On Independence and Separability between Points and Marks of Marked Point Processes

Tonglin Zhang
Purdue University

Supplementary Material

The online supplememntary material includes the definitions of the Brownian sheet, pinned Brownian sheet, and Brownian pillow, the defintions of (F_{1}, F_{2})-functional Brownian pillow and (p_{1}, p_{2})-standard Brownian pillow. It contains the proofs of Theorem 1, Theorem 2, Theorem 3, Corollary 1, and Theorem 4, as well as the associated lemmas.

S1 Definitions of Brownian Sheet, Pinned Brownian Sheet, and Brownian Pillow

A Brownian pillow is a mean zero Gaussian process on $[0,1]^{p}$ with a covariance function given by

$$
\mathbb{E}\left[\mathbb{W}_{p}(\mathbf{t}) \mathbb{W}_{p}\left(\mathbf{t}^{\prime}\right)\right]=\prod_{j=1}^{p}\left(t_{j} \wedge t_{j}^{\prime}-t_{j} t_{j}^{\prime}\right)
$$

for any $\mathbf{t}=\left(t_{1}, \cdots, t_{p}\right)$ and $\mathbf{t}^{\prime}=\left(t_{1}^{\prime}, \cdots, t_{p}^{\prime}\right)$ in $[0,1]^{p}$. Related concepts to \mathbb{W}_{p} are the (standard) Brownian sheet (denoted by \mathbb{B}_{p}) and the (standard) pinned Brownian sheet (denoted by $\tilde{\mathbb{W}}_{p}$) $\left(\right.$ Yeh (1960)), where \mathbb{B}_{p} is a mean zero Gaussian process on $\mathbb{R}_{+}^{p}=[0, \infty)^{p}$ and $\tilde{\mathbb{W}}_{p}$ is a mean zero Gaussian process on $[0,1]^{p}$. The covariance function of \mathbb{B}_{p} is

$$
\mathbb{E}\left[\mathbb{B}_{p}(\mathbf{t}) \mathbb{B}_{p}\left(\mathbf{t}^{\prime}\right)\right]=\prod_{j=1}^{p} t_{j} \wedge t_{j}^{\prime}, \mathbf{t}, \mathbf{t}^{\prime} \in \mathbb{R}_{+}^{p}
$$

The covariance function of $\tilde{\mathbb{W}}_{p}$ is

$$
\mathbb{E}\left[\tilde{\mathbb{W}}_{p}(\mathbf{t}) \tilde{\mathbb{W}}_{p}\left(\mathbf{t}^{\prime}\right)\right]=\prod_{j=1}^{p} t_{j} \wedge t_{j}^{\prime}-\prod_{j=1}^{p} t_{j} t_{j}^{\prime}, \mathbf{t}, \mathbf{t}^{\prime} \in[0,1]^{p} .
$$

Both $\tilde{\mathbb{W}}_{p}$ and \mathbb{W}_{p} can be derived using \mathbb{B}_{p}. For example if $p=2$, there are

$$
\tilde{\mathbb{W}}_{2}(\mathbf{t})=\mathbb{B}_{2}\left(t_{1}, t_{2}\right)-t_{1} t_{2} \mathbb{B}_{2}(1,1)
$$

and

$$
\mathbb{W}_{2}(\mathbf{t})=\mathbb{B}_{2}\left(t_{1}, t_{2}\right)-t_{1} \mathbb{B}_{2}\left(1, t_{2}\right)-t_{2} \mathbb{B}_{2}\left(t_{1}, 1\right)+t_{1} t_{2} \mathbb{B}_{2}(1,1)
$$

for any $t_{1}, t_{2} \in[0,1]$. Since the sample paths of \mathbb{B}^{p} are continuous with probability one (Czörgö and Révécs (1981); Dalang (2003); Orey and Pruitt (1973); Walsh (1982)), the sample paths of $\tilde{\mathbb{W}}_{p}$ and \mathbb{W}_{p} are also continuous with probability one.

