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Abstract: Handling data with the missing not at random (MNAR) mechanism is
still a challenging problem in statistics. In this article, we propose a nonparamet-
ric imputation method based on the propensity score in a general class of semi-
parametric models for nonignorable missing data. Compared with the existing
imputation methods, the proposed imputation method is more flexible as it does
not require any model specification for the propensity score but rather a general
parametric model involving an unknown parameter which can be estimated con-
sistently. To obtain a consistent estimator of the parametric propensity score, two
approaches are proposed. One is based on a validation sample. The other is a
semi-empirical likelihood (SEL) method. By incorporating auxiliary information
from some calibration conditions under the MNAR assumption, we gain significant
efficiency with the SEL-based estimator. We investigate the asymptotic properties
of the proposed estimators based on either known or estimated propensity scores.
Our empirical studies show that that the resultant estimator is robust against the
misspecified response model. Simulation studies and data analysis are provided to
evaluate the finite sample performance of the proposed method.
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1. Introduction

Missing data arises frequently in surveys, social science, and biomedical re-
search. The commonly used methods for handling missing data include complete
case analysis, which can lead to a biased estimator and information loss (Little
and Rubin (2002); Kim and Shao (2013)), the imputation method (Rubin (1987);
Cheng (1994); Wang and Chen (2009)), and the augmented inverse probability
weighted (ATPW) method (Robins, Rotnitzky and Zhao (1994)). The implemen-
tation of the latter two methods is applicable for missingness at random (MAR),
but not suitable if the missing mechanism is missing not at random (MNAR),
nonignorable missingness.

Nonignorable missing models have been mainly studied using maximum like-
lihood, empirical likelihood (EL), and Bayesian approaches. For example, see
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Troxel, Lipsitz and Brennan’s (1997) weighted estimating equations for nonig-
norable nonresponse, Lipsitz et al.’s (1999) generalized linear models for nonig-
norable missing covariates, Tang, Little and Raghunathan’s (2003) multivariate
regression analysis with nonignorable nonresponse, and Lee and Tang’s (2006)
nonlinear structural equation models for nonignorable missing data. Recently,
Kim and Yu (2011) proposed the exponential tilting model and developed a semi-
parametric estimation procedure for nonignorable missing data. Tang, Zhao and
Zhu (2014) further extended the idea of Kim and Yu (2011) and Zhou, Wan and
Wang’s (2008) imputing estimating functions under MAR, and developed the
EL inference procedure through estimating equations for nonignorable missing
data. Zhao and Shao (2015) proposed a pseudo likelihood approach to general-
ized linear models in the presence of nonignorable missing data, and presented
a two-step iteration algorithm to implement the numerical maximization of the
pseudo likelihood.

The semiparametric estimating equations (SEEs) approach has been investi-
gated for missing data in recent years (Robins and Ritov (1997); Graham (2011)).
For example, Chen, Hong and Tarozzi (2008) provided semiparametric efficiency
bounds under missing data, Graham (2011) employed the AIPW approach to
study efficiency bounds under the semiparametric framework for ignorable miss-
ing, Chen and Van Keilegom (2013) discussed SEEs using the nonparametric
imputation method for response/covariates with MAR, and Wang, Cui and Li
(2013) presented an EL-based AIPW in SEEs. However, these approaches can-
not be used to make statistical inference directly for nonginorable missing data
due to the complexity of the nonignorable missing mechanism. To the best of
our knowledge, consistent estimation under the SEE framework for nonignorable
missing data has not been investigated.

In this article, we develop a general SEE approach for nonignorable missing
data, and provide consistent estimators for finite-dimensional parameters in the
presence of the nonparametric function with dimensions of nuisance parameters
infinite. The SEEs estimator is well known for its desirable unbiasedness when
the data is complete. To achieve unbiasedness of the SEEs estimation when ob-
servations are missing not at random, we propose a propensity-score-based and
kernel-assisted SEE imputation scheme for parameter estimations. The construc-
tion of the proposed imputation approach is motivated by the exponential tilting
model-based imputation procedure proposed by Kim and Yu (2011). To make
the propensity-score-based imputation applicable, it is important to estimate the
propensity score consistently. Once a consistent propensity score estimator is ob-
tained, we can formulate a basis for inferences using the imputed SEEs via the
generalized method of moments (GMM) (Hansen (1982)).

Specifically, a general parametric model is proposed for the response proba-
bility. To estimate the parametric propensity scores consistently, we first propose
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an estimation procedure based on validation samples, and apply the theory of
GMM to improve the efficiency. However, as the method of independent survey
using validation samples is often not realistic since budget or technical limitations
often restrict researchers to design studies that collect follow-up samples to gain
more information for estimating the response probability model. In addition, it
is important to utilize the calibration conditions presented in missing data prob-
lems. To this end, we employ a semi-empirical likelihood (SEL) procedure (Qin,
Leung and Shao (2002)) to estimate parametric propensity scores because of its
properties that its implementation needs only complete observations, and that
one can incorporate some auxiliary information from the calibration conditions
under nonignorable missing mechanism to gain a more efficient estimator for the
response probability.

Compared with the exponential tilting model-based imputation of Kim and
Yu (2011), our proposed parametric-propensity score-based imputation method
has the advantages of being more flexible so that one can develop an appropri-
ate approach for the estimation of parametric propensity score to improve the
efficiency of the resultant estimator. In addition, the use of parametrically esti-
mated propensity scores can alleviate the dimensionality issue to a certain extent.
Another advantage of our approach is that consistency and asymptotic normality
of the estimators are established under fairly mild conditions. In particular, we
do not require the criterion function to satisfy standard smoothness conditions.

The parameter identifiability issue (Robins and Ritov (1997)) is crucial and
challenging in nonignorable missing data analysis. Many authors have studied
this issue, see Tang, Little and Raghunathan (2003), Wang, Shao and Kim (2014),
and Zhao and Shao (2015). Their methods can be applied to our model. Hence,
throughout this article, we assume that the models considered are identifiable.

The rest of this article is organized as follows. We introduce the propensity-
score-based nonparametric imputation in Section 2. We construct a class of GMM
estimators of parameters defined via SEEs with nonignorable missing data, and
we show the consistency and asymptotic normality of the proposed estimators
in Section 3. A bootstrap procedure for approximating asymptotic variance of
the proposed estimators and a simple dimensionality reduction technique in re-
lation to the proposed kernel procedure are proposed in Section 4. An example
illustrating the proposed method and some extensions are discussed in Section 5.
Simulation studies conducted to investigate the finite sample performance of the
proposed estimators are presented in Section 6. Data from a Workplace Safety
& Insurance Board research study in Canada is used to illustrate the proposed
method in Section 7. Some concluding remarks are given in Section 8. Tech-
nical conditions and proofs of the theorems are reported in the Supplementary
Material.
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2. Propensity Score-based Nonparametric Imputation

Let Z; = (X,,Y,")T, i =1,...,n, be a set of (s + d)-dimensional indepen-
dent and identically distributed (i.i.d.) random variables with the cumulative
distribution function F'(z). Let © be a finite-dimensional parameter set (a com-
pact subset of R?) and H be an infinite dimensional parameter set. The function
in H is allowed to depend on 6. Suppose that (Y, X,0,h) is a vector of g esti-
mating equations, known up to the finite dimensional parameter # € © and the
infinite dimensional nuisance function h € H. The only prior restriction on F'(z)
is that E{(Y, X, 00, ho)} = 0 for some 6y € © C RP and hy € H. Here, 0y and
ho are the true value of # and the true function of h, respectively. That ¢ > p
implies that (Y, X,0,h) is an over-identified system. Similar to Chen, Linton
and Van Keilegom (2003), it is assumed that the function hy depends on 6 and
the data X and/or Y. For simplicity, we write (6, h) =: (6, hg), (0, ho) =: (0, hog),
and (eo,ho) =: (90, ho@o).

