(Yi, Zi, θ, ĥθ, α̂)

1 + λ⊤ξ(Yi, Zi, θ, ĥθ, α̂)
= 0.

Here, we considered n = 200 together with 500 replications, the Gaussian kernel,

and bandwidths a = 0.3 and b = 0.2. To approximate asymptotic variances

and evaluate confidence intervals of estimators θ̂sp and θ̂el we used the bootstrap

sample B = 100.
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Table 3 presents the values of Bias, standard deviation (Std), and standard
error (SE) evaluated by using the bootstrap method described in Section 4, and
coverage probability (CP) of the approximate 95% confidence intervals for θ̂sp
and θ̂el. Examination of Table 3 shows that θ̂sp and θ̂el behave well in that their
absolute values of Bias and Std are less than 0.07 and 0.17, respectively; the
coverage probabilities are quite close to the pre-specified confidence level 95%
when the nonresponse proportion is not too high, the values of SE are rather
close to those of Std, indicating that our presented bootstrap method performs
well; the smaller α̃0 is, the larger the value of SE or Std is; the higher the non-
response proportion is, the larger the difference between the empirical coverage
probability and the pre-specified confidence level is; our proposed estimator θ̂sp
performs better than does Qin, Zhang and Leung’s (2009) EL estimator because
the SEs/Stds of the former are less than those of the latter; increasing the mean
response rates improves the accuracy of parameter estimate and the empirical
coverage of confidence interval, as expected.

7. An Example

The Mobility Program Clinical Research Unit of St. Michael’s Hospital, affil-
iated with the University of Toronto, conducted a study aimed at understanding
prognostic factors associated with more successful outcomes (return to work or
with higher at work productivity) after an upper limb injury. As an illustration
of the proposed methods, we focused on a subset of samples with missing val-
ues on response variable only, but completely observed on the selected predictor
variables. The response variable is the work productivity after one year of injury.
The Work Limitations Questionnaire (WLQ) (Amick et al. (2004); Lerner et al.
(2001); Lerner et al. (2002)) was used as a measure of at-work productivity loss.
The reverse of this scale was used as a measure of work productivity (response
variable (Y )). The response measure was only completed by persons who were
working at the time of assessment and missing for those not at work. The poten-
tial work productivity for those away from work was much lower if they were at
work. Therefore, the missing data mechanism of Y was not at random. About
48% of participants was missing on this response variable. In this analysis, we
were interested in the predictor variables pain disorder score (x1), better mental
health factor score (x2), and supervisor support (x3). We also wanted to know
whether supervisor support moderated the effects of level of pain disorder and
mental health status on work productivity, interactions x1x3 and x2x3 were in-
cluded in the regression model. The controlled covariate was participants’ age
(t). A sample of 347 was used for the current analysis.

Figure 1 shows the scatter plot of work limitation questionnaire index score
(Y ) against age (t) and the fitted smoothing spline, ignoring those with miss-
ing values on Y . Clearly, the relationship between work productivity and age is
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Table 2. Performance of α̂ under model C in the simulation study: Experi-
ment 1.
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lution to Gn(θ, ĥθ, α̂) = 0, where

Gn(θ, ĥθ, α) =
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= 0.

Here, we considered n = 200 together with 500 replications, the Gaussian kernel,

and bandwidths a = 0.3 and b = 0.2. To approximate asymptotic variances

and evaluate confidence intervals of estimators θ̂sp and θ̂el we used the bootstrap

sample B = 100.
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Table 3 presents the values of Bias, standard deviation (Std), and standard
error (SE) evaluated by using the bootstrap method described in Section 4, and
coverage probability (CP) of the approximate 95% confidence intervals for θ̂sp
and θ̂el. Examination of Table 3 shows that θ̂sp and θ̂el behave well in that their
absolute values of Bias and Std are less than 0.07 and 0.17, respectively; the
coverage probabilities are quite close to the pre-specified confidence level 95%
when the nonresponse proportion is not too high, the values of SE are rather
close to those of Std, indicating that our presented bootstrap method performs
well; the smaller α̃0 is, the larger the value of SE or Std is; the higher the non-
response proportion is, the larger the difference between the empirical coverage
probability and the pre-specified confidence level is; our proposed estimator θ̂sp
performs better than does Qin, Zhang and Leung’s (2009) EL estimator because
the SEs/Stds of the former are less than those of the latter; increasing the mean
response rates improves the accuracy of parameter estimate and the empirical
coverage of confidence interval, as expected.

