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Abstract: The receiver operating characteristic (ROC) curve is a well-known mea-

sure of the performance of a classification method. Interest may only pertain to

a specific region of the curve and, in this case, the partial area under the ROC

curve (pAUC) provides a useful summary measure. Related measures such as the

ordinal dominance curve (ODC) and the partial area under the ODC (pODC)

are frequently of interest as well. Based on a novel estimator of pAUC proposed

by Wang and Chang (2011), we develop nonparametric approaches to the pAUC

and pODC using normal approximation, the jackknife and the jackknife empirical

likelihood. A simulation study demonstrates the flaws of the existing method and

shows proposed methods perform well. Simulations also substantiate the consis-

tency of our jackknife variance estimator. The Pancreatic Cancer Serum Biomarker

data set is used to illustrate the proposed methods.

Key words and phrases: Jackknife empirical likelihood, normal approximation, par-

tial AUC.

1. Introduction

The ROC curve is a well-established graphical tool used to evaluate per-

formance of a classifier in accurately discriminating between subjects from dif-

ferent populations (e.g., diseased and healthy individuals). Let F and G be

distribution functions of random variables X and Y corresponding to indepen-

dent populations. Let G−1(t) = inf{y : G(y) ≥ t} be the quantile function of

G, 0 < t < 1. Let SF (t) and SG(t) be the corresponding survival functions

SF (t) = 1 − F (t) and SG(t) = 1 − G(t). For t ∈ (0, 1), the ROC curve is

defined as ROC(t) = 1 − F{G−1(1 − t)} or ROC(t) = SF{S−1
G (t)}, where t is

the value of FPR and S−1
G (t) = G−1(1 − t). The ROC curve is not a con-

venient tool for comparisions, in particular when two ROC curves cross. A

summary measure of an ROC curve can be found by integrating the ROC curve

over the the range of FPR values to obtain the area under the ROC curve

as AUC =
∫ 1
0 ROC(t)dt =

∫ −∞
∞ SF(u)dSG(u). For economical and practical
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Figure 1. ODC and ROC curve.

purposes, it is common to hold the FPR to a low level. When interest is re-

stricted to a sub-region of the ROC space, the partial area under the ROC

curve, pAUC(P0) =
∫ P0

0 ROC(p)dp for the threshold value of FPR P0 ∈ (0, 1),

can provide a useful summary measure.

The ordinal dominance curve (ODC) introduced by Bamber (1975), see Fig-

ure 1, describes the association between true negative rate (TNR) and false

negative rate (FNR), ODC(t) = G{F−1(t)} where t ∈ (0, 1). The area un-

der the ODC,
∫ 1
0 ODC(t)dt =

∫∞
−∞G(u)dF(u), is a commonly used summary

measure. A partial area under the ODC(pODC) from 0 to P0 is taken as

pODC(P0) =
∫ P0

0 ODC(t)dt.

Nonparametric approaches for statistics based on ROC curves have been

extensively investigated. Hsieh and Turnbull (1996) proposed nonparametric

estimators for the ODC and AUC, and Wieand, Gail and James (1989) presented

nonparametric methods for the difference between ROC curves or AUC’s. Based

on the jackknife empirical likelihood (Jing, Yuan and Zhou (2009)), Gong, Peng

and Qi (2010) proposed a smoothed inference procedure for the ROC curve, and

Yang and Zhao (2013, 2015) developed new inference methods for the difference

of two ROC curves and ROC curves with missing data. Several researchers have

applied the properties of U-statistics (Hoeffding (1948)) to make an inference on

AUC and pAUC. For example, DeLong, DeLong and Clarke-Pearson (1988), Sen

(1960), and Bamber (1975) employed a multi-dimensional version of Hoeffding

(1948) for Mann-Whitney U-statistics to do inference for the AUC and, similarly,

Zhang et al. (2002) and Dodd and Pepe (2003) investigated U-statistic theory

for the pAUC. More recently, He and Escobar (2008) have pointed out that the

Sen-type estimator of the pAUC is not a typical U-statistic, and Hoeffding’s

theory may not be applicable. Specifically, Hoeffding’s theory does not account
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for the variance of quantile estimates or their correlation with U-statistic kernels

derived for these estimators.

Building on the work of He and Escobar (2008), Adimari and Chiogna (2012)

introduced the jackknife empirical likelihood (JEL) for the pAUC. However, the

effect of an estimated quantile is still unclear since theorems of He and Escobar

(2008) do not sufficiently account for the variance of a quantile estimate, and this

theoretical result was not established rigorously by Adimari and Chiogna (2012).

In this paper, we present a nonparametric estimator of the pAUC with a

variance that correctly accounts for the random error in the estimator. We also

derive an interval estimation method based on the pAUC estimator proposed

by Wang and Chang (2011). Finally, we develop jackknife and JEL inference

procedures for the pAUC and the pODC.

The rest of the paper is organized as follows. In Section 2, we propose

the nonparametric approach for the partial area under ODC and pAUC, using

normal approximation, the jackknife and the JEL. In Section 3, we report on

extensive simulation studies. We show how to apply our methods to a practical

problem in Section 4 and add a discussion in Section 5. Proofs are provided in

the supplementary material.

2. Main Procedures

Let X = {Xi, i = 1, . . . ,m} and Y = {Yi, i = 1, . . . , n} be random samples

from the distribution functions F (x) and G(y), respectively. A simple empirical

estimator of pODC(P0) is

p̂ODC(P0) =

∫ F−1
m (P0)

−∞
Gn(u)dFm(u),

where F−1
m (P0) is an empirical quantile estimate at P0 and Fm(·) and Gn(·) are

the empirical distributions of F (·) and G(·). Alternatively,

p̂ODC(P0) =
1

mn

m∑
i=1

n∑
j=1

I(Yj ≤ Xi)I{Xi ≤ F−1
m (P0)}.

Liu (2006) developed the asymptotic normality for p̂ODC(P0). Here are the

following conditions that are common in practice.

C.1. F (t) and G(t) are continuous distribution functions.

C.2. m/(m+ n) → λ, λ ∈ (0, 1).

C.3. F (t) is differentiable, and F (t) is twice differentiable at F−1(P0), with

F ′(F−1(P0)) > 0.