We assume that Y; is subject to missingness, whereas X; is always available.
Generally, the missing components may vary across different individuals. For
simplicity, we suppose that the missing components have the same dimensions for
Z1,...,Zy,. Further, a missing variable Y; may represent a response or covariate.
Let §; = 1 if Y; is observed and §; = 0 if Y; is missing. We assume that J; is
independent of §; for any i # j and that Pr(d; = 1|X;,Y;) =: 7(X;,Y;), which
allows that the missingness mechanism is MNAR. Let G(0, h) = E{¢(Y, X,0,h)},
a non-random vector-valued function G: © x H — R? such that G(0y, ho) = 0.
The issue is to estimate # in the presence of nonignorable missing data.

Let {(X;,Y;,0;),i = 1,--- ,n} be iid. random vectors having the same
distribution as (X,Y,d). To incorporate the nonignorable missing data set, we
consider a set of semi-parametric estimating functions given by

where m?b(Xi,H,h) = E{Y(Y;, X;,0,h)|X;,6; = 0}. Let f1(Y;|X;) be the condi-
tional probability density of ¥; given X; and d§; = 1, and fo(Y;|X;) the conditional
probability density of Y; given X; and §; = 0. We further assume that the re-
sponse probability model has the parametric form

TF(XZ,Y;) = Pr(él = HXZ,Y;) = F(Xi,m,ag), (21)

where 7(-) is a known smooth function in the finite-dimensional response model
parameter «g.
Following the reasoning of Kim and Yu (2011), we can obtain

: N : A O(Xi,}/i,aO)
Jo¥ilX:) = hYIX) X Gr50%, Vi, ao) X0 6, = 13

(2.2)
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where O(Xi,}/i,ao) = PI’((Sz = 0|XZ,}/Z)/PI‘((SZ = HXZ',Y;) = F_l(Xi,}/i,a()) —1
is the conditional odds of nonresponse. Using (2.2), we obtain

0 X;,0,h) =: v X;,0,h =
miy(Xi,0,h) =t my(X;, 0, h, ao) E{5:0(X:,Y;, 00)[ X}

Then, SEEs ¢(Y;, X;,0, h) can be rewritten as
(Y3, Xi,0,h, aq) = 8;00(Vi, X4, 0, h) + (1 — 6;)m (X5, 0, h, ). (2.3)

If the true response probability follows the parametric model given in (2.1), we
can show that E{¢(Y;, Xi, 00, ho, ap)} = 0. Thus (2.3) is unbiased, the key idea
of our approach.

Let K(-) be an s-dimensional kernel function of the mth order satisfying
[K(uy,...,us)duy ...dus = 1, [ubK(uy,..., us)duy...dus = 0 for any k =
1,...,sand 1 <1 <m, and [u’K(ui,...,us)du; ...dus # 0. Then, a nonpara-
metric regression estimator of m& (X,6,h) can be expressed as

> 0,0(X5, Y, o) Ko (X — X3)U(Y;, X5,0,h)
m(X,0,h,a9) = =

(2.4)

n 9
Zl 6ZO(XZ, Yi, CMQ)Ka(X — Xz)

i=

where the weight 0;0(X;, Vi, ao) Ko(X — Xi)/ 377 6;0(X;, Y, a0) Ko(X — Xj)
represents the point mass assigned to ¥ (Y;, X;, 6, h) when m?b(X, 0,h) is approx-
imated by m%(X, 0,h, ), Ko(u) =a*K(u/a) and a is a bandwidth sequence.
Using the arguments of Devroye and Wagner (1980), we can show that, under the
true response model (2.1) and some regularity conditions, lim,, mg (X,60,h,ap)
= mgj (X,0,h). Therefore, a set of the modified SEEs for the ith observation is

given by &(lea Xi7 907 h’Oa Oé()) = 5177/}(1/17 Xi7 907 hO) + (1 - 52)7?12)()(“ 00) hOa Oé())-
3. Generalized Method of Moments Estimation

3.1. Nonparametric estimation

Let G,(0,h,a) =n= 131", zﬂ(Yi,Xi,H, h,a). Given an estimator h of h and
a known propensity score, we define the nonparametric estimator of 6 by

Onp = argmin |G, (0, h, ao)||w,
0cO

where [|A||w = {tr(ATWA)}/2 for any g-dimensional vector A and some fixed
symmetric ¢ x ¢ positive definite matrix W; here tr(-) stands for the trace of a
matrix.
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Theorem 1. If the conditions (A1)—(A3) and (C1)—(C4) given in the Sup-
plementary Material hold and the response probability w(X,Y') is known, then
Onp — 0o = 0,(1). If the conditions (B1)—(B5) given in the Supplementary Ma-
terial also hold, we have

nM2(Onp — 00) 5 N(0,51),

where ¥1 = (ANTWA)TTATWITIWAATWA)™L, Ty = Var{S(X, Y, 0y, ho)}, S(X,
Y,0,h) = o{m(X,Y)} "y (Y, X,0,h) —m (X, 0, h)} +my (X, 0,h) + V(X,Y, ),
the function V(-) is defined in the condition (B4), and A = A(6y, ho) with

0 1

A(G’ ho) = 7g(95 ho) = lim 7{g(9 + K, hO,Q—‘rH) - g(97 hOG)}'
o0 r—0 R
Theorem 1 shows that using the nonparametric regression estimator of

m?b(X , 0, h) with known response model can lead to an efficient influence function
of estimator 6 p, which has the AIPW form (Robins, Rotnitzky and Zhao (1994);
Graham (2011)). However, the nonparametric regression methods are impeded
by the curse of dimensionality.

3.2. Semiparametric estimation

Although Onp is theoretically attractive, it is practically useless because the
parameter vector ag in (2.1) is unknown in many applications. While we should
estimate «q consistently before making inference on 0, it is difficult to obtain a
suitable estimator of arg under the MNAR assumption because Y; is unobserved in
the set of nonrespondents. We use & to denote a suitable estimator of «g. Then,
given estimators & and ﬁ, a semiparametric estimator of 6 can be obtained as

Ogp = argmiann(Q,iL, a)llw- (3.1)
0cO

In what follows, we try to find some reasonable estimators & to make the esti-
mating equations ¥ (Y;, X;, 0o, h, &) applicable.

(1) Independent Survey and Validation Sample

Motivated by Kim and Yu (2011), we consider two approaches to compute
a: independent survey and a validation sample.

