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Abstract: We investigate the upper bounds on coverage probabilities of the
subsampling-based confidence sets in the time series setting. Under the fixed-b
asymptotic framework, where b is the ratio of block size to sample size, we de-
rive the limiting coverage bound, and obtain the finite sample coverage bound by
simulations. Our findings suggest that the coverage bound is strictly below 1 for
positive b, it can be far away from 1, and the fixed-b subsampling method in Shad
and Palifid (PZOT3) can exhibit serious undercoverage when the dimension of the pa-
rameter is large, the time series dependence is (positively) strong, or b is large. To
alleviate the problem, we propose a generalized subsampling method that combines
useful features of fixed-b subsampling and self-normalization, and demonstrate its
effectiveness in terms of delivering more accurate coverage via numerical studies.
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1. Introduction

Since the seminal work of Polifis and Romand (I994), subsampling has be-
come an important and widely applicable tool in various inference problems for
time series and dependent data of other types; see [Politis, Romano, and Wolf
(T999a)). The theoretical treatment in most subsampling-related work adopts the
traditional small-b asymptotics, where b is the fraction of the subsampling block
size (or window width, bandwidth) relative to total sample size, and subsampling
can be shown to be consistent under mild conditions. Recently, Shac and Palifis
(2013) introduced the fixed-b asymptotics (Kietfer and Vogelsang (2005)) into the
subsampling-based inference and proposed a p-value based calibration approach
to alleviate the inconsistency of subsampling under the fixed-b framework. This
new approach allows the effect of block size on the subsampling approximation
to be captured to the first order, and is shown to deliver more accurate coverage
as compared to its small-b counterpart in simulation studies.

Although the fixed-b subsampling based confidence set improves its small-b
counterpart in terms of coverage accuracy, it can be seen from the numerical
results of Shao and Paolifid (P013) that when the dependence of the time series is
positively strong and sample size is small, the empirical coverage level can still be
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far below the nominal level, resulting in inaccurate inference. This severe under-
coverage may be explained by the fact that the theoretical justification in fixed-b
subsampling hinges on the Continuous Mapping Theorem and the functional
central limit theorem (CLT), and the latter approximation (based on functional
CLT) tends to get worse when the time series dependence gets positively stronger
and sample size gets smaller. One can quantify the approximation error by de-
veloping an Edgeworth expansion for the distribution of the p-value under the
fixed-b asymptotics, but that seems very involved; see Zhang and Shad (2013)
for a recent attempt in a related context.

We offer a new perspective on the serious undercoverage for fixed-b subsam-
pling based confidence sets, and we discover an intrinsic coverage bound problem
associated with the subsampling approach that seems largely unnoticed in the
literature. Specifically, there is a nontrivial finite sample (least) upper bound on
the coverage probability of the subsampling-based confidence set regardless of
its confidence level and this bound is determined by such factors as block size,
sample size, dimension of the parameter, the strength and the sign of the time
series dependence etc. To gain more insight, we conducted numerical simulations
and tabulated the finite sample bounds for a few combinations of sample size,
block size, and time series models with varying dependence. We derive the limit-
ing bound as n — o0 as a function of b, for both finite and infinite-dimensional
parameters.

To alleviate the severe undercoverage associated with the fixed-b subsam-
pling, we propose the generalized subsampling (GS) method as an alternative.
The GS still uses values of the statistic computed over blocks of the data, but
the blocks can be of different size and a scaling parameter is introduced to allow
the finite sample bound and the limiting bound be close to 1. The GS inherits
two main ingredients from Shad (2010) and Shao and Polifis (2013). It uses the
idea of prepivoting by looking at the p-value in Shao and Polifid (2013) instead
of using a direct studentization, which seems not applicable to the inference of
infinite-dimensional parameter. It also uses the recursive subsample estimates,
as used in the self-normalized (SN) approach of Shad (2010), which leads to
inconsistent subsampling approximation but can be calibrated to yield asymp-
totically valid inference. We further investigate the coverage bound for GS for
both finite and infinite-dimensional parameters. Our numerical results indicate
that the bound can be very close to 1 as long as the scaling parameter is in a
certain range. We show in simulation studies that the finite sample coverage of
the GS approach can be comparable or favorable in some settings in comparison
with the SN method and fixed-b subsampling method.

