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Supplementary Material

S1 Estimation of the total electricity consumption

A sample of 5 auxiliary information curves is drawn in Figure 1, corre-
sponding to measurements over a period of 24 hours at a half an hour scale

(p = 336).

The distribution of the proportion of positive sampling weights are given
in Figure 2. It can be seen that the proportion of negative weights increases
as the number of dimensions increases. Note also that this proportion is

slightly smaller for the estimated principal components.

In Figure 3, the MSE is drawn for all the seven considered days and

various dimensions starting from r = 1 to r = 336.
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Figure 1: A sample of 5 electricity load curves observed every half an hour during the

first week.
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Figure 2: Proportion of positive calibrated weights for different values of the dimension r.

On the right for calibration on the population principal components and on left for the

sample principal components.
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Figure 3: Relative MSE, for different values of the dimension r and the different days of
the week and a sample size of n = 600 for calibration estimators based on the population

(left) and the sample (right) principal components. The horizontal axis is at a log scale.

The calibration error has also been evaluated. It is the difference be-
tween the total of the original auxiliary variables and their ”estimation” on
the samples obtained with the weights w;°(r) and the weights w;"“(r). The
distribution of the estimation squared calibration error || -, . wiXy — tx||?

is drawn in Figure 4 for calibration on the estimated principal components

(the distribution for the population principal components calibration is very
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similar and not presented here). We have also plotted the distribution (in
the first boxplot) of the squared error for the weights obtained with the data
driven choice of the dimension r. For both approaches, the distributions of
the errors are very similar. The errors are high and highly variable when
the number of principal components is small (the mean value is about 1300
for r = 1) and then they decrease rapidly (the mean value is close to 720
for r = 5 and close to 600 for r = 10). For larger values of r, the decrease
is slower. When the dimension r is not chosen in advance, the mean value
of the error is roughly the same as the mean error squared corresponding

to r = 10 but with a variability that is much larger.



6 Hervé CARDOT and Camelia GOGA and Muhammad-Ahmed SHEHZAD

Sample principal components
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Figure 4: Calibration errors for the original variables, in terms of MSE, for different
number of principal components estimated in the sample. The first boxplot (w > 0)

corresponds to the data-driven choice of the number of components.

S2 Proofs

Throughout the proofs, we use the letter C to denote a generic constant
whose value may vary from place to place. This constant does not depend
on N. For sake of clarity, subscript ; has been suppressed when there were
no ambiguity.

For a vector v, we denote by ||v| its Euclidean norm. The spectral
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norm of a matrix A is denoted by ||A|| = sup, [|[Av]|/||v||. We often use the
following well known inequality, [|A[|* < tr (ATA) as well as the equality

IATA]l = || AAT].

Proof of Proposition 1

We may write

T, . ~

e (r) =ty = (L (r) = ty) + (taa = ts,)” (Fa(r) =A,(r)),  (S2.1)

where
~di N N T .
t;g(T) = tyd — (tz,«d — tzr) ’)’Z(T). (SQQ)

We get by linearity of the Horvitz-Thompson estimators, that

o~

(fava = tar) Aalr) = s — taraun (52.3)
By construction, the new real variable z! 4, (r) is the projection of (yx)rev
onto the space generated by the first » principal components and we have
that

> (#hAm) < Y u

keUn keUn

Consequently, we get with (52.3) and with classical properties of Horvitz-

Thompson estimators (and because assumptions (A1) and (A2) hold) that

3 a-t) 2.0 =0, (). (52.4)
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Recall that (Z4,...,Z,) = XG,, and
N zz), = G (N'XTX) G, = diag(\;)}_, := A,
keU
By definition of the principal components and assumption (A5) we have
that >, o l|Zae]|* = (Z;Zl )\j> N < CNr. Following the same lines as in

Breidt and Opsomer (2000), we obtain with assumptions (A1)-(A5) that

(s~ 1) = 0, < f) . (52.5)

n

It remains to bound 4, — 7, . For that, we first bound the estimation
error of A,. Considering the spectral norm for square matrices, we have
for some constant C', with classical algebra (see e.g. Cardot et al. 2010,

Proposition 1),

2
1 C 4
E, ||A, — dekzkrz;{r < N2 Z |z || - (52.6)
kes keUn
Expanding now each z, in the eigenbasis vi,...,v,, we have ||z |* =

S {xk, v;)? and thus

i=1

S S N AR 3 ey

kJEUN ]{IGUN ]:1

<> o

j=1 keUn

< Cyr?, (S2.7)
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thanks to assumption (A6). We deduce from (52.6) and (S2.7) that

1
Ar — N Z dekTZZT

kes

-0, (%) . (92.8)

Note that as in Cardot et al. (2010), we can deduce from previous upper

bounds that

-1
1 1 r
(NEJWW?> :X+%(ﬁ9’ (529

kes

and

1 -1
1 1 1
A - <N > deer£r> <+ <N > dkzkrzﬁ")

" kes
-0, (%) . (S2.10)

An application of Cauchy-Schwarz inequality as well as the bound ob-

tained in (S2.7), gives with assumptions (A1)-(A6) that there is some con-
stant C' such that

2

1 C
N2 b D wizke — > drynze|| < N2 > villze |l
keUn kes keUn
o 1/2 1/2
4
§m<2ﬁ><2ww>
keUny keU
< C%. (S2.11)
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Note finally, that we have for some constant C

% Z Zir Yk

keUn

2
_—1 E ykyzZTZe
- kr&Lr
N2
klcUn

<C, (S2.12)

because the largest eigenvalue of the non negative N x N matrix N7'XG, (XG,)"
is equal to \; and N~! ZkGUN y2 is supposed to be bounded.
Consequently, we get with previous upper bounds,

—1
. - _ 1 1
||7z(r> - 72(7“)” S Ar T <N dezkrzzr> N Z Zir Yk

kes keUn

+

1
% >z — %Z AkZir Yi ' (% > dkzkrzzr)

keUn kes kes

-0, (%) (S2.13)

and with (S2.5),

1 7”3/2

v (Fara = t) () = 7,() = O, (—) . (S2.14)

n
Finally, using again decomposition (S2.1), we get with previous bounds

1

N . r3/2
v B —t) = % (Ty(r) —t,) + O, (T) : (52.15)

0
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Proof of Proposition 2

The proof follows the same lines as the proof of Proposition 1. We first

write

~ epc

B2(r) =ty = 1) —t, + (b — ) (BE () =BT (), (8216)
and note that, as in Proposition 1, we have that N~' (£ (r) —¢,) =
0,(1/v/m).