Theorem 2. If the conditions (A1)—(A3) and (C1)—(C4) of the Supplementary
Material hold, the response probability model w(X,Y, ag) is correctly specified
and & is consistent, then 8sp — 0y = op(1). If the conditions (B1)—(B5) given
in the Supplementary Material also hold, n'/2(& — ag) 5 N(0,V,), and & is
independent of ¥(Y;, X;, 0o, ho, ap), we have

n2(0sp — 0) 5 N(0,3,),
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where Yo = (ATWA)TIATWTOWAATWA)™L, Ty = Var{S(X,Y, 00, ho)}+
HVaHT, H = E[(l —5){¢(Y, X, 90, ho) —m%(X, 00, ho, Oéo)}{Z(X, K Oé()) —mg(X,
@)} '] with 2(X, Y, a) = dlogit{n(X,Y,a)}/da and m%(X,a)=FE{z(X,Y,a)|X,
d = 0}, and logit(p) = log{p/(1 —p)}.

It follows from Theorems 1 and 2 that Ogp has larger asymptotic variance
than éN p due to estimating «p.

We consider then that & is obtained from a validation sample, randomly
selected from the set of the nonrespondents. For clarity, we take Q(«a,0,h) =
E[(1 =) {v(Y;, Xi,0,h) — m?p(Xi, 0,h,«)}]. Under the MNAR assumption,

E{(1 - é&)v(Y:, X;,0,h)} = E[E{(1 — &) (Y5, X;,0,h)|X;, 6; = 0}]
= E{(1 = 6;)m{(X;,0, h,a0)},

which leads to Q(ag,0,h) = 0 for any 6 € © C RP and h € H. Therefore, a

consistent estimator & of ag can be obtained by solving
n

1 i .
Qula0, 0,h) = = >~ (1 = 8) = {(Yi, X 0, h) — 1) (X;, 6, h. o)} = 0
1=1

for oy, where v = E(r;|6; = 0) and r; is 1 if individual ¢ belongs to the follow-up
sample, and 0 otherwise.

It is noteworthy that a set of SEEs Q,,(ayp, €, h) may also be an over-identified
system with respect to ag. Hence, the GMM approach can again be used to
compute g to improve efficiency. Given an appropriate and symmetric ¢ X ¢
positive definite matrix W, an estimator of g can be obtained as

by = argmin ||Q, (o, 0, h) (3.2)

00,08 I

Proposition 1. Suppose the conditions of the Supplementary Material hold, and
the response probability modelﬂX, Y, ozo)j;s correctly specified. Then, & — oy =
op(1), and &y — g = —(H'WH) " H"Wn=1 3" Di(0o, ho, ) + 0p(n~1/?),
equivalently n'/? (G, — ap) 5 N(0,%), where

Sy =(H WH) "H ' WV,WH(H " WH)™", V, = Var{D(b, ho, ag)}, and
D(eo, ho, O[()) = [(1*5)7"/1/*5{7‘('_1()(, Y)*l}]{w(Y, X, 90, hg)*m,lob(X, 90, h[), Oé[))}.

Corollary 1. If ¢ = dim(ag) or W = V1, then Sy = (H' VL H) ™ and Gy is
efficient among the class of GMM validation sample estimators.

Using the estimated parameter &, we can construct G, (6, i‘Lg, Ay ). Then, we
can obtain a semiparametric estimator fgp of 6 from (3.1).
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Theorem 3. If the conditions (A1)—(A3) and (C1)—(C4) of the Supplementary
Material hold, the response probability model m(X,Y, ag) is correctly speczﬁed and
95p is the estimator of 0 obtained by solving (3.1) with & = &, then 95p 0y =
op(1). If the conditions (B1)—(B5) of the Supplementary Material also hold, we
have

n2(fsp — 60) 5 N(0, %),

where Y3 = (ATWA)*lATWFiWA(ATWA)*l, I's = Var{O(X,Y,9)}, O(X
Y,8) = S(X,Y,00, ho) + H(H'WH)"YHTWD(6y, ho, ).

Corollary 2. If ¢ =p or W = F3_1, we have Y3 = (ATFglA)_l, then Ogp is
efficient among the class of semiparametric estimators for 6 based on the method
of validation sample.

Remark 1. If ¢ = dim(ayp), we have O(X,Y,d)={(r/v)(1 — ) + 6} {y(Y, X, by,
ho) —m%(X, 0o, ho, 040)} + m?/)(X, 0o, ho, Oé()) + V(X, Y, (5), and Var{(’)(X, Y, 5)} =
Var{y(Y, X, 0o, ho)} + Var{V(X, Y, §)} +2Cov(¥(Y, X, 0o, ho), V(X, Y, 8)) + (v
—1)E[(1 = 0){¢(Y, X, 00, ho) — mg)(X, 00, ho, a0)}®?], where a®? = aa' for any
vector a. Using standard kernel regression theory, for any o € B (a* may
be the probability limit of &, when (2.1) is misspecified), m%(X ,00, ho, ) =
lim,,— 00 m%(X, 0o, ho, ™). If a* = ayp, (2.1) is correctly specified, then m?p(X, o,
ho, o) = E{Y(Y, X, 0y, hy)|X,0 = 0} = m?p(X, 0o, ho). Here E[(1 — 0){u(Y, X,
90, ho) — m?b(X, 90, ho, a*)}®2] > E[(l - 5){¢(Y, X, (90, h()) — m%(X, 90, ho)}®2]
indicates that 33 attains its minimum for this scenario. Thus, (2.1) can be used
to improve estimation efficiency (Kim and Yu (2011)).

Remark 2. Our asymptotic results are obtained under the correctly specified re-
sponse model. It is challenging to establish asymptotic properties of the proposed
semiparametric estimators when the response model is misspecified because of
the non-smoothness of the underlying SEEs and the infinite-dimensional nui-
sance function involved. To the best of our knowledge, this issue has not been
addressed for the estimation of over-identified moment conditions even under
the MAR assumption (e.g., Chen, Hong and Tarozzi (2008)). For two special
cases, including the population mean (Kim and Yu (2011)) and the distribution
function of the response variable, we investigate the robustness of the proposed
imputation approach to the selection of response model in the Supplementary
Material.

(2) Semi-empirical Likelihood Estimation

The advantages of using a validation sample to estimate g include robust-
ness properties and the parametric rate of convergence for the resulting &, but
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budget or technical limitations may restrict researchers to design studies that
collect follow-up samples to evaluate &,. To overcome such difficulties, we em-
ploy an approach of semiparametric likelihood (Qin, Leung and Shao (2002))
based on complete observations to obtain an efficient estimator for the response
probability function. To this end, let F/(X,Y") be the unconditional joint distri-
bution of (X,Y) and A = {j : §; = 1} be the set of respondents in the sample
{(X;,Y;) :j =1,...,n}; n1 = | A| denotes the size of the set A. The likelihood
of (ag, F') based on complete observations {(X;,Y;) : j € A} is given by

[ (x5, Y5, 00)dF(X;,5) [ | //{1 —7(X;,Y},a0) }dF (X}, Y;),
JEA JjEA

which can be rewritten as

{ 1 m(X;,Yj, ao)dF (X, Y5)

w

}w"l (I —w)™ ", (3.3)
jeA

where w = Pr(d = 1) = [[7(X,Y,a0)dF(X,Y) is the unconditional response
rate. The first term in (3.3) is the likelihood conditional on § = 1, and the term
w™ (1 —w)™ ™ is the binomial likelihood of 4.

