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Supplementary Material

S1 Estimation of the total electricity consumption

A sample of 5 auxiliary information curves is drawn in Figure 1, corre-

sponding to measurements over a period of 24 hours at a half an hour scale

(p = 336).

The distribution of the proportion of positive sampling weights are given

in Figure 2. It can be seen that the proportion of negative weights increases

as the number of dimensions increases. Note also that this proportion is

slightly smaller for the estimated principal components.

In Figure 3, the MSE is drawn for all the seven considered days and

various dimensions starting from r = 1 to r = 336.
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Figure 1: A sample of 5 electricity load curves observed every half an hour during the

first week.
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Figure 2: Proportion of positive calibrated weights for different values of the dimension r.

On the right for calibration on the population principal components and on left for the

sample principal components.
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Figure 3: Relative MSE, for different values of the dimension r and the different days of

the week and a sample size of n = 600 for calibration estimators based on the population

(left) and the sample (right) principal components. The horizontal axis is at a log scale.

The calibration error has also been evaluated. It is the difference be-

tween the total of the original auxiliary variables and their ”estimation” on

the samples obtained with the weights wpc
k (r) and the weights wepc

k (r). The

distribution of the estimation squared calibration error ‖
∑

k∈swkxk − tx‖2

is drawn in Figure 4 for calibration on the estimated principal components

(the distribution for the population principal components calibration is very
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similar and not presented here). We have also plotted the distribution (in

the first boxplot) of the squared error for the weights obtained with the data

driven choice of the dimension r. For both approaches, the distributions of

the errors are very similar. The errors are high and highly variable when

the number of principal components is small (the mean value is about 1300

for r = 1) and then they decrease rapidly (the mean value is close to 720

for r = 5 and close to 600 for r = 10). For larger values of r, the decrease

is slower. When the dimension r is not chosen in advance, the mean value

of the error is roughly the same as the mean error squared corresponding

to r = 10 but with a variability that is much larger.
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Figure 4: Calibration errors for the original variables, in terms of MSE, for different

number of principal components estimated in the sample. The first boxplot (w > 0)

corresponds to the data-driven choice of the number of components.

S2 Proofs

Throughout the proofs, we use the letter C to denote a generic constant

whose value may vary from place to place. This constant does not depend

on N. For sake of clarity, subscript N has been suppressed when there were

no ambiguity.

For a vector v, we denote by ‖v‖ its Euclidean norm. The spectral
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norm of a matrix A is denoted by ‖A‖ = supv ‖Av‖/‖v‖. We often use the

following well known inequality, ‖A‖2 ≤ tr
(
ATA

)
as well as the equality

‖ATA‖ = ‖AAT‖.

Proof of Proposition 1

We may write

t̂pc
yw(r)− ty =

(
t̃diff
y,x(r)− ty

)
+
(
t̂zrd − tzr

)T
(γ̃z(r)− γ̂z(r)) , (S2.1)

where

t̃diff
y,x(r) = t̂yd −

(
t̂zrd − tzr

)T
γ̃z(r). (S2.2)

We get by linearity of the Horvitz-Thompson estimators, that

(
t̂zrd − tzr

)T
γ̃z(r) = t̂zTr γ̃z(r) − tzTr γ̃z(r) (S2.3)

By construction, the new real variable zTr γ̃z(r) is the projection of (yk)k∈U

onto the space generated by the first r principal components and we have

that

∑
k∈UN

(
zTkrγ̃z(r)

)2 ≤
∑
k∈UN

y2
k.

Consequently, we get with (S2.3) and with classical properties of Horvitz-

Thompson estimators (and because assumptions (A1) and (A2) hold) that

1

N

(
t̂zrd − tzr

)T
γ̃z(r) = Op

(
1√
n

)
. (S2.4)
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Recall that (Z1, . . . ,Zr) = XGr, and

N−1
∑
k∈U

zkrz
T
kr = GT

r

(
N−1XTX

)
Gr = diag(λj)

r
j=1 := Λr.