The rest of the paper is organized as follows. In Section 2, we point out the
problem of coverage bound for scalar, vector, and infinite-dimensional parame-
ters, and investigate both finite sample and asymptotic bounds by simulation. In
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Section 3, we propose a generalized subsampling method and study its coverage
bound. In Section 4, we compare GS method to the SN and fixed-b subsampling
methods via numerical simulations. Section 5 provides some concluding remarks.

2. Coverage Bounds for Subsampling Based Confidence Sets

We first describe subsampling in the context of a simple inference problem:
inference for the mean p = E(X7;) of a univariate stationary time series based
on the observations {X;};" ;. Here the subsampling method approximates the
sampling distribution of /n(X, — u), where X,, = n=' Y 7 | X; is the sample
mean, with the empirical distribution generated by its subsample counterpart
\/Z(Xj,j+l—1 - Xn), where Xj,j—i—l—l =1 Zgi_jl_l Xi,7=1,... N=n—-1+1.
To construct a symmetric two sided confidence interval for i, consider an(x) =
N1 Z;VZI 1(V1|X; j41-1 — Xn| < 2), where 1(A) denotes the indicator function
of the set A. In the fixed-b framework, the ratio b = [/n is kept constant as
n — oo.

For a given a € [0,1), take the subsampling-based critical values as 7, ;(1 —
a) = inf{x : Enl(x) > 1 — a}. Then, under the small-b asymptotic theory, the
100(1 — )% symmetric confidence interval for y is

(Xn Y%, (1 - o), X+ 0 V27 (1 - a)) . (2.1)

In the context of hypothesis testing, if the alternative hypothesis is Hy : i # py,
then we reject the null hypothesis at the significance level « if p-value is less than
or equal to «, where the p-value is

N

——Fb  ——Fb 1 - - _

pval, ; = pval, ;(po) = N E 1 (\/ﬁ|Xn — pio| < VI Xjji1 — Xn|> . (22
Jj=1

—— Fb
We often omit the dependence of pval,,; on po for notational simplicity. By
duality of confidence interval and hypothesis testing, the confidence interval is

(i poalyy(u) in @2) > o}

The above subsampling-based interval is constructed implicitly assuming the
limiting null distribution of p-value is U(0, 1), which is no longer true under the
fixed-b framework, see Lahiri (2001). As a remedy, Shao and Polifis (2013) cali-
brated the nominal coverage level on the basis of the pivoting limiting null distri-
bution of the p-value under the fixed-b asymptotics, and obtained more accurate
confidence intervals by taking into account the influence of b. Specifically, under

—— Fb
the fixed-b asymptotics, the limiting null distribution of pval,, ; is the distribution
of Gy, where
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" 1-b _ —
Gy = (1 —b)l/o 1 <|W(1)| < ety \V/Vg(t) bW(l)') dt,

and W (t) is a standard Brownian motion. If G () denotes the 100a% quantile of
the distribution of Gy, the p-value calibrated fixed-b based 100(1—«)% symmetric

—— Fb ~
confidence interval is {p : pvali ; in (Z2) > Gp(a)}, namely,
<Xn —n V2 (1 - éb(a)) X+ %, (1 - éb(a))) L (2.3)

In Shaa and Palifis (2013), the value Gy(r) was obtained by Monte Carlo simu-
lation.
Take

Ba(d) = P max VUKo = Xo)| < ValKn —pol). (24)

7j=1,...