C.4. G(t) is differentiable, and G(t) is twice differentiable at G−1(1− P0), with

G′(G−1(1− P0)) > 0.
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purposes, it is common to hold the FPR to a low level. When interest is re-

stricted to a sub-region of the ROC space, the partial area under the ROC

curve, pAUC(P0) =
∫ P0

0 ROC(p)dp for the threshold value of FPR P0 ∈ (0, 1),

can provide a useful summary measure.

The ordinal dominance curve (ODC) introduced by Bamber (1975), see Fig-

ure 1, describes the association between true negative rate (TNR) and false

negative rate (FNR), ODC(t) = G{F−1(t)} where t ∈ (0, 1). The area un-

der the ODC,
∫ 1
0 ODC(t)dt =
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−∞G(u)dF(u), is a commonly used summary

measure. A partial area under the ODC(pODC) from 0 to P0 is taken as

pODC(P0) =
∫ P0

0 ODC(t)dt.

Nonparametric approaches for statistics based on ROC curves have been

extensively investigated. Hsieh and Turnbull (1996) proposed nonparametric

estimators for the ODC and AUC, and Wieand, Gail and James (1989) presented

nonparametric methods for the difference between ROC curves or AUC’s. Based

on the jackknife empirical likelihood (Jing, Yuan and Zhou (2009)), Gong, Peng

and Qi (2010) proposed a smoothed inference procedure for the ROC curve, and

Yang and Zhao (2013, 2015) developed new inference methods for the difference

of two ROC curves and ROC curves with missing data. Several researchers have

applied the properties of U-statistics (Hoeffding (1948)) to make an inference on

AUC and pAUC. For example, DeLong, DeLong and Clarke-Pearson (1988), Sen

(1960), and Bamber (1975) employed a multi-dimensional version of Hoeffding

(1948) for Mann-Whitney U-statistics to do inference for the AUC and, similarly,

Zhang et al. (2002) and Dodd and Pepe (2003) investigated U-statistic theory

for the pAUC. More recently, He and Escobar (2008) have pointed out that the

Sen-type estimator of the pAUC is not a typical U-statistic, and Hoeffding’s

theory may not be applicable. Specifically, Hoeffding’s theory does not account
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for the variance of quantile estimates or their correlation with U-statistic kernels

derived for these estimators.
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normal approximation, the jackknife and the JEL. In Section 3, we report on

extensive simulation studies. We show how to apply our methods to a practical

problem in Section 4 and add a discussion in Section 5. Proofs are provided in
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2. Main Procedures

Let X = {Xi, i = 1, . . . ,m} and Y = {Yi, i = 1, . . . , n} be random samples

from the distribution functions F (x) and G(y), respectively. A simple empirical

estimator of pODC(P0) is
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where F−1
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the empirical distributions of F (·) and G(·). Alternatively,

p̂ODC(P0) =
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C.3. F (t) is differentiable, and F (t) is twice differentiable at F−1(P0), with

F ′(F−1(P0)) > 0.

C.4. G(t) is differentiable, and G(t) is twice differentiable at G−1(1− P0), with

G′(G−1(1− P0)) > 0.

359



4 Hanfang Yang, Kun Lu and Yichuan Zhao

TNR
FNR
F
G

(a) binary classifier for the ODC.

TPR
FPR
F
G

(b) binary classifier for the ROC curve

Figure 2. Binary classifier for ODC and ROC curves.

Lemma 1 (Liu (2006)). Under C.1−C.4,

√
m+ n{p̂ODC(P0)− pODC(P0)}

d→ N

(
0,

σ2
1

1− λ
+

σ2
2

λ

)
,m, n → ∞,

where

σ2
1 =

∫ F−1(P0)

−∞
{P0 − F (t)}2dG(t)−

{∫ F−1(P0)

−∞
G(t)dF (t)

}2

,

σ2
2 =

∫ F−1(P0)

−∞
[G(t)−G{F−1(P0)}]2dF (t)

−

(∫ F−1(P0)

−∞
[G(t)−G{F−1(P0)}]dF (t)

)2

.

As shown in Figure 2, points on the ROC curve, ROC = (FPR,TPR) =

(1−TNR, 1−FNR) can be obtained from the ODC curve, ODC = (FNR,TNR).

We have the empirical estimator

p̂AUC(P0) =

∫ P0

0
SF,m{S−1

G,n(u)}du =

∫ S−1
G,n(P0)

+∞
SF,m(t)dSG,n(t)

=
1

mn

m∑
i=1

n∑
j=1

I(Xi ≥ Yj)I{Yj ≥ S−1
G,n(P0)},

where S−1
G,n(t) = inf {x ∈ R; t ≥ SG,n(x)} and SF,m(·) and SG,n(·) are estimators

of SF and SG based on empirical distributions. Following Liu (2006), we can

extend Lemma 1.

Corollary 1. Under C.1−C.4,
√
m+ n{p̂AUC(P0)− pAUC(P0)}

d→ N

{
0,

σ2
3(P0)

λ
+

σ2
4(P0)

1− λ

}
,m, n → ∞,
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where

σ2
3(P0) =

∫ S−1
G (P0)

+∞
{P0 − SG(t)}2dSF (t)−

{∫ S−1
G (P0)

+∞
SF (t)dSG(t)

}2

,

σ2
4(P0) =

∫ S−1
G (P0)

+∞
[SF (t)− SF {S−1

G (P0)}]2dSG(t)

−

(∫ S−1
G (P0)

+∞
[SF (t)− SF {S−1

G (P0)}]dSG(t)

)2

.

Remark 1. We provide the variance of p̂AUC, accounting for the random error

in S−1
G,n(P0) that He and Escobar (2008) have ignored. Our simulation results

demonstrate the improved performance of our variance estimators as the sample

size becomes large.

Contrary to arguments of Adimari and Chiogna (2012), the quantile esti-

mator is problematic for jackknife variance estimators. Their jackknife variance

estimator fails to incorporate the error associated with the quantile estimate,

and thus is not a consistent estimator for the variance of p̂AUC(P0). This lack

of consistency can be seen in our simulations in Section 3.1.

Jackknife methods will be applied to an alternative estimator of pAUC(P0)

by Wang and Chang (2011),

p̃AUC(P0) = P0 −
1

m

m∑
i=1

min{SG,n(Xi), P0}.

Theorem 1. Under C.1−C.4,
√
m+ n{p̃AUC(P0)− pAUC(P0)}

d→ N

{
0,

σ2
3(P0)

λ
+

σ2
4(P0)

1− λ

}
,m, n → ∞.