Some auxiliary information on X of the form E{g(X)} = 0 is often available,
where g(X) = (g1(X),...,q(X))T is a known [ > 1 vector (or scalar) function.
Based on the auxiliary information from X, and without assuming any specific
form for F(X,Y’), we can maximize the semiparametric likelihood (3.3) subject
to the contraints

pj207 ijzlv Zp]{ﬂ- X]’Yj’ao —(JJ}—O ijg

jEA jeEA jeA

where p; is the jump of F' at {(X;,Y;) : j € A}. By introducing Langrange
multipliers A; and A9, the log-likelihood with respect to oy and w is

l(ag,w, A1, A2) = Zlogﬂ(Xj,Yj,ozo) + (n —n1)log(l —w)
jeA
—Zlog{l—i—/\lg( 5)+ X (m(X;, Y, a0) —w)}. (34)

jeA

The solution of the constrained maximum likelihood can be obtained by maxi-
mizing the log-likelihood I(ag,w, A1, /\2) Denote the solution by (ds,w, )\1, )\2)
and take ¢ = A1 (1 —w), o = (a0, wp,0) ", ¢ = A\ (1 — &), and ) = (Gs,@,C) "

Computing the semiparametric hkehhood estimator 7 is computationally
challenging because too many constraints are involved. To address this, we
adopt the algorithm of Qin, Leung and Shao (2002). Step 1. Given («,w),
compute (A1(a,w), A2(a,w)) = argminy , l(,w, A1, A2); Step 2. Compute
(Gs,w) = argmax, , [(a, w, A\ (o, w), Aa(a, w)).
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Remark 3. One can also obtain a consistent estimator of ag by solving

ZQ(Xi,Yi,Oéo) = Z {M — 1}T(XZ') =0, (3.5)

i=1 i=1

where 7(+) is a user-specified vector function with the same dimension as ag or
with the dimension being greater than that of . Condition (3.5) is often called
the calibration condition, and has been widely used in survey sampling as well as
in nonignorable missing problem (e.g., Chang and Kott (2008); Wang, Shao and
Kim (2014); Kim and Shao (2013); Riddles, Kim and Im (2015)). Based on (3.5),
an alternative semiparametric empirical likelihood function can be constructed
by using g(Xj, Y}, ag) to replace g(X;) at (3.4).

Proposition 2. If the conditions in the Supplementary Material hold and the

matriz U defined in the Appendix is nonsingular, then 1) 2 no and nl/Q(ﬁfno) A
NO, UV (U1, where V is defined in the Supplementary Material.

Remark 4. Compared with the GMM-based validation sample method, the SEL
method is more efficient because it easily incorporates the auxiliary information
and is easy to implement as it uses only the complete observations. The auxiliary
information g(X) should be carefully selected such that the EL procedure works
because U, defined in Proposition 2, will fail to be invertible if the dimension of
the parameter «y is too high whilst the dimension of g(X) is too low. This issue
can be addressed by utilizing a nonresponse instrumental variable that does not
relate to the response mechanism but can be used to identify the parameters in
the nonignorable response mechanism. More details on nonresponse instrumental
variables can be found in Wang, Shao and Kim (2014) and Zhao and Shao (2015).

From Proposition 2, we can obtain an asymptotic linear expansion for As:
n'2(6s — ag) = n" V2300 Wi(ag) + 0p(1), where W;(ag) := U(X;,Y;, ap) is an
influence function that is defined in the Supplementary Material.

Theorem 4. If the conditions (A1)—(A3) and (C1)—(C4) of the Supplementary
Material hold, the response probability model w(X,Y, ap) is correctly specified,
the solution &g for mazimizing (3.4) exists almost everywhere, and Osp is the
estimator of 0 obtained by solving equation (3.1) with & = és, then Osp — Oy =
op(1). If the conditions (B1)—(B5) of the Supplementary Material also hold,

n'2(Bsp — 00) 5 N(0,%4),

where ¥y = (ATWA)TTATWI,WAATWA)™L, Ty = Var{S(X,Y, 0, ho)
—HU ()} and H is given in Theorem 2.
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Corollary 3. If g = p or W = FZl, we have ¥4 = (ATFfA)_l, and the
estimator Ogp is efficient among the class of semiparametric estimator of 6 using
the approach of semiparametric likelihood.

Remark 5. It is easy to show that I'y = Var{S(X,Y, 0, ho)} +H Var{¥(ag)} H
—2HCov{S(X,Y, 00, ho), ¥(ap)}, so the efficiency of the proposed semiparamet-
ric estimator in Theorem 4 depends on the correlation between the score func-
tion S(-) and the influence function W(-). Particularly, if HVar{¥(ag)}H"
< 2HCov{S(X,Y, 0y, ho), ¥ ()}, the semiparametric estimator achieves effi-
ciency gain over the nonparametric estimator.

4. Asymptotic Variance Estimation and Dimension Reduction

In Theorems 1-4, the asymptotic covariance matrices of the proposed non-
parametric/semiparametric estimators have complicated forms, so it is difficult
to directly estimate them. We adopt a bootstrap procedure to approximate their
asymptotic variances.

1. Let Xy = {(X/,Y*,0]) : i = 1,...,n} be a bootstrap sample drawn from
{(X;,Y;,0;) : j=1,...,n}. Based on the bootstrap sample X, compute the
bootstrap estimators ﬁ; and &* via the proposed approaches.

2. Let 1/3(}/;*,X;, 0, ﬁ;, &) be the bootstrap version of @(Yi,Xi, 0, ﬁg,d). Define

the recentered SEEs
@C(E*a Xz*u 07 B;a &*) = 'l;(y;*aXz*v 97 il;, d*) - &(YLXH ésp, il97 a)

and G (6, il} &) = n~iyr @C(Yi*, zZ*.0, iLZ, &*). Obtain the bootstrap 0* =
arg mingeo 1676, 1, 4*) - -

3. RAepeat_theA two fteps B tir{les to get 6*1, . o 0*B. Take var(fgp) = B~ Zle
(6*7 —6*)(0*) —6*)T with §* = B~ Zle 6*7, and the 100(1 — a)% confidence

~

interval for 6 to be (9{[30[/2}),02‘[3(1_&/2)])), where 9{1),...,963) denote the

ordered values of é*l, . ,9*3 and [d] represents the integer part of d.

When the dimension of variate X is high, it is difficult to get an accurate
estimator of m?p (Xi,0,h,ap) by a kernel-smoothing procedure. Here we propose
a dimension reduction technique such that our method is still effective for high-
dimensional data.