S2 Definitions of $\left(F_{1}, F_{2}\right)$-Functional Brownian Pillow and (p_{1}, p_{2})-Standard Brownian Pillow

A mean zero Gaussian process \mathbb{B}_{F} is called an F-functional Brownian sheet on \mathbb{R}^{p}, where F is a CDF on \mathbb{R}^{p}, if its covariance function is

$$
\mathbb{E}\left[\mathbb{B}_{F}(\mathbf{t}) \mathbb{B}_{F}\left(\mathbf{t}^{\prime}\right)\right]=F\left(t_{1} \wedge t_{1}^{\prime}, \cdots, t_{p} \wedge t_{p}^{\prime}\right),
$$

where $\mathbf{t}=\left(t_{1}, \cdots, t_{p}\right) \in \mathbb{R}^{p}$ and $\mathbf{t}^{\prime}=\left(t_{1}^{\prime}, \cdots, t_{p}^{\prime}\right) \in \mathbb{R}^{p}$.
A mean zero Gaussian process $\mathbb{W}_{F_{1}, F_{2}}$ is called an $\left(F_{1}, F_{2}\right)$-functional Brownian pillow on $\mathbb{R}^{p_{1}} \times \mathbb{R}^{p_{2}}$, where F_{1} is a CDF on $\mathbb{R}^{p_{1}}$ and F_{2} is a CDF on $\mathbb{R}^{p_{2}}$, if its covariance function is

$$
\begin{aligned}
& \mathbb{E}\left[\mathbb{W}_{F_{1}, F_{2}}\left(\mathbf{t}_{1}, \mathbf{t}_{2}\right) \mathbb{W}_{F_{1}, F_{2}}\left(\mathbf{t}_{1}^{\prime}, \mathbf{t}_{2}^{\prime}\right)\right] \\
= & {\left[F_{1}\left(t_{11} \wedge t_{11}^{\prime}, \cdots, t_{1 p_{1}} \wedge t_{1 p_{1}}\right)-F_{1}\left(t_{1}, \cdots, t_{1 p_{1}}\right) F_{1}\left(t_{1}^{\prime}, \cdots, t_{1 p_{1}}^{\prime}\right)\right] } \\
& \times\left[F_{2}\left(t_{21} \wedge t_{21}^{\prime}, \cdots, t_{2 p_{2}} \wedge t_{2 p_{2}}^{\prime}\right)-F_{2}\left(t_{21}, \cdots, t_{2 p_{2}}\right) F_{2}\left(t_{21}^{\prime}, \cdots, t_{2 p_{2}}^{\prime}\right)\right],
\end{aligned}
$$

where $\mathbf{t}_{1}=\left(t_{11}, \cdots, t_{1 p_{1}}\right) \in \mathbb{R}^{p_{1}}, \mathbf{t}_{2}=\left(t_{21}, \cdots, t_{2 p_{2}}\right) \in \mathbb{R}^{p_{2}}, \mathbf{t}_{1}^{\prime}=\left(t_{11}^{\prime}, \cdots, t_{1 p_{1}}^{\prime}\right) \in \mathbb{R}^{p_{1}}$, and $\mathbf{t}_{2}^{\prime}=\left(t_{21}^{\prime}, \cdots, t_{2 p_{2}}^{\prime}\right) \in \mathbb{R}^{p_{2}}$.

If F_{1} and F_{2} are marginal CDFs of F, then $\mathbb{W}_{F_{1}, F_{2}}$ can be defined using \mathbb{B}_{F} with
$\mathbb{W}_{F_{1}, F_{2}}\left(\mathbf{t}_{1}, \mathbf{t}_{2}\right)=\mathbb{B}_{F}\left(\mathbf{t}_{1}, \mathbf{t}_{2}\right)-F_{1}\left(\mathbf{t}_{1}\right) \mathbb{B}_{F}\left(\infty_{p_{1}}, \mathbf{t}_{2}\right)-F_{2}\left(\mathbf{t}_{2}\right) \mathbb{B}_{F}\left(\mathbf{t}_{1}, \infty_{p_{2}}\right)+F\left(\mathbf{t}_{1}, \mathbf{t}_{2}\right) \mathbb{B}_{F}\left(\infty_{p_{1}}, \infty_{p_{2}}\right)$,
where ∞_{p} is the p-dimensional vector with all elements equal to ∞. Since the sample path of \mathbb{B}_{F} is continuous, the sample path of $\mathbb{W}_{F_{1}, F_{2}}$ is also continuous.