The estimators p̂AUC(P0) and p̃AUC(P0) are in close agreement, but

p̃AUC(P0) avoids the use of a quantile estimator. We propose the jackknife

method and JEL method based on p̃AUC(P0). Then

p̃AUCjack(P0) =
1

n+m

n+m∑
h=1

Vh(P0),

where Vh(P0) = (n+m)p̃AUC(P0)− (n+m− 1)p̃AUCh(P0), and

p̃AUCh(P0) =




P0 − 1
m−1

m∑
i �=h

min{SG,n(Xi), P0} 1 ≤ h ≤ m,

P0 − 1
m

m∑
i=1

min{SG,n−1,h−m(Xi), P0} m+ 1 ≤ h ≤ m+ n,
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where
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3(P0) =
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m
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where

SG,n−1,h−m(Xi) =
1

n− 1

n∑
j=1,j �=h−m

I(Yj > Xi).

Lemma 2. Under C.1−C.4,

√
m+ n{p̃AUCjack(P0)− pAUC(P0)}

d→ N

{
0,

σ2
3(P0)

λ
+

σ2
4(P0)

1− λ

}
,m, n → ∞.

Consider the jackknife variance estimator

S2

p̃AUC
= (m+ n)−1

m+n∑
h=1

{Vh(P0)− p̃AUCjack(P0)}2.

Lemma 3. Under C.1−C.4,

S2

p̃AUC
(P0) =

σ2
3(P0)

λ
+

σ2
4(P0)

1− λ
+ op(1).

Using Slusky’s Theorem, and Lemmas 2 and 3, we have the following.

Theorem 2. Under C.1−C.4 hold,

√
m+ n{p̃AUCjack(P0)− pAUC(P0)}√

S2

p̃AUC
(P0)

d→ N(0, 1).

In order to derive a Wilks’ theorem for the jackknife empirical likelihood

ratio, the asymptotic normality and variance consistency of jackknife pseudo-

samples are essential. For the JEL, we define the jackknife empirical likelihood

ratio for pAUC(P0) as

RpAUC{P0, pAUC(P0)}

=

sup
{m+n∏

i=1
pi :

m+n∑
i=1

pi=1,
m+n∑
i=1

piVi(P0)=pAUC(P0), pi > 0, i = 1, . . . ,m+ n
}

sup
{m+n∏

i=1
pi,

m+n∑
i=1

pi=1, pi>0, i=1, . . . ,m+ n
} .

The empirical log-likelihood ratio for the pAUC(P0) is

lpAUC(P0, pAUC(P0)) = −2 log[RpAUC{P0, pAUC(P0)}]

= 2

m+n∑
i=1

log[1 + λ1{Vi(P0)− pAUC(P0)}], (2.1)
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where the Lagrange multiplier λ1 satisfies the nonlinear equation

m+n∑
i=1

{Vi(P0)− pAUC(P0)}
1 + λ1{Vi(P0)− pAUC(P0)}

= 0. (2.2)

We derive a Wilks’ theorem for pAUC(P0) based on the jackknife pseudo-values

Vi(P0), i = 1, . . . ,m+ n.

Theorem 3. Under C.1−C.4,

lpAUC{P0, pAUC(P0)}
d→ χ2

1. (2.3)

From Theorem 3, an asymptotic 100(1 − α)% JEL confidence interval for

pAUC(P0) is IpAUC(P0) =
{
Ṽ : lpAUC(P0, Ṽ ) ≤ χ2

1(α)
}
, where χ2

1(α) is the up-

per α-quantile of χ2
1.

Because the ODC curve is reversed from the ROC curve, we may apply

results for the pAUC to the pODC. Following Wang and Chang (2011), let

p̃ODC(P0) = P0 −
1

n

n∑
j=1

min{Fm(Yj), P0}.

Corollary 2. Under C.1−C.4, as m,n → ∞

√
m+ n{p̃ODC(P0)− pODC(P0)}

d→ N

{
0,

σ2
1(P0)

1− λ
+

σ2
2(P0)

λ

}
.

For the jackknife procedure of p̃ODC, we take

p̃ODCjack(P0) =
1

n+m

n+m∑
h=1

Ǔh(P0),

where Ǔh(P0) = (n+m)p̃ODC(P0)− (n+m− 1)p̃ODCh(P0) and

p̃ODCh(P0) =




P0 − 1
n−1

n∑
j �=h

min{Fm(Yj), P0} 1 ≤ h ≤ n,

P0 − 1
n

n∑
j=1

min{Fm−1,h−n(Yj), P0} n+ 1 ≤ h ≤ m+ n,

where

Fm−1,h−n(Yj) =
1

m− 1

m∑
i=1,i �=h−n

I(Xi ≤ Yj).

Let

S2

p̃ODC
= (m+ n)−1

m+n∑
h=1

{Ǔh(P0)− p̃ODCjack(P0)}2.
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{Vh(P0)− p̃AUCjack(P0)}2.

Lemma 3. Under C.1−C.4,

S2

p̃AUC
(P0) =

σ2
3(P0)

λ
+

σ2
4(P0)

1− λ
+ op(1).

Using Slusky’s Theorem, and Lemmas 2 and 3, we have the following.

Theorem 2. Under C.1−C.4 hold,

√
m+ n{p̃AUCjack(P0)− pAUC(P0)}√

S2

p̃AUC
(P0)

d→ N(0, 1).

In order to derive a Wilks’ theorem for the jackknife empirical likelihood

ratio, the asymptotic normality and variance consistency of jackknife pseudo-

samples are essential. For the JEL, we define the jackknife empirical likelihood

ratio for pAUC(P0) as

RpAUC{P0, pAUC(P0)}

=

sup
{m+n∏

i=1
pi :

m+n∑
i=1

pi=1,
m+n∑
i=1

piVi(P0)=pAUC(P0), pi > 0, i = 1, . . . ,m+ n
}

sup
{m+n∏

i=1
pi,

m+n∑
i=1

pi=1, pi>0, i=1, . . . ,m+ n
} .