7. An Example

The Mobility Program Clinical Research Unit of St. Michael’s Hospital, affil-
iated with the University of Toronto, conducted a study aimed at understanding
prognostic factors associated with more successful outcomes (return to work or
with higher at work productivity) after an upper limb injury. As an illustration
of the proposed methods, we focused on a subset of samples with missing val-
ues on response variable only, but completely observed on the selected predictor
variables. The response variable is the work productivity after one year of injury.
The Work Limitations Questionnaire (WLQ) (Amick et al. (2004); Lerner et al.
(2001); Lerner et al. (2002)) was used as a measure of at-work productivity loss.
The reverse of this scale was used as a measure of work productivity (response
variable (Y )). The response measure was only completed by persons who were
working at the time of assessment and missing for those not at work. The poten-
tial work productivity for those away from work was much lower if they were at
work. Therefore, the missing data mechanism of Y was not at random. About
48% of participants was missing on this response variable. In this analysis, we
were interested in the predictor variables pain disorder score (x1), better mental
health factor score (x2), and supervisor support (x3). We also wanted to know
whether supervisor support moderated the effects of level of pain disorder and
mental health status on work productivity, interactions x1x3 and x2x3 were in-
cluded in the regression model. The controlled covariate was participants’ age
(t). A sample of 347 was used for the current analysis.

Figure 1 shows the scatter plot of work limitation questionnaire index score
(Y ) against age (t) and the fitted smoothing spline, ignoring those with miss-
ing values on Y . Clearly, the relationship between work productivity and age is
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Table 3. Performance of θ̂sp and θ̂el in the simulation study: Experiment 2.

Missing α̃0

εi mechanism Estimator 2.5 1.5 1.0 0.5 0.01

N (0, 1) ModelI θ̂sp Bias 0.002 0.004 0.005 -0.001 -0.003
SE 0.090 0.097 0.104 0.113 0.127
Std 0.088 0.098 0.104 0.114 0.134
CP 0.946 0.946 0.940 0.942 0.924

θ̂el Bias -0.015 -0.013 -0.015 -0.023 -0.033
SE 0.110 0.111 0.115 0.122 0.136
Std 0.103 0.105 0.111 0.121 0.142
CP 0.968 0.966 0.954 0.942 0.924

Model II θ̂ps Bias -0.004 -0.009 -0.009 -0.011 -0.016
SE 0.093 0.103 0.112 0.125 0.139
Std 0.094 0.105 0.113 0.134 0.155
CP 0.946 0.944 0.938 0.930 0.904

θ̂el Bias -0.019 -0.032 -0.037 -0.051 -0.067
SE 0.109 0.113 0.121 0.136 0.154
Std 0.102 0.113 0.123 0.142 0.166
CP 0.958 0.942 0.920 0.902 0.874

U(0, 1) ModelI θ̂sp Bias -0.001 0.000 0.000 0.000 0.001
SE 0.054 0.057 0.061 0.067 0.074
Std 0.054 0.057 0.062 0.068 0.078
CP 0.934 0.942 0.940 0.926 0.922

θ̂el Bias -0.009 -0.010 -0.010 -0.014 -0.017
SE 0.066 0.066 0.068 0.073 0.082
Std 0.061 0.062 0.064 0.069 0.080
CP 0.950 0.964 0.954 0.930 0.926

Model II θ̂ps Bias 0.002 0.004 0.005 0.012 0.008
SE 0.056 0.064 0.069 0.077 0.087
Std 0.056 0.064 0.072 0.082 0.090
CP 0.934 0.942 0.934 0.940 0.932

θ̂el Bias -0.013 -0.016 -0.018 -0.020 -0.035
SE 0.066 0.072 0.077 0.084 0.095
Std 0.063 0.070 0.077 0.087 0.098
CP 0.956 0.948 0.928 0.910 0.888

not linear. Therefore, we considered the semi-parametric linear regression mod-

els for the response process Yi = X⊤
i θ + h(ti) + εi for i = 1, . . . , 347, where

Xi = (x1i, x2i, x3i, x1ix3i, x2ix3i)
⊤ and θ = (θ1, θ2, θ3, θ4, θ5)

⊤. This model as-

sumes that work productivity depends linearly on predictor variables in Xi but

nonlinearly on age (t). Motivated by Lee and Tang (2006), we considered the

nonignorable missingness data mechanism models
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Figure 1. Canada WSIB data, plot of observations, and a smoothing spline
fit using complete-case analysis.