A mean zero Gaussian process $\mathbb{W}_{p_{1}, p_{2}}$ is called the (p_{1}, p_{2})-standard Brownian pillow on $[0,1]^{p_{1}} \times[0,1]^{p_{2}}$ if F_{1} and F_{2} are the uniform distributions on $[0,1]^{p_{1}}$ and $[0,1]^{p_{2}}$ in $\mathbb{W}_{F_{1}, F_{2}}$, respectively. The $\left(p_{1}, p_{2}\right)$-standard Brownian pillow is a mean zero process with the covariance function given by

$$
\begin{aligned}
& \mathbb{E}\left[\mathbb{W}_{p_{1}, p_{2}}\left(\mathbf{t}_{1}, \mathbf{t}_{2}\right) \mathbb{W}_{p_{1}, p_{2}}\left(\mathbf{t}_{1}^{\prime}, \mathbf{t}_{2}^{\prime}\right)\right] \\
= & {\left[\prod_{i=1}^{p_{1}}\left(t_{1 i} \wedge t_{1 i}^{\prime}\right)-\prod_{i=1}^{p_{1}}\left(t_{1 i} t_{1 i}^{\prime}\right)\right]\left[\prod_{i=1}^{p_{2}}\left(t_{2 i} \wedge t_{2 i}^{\prime}\right)-\prod_{i=1}^{p_{2}}\left(t_{2 i} t_{2 i}^{\prime}\right)\right] . }
\end{aligned}
$$

If \mathbb{B}_{p} is the standard Brownian sheet on \mathbb{R}_{+}^{p} with $p=p_{1}+p_{2}$, then

$$
\begin{aligned}
\mathbb{W}_{p_{1}, p_{2}}\left(\mathbf{t}_{1}, \mathbf{t}_{2}\right)= & \mathbb{B}_{p}\left(\mathbf{t}_{1}^{\prime}, \mathbf{t}_{2}^{\prime}\right)-\mathbb{B}_{p}\left(\mathbf{1}_{p_{1}}, \mathbf{t}_{2}\right) \prod_{i=1}^{p_{1}} t_{1 i} \\
& -\mathbb{B}_{p}\left(\mathbf{t}_{1}, \mathbf{1}_{p_{2}}\right) \prod_{i=1}^{p_{2}} t_{2 i}+\mathbb{B}_{p}\left(\mathbf{1}_{p_{1}}, \mathbf{1}_{p_{2}}\right)\left(\prod_{i=1}^{p_{1}} t_{1 i}\right)\left(\prod_{i=1}^{p_{2}} t_{2 i}\right),
\end{aligned}
$$

where $\mathbf{1}_{p}$ represents the vector with all elements 1 . Therefore, the sample path of $\mathbb{W}_{p_{1}, p_{2}}$ is continuous.

S3 Proofs

Lemma 1. Let \mathbb{P} be a probability measure on (Ω, \mathscr{F}). Then \mathbb{P} is uniquely determined by its restriction on $\mathcal{G}=\left\{C=\sum_{n=0}^{\infty} C^{(n)}: C^{(n)} \in \mathscr{X}^{n}\right\}$ or its restriction on $\mathcal{F}=\left\{C=\sum_{n=0}^{\infty} C^{(n)}\right.$: $\left.C^{(n)}=A^{(n)} \times B^{(n)}, A^{(n)} \in \mathscr{S}^{n}, B^{(n)} \in \mathscr{M}^{n}\right\}$.