where pg is the true value of u, with its limit
W(b+t)—Wi(t)—bW(1
Bty o= P sup VOO = W) W ()
t€[0,1—b] Vb

where W (t) is a standard Brownian motion. Then the coverage probability of
(21) and (233) have a nontrivial upper bound,

< W),

Pl € O1) < P(VialXy — pol < mas, [VI(X; 10— X))

=1,...,

=1- P(\/ﬁan — po| > jmax VX jpi-1 — Xn)|)
=1- /Bn(b) —1- B(b)a (2'5)

where b = [/n. We call 1 — 3,,(b) the finite sample coverage bound and 1 — 5(b)
the limiting bound. If 1 — §,(b) < 1 — «, then the confidence set is bound
to undercover and the amount of undercoverage gets more severe as f3,(b) gets
farther from zero. For large n and under the small b asymptotics, this problem
does not occur because f(,(b) ~ 5(0) = 0. But under the fixed-b asymptotics
or for small sample size, the bound is strictly less than 1 in both finite sample
or limit. This seems the first time such a phenomenon has been brought up for
discussion in the literature.

Since B(b) := P(G), = 0), two cases can occur. If B(b) > «, then Gj(ar) = 0,
and the inequality in (223) becomes an equality. In this case, it is impossible to
construct a confidence interval with asymptotically correct coverage. If 5(b) < «,
then a CI of asymptotically valid coverage can be constructed, but whether the
finite sample coverage bound reaches the target level is unknown for a given
sample size. The quantity /3,,(b) depends on the joint distribution of time series,
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the form of the parameter, block size, and sample size, so is in general difficult
to calculate. Table 1 provides numerical values of 53,(b) and 5(b) for a few
combinations of b’s and n’s under different levels of dependence strength. See
Section 3 for more discussions.

2.1. Finite dimensional parameter

The issue of coverage bound also exists when we deal with general finite
dimensional parameters. Following Politis, Romano, and Woll (T999K), we as-
sume that the parameter of interest is §(P) € R?, where P is the joint prob-
ability law that governs the p-dimensional stationary sequence {X;}:;cz. Let
0, = 0,(X1,...,X,) be an estimator of § = 6(P) based on the observations
(X1,...,X,). We define the subsampling estimator of (P) by émﬂ_l = él(Xj,
..., Xj41-1) on the basis of the subsample (Xj,..., X;4-1), 7 =1,...,N. Let
|- || be a norm in R?. The subsampling-based distribution estimator of ||y/n (6, —
0)| is denoted by Ly (x) = N1 32V 1(|VI(0;j41-1 — 0n)|| < 7). In the testing
context (say Hy : 6 = 6y versus Hy : 6 # 6y), we define the subsampling based
p-value as

N

—— Fb _ A A N

pvaly; = N""Y 1(IVn(bn — O]l < VI8 1411 = 6))); (2.6)
j=1

here we do not distinguish 6§ and 6y for convenience, they are the same under the
null.

Suppose that §(P) = T'(F), where F is the marginal distribution of X; € R?,
and T is a functional that takes value in R%. Then a natural estimator of T'(F)
is 0, = T(p1n), where p1,, = n~t > i 0x, is the empirical distribution and d,
stands for the point mass at x. Similarly, éj,j+z—1 =T(pjj+i—1), where pj j11—1 =
1! Zggjﬁl 0x,. Under some regularity conditions on 7" and moment and weak
dependence assumptions on the time series, Theorem 1 in Shao and Paolitid (2013)

—~ Fb ~
showed that the limiting null distribution of pval,,; is the distribution of G 4,
where

éb’d _ L lb]_(HZl/QWd(l)H < HEl/Z(Wd(b +7) ?/BWd(T) — de(l))H)dT,

1-0Jy
with Wy(+) representing the d-dimensional vector of independent Brownian mo-
tions and ¥ = X(P) denoting the long run variance matrix corresponding to
T(F). Specifically,
[e.e]
= Y cov(IF(Xo,P),IF(X;,P)), (2.7)

j=—o00
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where [ F'(X; P) stands for the influence function corresponding to T'; see Section
3.1 of Shaoand Polifis (2013) for the definition.

