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This document contains proofs of Theorem 1 and 2, and the detailed steps for the two

dimensional solution surface algorithm of the censored kernel quantile regression.

S1 Proof of Theorem 1

The estimated regression function f̂(x) whose form of (6) can be rewritten as

f̂(x) =

[
f̂(x)− λ`

λ
f̂ `(x)

]
+
λ`

λ
f̂ `(x)

=
1

λ

(θ̂0 − θ̂`0) +
∑
j∈E`

(θ̂j − θ̂`j)K(x,xj) + (τ − τ`)
∑
j /∈E`

wjK(x,xj)

+
λ`

λ
f̂ `(x). (M.1)

For i ∈ E `, we have yi − f̂ `(xi) = yi − f̂(xi) = 0 which leads (M.1) to:

(λ− λ`)yi − (τ − τ `)
∑
j /∈E`

ωiK(xi,xj) = θ̂0 − θ̂`0 +
∑
j∈E`

(θ̂j − θ̂`j)K(xi,xj), ∀i ∈ E `. (M.2)

Moreover, the solution must satisfies
∑n

i=1 θ̂i =
∑n

i=1 θ̂
`
i = 0 by Krush-Kuhn-Tucker condi-

tions and hence we have

−(τ − τ `)
∑
j /∈E`

wi =
∑
j∈E`

(θ̂j − θ̂`j). (M.3)

Together (M.2) and (M.3) form a set of (|E `| + 1) linear equations, which can be expressed

in a matrix form as B`(θ̂0,E − θ̂
`

0,E) = A`∆. Finally, the linear update equation (8) follows.
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S2 Proof of Theorem 2

We start with introducing some notations:

Rreg(f ; τ) = E

[
δ

G(Y )
ρτ (Y − f(x))

]
+
αn
2
‖f‖2HK

,

Rn,reg(f ; τ) =
1

n

n∑
i=1

δi
G(Yi)

ρτ (Yi − f(xi)) +
αn
2
‖f‖2HK

.

For ε > 0 fixed, we have a positive integer N1 such that αn sup ‖f‖2HK
< ε

2
,∀n > N1 by (A1).

In addition, we have another N2 by (A2) and (A3) such that |R̂n,reg(f ; τ) − Rn,reg(f ; τ)| <

ε/8,∀n > N2. For ∀n > N = max(N1, N2),

sup
τ

∣∣∣R∗(f̂τ ; τ)−R∗(f ∗τ ; τ)
∣∣∣ = sup

τ

∣∣∣R(f̂τ ; τ)−R(f ∗τ ; τ)
∣∣∣

≤ sup
τ

∣∣∣R(f̂τ ; τ)− R̂n,reg(f̂τ ; τ) + R̂n,reg(f
∗
τ ; τ)−R(f ∗τ ; τ)

∣∣∣
≤ sup

τ

∣∣∣Rreg(f̂τ ; τ)− R̂n,reg(f̂τ ; τ) + R̂n,reg(f
∗
τ ; τ)−Rreg(f

∗
τ ; τ)

∣∣∣+
ε

4

≤ sup
τ

∣∣∣Rreg(f̂τ ; τ)−Rn,reg(f̂τ ; τ) +Rn,reg(f
∗
τ ; τ)−Rreg(f

∗
τ ; τ)

∣∣∣+
ε

2

≤2 sup
f,τ

∣∣∣Rn(f ; τ)−R(f ; τ)
∣∣∣+

ε

2
.

Notice that there exists a constant K such that ∀ϕ ∈ L is bounded by K under the

assumptions 1 and 2. Now applying Theorem 24 of Pollard (1984)

P

(
sup
τ

∣∣∣R∗(f̂τ ; τ)−R∗(f ∗τ ; τ)
∣∣∣ > ε

)
≤P

(
2 sup
f,τ

∣∣∣Rn(f ; τ)−R(f ; τ)
∣∣∣+

ε

2
> ε

)
≤P

(
sup
f,τ

∣∣∣Rn(f ; τ)−R(f ; τ)
∣∣∣ > ε

4

)
≤8N∞( ε

32
, n,L ) exp

(
− nε2

211K2

)
,

where N∞(ε, n,L ) := supPn
N∞(ε,Pn,L ) with the empirical measure Pn denotes uniform

`∞-covering number. In order to obtain the `∞-covering number bound, we firstly show that

ϕ(·) satisfies the Lipschitz condition.

ϕ(Z; f1, τ)− ϕ(Z; f2, τ) =
δ

G(Y |X)
|ρτ (Y, f1)− ρτ (Y, f2)| ≤

δ

G(Y |X)
|f1 − f2| ,

and E[δ/G(Y |X)] = 1. As pointed out by Zhang (2002), since the Lipschitz condition holds

for ϕ(·) ∈ L , the uniform `∞-covering number bound of L can be obtained by using the
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one of a class of function f , denoted by F . Moreover, the two have the same growth rate in

terms of the sample size n. By (A1), we have F = {f : ‖f‖HK
supx ‖K(·,x)‖HK

≤ M1} for

a constant M1. By the theorem 4 of Zhang (2002) we have the following.

logN∞(ε, n,F ) ≤M2M
2
1

log(2 + M1

ε
) + log n

nε

where M1 is a constant. Therefore logN∞(ε, n,L ) = O(log n/n), which completes the proof

by Borel-Cantelli Lemma.

S3 Algorithm for Two-Dimensional Solution Surface

Due to the joint piecewise linearity (8), we can build the entire solution surface on S` and

therefore the main step of the two-dimensional solution surface algorithm is to obtain a set

S` explicitly. We developed the proposed algorithm in R language and is available from the

authors upon request.