Let S be a continuous function from R?® to R, such that E{¢(Y;, X;,0,h)|S;,
0; =0} = E{¢(Y;, X;,0,h)|X;,0; = 0} with S; = S(X;). Then E{5;1(Y;, X;,0,h)
+(1 - 6i)mgj(5i,0,h,oz)} = 0, where m?/)(Si,H,h,oz) = E{o;v(Y;, X;,0,h)O(X;,
Yi, @)|Si}/E{6;0(X;,Yi,)]S;}. Consequently, the kernel-assisted SEEs can be
constructed as Q/A)R(Y;, Xi,0,h, ) = 6;0(Y;, X5, 0, h)—i—(l—éi)fn%(&, 0, h,a), where




100 PUYING ZHAO, NIANSHENG TANG, ANNIE QU AND DEPENG JIANG

m%(Si, 0, h,«) is structurally identical to m%(Xi, 0,h,«) at (2.4) except that X
is replaced by S. Given &, one can obtain a semiparametric dimension reduction
GMM estimator §z = arg ming.g ||n " 320", ¥r(Y:, Xi, 0, hg, &)||lw -

In many applications, we assume that the working index S = S(X,~) in-
volves an unknown parameter vector . Given an estimator 4 of v, a set of
semiparametric dimension reduction kernel-assisted SEEs can be constructed as
s (Vi Xi,0, by ) = 6:p(Yi, X5, 0, h) + (1 = 6;)mf,(Si, 0, h, @) with §; = S(X,4).
Using the arguments of Hu, Follmann and Qin (2010), we can show that the
resultant GMM estimator based on 1&5 is asymptotically equivalent to 0r when
Y—v= Op(n_1/2)-

5. An Example and Some Extensions

In the Supplemental Material, we consider an example of a partial linear re-
gression model to illustrate the proposed strategy for dealing with non-ignorable
missing values. We discuss some extensions. Without considering the infinite-
dimensional nuisance function h € H, the prior restriction on F'(z) reduces to
E{y(Y,X,0p)} = 0 for some 0y € © C RP. Under an MNAR assumption such
as (2.1), and given an estimator & of o, a GMM estimator of 6 can be obtained
as Ogp = arg mingeg [|Gn (6, &@)|lw, where G, (0, o) = n~ 1 S (Y, X4, 60, a) and
1&(}/@, XZ', 90, ao) = zw(}/u Xi, 90) + (1 - 51)7?13()(1, 90, 040), ﬁl%(Xz, 90, ao) is iden-
tical to rh?p(Xi,Go,ho,ao) at (2.4) except that ¥ (Y;, X, 00, ho) is replaced by
»(Y;, X5, 0). )

Let m%(XZ, 9) = E{Tﬁ(YZ, Xi, 0)|Xz; 6@ = 0}, Tﬂ(YZ, Xi, 0, Ozo) = zw(lfu Xi, 0)
+(1— 5i)m%(Xi, 0,00), Gn(0,0) = n~! Yoy (Y, X;,0,a), and A(6) be the par-
tial derivative of G(0) = E{y(Y, X, 0)} with respect to 6. Define a generic neigh-
borhood ©, =: {# € © : ||§ — 6y|| < o} of Oy for some constant o > 0.

Theorem 5. Suppose the conditions (C1)—(C4) of the Supplementary Material
hold, except that (Y, X, 0y, ho) and m%(Xi,Go,ho,ao) are, respectively, replaced
by (Y, X, 0p) and m?p(Xi,Ho, ap), and that the response probability model (2.1)
s correctly specified.

(a) If the function class {(Y,X,0) : 0 € ©} is Glivenko-Cantelli, & is a consis-
tent estimator of a and supgeg ||Gn (0, &) — Gn (0, a0)|| = op(1), s0 sp — by =
op(1).

(b) Assume that n'/?(a& — ag) = n= V23" | C(Xi, Vs, a0) + 0,(1), where €(-) is
an influence function. If the function class {¢(Y,X,0) : 0 € ©,} is Donsker,
for some constant K > 0 and ¢ € (0,1] each component of ¥(Y;, X;,0) is

uniformly Lo(P)-continuous with respect to 0 in the sense that
E{supggco, [4;(Y, X,0) — 0;(Y, X, 02} < Ko*; for all sequences 0, =
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OP(I)’ SUP|19—go|<on 1Gn (0, &)—gn(ﬁ, @) —Gn (6o, @)+g~n(907040)|’ = 0p<n71/2)7
then X
n'2(0sp — 0) S N(0,35),

where Y5 =(ATWA)TIATWIsWAATWA)™L, T's=Var{S(X,Y,0) - HE (X,
Kaﬂ)}r S(X,Y,G) = 6{7T(X7Y)}_1{1/}(Y7X79) - m?p(X7‘9)} + m?p(Xf 9)}
H = E[(1 = 0){s(Y, X, 00) — mY(X,00,a0)}{2(X,Y,a0) — m2(X,0)} "],
2(X,Y,a) = Ologit{n(X,Y,a)}/0a, m)(X,a) = E{2(X,Y,a)|X, § = 0},
and logit(p) = log{p/(1 —p)}.

It follows from Theorem 4 and Theorem 5 that the estimation of the infinite-
dimensional nuisance function leads to the limiting distributions of estimators of
parameters of interest defined via SEEs depending on the used nuisance param-
eter estimator.

For the parametric models E{(Y, X,0)} = 0 with ignorable missing co-
variates, Qin, Zhang and Leung (2009) presented an EL procedure to estimate
unknown parameter 6y when the response probability model is known or para-
metrically estimated. We can extend this approach to our semiparametric models
with nonignorable missing data by letting

6ip(Yi, Xi, 0, h)
W(Xi,Yi,Oé) ’

(52' — W(Xi,Y{,OJ)
7r(XZ-,Y;;,oz)

51 ()/u Xi7 9, h> Oé) =

&Y, X5,0,h,0) = my,(Xi,0,h,a). (5.1)
In this case, we have E{{;(Y;, Xi, 00, ho, )} = 0 for j = 1 and 2. In particu-
lar, the unbiasedness of the second equation does not depend on the selection
of m%(Xi,O,h, «). Here, & can be regarded as auxiliary information, used to
improve upon the Horvitz-Thompson estimating function &;. Also, the number
of the SEEs ¢ = (&,&) )" is greater than the dimension of parameter vector
0 regardless of whether SEEs ¢(Y;, X;,0,h) is just-identified or over-identified.
Thus, the EL method (Owen (1990); Qin and Lawless (1994)) can be used to
combine these over-identified unbiased SEEs to obtain an improved inference.

6. Simulation Studies

We used two simulation studies, including a partial nonlinear regression
model, and a partial linear regression model, to evaluate the finite sample per-
formance of the proposed methodologies.

Experiment 1 (Partial nonlinear regression model) In this experiment,
the data were generated from the model V; = exp(X, 0) + h(T;) + ¢; for i =
1,...,n, where h(t) = COS(47Tt), X, = (I,Xil,XiQ)T, (Xh',Xgi)T, and T; were
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independently generated as N (0,%,) and U(0, 1), respectively, and the ; were
independently generated as N(0,1) and U(0,1). We took the true values of
0 = (91,92,93)T and Ez = (Um'j) to be 6 = (1, 1.5,0.5)T and Ogzij = 0.5|i7j| for
1 <, < 2, respectively. We assumed Z; = (X4, Xo;,T;) " ’s were completely
observed, but Y;’s were subject to missingness. With 6 = 1 if Y was observed
and § = 0 if Y was missing, §; of Y; was Bernoulli with probability m;(«a) :=
w(Zi, Yi, a),
~exp(0.5 4+ 0.01X1; + 0.01X; + 0.25T; 4 0.01Y7)
i) = T exp(05 + 0.01X1, + 0.0 X5, + 0.257, 1 0.01Y))"

The response rate was about 67% for the above missingness data mechanism.
We took sample size n = 200, and simulated 1,000 datasets. To estimate the
propensity score, we considered a correctly specified model (C)
ria) = exp(ap + a1 X1; + e Xy + a3Ti + a4 Y))
1+ exp(ao + a1 X1; + aeXo; + a3T; + 044YZ') ’

and a misspecified model (M)
mi(a) = ®(ap + a1 X1 + aaXo; + asT; + ass),

where ®(-) is the cumulative density function of the standard normal. Model (M)
was used to investigate the robustness of the proposed Propensity-Score-Based
Nonparametric Imputation procedure to the misspecified response probability
model.