Proof: Since $\mathcal{F} \subseteq \mathcal{G}$ and $\sigma\left(\mathcal{S}^{n} \times \mathcal{M}^{n}\right)=\mathscr{X}^{n}, \sigma(\mathcal{G})=\sigma(\mathcal{F})$. The theory of Dynkin's π - λ theorem (Billingsley (1995)) states that if two probability measures agree on a π-system (a π-system is a collection of subsets which is closed under interaction) then they agree on the σ-field of the π-system. If \mathcal{F} is a π-system, then \mathbb{P} is uniquely determined by \mathcal{F}. Therefore, it is enough to show \mathcal{F} is a π-system. The proof is straightforward. For any $C, \tilde{C} \in \mathcal{F}$ there exist $A^{(n)}, \tilde{A}^{(n)} \in \mathscr{S}^{n}$ and $B^{(n)}, \tilde{B}^{(n)} \in \mathscr{M}^{n}$ such that $C \cap \tilde{C}=\sum_{n=0}^{\infty}\left(C^{(n)} \cap \tilde{C}^{(n)}\right)=\sum_{n=0}^{\infty}\left[\left(A^{(n)} \times\right.\right.$ $\left.\left.\tilde{A}^{(n)}\right) \cap\left(B^{(n)} \times \tilde{B}^{(n)}\right)\right]$. Since $\left(A^{(n)} \times \tilde{A}^{(n)}\right) \cap\left(B^{(n)} \times \tilde{B}^{(n)}\right) \in \mathscr{S}^{n} \times \mathscr{M}^{n}$ for any given n, we have $C \cap \tilde{C} \in \mathcal{F}$ and hence \mathcal{F} is a π-system. Then, the final conclusion is drawn as $\mathscr{F}=\sigma(\mathcal{F})$.

Proof of Theorem 1: Clearly $\mathbb{P} \geq 0$ and $P(\Omega)=\sum_{n=0}^{\infty} P^{(n)}\left(\mathcal{X}^{n}\right)=1$. If C_{k} is a disjoint sequence of sets in \mathcal{F}, then there exist $A_{k}^{(n)} \in \mathscr{S}^{n}$ and $B_{k}^{(n)} \in \mathscr{M}^{n}$ satisfying $\left(A_{k}^{(n)} \times B_{k}^{(n)}\right) \cap$ $\left(A_{k^{\prime}}^{(n)} \times B_{k^{\prime}}^{(n)}\right)=\phi$ for any $k \neq k^{\prime}$ such that $C_{k}=\sum_{n=0}^{\infty} A_{k}^{(n)} \times B_{k}^{(n)}$. Thus, $\mathbb{P}\left(\sum_{k=1}^{\infty} C_{k}\right)=$ $\mathbb{P}\left(\sum_{k=1}^{\infty} \sum_{n=0}^{\infty} A_{k}^{(n)} \times B_{k}^{(n)}\right)=\sum_{n=0}^{\infty} P^{(n)}\left(\sum_{k=1}^{\infty} A_{k}^{(n)} \times B_{k}^{(n)}\right)=\sum_{k=1}^{\infty} \sum_{n=0}^{\infty} P^{(n)}\left(A_{k}^{(n)} \times B_{k}^{(n)}\right)=$ $\sum_{k=1}^{\infty} \mathbb{P}\left(C_{k}\right)$. Therefore, \mathbb{P} is σ-additive and hence a probability measure on \mathscr{F}. The uniqueness of \mathbb{P} is directly implied by Lemma \mathbb{m}.

Proof of Theorem 2: Consider the right side of Equation (8). There is

$$
\sum_{n=r}^{\infty} \frac{n!}{(n-r)!} p_{n} f_{r, n}\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{r}\right) \leq H_{r}\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{r}\right) \mathbb{E}\left(N^{r}\right)
$$

The left side is bounded for every $\mathbf{x}_{1}, \cdots, \mathbf{x}_{r} \in \mathcal{X}$, implying that $\lambda_{r}\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{r}\right)$ is well-defined for every $r \leq k$.