In the special case d = 1, ébJ = éb, and is pivotal. However, for d > 2,
éb,d is no longer pivotal; it critically depends on the unknown covariance matrix
3. One way out is to approximate the limiting null distribution éb,d further by
subsampling, see Shao and Polifis (2013). Since this procedure mimics the idea

of a double-bootstrap, it was termed double subsampling procedure in the latter

paper.

Let ébd(a) be the ath-quantile of ébd that can be consistently approxi-
mated by subsampling. Then the calibrated 100(1 — a)% subsampling-based
confidence region for 6 contains all points #y for which the test of Hy : 8 = 6y
fails to reject the null hypothesis,

—— Fb ~
{0 eR?: pval,,; in (28) > Gb,d(a)} , (2.8)
— Fb
whereas the traditional subsampling-based confidence region is {§ € R : pvalil
in (Z8)>a}. Define
Bu(brd:2) = P(mas VI0; g1 =) < Valy —0]).  (29)
Let F(x—) := limyy, F'(y). The coverage probability of (Z3) is
Pe @9)=P ({0 R 1- Loy(v/allfn — 0]7)>Cra(@) })
—Pp ({9 eRY: Ly (v, — 0] 7)<1 — éb,d(a)})
—p ({9 eR?: ||, — 0] < (1 — Gya())-th quantile of zm,})
<P (Vald, ~ o < max [Viyje0m1 - 00
=1—Bn(b;d; Y). (2.10)

Let (b;d; X)) be the limit of 8,(b;d; X) asn — co. If d = 1, 5(b;d; 2) = S(b)
that does not depend on the nuisance parameter . For d > 2, let

1/2 T)— T)—
stz = P s IS+ 1) ile) ~ W)

If 8(b;d; X) > «, then P(éb,d =0) > a, é@d(a) = 0, and the inequality in (EZ10)
becomes equality. Again we run into the issue of undercoverage if 3, (b; d; X) > a.

< |I=2Wa(n)l).

2.2. Infinite-dimensional parameter



GENERALIZED SUBSAMPLING 1505

In the time series setting, subsampling methods have been used to provide
an approximation of the nonpivotal limiting distribution when the parameter of
interest is of infinite dimension, such as the marginal distribution function and
the spectral distribution function of a stationary time series; see [Politis, Romano.
and Wolf (T999H). We use ||F' — G||« to denote sup,cr |F(z) — G(z)| and focus
on the confidence band construction for the marginal distribution function.

Consider a stationary sequence {X;}iez and let m(s) = P(Xo < s) be its
marginal cumulative distribution function (cdf). Given the observations {X;}} ;,
the empirical distribution function is m,(s) =n~1 Y7 ; 1(X; < s). To construct
a confidence band for m(-), it is known from Berkes, Hormann, and Schauei
(2009) that /n(mu(s) — m(s)) = K(s,1), where {K(s,t),(s,r) € [—00,00] %
[0,1]} is a two-parameter mean zero Gaussian process with

cov (K(s,r), K(s',7")) = (r Av/)[(s,s"), (2.11)

and I'(s,s) = Y o cov(1(Xo <s),1(X, <&)). Then by the Continuous
Mapping Theorem, v/n|my, — m|« —p sup,cgr |K(s,1)|, whose distribution is
not pivotal since the covariance kernel I'(-,-) depends on unknown nuisance
parameters. To describe the fixed-b subsampling method, let v/1(m¢si;_1(s)
—mp(s)),t=1,...,N =n—1+1, be the subsampling counterpart of \/n(my(s)
—m(s)), where myy—1(s) =171 Z’;:;l;l 1(X} < s). Define the p-value