To illustrate the proposed methods, we constructed the SEEs

E1:9(Y;, Z;,0,h) = X; {Y; — exp(X;'0) — h(T})} ,
E2:¢(Y;, Z;,0,h) = X; {Y; — exp(X,0) — h(T})}

where X; = X; — E()~(1|Tl)7 and X; = X; exp(XiTG). Here, SEEs E1 was con-
structed by using the first-order-condition for minimizing the objective function
Q1(0) = S0 (Y — exp(X[ 0) — hy(T3))? in which hg(T) = E{Y — exp(X T0)[T},
whilst SEEs E2 was constructed by using the first-order-condition for minimiz-
ing the objective function Q2(0) = Y1 (Y; — exp(X,'0) — h(T}))?. Clearly,
E{y(Y:, Z;,0,h)} =0 for E1 and E2.

Let O(Z;,Y;,a) = n7Y(Z;,Yi, @) —1 and Kp(-) be a univariate kernel function.
We considered as estimator of h(t),

32 6:0(Z:, Vi @)Kyt — T){Yi — exp(X] 0))}
=1

ho(t) = 5 : (6.1)
i=1
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a nonparametric regression estimator of

700 — E{6(Y —exp(X76))O(Z,Y,a)|T = t}
o(t) = E{60(Z,Y,a)|T = t}

Here hg(t) is not a consistent estimator of h(t) because lim, o0 hg(T )= izg( ) #
B{(Y —exp(X0))|T} = h(T) a.s. The conditional expectation E(X;|T;)
estimated via the same nonparametric method. Let

2 6:0(Zi,Yi, ) Kol Z — Zi) (Y3, Zi, 0, ho(T3))
(2,0, he,a) = =

can be

(6.2)

> 0i0(Zi,Yi, ) Ko(Z — Z;)

i=1

where K,(-) is a d,-dimensional kernel function. Then, the modified SEEs for 0
is given by

- 1 « . X .
gn(ea h97 Oé) - ﬁ Z{él@/)(yza Zz'a 07 h@(n)) + (1 - 5z)m10/)(Zlv 07 h97 a)}
=1

Two approaches are employed to estimate a: a GMM-based validation sample
method with 25% follow-up rate; an SEL method by incorporating the following
auxiliary information
(52'7T71(ZZ' Y; Oz)(XlZ' — Xl)
7. Y — S _
9(Zi,Yi, ) <5i7T1(Zz‘,Y§,Oé)(X2z' - Xo)

where Xl =n"! E?:l X1;, and XQ =n1 Z?:l Xo;.

Given an estimator of «, we considered three estimators of 0: a validation
sample-based estimator (vse), an SEL-based estimator (sel), Chen and Van Kei-
legom’s (2013) estimator under MAR assumption (mar). The kernel function
was taken to be the Gaussian kernel, and x = 20 observations were imputed
for each of missing Y;’s in computing Chen and Van Keilegom’s (2013) estima-
tor. The bandwidths b relating to (6.1) and a relating to (6.2) were taken to be
a=b=n"1/5

Results are reported in Table 1, where ‘Bias’ denotes the absolute difference
between the true value and the mean of the estimates based on 1,000 replications,
‘RMS’ is the root mean square between the estimates based on 1,000 replications
and its true value, ‘Std’ is the standard deviation of estimates based on 1,000
replications. Examination of Table 1 reveals the following findings: under the
considered settings, our proposed semiparametric estimators vse and sel perform
well in the sense that their corresponding Biases are quite close to zero and their
corresponding values of RMS are relatively close to those of Std; the performances
of our proposed semiparametric estimators computed using the misspecified re-
sponse probability model (M) do not differ much from that of using the correctly
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specified response probability model (C), our proposed estimators are robust to
the misspecified response probability model; the proposed semiparametric es-
timator sel has a slight advantage over the estimator wvse because sel provides
smaller RMS and Std than vse in most cases; the mar estimator has larger values
of Bias and RMS than of the vse and sel estimators.

We also investigated the performance of the proposed estimators for the
response model parameter « under the correctly specified response probability
model (C). Their corresponding values of Bias, RMS, and Std are in Table 2.
Inspection of Table 2 indicates that the proposed two estimators are nearly un-
biased, and the semi-empirical likelihood method outperforms the GMM-based
validation sample method in terms of RMS and Std.

Experiment 2 (Partial linear regression model) To investigate the per-
formance of the proposed bootstrapping approach to approximate variance es-
timation of our estimators, we conducted a second simulation study. Here, the
data were generated from the model YV; = X;0 + h(T;) + ¢; for i = 1,...,n,
where h(t) = cos(4nt), X;’s were independently NV(0,1), T;’s were independently
U(0,1) and then sorted in ascending order, ¢;’s were independently N (0,1) and
U(0,1). The true value of 6 was set to 1. We assumed the Z; = (X;,T;)"’s were
completely observed, but the Y;’s subject to missingness. With §; = 1 if Y; was
observed, and §; = 0 if not. The §; were independently Bernoulli with probability
() :=mw(Z;,Y;, ) specified by

Model I: m;(a) = exp(ag + @1Y;)/(1 + exp(ag + a1Y;)), where a = (dg, 1) ",
and the true value of a; was a; = 0.2;

Model II: 7;(a) = exp(ag + a1 X; + a2Y;) /(1 + exp(ap + a1 X; + aoY;)), where
a = (&g, @1,d9) ", and the true values of &1 and Gy were a1 = 0.5 and ay = 0.2.

For these models, considered in Qin, Leung and Shao (2002), we took the true
value of ag to be 2.5,1.5,1.0,0.5,0.01, leading to the average missing proportions
7%, 17%, 25%, 36% and 47% for Model I, and 10%, 21%, 29%, 39% and 50% for
Model II, respectively.

The proposed SEL method was adopted to estimate o in Model I and Model
II by incorporating the auxiliary information g(X;,T;) = (X; — X, T; — T) with
X=n"1tY" X;and T =n"'>" | T;. Under the MNAR assumption, h(t) =
E{(0Y + (1 —&)mY(Z) — X0)|T = t}, where m{.(Z) = E(Y|X,T,5 = 0), and
a nonparametric estimator of m{.(Z) is m{.(Z) = > 52100(Z4,Yj, a)Ko(Z —
Z])}/j/ Z?:l (550(Zg, Yy, OJ)Ka(Z - Zg), where O(Zj, }/j, Oz) = 7T_1(Zj, ij, a) — 1.
Then, a consistent nonparametric estimator of h(t) is

ho(t) = z”: Wai(0){6:Y; + (1 — 6:)m3-(Z;) — X6}, (6.3)
i=1
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Table 1. Performance of various estimators in the simulation study: Exper-