The empirical log-likelihood ratio for the pAUC(P0) is

lpAUC(P0, pAUC(P0)) = −2 log[RpAUC{P0, pAUC(P0)}]

= 2

m+n∑
i=1

log[1 + λ1{Vi(P0)− pAUC(P0)}], (2.1)
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where the Lagrange multiplier λ1 satisfies the nonlinear equation

m+n∑
i=1

{Vi(P0)− pAUC(P0)}
1 + λ1{Vi(P0)− pAUC(P0)}

= 0. (2.2)

We derive a Wilks’ theorem for pAUC(P0) based on the jackknife pseudo-values

Vi(P0), i = 1, . . . ,m+ n.

Theorem 3. Under C.1−C.4,

lpAUC{P0, pAUC(P0)}
d→ χ2

1. (2.3)

From Theorem 3, an asymptotic 100(1 − α)% JEL confidence interval for

pAUC(P0) is IpAUC(P0) =
{
Ṽ : lpAUC(P0, Ṽ ) ≤ χ2

1(α)
}
, where χ2

1(α) is the up-

per α-quantile of χ2
1.

Because the ODC curve is reversed from the ROC curve, we may apply

results for the pAUC to the pODC. Following Wang and Chang (2011), let

p̃ODC(P0) = P0 −
1

n

n∑
j=1

min{Fm(Yj), P0}.

Corollary 2. Under C.1−C.4, as m,n → ∞

√
m+ n{p̃ODC(P0)− pODC(P0)}

d→ N

{
0,

σ2
1(P0)

1− λ
+

σ2
2(P0)

λ

}
.

For the jackknife procedure of p̃ODC, we take

p̃ODCjack(P0) =
1

n+m

n+m∑
h=1

Ǔh(P0),

where Ǔh(P0) = (n+m)p̃ODC(P0)− (n+m− 1)p̃ODCh(P0) and

p̃ODCh(P0) =




P0 − 1
n−1

n∑
j �=h

min{Fm(Yj), P0} 1 ≤ h ≤ n,

P0 − 1
n

n∑
j=1

min{Fm−1,h−n(Yj), P0} n+ 1 ≤ h ≤ m+ n,

where

Fm−1,h−n(Yj) =
1

m− 1

m∑
i=1,i �=h−n

I(Xi ≤ Yj).

Let

S2

p̃ODC
= (m+ n)−1

m+n∑
h=1

{Ǔh(P0)− p̃ODCjack(P0)}2.
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Corollary 3. Under C.1−C.4, as m,n → ∞,

√
m+ n{p̃ODCjack(P0)− pODC(P0)}

d→N

(
0,

σ2
1

1− λ
+

σ2
2

λ

)
,

S2

p̃ODC
(P0) =

σ2
1(P0)

1− λ
+

σ2
2(P0)

λ
+ op(1),

√
m+ n{p̃ODCjack(P0)− pODC(P0)}√

S2

p̃ODC
(P0)

d→N(0, 1).

We define the empirical likelihood ratio RpODC{P0, pODC(P0)},

RpODC{P0, pODC(P0)}

=

sup
{m+n∏

i=1
pi :

m+n∑
i=1

pi=1,
m+n∑
i=1

piǓi(P0)=pODC(P0), pi > 0, i=1, . . . ,m+ n
}

sup
{∏m+n

i=1 pi,
∑m+n

i=1 pi=1, pi>0, i=1, . . . ,m+ n
} .

The empirical log-likelihood ratio is

lpODC{P0, pODC(P0)} = −2 log[RpODC{P0, pODC(P0)}].

Corollary 4. Under C.1−C.4, lpODC{P0, pODC(P0)}
d→ χ2

1.

Thus, the asymptotic 100(1−α)% JEL confidence interval for pODC(P0) is

IpODC(P0) =
{
Ṽ : lpODC(P0, Ṽ ) ≤ χ2

1(α)
}
.

3. Numerical Studies

In this section, we report on simulations to evaluate the estimators of Section

2. In the first simulations, we compared our normal approximation method with

that of He and Escobar (2008) based on the empirical variance estimator. In the

second simulations, we compare the performance of the normal approximation

(NA), jackknife, and JEL methods for both pAUC and pODC.

3.1. Comparison of Corollary 1’s method with the existing method

Using the same settings as He and Escobar (2008), we generated data sets

consisting of samples, X1, . . . , Xm and Y1, . . . , Yn where Xi ∼ N(0, 1) and Yj ∼
N(1, 1) for i = 1, . . . ,m and j = 1, . . . , n. We used samples sizes (m,n) of (50,

50), (100, 100), (150, 150), (200, 200), (200, 3,000), (3,000, 200), (200, 6,000)

and (6,000, 200). For each data set we computed p̂AUC(P0) for P0 of 0.6 and
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Table 1. Coverage probability (cp) of 95% NA confidence intervals for
pAUC(P0) and standard deviation (s).

P0 m n
Corollary 1’s Method He and Escobar’s Method
cp s cp s

0.6 50 50 0.897 1.24 0.877 1.44
0.6 100 100 0.925 1.09 0.897 1.27
0.6 150 150 0.934 1.06 0.911 1.21
0.6 200 200 0.943 1.04 0.897 1.20
0.6 200 3,000 0.939 0.98 0.946 1.04
0.6 3,000 200 0.951 1.00 0.808 1.56
0.6 200 6,000 0.947 1.01 0.942 1.02
0.6 6,000 200 0.953 1.00 0.758 1.70
0.8 50 50 0.895 1.28 0.907 1.23
0.8 100 100 0.930 1.08 0.915 1.14
0.8 150 150 0.933 1.07 0.909 1.17
0.8 200 200 0.946 1.02 0.918 1.14
0.8 200 3,000 0.951 1.01 0.938 1.01
0.8 3,000 200 0.949 1.00 0.808 1.56
0.8 200 6,000 0.950 1.01 0.942 0.99
0.8 6,000 200 0.951 1.00 0.821 1.48

0.8, and 95% confidence interval (CI) for pAUC(P0). For each setting we then

computed the coverage probability (cp) of CI and sample standard deviation (s)

for 1,000 data sets.

As shown in Table 1, our proposed estimator performs better than that of

He and Escobar. For our estimator, coverage probabilities and estimates of stan-

dard deviation are close to expected values of 0.95 and 1 in small and moderate

samples, while those of He and Escobar do not. For example, for sample sizes

(3,000, 200) and (6,000, 200), the He and Escobar method had low coverage and

inaccurate standard deviation estimates. Both methods are acceptable for im-

balanced samples when n is much larger than m such as (m,n) = (200, 3,000) or

(200, 6,000).