N

—— Fb

pval,, | = N1 Z 1(\/l|]mt’t+l,1 — Mploo = Vnlmy — mHoo> (2.12)
t=1

Let b = [/n. Under fixed-b asymptotics, the limiting null distribution of the
p-value is the distribution of G, where

S |K(s,7 +b) — K(s,7) — bK(s,1)]
Gy = —— 1( su ’ ’ ’ > sup |K (s, 1)|)dr.
=g o Vo il

The distribution of Gy is not pivotal for a given b, because it depends on the
Gaussian process K (s,t), whose covariance structure is tied to the unknown
dependence structure of X;. So subsampling at the first stage is insufficient
under the fixed-b asymptotic framework.

To make the inference feasible, a double-sampling procedure was employed
in Shao and Paolifis (2013) to approximate the sampling distribution of the p-
value or its limiting null distribution; see also Section 3.1. Let Gp(«) be the a-th
quantile of G, and éb(a) a consistent estimator by subsampling in the second
stage. For a given a € (0,1), the 100(1 — a)% calibrated subsampling-based
confidence band for m(-) is

—— Fb ~
{m : m is a distribution function and pval,,; in (212) > Qb(a)} . (2.13)
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Take
Ba(b, K) = P( max VI[m a1 — mnlls < Valma — m||oo). (2.14)

7=1,...,
Following the argument in Section 2.1, The coverage bound of (2Z13) can be
derived as

P<j_nllaXN\/Z||mj7j+l—1_mn’oo > \/ﬁ”mn_mHoo) = 1—ﬁn(b,K),

with the limit of 3, (b, K) being

B(b,K) = P( sup sup |[Kls,r +b) = K(s,7) = bK(s, 1)] < sup | K (s, 1)\)
re(0,1-b) seR \/B s€ER

2.3. Finite sample coverage bound for fixed-b subsampling

To investigate the severity of the coverage bound issue, we present the finite
sample coverage bounds of the subsampling based confidence set for time series
data through numerical simulations. Suppose X, is generated from a vector
autoregression (VAR) model X; = plyX;—1 + ¢ with ¢ € Rd, where I; is a
d x d identity matrix. Assuming that ¢ ~ i.i.d. N(0,Iy), there is no cross-
sectional correlation for the time series, we present the values of coverage bounds
Bn(b; d; 34) in Table 1 with different choices of b and sample size n for d = 1,2, 3.
The sample size n is 50, 100, 500, 3,000, co. We approximated the asymptotic
coverage bound f(b;d;¥;) by simulating independent Wiener processes 5,000
times, where each Wiener process was approximated by a normalized partial
sum of 50,000 i.i.d. standard normal random variables.

Tables 1 and 2 summarize the coverage bound for the mean and median
respectively by fixed-b subsampling. The coverage bound decreases as the positive
dependence strengthens, whereas for negative p the coverage bound tends to
inflate as compared to the i.i.d. case. In general there is a decreasing trend in
the coverage bound as the dimension d increases. The bound much depends on b
and is moderately sensitive to b especially in the case of high positive correlation.
Although no universal pattern can be found to dictate the selection of b based
on the coverage bound, the simulation results do suggest that b in the range of
(0,0.2) tends to deliver higher coverage probability.

Tables 1 and 2 reveal that even after p-value calibration, an asymptotically
valid confidence set can have a potential undercoverage issue in finite samples.
In that situation, if a high confidence level is desired, it is recommended that the
bound be computed to see if such a high confidence level is attainable. From Shaa
and Polifis (2013), “undercoverage occurs (for fixed-b subsampling methods) and
it becomes more severe as the dependence positively strengthens”, see Figures
1-3 therein. This phenomenon can be partially explained and is echoed by the
coverage bound presented in Table 1.
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Coverage Bounds
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Figure 1. Bounds on the coverage probabilities for fixed-b subsampling for
the mean at nominal level 95% (dashed line). The data were generated from
multivariate standard normal distribution with n = 5,000 and the number
of Monte Carlo replications was 5,000.