By definition of the principal components and assumption (A5) we have

that
∑

k∈UN
‖zkr‖2 =

(∑r
j=1 λj

)
N ≤ CNr. Following the same lines as in

Breidt and Opsomer (2000), we obtain with assumptions (A1)-(A5) that

1

N

(
t̂zrd − tzr

)
= Op

(√
r

n

)
. (S2.5)

It remains to bound γ̂zr − γ̃zr . For that, we first bound the estimation

error of Λr. Considering the spectral norm for square matrices, we have

for some constant C, with classical algebra (see e.g. Cardot et al. 2010,

Proposition 1),

Ep

∥∥∥∥∥Λr −
1

N

∑
k∈s

dkzkrz
T
kr

∥∥∥∥∥
2

≤ C

N2

∑
k∈UN

‖zkr‖4 . (S2.6)

Expanding now each zkr in the eigenbasis v1, . . . ,vr, we have ‖zkr‖2 =∑r
j=1〈xk, vj〉2 and thus

1

N

∑
k∈UN

‖zkr‖4 ≤ r

N

∑
k∈UN

r∑
j=1

〈xk, vj〉4

≤ r

r∑
j=1

[
1

N

∑
k∈UN

〈xk, vj〉4
]

≤ C4r
2, (S2.7)
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thanks to assumption (A6). We deduce from (S2.6) and (S2.7) that

∥∥∥∥∥Λr −
1

N

∑
k∈s

dkzkrz
T
kr

∥∥∥∥∥ = Op

(
r√
n

)
. (S2.8)

Note that as in Cardot et al. (2010), we can deduce from previous upper

bounds that ∥∥∥∥∥∥
(

1

N

∑
k∈s

dkzkrz
T
kr

)−1
∥∥∥∥∥∥ =

1

λr
+Op

(
r√
n

)
, (S2.9)

and∥∥∥∥∥∥Λ−1
r −

(
1

N

∑
k∈s

dkzkrz
T
kr

)−1
∥∥∥∥∥∥ ≤ 1

λr

∥∥∥∥∥∥
(

1

N

∑
k∈s

dkzkrz
T
kr

)−1
∥∥∥∥∥∥
∥∥∥∥∥Λr −

(
1

N

∑
k∈s

dkzkrz
T
kr

)∥∥∥∥∥
= Op

(
r√
n

)
. (S2.10)

An application of Cauchy-Schwarz inequality as well as the bound ob-

tained in (S2.7), gives with assumptions (A1)-(A6) that there is some con-

stant C such that

1

N2
Ep

∥∥∥∥∥∑
k∈UN

ykzkr −
∑
k∈s

dkykzkr

∥∥∥∥∥
2

≤ C

N2

∑
k∈UN

y2
k ‖zkr‖

2

≤ C

N2

(∑
k∈UN

y4
k

)1/2(∑
k∈UN

‖zkr‖4

)1/2

≤ C
r

N
. (S2.11)
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Note finally, that we have for some constant C∥∥∥∥∥ 1

N

∑
k∈UN

zkryk

∥∥∥∥∥
2

=
1

N2

∑
k,`∈UN

yky`z
T
krz`r

≤ λ1
1

N

∑
k∈UN

y2
k

≤ C, (S2.12)

because the largest eigenvalue of the non negativeN×N matrixN−1XGr (XGr)
T

is equal to λ1 and N−1
∑

k∈UN
y2
k is supposed to be bounded.

Consequently, we get with previous upper bounds,

‖γ̂z(r)− γ̃z(r)‖ ≤

∥∥∥∥∥∥Λ−1
r −

(
1

N

∑
k∈s

dkzkrz
T
kr

)−1
∥∥∥∥∥∥
∥∥∥∥∥ 1

N

∑
k∈UN

zkryk

∥∥∥∥∥
+

∥∥∥∥∥ 1

N

∑
k∈UN

zkryk −
1

N

∑
k∈s

dkzkryk

∥∥∥∥∥
∥∥∥∥∥∥
(

1

N

∑
k∈s

dkzkrz
T
kr

)−1
∥∥∥∥∥∥

= Op

(
r√
n

)
(S2.13)

and with (S2.5),

1

N

(
t̂zrd − tzr

)T
(γ̂z(r)− γ̃z(r)) = Op

(
r3/2

n

)
. (S2.14)

Finally, using again decomposition (S2.1), we get with previous bounds

1

N

(
t̂pc
yw(r)− ty

)
=

1

N

(
t̃diff
y,x(r)− ty

)
+Op

(
r3/2

n

)
. (S2.15)

�
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Proof of Proposition 2

The proof follows the same lines as the proof of Proposition 1. We first

write

t̂epc
yw (r)− ty = t̃diff

y,x(r)− ty +
(
t̂xd − tx

)T (
β̃

pc

x (r)− β̂
epc

x (r)
)
, (S2.16)

and note that, as in Proposition 1, we have that N−1
(
t̃diff
y,x(r)− ty

)
=

Op(1/
√
n).