iment 1.
e~ N(0,1) e~U(0,1)
SEEs Model Methods Est. 6 0 05 0, 0y 05
E1l C vse  Bias 0.000 0.000 0.000  0.000 0.000 0.000
RMS 0.022 0.009 0.006 0.014 0.006 0.004
Std  0.022 0.009 0.006  0.014 0.006 0.004
sel Bias  0.000 0.000 0.000  0.000 0.000 0.000
RMS 0.022 0.009 0.006 0.013 0.006 0.004
Std  0.022 0.009 0.006  0.013 0.006 0.004
mar  Bias -0.850 0.248 0.087 -0.862 0.216 0.125
RMS 1.397 0.417 0.300 2.645 0.370 1.139
Std 1.110 0.335 0.287  2.503 0.301 1.133
M vse  Bias 0.001 0.000 0.000  0.000 0.000 0.000
RMS 0.024 0.010 0.006  0.014 0.006 0.004
Std  0.024 0.010 0.006  0.014 0.006 0.004
sel Bias 0.001 0.000 0.000  0.000 0.000 0.000
RMS 0.023 0.009 0.006 0.013 0.006 0.004
Std  0.023 0.009 0.006  0.013 0.006 0.004
E2 C vse  Bias 0.006 -0.002 -0.001  0.004 -0.001 -0.001
RMS 0.034 0.013 0.006 0.019 0.008 0.004
Std  0.033 0.013 0.006  0.018 0.008 0.004
sel Bias 0.003 -0.001 0.000  0.002 0.000 0.000
RMS 0.022 0.009 0.006 0.014 0.006 0.004
Std  0.022 0.009 0.006 0.014 0.006 0.004
mar  Bias -0.387 0.057 0.078 -0.385 0.057 0.077
RMS 2.725 0.332 1.223  2.688 0.330 1.207
Std 2.700 0.328 1.222  2.663 0.326 1.205
M vse  Bias 0.008 -0.003 -0.001  0.009 -0.003 -0.001
RMS 0.086 0.034 0.012  0.069 0.026 0.010
Std  0.086 0.034 0.012  0.069 0.025 0.010
sel Bias 0.013 -0.004 -0.002  0.012 -0.004 -0.002
RMS 0.083 0.033 0.012  0.070 0.027 0.010
Std  0.082 0.033 0.012  0.069 0.026 0.010

105

where Wyi(t) = Kyt — T;)/ >25_; Ko(t — Tj), and Kp(-) is a univariate kernel
function. To use the method to estimate 6, we consider SEEs: (Y, Z,0,h) =

X(Y — X6 — h(t)).

For comparison, we considered two approaches to estimate 6:

(i) the Propensity-Score-Based Nonparametric Imputation estimator ésp: the so-
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Table 2. Performance of & under model C in the simulation study: Experi-

ment 1.

e~ N(0,1) e~U0,1)
Parameter Method vse sel vse sel
Qo Bias 0.080  0.080 0.089  0.089
RMS 0.315  0.315 0.302  0.302
Std 0.305  0.305 0.289  0.289
Qn Bias 0.018  0.038 0.004  0.026
RMS 0.354  0.186 0.251  0.152
Std 0.354  0.182 0.251  0.150
Qo Bias 0.005  0.002 -0.003  0.010
RMS 0.232  0.101 0.304  0.098
Std 0.232  0.101 0.305  0.098
Qg Bias -0.013 -0.018 0.014  0.009
RMS 0.427  0.390 0.386  0.366
Std 0.427  0.390 0.386  0.366
Qy Bias 0.013 -0.005 0.014 -0.005
RMS 0.102  0.018 0.091  0.016
Std 0.101  0.017 0.090  0.015

lution to G, (6, he, &) = 0, where
- 1 ’ ) )
G (0, ho, @) = = > {0:p(Ys, 23,0, ho(T3)) + (1= 6:)1is (Zi, 0, ho, )} (6.4)
=1

in which mg,(zi,e, hg, @) is defined at (6.2);
(i) Qin, Zhang and Leung’s (2009) estimator 6, an EL estimator of 6 found by
maximizing the EL ratio function

0.(0) = — zn: log {1 + ATE(Y;, Zi, 0, h, a)} 7
=1

where g(}/;a Zi, 0, ﬁ@v d) = (gl(Y;’ Zi, 0, iL@a OA[)? 52(}/;'5 Zi, 0, BQ, d))Ta in which Agl
and & are defined at (5.1) except that m?b(Xi, 0, h,«) is replaced by m?/)(Zi, 0, hg,
&) and 7(X;,Y;, ) is replaced by 7(X;,Y;, &), and A = A(f) is a solution to

n

lz E(Y;7Zi797h97d)
n

x =0.
1+ ATE(Y, Zi, 0, ho, &)

i=1
Here, we considered n = 200 together with 500 replications, the Gaussian kernel,
and bandwidths ¢ = 0.3 and b = 0.2. To approximate asymptotic variances

and evaluate confidence intervals of estimators 6, and 6,; we used the bootstrap
sample B = 100.
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Table 3 presents the values of Bias, standard deviation (Std), and standard
error (SE) evaluated by using the bootstrap method described in Section 4, and
coverage probability (CP) of the approximate 95% confidence intervals for 951,
and Hel Examination of Table 3 shows that Hsp and Hel behave well in that their
absolute values of Bias and Std are less than 0.07 and 0.17, respectively; the
coverage probabilities are quite close to the pre-specified confidence level 95%
when the nonresponse proportion is not too high, the values of SE are rather
close to those of Std, indicating that our presented bootstrap method performs
well; the smaller aq is, the larger the value of SE or Std is; the higher the non-
response proportion is, the larger the difference between the empirical coverage
probability and the pre-specified confidence level is; our proposed estimator ésp
performs better than does Qin, Zhang and Leung’s (2009) EL estimator because
the SEs/Stds of the former are less than those of the latter; increasing the mean
response rates improves the accuracy of parameter estimate and the empirical
coverage of confidence interval, as expected.

7. An Example

The Mobility Program Clinical Research Unit of St. Michael’s Hospital, affil-
iated with the University of Toronto, conducted a study aimed at understanding
prognostic factors associated with more successful outcomes (return to work or
with higher at work productivity) after an upper limb injury. As an illustration
of the proposed methods, we focused on a subset of samples with missing val-
ues on response variable only, but completely observed on the selected predictor
variables. The response variable is the work productivity after one year of injury.
The Work Limitations Questionnaire (WLQ) (Amick et al. (2004); Lerner et al.
(2001); Lerner et al. (2002)) was used as a measure of at-work productivity loss.
The reverse of this scale was used as a measure of work productivity (response
variable (Y')). The response measure was only completed by persons who were
working at the time of assessment and missing for those not at work. The poten-
tial work productivity for those away from work was much lower if they were at
work. Therefore, the missing data mechanism of Y was not at random. About
48% of participants was missing on this response variable. In this analysis, we
were interested in the predictor variables pain disorder score (x1), better mental
health factor score (x2), and supervisor support (z3). We also wanted to know
whether supervisor support moderated the effects of level of pain disorder and
mental health status on work productivity, interactions xiz3 and zox3 were in-
cluded in the regression model. The controlled covariate was participants’ age
(t). A sample of 347 was used for the current analysis.

Figure 1 shows the scatter plot of work limitation questionnaire index score
(Y') against age (t) and the fitted smoothing spline, ignoring those with miss-
ing values on Y. Clearly, the relationship between work productivity and age is
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Table 3. Performance of ésp and éel in the simulation study: Experiment 2.