Proof of Theorem 3: Since λ_{r} exists for every $r \leq k$, there is

$$
\begin{equation*}
\lambda_{r}\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{r}\right)=f_{r}\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{r}\right) \sum_{n=r}^{\infty} \frac{n!}{(n-r)!} p_{n} . \tag{S3.1}
\end{equation*}
$$

For sufficienct, assume \mathcal{N} is k th-order independent. For any $r \leq k$, there is $f_{r}\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{r}\right)=$ $f_{r, m}\left(\mathbf{m}_{1}, \cdots, \mathbf{m}_{r}\right) f_{r, s}\left(\mathbf{s}_{1}, \cdots, \mathbf{x}_{r}\right)$, where $f_{r, m}=f_{r, m \mid s}$ does not depend on $\mathbf{s}^{(r)}$. Therefore,

$$
\lambda_{r}\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{r}\right)=f_{r, m}\left(\mathbf{m}_{1}, \cdots, \mathbf{m}_{r}\right) f_{r, s}\left(\mathbf{s}_{1}, \cdots, \mathbf{s}_{r}\right) \sum_{n=r}^{\infty} \frac{n!}{(n-r)!} p_{n}
$$

implying that \mathcal{N} is k th-order separable. For necessity, assume that \mathcal{N} is k th-order separable. Using (S3.I) with any $r \leq k$,

$$
\lambda_{r, s}\left(\mathbf{s}_{1}, \cdots, \mathbf{s}_{r}\right)=f_{r, s}\left(\mathbf{s}_{1}, \cdots, \mathbf{s}_{r}\right) \sum_{n=r}^{\infty} \frac{n!}{(n-r)!} p_{n}
$$

and

$$
\lambda_{r, m}\left(\mathbf{m}_{1}, \cdots, \mathbf{m}_{r}\right)=f_{r, m}\left(\mathbf{m}_{1}, \cdots, \mathbf{m}_{r}\right) \sum_{n=r}^{\infty} \frac{n!}{(n-r)!} p_{n}
$$

Then,

$$
\frac{\lambda_{r}\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{r}\right)}{\lambda_{r, s}\left(\mathbf{s}_{1}, \cdots, \mathbf{s}_{r}\right) \lambda_{r, m}\left(\mathbf{m}_{1}, \cdots, \mathbf{m}_{r}\right)}=\frac{f_{r}\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{r}\right) \sum_{n=r}^{\infty} \frac{n!}{(n-r)!} p_{n}}{f_{r, s}\left(\mathbf{s}_{1}, \cdots, \mathbf{s}_{r}\right) f_{r, m}\left(\mathbf{m}_{1}, \cdots, \mathbf{m}_{r}\right)}
$$

Let c_{r} be the value of the left side of the above equation. Then, c_{r} does not depend on $\mathbf{x}_{1}, \cdots, \mathbf{x}_{r}$ for any $r \leq k$, and

$$
f_{r, m \mid s}\left(\mathbf{m}^{(r)} \mid \mathbf{s}^{(r)}\right)=\frac{c_{r}}{\sum_{n=r}^{\infty} \frac{n!}{(n-r)!}} f_{r, m}\left(\mathbf{m}_{1}, \cdots, \mathbf{m}_{r}\right)
$$