We now look for an upper bound on the second term at the right-

hand side of equality (S2.16). It can be shown easily that N−1
(
t̂xd − tx

)
=

Op(
√
p/n).

We can also write

β̃
pc

x (r)− β̂
epc

x (r) = Gr (γ̃z(r)− γ̂ ẑ(r)) +
(
Gr − Ĝr

)
γ̂ ẑ(r) (S2.17)

and bound each term at the right-hand side of the equality.

We denote by Ĝr = (v̂1, . . . , v̂r) the matrix whose columns are the

orthonormal eigenvectors of Γ̂ associated to the r largest eigenvalues, λ̂1 ≥

. . . ≥ λ̂r ≥ 0. Note that these eigenvectors are unique up to sign change

and, for j = 1, . . . , r, we choose v̂j such that 〈v̂j,vj〉 ≥ 0. Since v1, . . . ,vr

are orthonormal vectors, the spectral norm of matrix Gr satisfies ‖Gr‖ = 1.

This is also true for Ĝr, and we have
∥∥∥Ĝr

∥∥∥ = 1.

Now, using the fact that N−1N̂ = 1+Op(n
−1/2) and ‖X̂‖ = Op(p/

√
n),
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it can be shown that ∥∥∥∥Γ̂− 1

N
XTX

∥∥∥∥ = Op

(
p√
n

)
. (S2.18)

We deduce with Lemma 4.3 in Bosq (2000) and equation (S2.18) that

max
j=1,...,p

|λj − λ̂j| ≤
∥∥∥∥Γ̂− 1

N
XTX

∥∥∥∥
= Op

(
p√
n

)
, (S2.19)

and

‖vj − v̂j‖ ≤ δj

∥∥∥∥Γ̂− 1

N
XTX

∥∥∥∥ , (S2.20)

with δ1 = 2
√

2/(λ1 − λ2) and δj = 2
√

2/(min(λj−1 − λj, λj − λj+1)) for

j = 2, · · · , r.

Consequently,∥∥∥Gr − Ĝr

∥∥∥2

≤ tr

[(
Gr − Ĝr

)T (
Gr − Ĝr

)]
≤

r∑
j=1

‖vj − v̂j‖2

≤
r∑
j=1

δ2
j

∥∥∥∥Γ̂− 1

N
XTX

∥∥∥∥2

= Op

(
p2r3

n

)
,

with (S2.18), (S2.20) and the fact that maxj=1,··· ,r δ
2
j = O(r2) which comes

from the fact that we have supposed that minj=1,...,r+1(λj − λj+1) ≥ cλr

with cλ > 0.
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We also deduce from (S2.19) that∥∥∥∥∥ 1

N

∑
k∈UN

zkrz
T
kr −

1

N

∑
k∈s

dkẑkrẑ
T
kr

∥∥∥∥∥ ≤ max
j=1,...,r

|λj − λ̂j|

= Op

(
p√
n

)
. (S2.21)

Employing a similar technique as before (see the bound obtained in

(S2.10)), we also get that∥∥∥∥∥∥
(

1

N

∑
k∈UN

zkrz
T
kr

)−1

−

(
1

N

∑
k∈s

dkẑkrẑ
T
kr

)−1
∥∥∥∥∥∥ = Op

(
p√
n

)
, (S2.22)

and ∥∥∥∥∥∥
(

1

N

∑
k∈s

dkẑkrẑ
T
kr

)−1
∥∥∥∥∥∥

2

=
1

λ2
r

+Op

(
p2

n

)
.

Using the inequality tr(AB) ≤ ‖A‖ tr(B) for any symmetric non neg-

ative matrices A and B, we also have∥∥∥∥∥ 1

N

∑
k∈s

dkẑkryk

∥∥∥∥∥
2

=
1

N2

∑
k,l∈s

dkdlykylx
T
l ĜT

r Ĝrxk

=
1

N2

∑
k,l∈s

dkdlykyl tr
(
ĜT
r Ĝrxlx

T
k

)
=

1

N2
tr

[
ĜT
r Ĝr

(∑
k,l∈s

dkdlykylxlx
T
k

)]

≤
∥∥∥ĜT

r Ĝr

∥∥∥ 1

N2
tr

[∑
k,l∈s

dkdlykylxlx
T
k

]

≤ λ1
1

N

∑
k∈s

(dkyk)
2
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because
∥∥∥ĜT

r Ĝr

∥∥∥ = 1 and the largest eigenvalue of the non negative N×N

matrix N−1XXT is equal to λ1. Note also that N−1
∑

k∈s (dkyk)
2 ≤ C, for

some constant C, because N−1
∑

k∈UN
y2
k is supposed to be bounded and

max d2
k ≤ δ−2 (see Assumption A2).