Model 1: π(Zi, Yi, α) =
exp(α0 + α⊤

1 Xi + α2ti + α3Yi)

1 + exp(α0 + α⊤
1 Xi + α2ti + α3Yi)

,

Model 2: π(Zi, Yi, α) = Φ(α0+α⊤
1 Xi+α2ti+α3Yi), where α = (α0, α

⊤
1 , α2, α3)

⊤

and Zi = (X⊤
i , ti)

⊤. Models 1 and 2 were adopted to investigate the sensitivity

of the proposed procedures to the potentially misspecified response probability

models. To illustrate our methods, we considered the SEEs ψ(Yi, Zi, θ, h) =

X̃i

{
Yi −X⊤

i θ − h(ti)
}
, where X̃i = Xi − E(Xi|ti) and Zi = (X⊤

i , ti)
⊤. A non-

parametric estimator ĥθ(t) of h(t) was constructed by using X⊤
i θ to replace Xiθ

at (6.3), and the kernel function was the Gaussian with the bandwidths σ̂tn
−1/5,

where σ̂t was the standard deviation of observations {ti : i = 1, . . . , 347}.
The GMM-based validation sample method with 25% follow-up rate and the

semi-parametric empirical likelihood method were employed to estimate unknown

parameters in α. To implement the semi-parametric empirical likelihood method,

we considered the auxiliary information gk(Zi, Yi, α) = δiπ
−1(Zi, Yi, α)(Xki−X̄k)

for k = 1, 2, 3, 4 and 5, where X̄k = n−1
∑n

i=1Xki and Xki is the kth component

of Xi. Then, the semi-parametric estimators of θ, vse and sel, were obtained

from a set of the imputed SEEs as given at (6.4). The standard errors (SE) of

the proposed estimators were evaluated by using the bootstrap approach. The

results are given in Table 4. Examination of Table 4 indicates that the assumed
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⊤. This model as-
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Figure 1. Canada WSIB data, plot of observations, and a smoothing spline
fit using complete-case analysis.

Model 1: π(Zi, Yi, α) =
exp(α0 + α⊤

1 Xi + α2ti + α3Yi)

1 + exp(α0 + α⊤
1 Xi + α2ti + α3Yi)

,

Model 2: π(Zi, Yi, α) = Φ(α0+α⊤
1 Xi+α2ti+α3Yi), where α = (α0, α

⊤
1 , α2, α3)

⊤

and Zi = (X⊤
i , ti)

⊤. Models 1 and 2 were adopted to investigate the sensitivity

of the proposed procedures to the potentially misspecified response probability

models. To illustrate our methods, we considered the SEEs ψ(Yi, Zi, θ, h) =

X̃i

{
Yi −X⊤

i θ − h(ti)
}
, where X̃i = Xi − E(Xi|ti) and Zi = (X⊤

i , ti)
⊤. A non-

parametric estimator ĥθ(t) of h(t) was constructed by using X⊤
i θ to replace Xiθ

at (6.3), and the kernel function was the Gaussian with the bandwidths σ̂tn
−1/5,

where σ̂t was the standard deviation of observations {ti : i = 1, . . . , 347}.
The GMM-based validation sample method with 25% follow-up rate and the

semi-parametric empirical likelihood method were employed to estimate unknown

parameters in α. To implement the semi-parametric empirical likelihood method,

we considered the auxiliary information gk(Zi, Yi, α) = δiπ
−1(Zi, Yi, α)(Xki−X̄k)

for k = 1, 2, 3, 4 and 5, where X̄k = n−1
∑n

i=1Xki and Xki is the kth component

of Xi. Then, the semi-parametric estimators of θ, vse and sel, were obtained

from a set of the imputed SEEs as given at (6.4). The standard errors (SE) of

the proposed estimators were evaluated by using the bootstrap approach. The

results are given in Table 4. Examination of Table 4 indicates that the assumed
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Table 4. Estimated parameters and standard errors in illustrative example.