Therefore, $f_{r, m \mid s}\left(\mathbf{m}^{(r)} \mid \mathbf{s}^{(r)}\right)$ does not depend on $\mathbf{s}^{(r)}$, and \mathcal{N} is k th-order independent.
Proof of Corollary 1: The conclusion can be directly implied from Theorem 3.
Proof of Theorem 4: Let $A_{\mathbf{k}, \eta}=\mathcal{S}_{\eta} \cap\left([0,1]^{d}+\mathbf{k}\right)$, where $\mathbf{k}=\left(k_{1}, \cdots, k_{d}\right) \in \mathbb{Z}^{d}$. Write $N_{\eta}=$ $N\left(\mathcal{S}_{\eta} \times \mathcal{M}\right)$ and denote $\kappa_{\eta}=E\left(N_{\eta}\right)$. For any given \mathbf{k}, if η is sufficiently large, then $A_{\mathbf{k}}=A+\mathbf{k}$. Since Condition (A3) implies that Lemma 1 of Herrdnorf (1984) holds, using Conditions (A1) and (A2) there is $\kappa_{\eta} / n \xrightarrow{P} 1$ as $\eta \rightarrow 1$. Still using Condition (A3), there is $\sup _{\mathbf{d} \in \mathbf{Z}^{d}}\left\|\mathcal{N}\left(A_{\mathbf{k}, \eta}\right)\right\|_{\beta}<$ ∞. Therefore, Corollary 1 of Herrdnorf (1984) can be applied, which implies that there exists $\sigma>0$ such that $\sqrt{n}\left[\mathcal{N}_{\eta}\left(\mathbf{A}_{\mathbf{s}} \times \mathbf{B}_{\mathbf{m}}\right) / n-F(\mathbf{x})\right] / \sigma$ weakly converges to \mathbb{B}_{F}, where \mathbb{B}_{F} is a mean zero Gaussian process with the covariance function given by $\mathbb{E}\left[\mathbb{B}_{F}(\mathbf{x}) \mathbb{B}_{F}\left(\mathbf{x}^{\prime}\right)\right]=F\left(\mathbf{x} \wedge \mathbf{x}^{\prime}\right)$, $\mathbf{x}, \mathbf{x}^{\prime} \in \mathbb{R}^{d+q}$. Note that conditioning on $n, \mathbf{m}_{1}, \cdots, \mathbf{m}_{n}$ are iid $f_{m}(\mathbf{m} \mid \mathbf{s})$. For any $B_{0} \in \mathscr{M}$, $\mathcal{N}_{B_{0}}(A \times B)=\mathcal{N}_{\eta}\left(A \times\left(B \cap B_{0}\right)\right)$ is an MPP which also satisfies Conditions (A1)-(A5) for $\mathcal{N}_{B_{0}}$. For any partition $\left\{B_{1}, \cdots, B_{I}\right\}$ of \mathcal{M}, the number of events occurred in $A \times B_{1}, \cdots, A \times B_{I}$ are independent. Given $N,\left(\mathcal{N}_{\eta}\left(A \times B_{1}\right), \cdots, \mathcal{N}_{\eta}\left(A \times B_{I}\right)\right)$ follows a multinomial distribution with total N and probability vector equal to $\left(\pi\left(B_{1}\right), \cdots, \pi\left(B_{I}\right)\right)$, where $\pi(B)=\int_{B} f_{m}(\mathbf{u}) d \mathbf{u}$. The rest of the proof is omitted since it is similar to the method used in the proof of Theorem 4 of Zhang (2014).

Bibliography

Billingsley, P. (1995). Probability and Measure. Wiley, New York.
Czörgö, M. and Révécs, P. (1981). On the nondifferentiability of the Weiner sheet. In: Contributions to Probability. Academic Press, New York-London, 143-150.

Dalang, R.C. (2003). Level sets, bubbles and excursions of a Brownian sheet. Lecture Notes in Mathematics 1802/2003, 167-208.

Herrndorf, N. (1984). A functional central limit theorem for weakly dependent sequqnces of random variables. Annals of Probability 12, 141-153.

Orey, S. and Pruitt, W.E. (1973). Sample functions of the N-parameter Weiner process. Annals of Probability 1, 138-163.

Walsh, J.B. (1960). Propagation of singularities in the Brownian sheet. Annals of Probability 10, 279-288.

Yeh, J. (1960). Weiner measure in a space of functions of two variables. Transactions of the American Mathematical Society 95, 433-450.

Zhang, T. (2014). A Kolmogorov-Smirnov type test for independence between marks and points of marked point processes. Electronic Journal of Statistics 8, 2557-2584.