S3.1 Initialization

For simplicity, we assume that the data are properly ordered as y1 > y2 > · · · > yn. The

initialization step sets the starting values of λ1 and τ 1 with the associated estimates and

sets, denoted by θ̂
1

= (θ̂10, θ̂
1
1, · · · , θ̂1n)T and E1,L1,R1, respectively. For k = 1, · · · , n, we

first compute L1
k = {1, · · · , k}, R1

k = {k + 1, · · · , n}, and

λ1k = max
i∈L1k,j∈R

1
k

qk(xi)− qk(xj)
yi − yj

where qk(x) = −(1−τ 1k )
∑

i∈L1k
ωiK(x,xi)+τ

1
k

∑
j∈R1

k
ωjK(x,xj) with τ 1k =

∑
i∈L1k

ωi/
∑n

i=1 ωi.

Now, define k∗ = argmaxk∈{1,··· ,n−1} λ
1
k then we have indices i∗ and j∗ such that λ∗k =

qk(xi∗ )−qk(xj∗ )

yi∗−yj∗
. Finally, the initial value of λ and τ are given by

λ1 = λ1k∗ and τ 1 = τ 1k∗ ,

with the associated estimates as

θ̂1i =

 −(1− τ 1)ωi if i ∈ L1
k∗

τ 1ωi if i ∈ R1
k∗

and θ̂10 = yi∗ − qk∗(xi∗) = yj∗ − gk∗(xj∗),
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and sets as

E1 = {i∗, j∗}, L1 = L1
k∗ \ i∗, and R1 = R1

k∗ \ j∗.

We point out that any solution for λ > λ1 (regardless of the value of τ) is trivial in the

sense that its elbow set is empty and the solution is readily determined from the definition

of left and right set. Defining Q to denote the region on the (λ× τ)-plane having meaningful

solutions as Q = {(λ, τ) : 0 ≤ λ ≤ λ1, 0 ≤ τ ≤ τ0}, it is enough for the proposed algorithm

to search the CKQR solutions only on Q.

S3.2 Updating S`

In Section 3.1, the S` is defined as a subregion on the (λ × τ)-plane such that all the sets

remain the same as E `,L`, and R`. Therefore we have the following constraints in order to

define the S`.

First, Event 1 can not be occurred as long as θi fails to reach its lower bound −ωi(1− τ)

for all i ∈ E `. That is, by (8)

θ̂`i + g`i1(λ− λ`) + g`i2(τ − τ `) ≥ −ωi(1− τ), ∀i ∈ E `. (M.4)

We also have similar constraints in order to prevent Event 2 from happening as follows.

θ̂`i + g`i1(λ− λ`) + g`i2(τ − τ `) ≤ ωiτ, ∀i ∈ E `. (M.5)

For preventing the last Event 3, f `(xi) > yi for i ∈ L` and f `(xj) < yj for j ∈ R`. Employing

(11) we have

{yi − h`1(xi)}λ− h`2(xi)τ ≤ λ`{f `(xi)− h`2(xi)} − τ `h`2(xi), ∀i ∈ L`, (M.6)

{yj − h`1(xj)}λ− h`2(xj)τ ≥ λ`{f `(xj)− h`2(xj)} − τ `h`2(xj), ∀j ∈ R`. (M.7)

Notice that the constants (M.4) – (M.7) form the linear constraints given in Section 4.

Finally, the S` is defined explicitly by the region satisfying all the constraints. Notice that

all the constraints are linear and hence the set S` turns out to be a connected, convex, and

closed polygon.
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In order to keep continuing the algorithm, we set the middle points of each adjacent

vertices of S` as the next points to be updated. The solutions on the middle points can

be readily updated by Theorem 1. It is essential to update the set for the middle points.

Remark that each side of the polygon S` represents a different event and a set at a middle

point should be updated according to the event represented by the side. Notice also that

S` has multiple sides to be updated. The algorithm searches all the solutions by keeping

continuing to obtain S` and solutions at its vertices. The algorithm is terminated after the

entire domain of Q is searched.

S3.3 Empty Elbow

We note that there is a possibility that E can be empty due to Event 1 and Event 2 and we

call it empty elbow. If the empty elbow occurs then we can not apply Theorem 1. Suppose

the empty elbow occurs at (λe, τ e) then use a superscript ‘e’ to denote quantities obtained

at (λe, τ e).

It is not difficult to verify that two conditions are satisfied under the empty elbow : i)

τ e =
∑

iLe ωi/
∑n

i=1 ωi and ii) θ̂ei are unique while θ̂e0 is not. In fact, θ̂e0 can be any value in

the following interval,

[aL, aU ] :=

[
max
i∈Le

me
i , min

i∈Re
me
i

]
, (M.8)

where me
i = yiλ

e −
∑n

j=1 θ̂
e
jK(xi,xj). Since solution path of θ0 is continuous, the empty

elbow can be resolved only by θ̂0 touching one of the two boundaries, aL or aU . We regard

the θ̂e0 obtained from the algorithm at (λe, τ e) as an entrance to the empty elbow and it must

be one of the aL or aU . Without loss of generality, we suppose θ̂e0 = aL then the empty elbow

is resolved by reaching another boundary aU , which can be regarded as an exit. Therefore

under the empty elbow, the sets can be updated as follows: Let ieL = argmaxi∈Le m
e
i and

ieU = argmini∈Re me
i , then the next E , denoted by Ee+1 is updated from the empty set to

{ieU}. The updated L and R under empty elbow, denoted by Le+1 and Re+1, respectively

can be accordingly obtained from the fact that the ieU is one from either of the two sets. In

case of αe0 = aU , we will have E = {ieL} and the other two sets updated accordingly.
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