We now look for an upper bound on the second term at the right-
hand side of equality (S2.16). It can be shown easily that N ! (fxd — tx) =

Op(\/p/n)-

We can also write

~ epc

BY () = BY (1) = Gy (3,0) = () + (G = G ) 7a) (82.17)

and bound each term at the right-hand side of the equality.

We denote by G, = (V1,...,V,) the matrix whose columns are the
orthonormal eigenvectors of I' associated to the r largest eigenvalues, A >
... >\, > 0. Note that these eigenvectors are unique up to sign change
and, for j =1,...,r, we choose v, such that (v;,v;) > 0. Since vy,...,V,
are orthonormal vectors, the spectral norm of matrix G, satisfies |G, | = 1.

This is also true for GT, and we have HGT =1.

Now, using the fact that N~'N = 1+ 0,(n~'/?) and ||§|| = O,(p/+/n),
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it can be shown that

Hf - %XTXH ~0, (%) . (S2.18)

We deduce with Lemma 4.3 in Bosq (2000) and equation (S2.18) that

-0, (%) , (92.19)

and

[v; =il <95

~ 1 T
T X XH , (S2.20)

with §; = 2v/2/(A; — Ag) and §; = 2v/2/(min(\;_1 — A\j, \j — Aj41)) for
G=2

Consequently,

HGT_GT

cul(e-a) (6 -6
SR
Jj=1

W
j=1

2,.3
pr
-0, ().

with (S2.18), (S2.20) and the fact that max;—; .. . 67 = O(r?) which comes

2

~ 1
- —X'X
N

from the fact that we have supposed that min;—; _,+1(A; — A\jp1) > ar

'''''

with ¢y > 0.
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We also deduce from (S2.19) that

% Z ZkTZZT — %Z dkikrizr

keUn kes

=1,...,

-0, (%) . (S2.21)

Employing a similar technique as before (see the bound obtained in

(52.10)), we also get that
-1 -1
X N zzl | - L N diz, 2, =0 (i> (S2.22)
Lo Lo — UYUp ) .
N keUn N kes \/ﬁ

and

2

-1
1 2
Z deerkr) = ﬁ + Op <%) .

kes

Using the inequality tr(AB) < ||A|| tr(B) for any symmetric non neg-

ative matrices A and B, we also have

2
1 .
N > iz

1 PN
= m Z dkdlyklezTGZGer

k,l€s

== m Z dkdlyk:yl tr <GZGTX1XZ)

k,l€s

1
= mtr [GTG (Z dkdlykylxlxz)]
k,l€s
<&

[Z dkdlyk:ylxlxg]
k,les

1
< AlN Z (dkyk)2

kes
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because HGZG‘T = 1 and the largest eigenvalue of the non negative N x N

matrix N7'XX" is equal to A;. Note also that N=* >, (dpyr)® < C, for
some constant C, because N~! ZkeUN y? is supposed to be bounded and
maxd; < 572 (see Assumption A2).

We can now bound ||4;(r)||. Combining previous inequalities, we have

. 1 L 1 X
Fa(r)II* < <N Z deerZr) N Z dkZir Yk

kes kes

2

=0,(1). (92.23)

Let us study now N—! (ZkeUN ZioWk — D pes dkikTyk). Writing zy, —

. \T
Zir = (GT — GT> Xy, we have

2

£ d(ee) (o

kleUn

G
(6 @) (6 6) (3 s

2

~ 2 1
S HG’I”_GT m Z XEYk
keUn
~ 2 1 9
<le -G a5 X))
keUn

because the largest eigenvalue of the non negative N x N matrix N~ 'XG, (XGT)T

is equal to \;. Since N~! ZkeUN y2 is supposed to be bounded, we obtain

L (Z (o — 1) y) H —o,(25). 2

keUn
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Define o, = 1 — ljpeqpdy and remember that zy, = GTTXk We have

that

% Z Zir Yk — Z Ak Zir Yi

N 1
GrT (N Z Oékayk> H

keUn kes keUn
A 1
< HG,? HN Z QEXEYk
keUn
p
:Op( E>‘ (S2.25)

Combining (52.24) and (S2.25), we finally obtain that

3/2
-1 . o pr
HN (k; ZgrYk — kze; dﬂmi%) ' = Op (W) . (82-26)

Hence, using now a decomposition similar to (S2.13), we obtain

-1
. N _ 1 . 1
192(r) = 3, (M)l < || A = (N dezkrz;fr> N Z Zir Yk

kes keUn

+

keUn kes kes

=0, (1%3:) . (S2.27)

Combining previous bounds we get

|3 =) (B - 87 0) | = 00 (/) 00 (25)

and using again decomposition (S2.16), we finally get

-1
% Z Zir Yk — %Z dkikzrykz | <% Z dkikrigr)

1 e 1 i p3/27,.3/2
3 ) = 6) = 5 (@50 - 0) +0, ().
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