Model Methods Statistic θ̂1 θ̂2 θ̂3 θ̂4 θ̂5

Model 1 vse EST -1.595 1.280 -0.353 0.153 0.665
SE 0.474 0.535 0.618 0.495 0.570

sel EST -1.663 1.151 -0.118 1.006 1.662
SE 0.524 0.480 0.545 0.586 0.584

Model 2 vse EST -1.781 1.458 -0.555 0.209 0.205
SE 0.687 0.878 0.827 0.654 0.738

sel EST -1.783 1.424 -0.300 0.125 0.643
SE 0.508 0.546 0.549 0.576 0.564

response probability models led to quite similar parameter estimates, which sug-

gests that our proposed estimators are insensitive to the choice of response prob-

ability models; the proposed semiparametric estimator sel has a slight advantage

over estimator vse because of a smaller SE.

We computed ĥθ(t) via (6.3) with different parametrically estimated propen-

sity scores, and present the corresponding estimated curves for h(t) in Figure 2.

From Figure 2, we find that the relationship between age and work productivity

is negative, but non-linear (ignoring those at two ends of age range because of

fewer data points before age 20 and after age 65). The results indicate that the

level pain disorder is negatively related to work productivity and better men-

tal health is positively related to the work productivity. This together with the

results given in Table 4 imply an interesting finding that the social supports

enhance the positive relationship between mental health and work productivity.

8. Discussion

Under MNAR, we have developed kernel-assisted SEE imputation based on

propensity scores to estimate parameters of interest for a general class of semi-

parametric models. The proposed method is applicable if the propensity scores

can be estimated parametrically. To obtain a consistent estimator of the propen-

sity score, we consider a validation-sample-based method and a semi-empirical

likelihood approach using available observations. The semi-empirical likelihood

method is promising since it allows one to incorporate auxiliary information from

the calibration constraints for the data with MNAR mechanism, and is able to

achieve high efficiency. also promising because it can achieve both good robust-

ness and efficiency.

There are some related research topics that require further investigation.

For example, it is of interest to generalize the proposed propensity-score-based

and kernel-assisted SEEs imputation approach from a cross-sectional study to a
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Figure 2. Canada WSIB data, estimated curve of h(t) using the proposed
propensity score based nonparametric imputation.

longitudinal study (Qu, Lindsay and Li (2000)), and to explore doubly robust es-

timation using SEEs inference under the MNAR mechanism. It is also important

to develop diagnostic measures for the GMM or EL approach using SEEs (Zhu

et al. (2008)), in additional to constructing EL confidence regions for parameters

and EL confidence bands for the nonparametric functional component under the

general class of SEEs for nonignorable missing data.

Supplementary Material

Supplementary Materials available in the attached file include technical con-

ditions and proofs.
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parametric models. The proposed method is applicable if the propensity scores

can be estimated parametrically. To obtain a consistent estimator of the propen-

sity score, we consider a validation-sample-based method and a semi-empirical

likelihood approach using available observations. The semi-empirical likelihood

method is promising since it allows one to incorporate auxiliary information from

the calibration constraints for the data with MNAR mechanism, and is able to

achieve high efficiency. also promising because it can achieve both good robust-

ness and efficiency.

There are some related research topics that require further investigation.

For example, it is of interest to generalize the proposed propensity-score-based

and kernel-assisted SEEs imputation approach from a cross-sectional study to a

SEMIPARAMETRIC MODELS WITH NONIGNORABLE MISSING DATA 23

Figure 2. Canada WSIB data, estimated curve of h(t) using the proposed
propensity score based nonparametric imputation.

longitudinal study (Qu, Lindsay and Li (2000)), and to explore doubly robust es-

timation using SEEs inference under the MNAR mechanism. It is also important

to develop diagnostic measures for the GMM or EL approach using SEEs (Zhu

et al. (2008)), in additional to constructing EL confidence regions for parameters

and EL confidence bands for the nonparametric functional component under the

general class of SEEs for nonignorable missing data.

Supplementary Material

Supplementary Materials available in the attached file include technical con-

ditions and proofs.
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