With similar arguments as in equations (3.15), (3.16), (3.18), and (3.19) in

Liu (2006),
√
m+ n{p̂AUC(P0)−pAUC(P0)} can be represented as a sum of two

terms, where the second term σ2
4/(1− λ) is estimated by including the variance

from sample quantile. By ignoring the trimmed effect on the variance estimator,

the method of He and Escobar fails to correctly estimate the contribution of

σ2
4/(1 − λ) to the variance of p̂AUC(P0): settings where n is much larger than

m, λ → 0, the estimate of σ2
4/(1 − λ) from the sample quantile Gn(y) becomes

negligible and this explains the good performance of their estimator in these

settings. However, if m is much larger than n and in their balanced samples,

their estimator performs poorly.
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Corollary 3. Under C.1−C.4, as m,n → ∞,

√
m+ n{p̃ODCjack(P0)− pODC(P0)}

d→N

(
0,

σ2
1

1− λ
+

σ2
2

λ

)
,

S2

p̃ODC
(P0) =

σ2
1(P0)

1− λ
+

σ2
2(P0)

λ
+ op(1),

√
m+ n{p̃ODCjack(P0)− pODC(P0)}√

S2

p̃ODC
(P0)

d→N(0, 1).

We define the empirical likelihood ratio RpODC{P0, pODC(P0)},

RpODC{P0, pODC(P0)}

=

sup
{m+n∏

i=1
pi :

m+n∑
i=1

pi=1,
m+n∑
i=1

piǓi(P0)=pODC(P0), pi > 0, i=1, . . . ,m+ n
}

sup
{∏m+n

i=1 pi,
∑m+n

i=1 pi=1, pi>0, i=1, . . . ,m+ n
} .

The empirical log-likelihood ratio is

lpODC{P0, pODC(P0)} = −2 log[RpODC{P0, pODC(P0)}].

Corollary 4. Under C.1−C.4, lpODC{P0, pODC(P0)}
d→ χ2

1.

Thus, the asymptotic 100(1−α)% JEL confidence interval for pODC(P0) is

IpODC(P0) =
{
Ṽ : lpODC(P0, Ṽ ) ≤ χ2

1(α)
}
.

3. Numerical Studies

In this section, we report on simulations to evaluate the estimators of Section

2. In the first simulations, we compared our normal approximation method with

that of He and Escobar (2008) based on the empirical variance estimator. In the

second simulations, we compare the performance of the normal approximation

(NA), jackknife, and JEL methods for both pAUC and pODC.

3.1. Comparison of Corollary 1’s method with the existing method

Using the same settings as He and Escobar (2008), we generated data sets

consisting of samples, X1, . . . , Xm and Y1, . . . , Yn where Xi ∼ N(0, 1) and Yj ∼
N(1, 1) for i = 1, . . . ,m and j = 1, . . . , n. We used samples sizes (m,n) of (50,

50), (100, 100), (150, 150), (200, 200), (200, 3,000), (3,000, 200), (200, 6,000)

and (6,000, 200). For each data set we computed p̂AUC(P0) for P0 of 0.6 and
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Table 1. Coverage probability (cp) of 95% NA confidence intervals for
pAUC(P0) and standard deviation (s).

P0 m n
Corollary 1’s Method He and Escobar’s Method
cp s cp s

0.6 50 50 0.897 1.24 0.877 1.44
0.6 100 100 0.925 1.09 0.897 1.27
0.6 150 150 0.934 1.06 0.911 1.21
0.6 200 200 0.943 1.04 0.897 1.20
0.6 200 3,000 0.939 0.98 0.946 1.04
0.6 3,000 200 0.951 1.00 0.808 1.56
0.6 200 6,000 0.947 1.01 0.942 1.02
0.6 6,000 200 0.953 1.00 0.758 1.70
0.8 50 50 0.895 1.28 0.907 1.23
0.8 100 100 0.930 1.08 0.915 1.14
0.8 150 150 0.933 1.07 0.909 1.17
0.8 200 200 0.946 1.02 0.918 1.14
0.8 200 3,000 0.951 1.01 0.938 1.01
0.8 3,000 200 0.949 1.00 0.808 1.56
0.8 200 6,000 0.950 1.01 0.942 0.99
0.8 6,000 200 0.951 1.00 0.821 1.48

0.8, and 95% confidence interval (CI) for pAUC(P0). For each setting we then

computed the coverage probability (cp) of CI and sample standard deviation (s)

for 1,000 data sets.

As shown in Table 1, our proposed estimator performs better than that of

He and Escobar. For our estimator, coverage probabilities and estimates of stan-

dard deviation are close to expected values of 0.95 and 1 in small and moderate

samples, while those of He and Escobar do not. For example, for sample sizes

(3,000, 200) and (6,000, 200), the He and Escobar method had low coverage and

inaccurate standard deviation estimates. Both methods are acceptable for im-

balanced samples when n is much larger than m such as (m,n) = (200, 3,000) or

(200, 6,000).

With similar arguments as in equations (3.15), (3.16), (3.18), and (3.19) in

Liu (2006),
√
m+ n{p̂AUC(P0)−pAUC(P0)} can be represented as a sum of two

terms, where the second term σ2
4/(1− λ) is estimated by including the variance

from sample quantile. By ignoring the trimmed effect on the variance estimator,

the method of He and Escobar fails to correctly estimate the contribution of

σ2
4/(1 − λ) to the variance of p̂AUC(P0): settings where n is much larger than

m, λ → 0, the estimate of σ2
4/(1 − λ) from the sample quantile Gn(y) becomes

negligible and this explains the good performance of their estimator in these

settings. However, if m is much larger than n and in their balanced samples,

their estimator performs poorly.
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3.2. Comparison of NA, jackknife, and JEL methods for pAUC and

pODC

Table 2. Coverage probability of 95% confidence interval for the pAUC(P0).