Missing ag
€; mechanism  Estimator 2.5 1.5 1.0 0.5 0.01
N(0,1) Modell 9sp Bias 0.002 0.004 0.005 -0.001 -0.003

SE 0.090 0.097 0.104 0.113  0.127

Std  0.088 0.098 0.104 0.114 0.134

CPp 0.946 0946 0.940 0942 0.924

Oci Bias -0.015 -0.013 -0.015 -0.023 -0.033
SE 0.110 0.111  0.115 0.122  0.136

Std  0.103 0.105 0.111 0.121  0.142

CP 0.968 0966 0.954 0942  0.924

Model II éps Bias -0.004 -0.009 -0.009 -0.011 -0.016
SE 0.093 0.103 0.112 0.125  0.139

Std  0.094 0.105 0.113 0.134  0.155

CP 0.946 0944 0938 0.930 0.904

Oci Bias -0.019 -0.032 -0.037 -0.051 -0.067
SE 0.109 0.113 0.121  0.136  0.154

Std  0.102  0.113 0.123 0.142  0.166

CPp 0.958 0.942 0920 0.902 0.874

Uuo,1) Modell ésp Bias -0.001  0.000 0.000 0.000 0.001
SE 0.054 0.057 0.061 0.067 0.074

Std  0.0564 0.057 0.062 0.068  0.078

CPp 0.934 0942 0940 0.926  0.922

Oc Bias -0.009 -0.010 -0.010 -0.014 -0.017
SE 0.066 0.066 0.068 0.073  0.082

Std  0.061 0.062 0.064 0.069 0.080

Cp 0.950 0964 0954 0.930 0.926

Model 11 9,,8 Bias  0.002  0.004 0.006 0.012  0.008
SE 0.056  0.064 0.069 0.077  0.087

Std  0.056  0.064 0.072 0.082  0.090

CPp 0934 0942 0.934 0940 0.932

Oci Bias -0.013 -0.016 -0.018 -0.020 -0.035
SE 0.066  0.072 0.077 0.084 0.095

Std  0.063 0.070  0.077  0.087  0.098

CP 0.956 0.948 0.928 0.910 0.888

not linear. Therefore, we considered the semi-parametric linear regression mod-
els for the response process Y; = XZ-TH + h(t;) + & for i = 1,...,347, where
XZ' = (IL‘M,$2¢,$3i,$1il’3i,l’gil‘3i)—r and 0 = (91,02,03,94,95)T. This model as-
sumes that work productivity depends linearly on predictor variables in X; but
nonlinearly on age (t). Motivated by Lee and Tang (2006), we considered the
nonignorable missingness data mechanism models
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Figure 1. Canada WSIB data, plot of observations, and a smoothing spline
fit using complete-case analysis.

eXp(Oéo + Oéil—Xi + ant; + OégY;;)
1 +exp(ap + of X; + ast; + a3Y;)’

Model 2: n(Z;,Y;, ) = <I>(oz0+airXi+a2ti+a3Y;), where a = (ay, oz]—, g, a3)
and Z; = (X,;[,#;)". Models 1 and 2 were adopted to investigate the sensitivity
of the proposed procedures to the potentially misspecified response probability
models. To illustrate our methods, we considered the SEEs (Y;, Z;,0,h) =
XZ' {Yz — XlTQ — h(tl)} s where Xl = Xl — E(Xl’tz) and Zl = (Xi—r,ti)—r. A non-
parametric estimator hg(t) of h(t) was constructed by using X, 6 to replace X;0
at (6.3), and the kernel function was the Gaussian with the bandwidths &;n~/?,
where 6; was the standard deviation of observations {t; : i =1,...,347}.

The GMM-based validation sample method with 25% follow-up rate and the
semi-parametric empirical likelihood method were employed to estimate unknown
parameters in «. To implement the semi-parametric empirical likelihood method,
we considered the auxiliary information g (Z;, Y, o) = 8 1(Z;, Vs, ) (Xis — Xi)
for k =1,2,3,4 and 5, where X, =n~! Yoy Xy and Xy, is the kth component
of X;. Then, the semi-parametric estimators of 6, vse and sel, were obtained
from a set of the imputed SEEs as given at (6.4). The standard errors (SE) of
the proposed estimators were evaluated by using the bootstrap approach. The
results are given in Table 4. Examination of Table 4 indicates that the assumed

Model 1: 7(Z;, Y, o) =
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Table 4. Estimated parameters and standard errors in illustrative example.

Model Methods  Statistic él ég ég é4 é5
Model 1 vse EST -1.595  1.280 -0.353  0.153  0.665
SE 0.474  0.535 0.618 0.495 0.570
sel EST -1.663  1.151  -0.118 1.006 1.662
SE 0.524  0.480 0.545  0.586  0.584
Model 2 vse EST -1.781  1.458 -0.555  0.209  0.205
SE 0.687  0.878 0.827 0.654  0.738
sel EST -1.783  1.424  -0.300 0.125  0.643
SE 0.508  0.546 0.549  0.576  0.564

response probability models led to quite similar parameter estimates, which sug-
gests that our proposed estimators are insensitive to the choice of response prob-
ability models; the proposed semiparametric estimator sel has a slight advantage
over estimator vse because of a smaller SE.

We computed hg(t) via (6.3) with different parametrically estimated propen-
sity scores, and present the corresponding estimated curves for h(t) in Figure 2.
From Figure 2, we find that the relationship between age and work productivity
is negative, but non-linear (ignoring those at two ends of age range because of
fewer data points before age 20 and after age 65). The results indicate that the
level pain disorder is negatively related to work productivity and better men-
tal health is positively related to the work productivity. This together with the
results given in Table 4 imply an interesting finding that the social supports
enhance the positive relationship between mental health and work productivity.

8. Discussion

Under MNAR, we have developed kernel-assisted SEE imputation based on
propensity scores to estimate parameters of interest for a general class of semi-
parametric models. The proposed method is applicable if the propensity scores
can be estimated parametrically. To obtain a consistent estimator of the propen-
sity score, we consider a validation-sample-based method and a semi-empirical
likelihood approach using available observations. The semi-empirical likelihood
method is promising since it allows one to incorporate auxiliary information from
the calibration constraints for the data with MNAR mechanism, and is able to
achieve high efficiency. also promising because it can achieve both good robust-
ness and efficiency.

There are some related research topics that require further investigation.
For example, it is of interest to generalize the proposed propensity-score-based
and kernel-assisted SEEs imputation approach from a cross-sectional study to a




SEMIPARAMETRIC MODELS WITH NONIGNORABLE MISSING DATA 111

GMDM-based Validation Sample Method Semi-empirical Likelihood Estimation
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Figure 2. Canada WSIB data, estimated curve of h(t) using the proposed
propensity score based nonparametric imputation.

longitudinal study (Qu, Lindsay and Li (2000)), and to explore doubly robust es-
timation using SEEs inference under the MNAR mechanism. It is also important
to develop diagnostic measures for the GMM or EL approach using SEEs (Zhu
et al. (2008)), in additional to constructing EL confidence regions for parameters
and EL confidence bands for the nonparametric functional component under the

general class of SEEs for nonignorable missing data.

Supplementary Material

Supplementary Materials available in the attached file include technical con-

ditions and proofs.
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