We investigated the impact of the dimensionality d of the parameter on the
limiting coverage bound. Figure 1 presents the coverage bound for vector mean
at d = 2,3,5,10,15,20,50 for a range of b’s in (0,0.5), where the data were
generated from i.i.d. multivariate standard normal distribution with sample size
n = 5,000. As the dimension d increases, even for i.i.d. Gaussian data, the
finite sample coverage bound deviates from 1. The upper bound can be close to
zero when both b and d are large. We expect a larger deviation from 1 on the
coverage bound if the data exhibit positive dependence, or if the sample size is
small, as seen from Tables 1 and 2. These findings call for special caution from the
practitioners when dealing with a confidence set in one of the following situations
if the nominal level is close to 1, say 99%, the dimension of the parameter d is
large, the (positive) dependence is strong, b is large, or the sample size n is small.

For the infinite-dimensional case, we examine the confidence band for the
marginal distribution function of an AR(1) model: X; = pX;_1 + €, where
& ~ i.i.d. N(0,1 — p?); the theoretical marginal distribution of X; is standard
normal. Table 3 shows the coverage bound for the confidence band at different
levels of dependence. Not surprisingly, the coverage bound is significantly smaller
than 1 if sample size is small (n = 50) and the dependence is strong (p = 0.8).
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The choice of b plays an important role on the coverage bound with larger b
corresponding to lower bound in general, but we notice that for some very small
b’s, the bound can be far below 1. The negative correlation p = —0.5 leads to
a different pattern for an infinite-dimensional parameter. Specifically, except for
d = 0.02, the coverage bound for p = —0.5 is either comparable to, or smaller
than that for p = 0, indicating that a potential undercoverage can be caused by
not only positive, but also negative value of p.

3. Generalized Subsampling

In the time series setting, for given observations from a time series {X;}7 ;, a
statistic is recomputed over the n—[+1 subsets of size [ of the form {X;, X; 11, ...,
Xi+i—1}- The traditional way of performing subsampling in this context has two
important features: (i) blocks of the consecutive observations are used and blocks
are of the same length to retain the time series dependence; (ii) the block size
satisfies {/n + 1/l = o(1) as n — oo to show the consistency of the subsampling
based approximation in distribution approximation and in variance estimation;
see IPolifis’and Romand (1994).

We propose a new GS method to relax these requirements for the use of the
subsampling method. It still uses values of the statistic computed over blocks of
the data (subsamples), but the blocks can be of different size and a scaling param-
eter ¢ is introduced to alleviate the coverage bound problem. The applicability
of the GS is limited to approximately linear statistics that are asymptotically
normal, so its scope of applicability is narrower than that for subsampling. On
the other hand, as we demonstrate later, its coverage bound can be fairly close
to 1 and can outperform fixed-b subsampling in terms of coverage accuracy, espe-
cially when the coverage bound for fixed-b subsampling is substantially below 1.
It is closely related to the SN approach (Shad (2010)), where the use of an incon-
sistent normalizer leads to a nonstandard limiting distribution of the studentized
statistic, but it can be used in the inference of infinite-dimensional parameters,
to which the SN approach seems not directly applicable. It is also intimately
related to the work of Shao and Palifis (2013), in which the subsampling is in-
consistent under a fixed-b asymptotic framework and a p-value based calibration
is proposed to yield asymptotically valid confidence sets. We follow the same
p-value based calibration approach and our development for the GS method is
parallel to that in Shao and Polifid (2013).