P0 m n JEL (A) JKN (A) NA (A) JEL (B) JKN (B) NA (B) JEL (C) JKN (C) NA (C)

0.5 20 20 0.924 0.943 0.937 0.856 0.898 0.885 0.920 0.933 0.924
0.5 30 30 0.924 0.939 0.934 0.876 0.914 0.906 0.931 0.945 0.935
0.5 40 40 0.925 0.927 0.922 0.894 0.916 0.912 0.932 0.941 0.941
0.5 50 50 0.944 0.945 0.942 0.917 0.927 0.922 0.920 0.928 0.924
0.5 80 80 0.945 0.946 0.943 0.914 0.926 0.923 0.942 0.950 0.948
0.5 100 100 0.939 0.944 0.941 0.932 0.936 0.934 0.953 0.952 0.952

0.6 20 20 0.929 0.938 0.929 0.907 0.923 0.915 0.934 0.937 0.927
0.6 30 30 0.948 0.954 0.950 0.927 0.936 0.926 0.932 0.936 0.935
0.6 40 40 0.941 0.951 0.948 0.937 0.935 0.930 0.940 0.946 0.943
0.6 50 50 0.941 0.943 0.943 0.923 0.931 0.930 0.933 0.939 0.936
0.6 80 80 0.944 0.947 0.947 0.939 0.944 0.941 0.945 0.948 0.943
0.6 100 100 0.959 0.957 0.957 0.940 0.946 0.944 0.940 0.947 0.945

Table 3. Average length of 95% confidence interval for the pAUC(P0).

P0 m n JEL (A) JKN (A) NA (A) JEL (B) JKN (B) NA (B) JEL (C) JKN (C) NA (C)

0.5 20 20 0.227 0.238 0.229 0.257 0.268 0.258 0.199 0.210 0.201
0.5 30 30 0.181 0.191 0.186 0.211 0.222 0.216 0.158 0.168 0.164
0.5 40 40 0.154 0.165 0.162 0.181 0.192 0.188 0.136 0.146 0.143
0.5 50 50 0.138 0.148 0.146 0.163 0.174 0.171 0.119 0.129 0.127
0.5 80 80 0.106 0.116 0.115 0.126 0.137 0.135 0.092 0.101 0.100
0.5 100 100 0.093 0.103 0.103 0.113 0.123 0.122 0.081 0.091 0.090

0.6 20 20 0.264 0.277 0.268 0.301 0.314 0.304 0.245 0.257 0.248
0.6 30 30 0.212 0.224 0.219 0.246 0.258 0.252 0.195 0.206 0.201
0.6 40 40 0.182 0.194 0.190 0.213 0.224 0.220 0.167 0.179 0.175
0.6 50 50 0.161 0.173 0.170 0.188 0.199 0.196 0.148 0.158 0.156
0.6 80 80 0.125 0.136 0.135 0.147 0.158 0.157 0.114 0.124 0.123
0.6 100 100 0.111 0.122 0.121 0.130 0.141 0.140 0.101 0.111 0.110

In these simulations, we evaluated the performance of our NA method, the

jackknife method (JKN), and JEL for pAUC and pODC. We generated samples,

X1, . . . , Xm and Y1, . . . , Yn. As (A), Xi ∼ N(0.2, 0.52) and Yj ∼ N(0, 0.52) for

i = 1, . . . ,m and j = 1, . . . , n. As (B), Xi ∼ Exp(1) and Yj ∼ N(1, 0.52). As (C),

Xi ∼ Exp(1) and Yj ∼ Exp(1). We used samples sizes (m,n) of (20, 20), (30,

30), (40, 40), (50, 50), (80, 80) and (100, 100). For each data set we computed

95% confidence interval (CI) for either pAUC(P0) or pODC(P0) at P0 = 0.5 or

0.6. For each setting we computed coverage probability and average length of

confidence intervals for 1,000 data sets.

Simulation results for the pAUC in Table 2 show that coverage probabilities

are good for all three methods with P0 of 0.5 and 0.6. Coverage probability

increases with increasing sample sizes and it approaches the nominal 0.95 level

A NONPARAMETRIC APPROACH FOR PARTIAL AREAS 11

Table 4. Coverage probability of 95% confidence interval for the pODC(P0).

P0 m n JEL (A) JKN (A) NA (A) JEL (B) JKN (B) NA (B) JEL (C) JKN (C) NA (C)

0.5 20 20 0.913 0.930 0.916 0.856 0.886 0.879 0.916 0.927 0.916
0.5 30 30 0.918 0.919 0.914 0.896 0.929 0.925 0.934 0.949 0.946
0.5 40 40 0.929 0.935 0.930 0.918 0.929 0.925 0.912 0.925 0.922
0.5 50 50 0.939 0.941 0.937 0.914 0.927 0.927 0.945 0.952 0.950
0.5 80 80 0.917 0.925 0.924 0.942 0.942 0.937 0.945 0.947 0.944
0.5 100 100 0.956 0.961 0.960 0.929 0.930 0.929 0.931 0.940 0.936

0.6 20 20 0.920 0.915 0.911 0.882 0.919 0.909 0.932 0.936 0.931
0.6 30 30 0.943 0.943 0.937 0.907 0.939 0.931 0.934 0.939 0.935
0.6 40 40 0.941 0.939 0.935 0.918 0.936 0.933 0.929 0.932 0.930
0.6 50 50 0.933 0.944 0.941 0.926 0.936 0.934 0.932 0.937 0.931
0.6 80 80 0.930 0.933 0.933 0.939 0.953 0.950 0.932 0.938 0.936
0.6 100 100 0.945 0.943 0.942 0.929 0.938 0.937 0.938 0.942 0.940

Table 5. Average length of 95% confidence interval for the pODC(P0).

P0 m n JEL (A) JKN (A) NA (A) JEL (B) JKN (B) NA (B) JEL (C) JKN (C) NA (C)

0.5 20 20 0.162 0.166 0.159 0.146 0.148 0.141 0.205 0.210 0.202
0.5 30 30 0.131 0.134 0.131 0.116 0.119 0.115 0.164 0.169 0.165
0.5 40 40 0.111 0.115 0.113 0.098 0.101 0.099 0.139 0.144 0.141
0.5 50 50 0.098 0.102 0.100 0.084 0.087 0.086 0.124 0.130 0.128
0.5 80 80 0.075 0.080 0.079 0.065 0.069 0.069 0.097 0.102 0.101
0.5 100 100 0.067 0.072 0.071 0.056 0.060 0.060 0.086 0.091 0.090

0.6 20 20 0.205 0.211 0.203 0.208 0.212 0.205 0.249 0.256 0.248
0.6 30 30 0.165 0.170 0.166 0.164 0.169 0.165 0.199 0.205 0.200
0.6 40 40 0.143 0.148 0.145 0.141 0.145 0.143 0.172 0.178 0.175
0.6 50 50 0.127 0.132 0.131 0.124 0.128 0.127 0.152 0.158 0.156
0.6 80 80 0.098 0.103 0.102 0.096 0.101 0.100 0.119 0.125 0.124
0.6 100 100 0.087 0.092 0.091 0.084 0.089 0.089 0.106 0.111 0.110

for the largest sample size across all three estimators under A, B, and C. Results

in Table 3 demonstrate that CI length decreases with increasing sample sizes for

all three methods, and the JEL method produces slightly narrower CIs compared

with the jackknife and NA methods in most cases. Simulation results in Tables

4 and 5 show that the proposed JEL method also has a similar advantage over

the NA and jackknife methods for the pODC.