We can now bound ‖γ̂ ẑ(r)‖. Combining previous inequalities, we have

‖γ̂ ẑ(r)‖
2 ≤

∥∥∥∥∥∥
(

1

N

∑
k∈s

dkẑkrẑ
T
kr

)−1
∥∥∥∥∥∥

2 ∥∥∥∥∥ 1

N

∑
k∈s

dkẑkryk

∥∥∥∥∥
2

= Op (1) . (S2.23)

Let us study now N−1
(∑

k∈UN
zkryk −

∑
k∈s dkẑkryk

)
. Writing zkr −

ẑkr =
(
Gr − Ĝr

)T
xk, we have

1

N2

∥∥∥∥∥∑
k∈UN

(zkr − ẑkr) yk

∥∥∥∥∥
2

=
1

N2

∑
k,`∈UN

xTk

(
Gr − Ĝr

)(
Gr − Ĝr

)T
x`yky`

=
1

N2
tr

[(
Gr − Ĝr

)(
Gr − Ĝr

)T ( ∑
k,`∈UN

x`x
T
k yky`

)]

≤
∥∥∥Gr − Ĝr

∥∥∥2 1

N2

∥∥∥∥∥∑
k∈UN

xkyk

∥∥∥∥∥
2

≤
∥∥∥Gr − Ĝr

∥∥∥2

λ1

(
1

N

∑
k∈UN

y2
k

)
.

because the largest eigenvalue of the non negativeN×N matrixN−1XGr (XGr)
T

is equal to λ1. Since N−1
∑

k∈UN
y2
k is supposed to be bounded, we obtain∥∥∥∥∥ 1

N

(∑
k∈UN

(zkr − ẑkr) yk

)∥∥∥∥∥ = Op

(
pr3/2

√
n

)
. (S2.24)
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Define αk = 1 − 1{k∈s}dk and remember that ẑkr = ĜT
r xk. We have

that ∥∥∥∥∥ 1

N

∑
k∈UN

ẑkryk −
∑
k∈s

dkẑkryk

∥∥∥∥∥ =

∥∥∥∥∥ĜT
r

(
1

N

∑
k∈UN

αkxkyk

)∥∥∥∥∥
≤
∥∥∥ĜT

r

∥∥∥∥∥∥∥∥ 1

N

∑
k∈UN

αkxkyk

∥∥∥∥∥
= Op

(√
p

n

)
. (S2.25)

Combining (S2.24) and (S2.25), we finally obtain that∥∥∥∥∥N−1

(∑
k∈UN

zkryk −
∑
k∈s

dkẑkryk

)∥∥∥∥∥ = Op

(
pr3/2

√
n

)
. (S2.26)

Hence, using now a decomposition similar to (S2.13), we obtain

‖γ̂ ẑ(r)− γ̃z(r)‖ ≤

∥∥∥∥∥∥Λ−1
r −

(
1

N

∑
k∈s

dkẑkrẑ
T
kr

)−1
∥∥∥∥∥∥
∥∥∥∥∥ 1

N

∑
k∈UN

zkryk

∥∥∥∥∥
+

∥∥∥∥∥ 1

N

∑
k∈UN

zkryk −
1

N

∑
k∈s

dkẑkryk

∥∥∥∥∥
∥∥∥∥∥∥
(

1

N

∑
k∈s

dkẑkrẑ
T
kr

)−1
∥∥∥∥∥∥

= Op

(
pr3/2

√
n

)
. (S2.27)

Combining previous bounds we get∥∥∥∥ 1

N

(
t̂xd − tx

)T (
β̃

pc

x (r)− β̂
epc

x (r)
)∥∥∥∥ = Op

(√
p

n

)
Op

(
pr3/2

√
n

)
and using again decomposition (S2.16), we finally get

1

N

(
t̂epc
yw (r)− ty

)
=

1

N

(
t̃diff
y,x(r)− ty

)
+Op

(
p3/2r3/2

n

)
.

�
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