We also used simulations to substantiate the consistency of jackknife variance

estimators (Lemma 3 and Corollary 3). We generated data from the normal and

exponential distributions of A, B, and C. For each setting, we generated 50

repetitions and computed the mean squared error (MSE) of jackknife variance

estimators of p̃AUC(P0) and p̃ODC(P0) at P0 = 0.4 or 0.6. The plots in Figures

3 and 4 show a decrease in MSE as the sample size increases. The Matlab code

for these simulations is available from the authors upon request.
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3.2. Comparison of NA, jackknife, and JEL methods for pAUC and

pODC

Table 2. Coverage probability of 95% confidence interval for the pAUC(P0).

P0 m n JEL (A) JKN (A) NA (A) JEL (B) JKN (B) NA (B) JEL (C) JKN (C) NA (C)

0.5 20 20 0.924 0.943 0.937 0.856 0.898 0.885 0.920 0.933 0.924
0.5 30 30 0.924 0.939 0.934 0.876 0.914 0.906 0.931 0.945 0.935
0.5 40 40 0.925 0.927 0.922 0.894 0.916 0.912 0.932 0.941 0.941
0.5 50 50 0.944 0.945 0.942 0.917 0.927 0.922 0.920 0.928 0.924
0.5 80 80 0.945 0.946 0.943 0.914 0.926 0.923 0.942 0.950 0.948
0.5 100 100 0.939 0.944 0.941 0.932 0.936 0.934 0.953 0.952 0.952

0.6 20 20 0.929 0.938 0.929 0.907 0.923 0.915 0.934 0.937 0.927
0.6 30 30 0.948 0.954 0.950 0.927 0.936 0.926 0.932 0.936 0.935
0.6 40 40 0.941 0.951 0.948 0.937 0.935 0.930 0.940 0.946 0.943
0.6 50 50 0.941 0.943 0.943 0.923 0.931 0.930 0.933 0.939 0.936
0.6 80 80 0.944 0.947 0.947 0.939 0.944 0.941 0.945 0.948 0.943
0.6 100 100 0.959 0.957 0.957 0.940 0.946 0.944 0.940 0.947 0.945

Table 3. Average length of 95% confidence interval for the pAUC(P0).

P0 m n JEL (A) JKN (A) NA (A) JEL (B) JKN (B) NA (B) JEL (C) JKN (C) NA (C)

0.5 20 20 0.227 0.238 0.229 0.257 0.268 0.258 0.199 0.210 0.201
0.5 30 30 0.181 0.191 0.186 0.211 0.222 0.216 0.158 0.168 0.164
0.5 40 40 0.154 0.165 0.162 0.181 0.192 0.188 0.136 0.146 0.143
0.5 50 50 0.138 0.148 0.146 0.163 0.174 0.171 0.119 0.129 0.127
0.5 80 80 0.106 0.116 0.115 0.126 0.137 0.135 0.092 0.101 0.100
0.5 100 100 0.093 0.103 0.103 0.113 0.123 0.122 0.081 0.091 0.090

0.6 20 20 0.264 0.277 0.268 0.301 0.314 0.304 0.245 0.257 0.248
0.6 30 30 0.212 0.224 0.219 0.246 0.258 0.252 0.195 0.206 0.201
0.6 40 40 0.182 0.194 0.190 0.213 0.224 0.220 0.167 0.179 0.175
0.6 50 50 0.161 0.173 0.170 0.188 0.199 0.196 0.148 0.158 0.156
0.6 80 80 0.125 0.136 0.135 0.147 0.158 0.157 0.114 0.124 0.123
0.6 100 100 0.111 0.122 0.121 0.130 0.141 0.140 0.101 0.111 0.110

In these simulations, we evaluated the performance of our NA method, the

jackknife method (JKN), and JEL for pAUC and pODC. We generated samples,

X1, . . . , Xm and Y1, . . . , Yn. As (A), Xi ∼ N(0.2, 0.52) and Yj ∼ N(0, 0.52) for

i = 1, . . . ,m and j = 1, . . . , n. As (B), Xi ∼ Exp(1) and Yj ∼ N(1, 0.52). As (C),

Xi ∼ Exp(1) and Yj ∼ Exp(1). We used samples sizes (m,n) of (20, 20), (30,

30), (40, 40), (50, 50), (80, 80) and (100, 100). For each data set we computed

95% confidence interval (CI) for either pAUC(P0) or pODC(P0) at P0 = 0.5 or

0.6. For each setting we computed coverage probability and average length of

confidence intervals for 1,000 data sets.

Simulation results for the pAUC in Table 2 show that coverage probabilities

are good for all three methods with P0 of 0.5 and 0.6. Coverage probability

increases with increasing sample sizes and it approaches the nominal 0.95 level
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Table 4. Coverage probability of 95% confidence interval for the pODC(P0).

P0 m n JEL (A) JKN (A) NA (A) JEL (B) JKN (B) NA (B) JEL (C) JKN (C) NA (C)

0.5 20 20 0.913 0.930 0.916 0.856 0.886 0.879 0.916 0.927 0.916
0.5 30 30 0.918 0.919 0.914 0.896 0.929 0.925 0.934 0.949 0.946
0.5 40 40 0.929 0.935 0.930 0.918 0.929 0.925 0.912 0.925 0.922
0.5 50 50 0.939 0.941 0.937 0.914 0.927 0.927 0.945 0.952 0.950
0.5 80 80 0.917 0.925 0.924 0.942 0.942 0.937 0.945 0.947 0.944
0.5 100 100 0.956 0.961 0.960 0.929 0.930 0.929 0.931 0.940 0.936

0.6 20 20 0.920 0.915 0.911 0.882 0.919 0.909 0.932 0.936 0.931
0.6 30 30 0.943 0.943 0.937 0.907 0.939 0.931 0.934 0.939 0.935
0.6 40 40 0.941 0.939 0.935 0.918 0.936 0.933 0.929 0.932 0.930
0.6 50 50 0.933 0.944 0.941 0.926 0.936 0.934 0.932 0.937 0.931
0.6 80 80 0.930 0.933 0.933 0.939 0.953 0.950 0.932 0.938 0.936
0.6 100 100 0.945 0.943 0.942 0.929 0.938 0.937 0.938 0.942 0.940

Table 5. Average length of 95% confidence interval for the pODC(P0).

P0 m n JEL (A) JKN (A) NA (A) JEL (B) JKN (B) NA (B) JEL (C) JKN (C) NA (C)

0.5 20 20 0.162 0.166 0.159 0.146 0.148 0.141 0.205 0.210 0.202
0.5 30 30 0.131 0.134 0.131 0.116 0.119 0.115 0.164 0.169 0.165
0.5 40 40 0.111 0.115 0.113 0.098 0.101 0.099 0.139 0.144 0.141
0.5 50 50 0.098 0.102 0.100 0.084 0.087 0.086 0.124 0.130 0.128
0.5 80 80 0.075 0.080 0.079 0.065 0.069 0.069 0.097 0.102 0.101
0.5 100 100 0.067 0.072 0.071 0.056 0.060 0.060 0.086 0.091 0.090

0.6 20 20 0.205 0.211 0.203 0.208 0.212 0.205 0.249 0.256 0.248
0.6 30 30 0.165 0.170 0.166 0.164 0.169 0.165 0.199 0.205 0.200
0.6 40 40 0.143 0.148 0.145 0.141 0.145 0.143 0.172 0.178 0.175
0.6 50 50 0.127 0.132 0.131 0.124 0.128 0.127 0.152 0.158 0.156
0.6 80 80 0.098 0.103 0.102 0.096 0.101 0.100 0.119 0.125 0.124
0.6 100 100 0.087 0.092 0.091 0.084 0.089 0.089 0.106 0.111 0.110

for the largest sample size across all three estimators under A, B, and C. Results

in Table 3 demonstrate that CI length decreases with increasing sample sizes for

all three methods, and the JEL method produces slightly narrower CIs compared

with the jackknife and NA methods in most cases. Simulation results in Tables

4 and 5 show that the proposed JEL method also has a similar advantage over

the NA and jackknife methods for the pODC.

We also used simulations to substantiate the consistency of jackknife variance

estimators (Lemma 3 and Corollary 3). We generated data from the normal and

exponential distributions of A, B, and C. For each setting, we generated 50

repetitions and computed the mean squared error (MSE) of jackknife variance

estimators of p̃AUC(P0) and p̃ODC(P0) at P0 = 0.4 or 0.6. The plots in Figures

3 and 4 show a decrease in MSE as the sample size increases. The Matlab code

for these simulations is available from the authors upon request.
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Figure 3. MSE for the jackknife variance estimator for the partial AUC.

Figure 4. MSE for the jackknife variance estimator for the partial area under
ODC.

4. An Application

In this section, we illustrate the proposed approaches for the partial AUC

using data from the Pancreatic Cancer Serum Biomarkers study. We calculated

95% NA and JEL confidence intervals for the pAUC at varying levels of P0
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Figure 5. 95% point-wise JEL and NA confidence intervals for partial AUC’s
with Pancreatic Cancer Serum Biomarkers data.

from 0 to 1 for the biomarkers CA-125 (V1) and CA-19-9 (V2). From 95% JEL
confidence interval in Figure 5, we can distinguish the two biomarkers. Due to
the overlapping NA confidence intervals for two biomarkers in the right tail, the
normal approximation method cannot do it. The proposed jackknife empirical
likelihood with a slightly narrower confidence interval for the pAUC provides a
more accurate interval estimate than the normal approximation method does in
practice.

5. Discussion

Properties of U-statistics have been widely employed in inference proce-
dures for ROC-related estimators including the pAUC. Since the pAUC involves
sample-dependent quantile estimator, an application of U-statistic theory and
jackknife procedures is not straightforward. Our proposed jackknife and JEL
methods based on the estimator from Wang and Chang (2011) avoids these diffi-
culties. We have results about the normal approximation and jackknife empirical
likelihood methods. The proposed jackknife variance estimator is straightforward
to implement.

Our simulations find that our proposed interval estimation methods are ro-
bust and relatively simple to carry out. The jackknife empirical likelihood method
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more accurate interval estimate than the normal approximation method does in
practice.

5. Discussion
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dures for ROC-related estimators including the pAUC. Since the pAUC involves
sample-dependent quantile estimator, an application of U-statistic theory and
jackknife procedures is not straightforward. Our proposed jackknife and JEL
methods based on the estimator from Wang and Chang (2011) avoids these diffi-
culties. We have results about the normal approximation and jackknife empirical
likelihood methods. The proposed jackknife variance estimator is straightforward
to implement.

Our simulations find that our proposed interval estimation methods are ro-
bust and relatively simple to carry out. The jackknife empirical likelihood method
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provides data-driven and asymmetric confidence intervals, but the jackknifing

process may carry a large computational burden that we will address in future

studies.

The variance estimation of He and Escobar (2008) originated from Sen

(1960) and Bamber (1975) according to U-statistics properties. Their estima-

tion equation of pAUC is a trimmed U-statistics instead of a typical two-sample

U-statistics; it is not consistent, failing to include the trimmed effect for esti-

mating the sample quantiles. Their method is innovative in the application of

two-sample trimmed U-statistic (Janssen, Serfling and Veraverbeke (1987)) to

pAUC analysis. Arvesen (1969) also derived several theorems for jackknifing

trimmed U-statistics and they can provide a foundation for developing jackknife

empirical likelihood methods for trimmed U-statistics.

Motivated by DeLong, DeLong and Clarke-Pearson (1988), it will be useful

to apply jackknifing and JEL methods to a linear combination of partial AUC’s,

and theorems for multi-variable trimmed U-statistics would be helpful. The study

of the jackknife empirical likelihood approach for the difference in two correlated

pAUC’s is a natural extension of the JEL approach in this paper.

Supplementary Materials

Proofs of the main results in this paper are provided in the online supple-

mentary material.
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