3.1. GS methodology details

Let 6, = 917,5 and m¢ = mq ; be the estimate based on subsample (X1, ..., Xy).
For a vector parameter § € R? we approximate the sampling distribution of

Vllf, — 8] by
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12 (™ 21t0: = 6.1 < ).

where g is a scaling parameter introduced to alleviate the coverage bound problem
for g = 1. We leave the choice of g and its impact on finite sample performance
to later sections. Here the use of recursive estimators {9}}?21 is motivated by the
good finite sample performance of the self-normalized approach in Shad (2010);
see also Nordman, Bunzel, and Lahiri (2013) for a related formulation in the
blockwise empirical likelihood context. Similar to the subsampling under the
fixed-b framework, the distribution estimator M, 4(x) is inconsistent, but we can
use p-value calibration to construct a confidence set with asymptotically correct
coverage. In the testing context (say Hy : 6 = 0y versus Hy : 0 # 6y), we take
the GS-based p-value as

—GS ~
pual,,, = 12 (glln 720 = 01 = IV - 0))) . (3.1)

where we do not distinguish 6 and 6y because they are the same under the null.
Its limiting null distribution is

1
Hya = [ 1 (gI2(P) Walr) = rWa0) | = [S(P) W] ) dr. (32

with ¥(P) as in (272).

When d = 1, Hy; := H, is pivotal since X(P) in (B2) gets canceled, and
the quantiles of H, can be obtained by monte carlo simulation. Let Hy(c) be
the a-th quantile of the distribution H,. Then the corresponding 100(1 — )%
confidence interval for p is

{u pval > Hy(a )}
{u n IZ (om™ 210X, — X)) > V(Ko — ) > Hg<a>}
= (X~ iV (1= Hy(a) o + 1 ey (1 H)).  (33)
where ¢, ¢(1 — a) = inf{z : M, 4(x) > 1 — a} for a € [0,1).

Take 55 (g) := P(maxi—1, _n,n Y2g[t(X;— X,)| < v/n| X, —pl|) and 355 (g)
1= P(sup,¢(o,1) 9|W(r) —rW(1)] < [W(1)|). The coverage bound of the interval
in (B3) is

P(pe B3) =P (Vn(| Xy —ul < cng(l —a))

P (VA — il < max gn™ (6 - 1) = 1= 585(0)
=1,...,n
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For d > 1, H, 4 depends on the unknown long-run variance matrix ¥(P) and
is not pivotal; we opt to bypass this difficulty by subsampling approximation at
a second stage, see Section 3.2 in Shao and Paolifid (2013). For completeness, we
present the details here. Denote by n’ the subsampling width at the second stage.

For each subsample {Xj,..., X, 1}, we take the subsampling counterpart of
—GS
pval, ;| as
] -1 1 A 1/2, 4 ~
qn 9 Z < In" " 9]]+t71 =054 —1)ll = I’ / (05,41 —9n)||>
forj =1,...,n—n/+1. Denote the empirical distribution function of {qn " ;” e 41

by an/,g(:p) =m-n"+1)" Z;L:{L "+ 1(q1(f)g < ), which can be used to ap-

— G
proximate the sampling distribution or the limiting null distribution of pval,, ;
Let ¢y g(1 — ) = inf{z : Qp n ¢(x) > 1—a}. Then the calibrated 100(1 — )%
subsampling-based confidence region for 6 is

— GS
{9 cR%: pval,,; in (1) > cn,ngg(oa)} , (3.4)
which is equivalent to
{9 e R : /nl|f, — 0] < (1 = o g(@))-th quantile of Mn,g} . (3.5)

Take 355 (g;d; %) = P(maxi—1_nn~Y2g|[t(6; — 6,) < /aillén — 0])) and
B9(g:ds ) = P(supyeqo) 92 (Walr) — rWa(D)]| < IV Wa(L)]]). We
can show that the coverage bound of (83) is 1 — 8$%(g;d;¥). The value of
1- 553 (g9;d;1;) is tabulated in Tables 5 and 6, from which we can see an im-
provement of the finite as well as asymptotic bound over the fixed-b subsampling
results in Tables 1 and 2; see more comments in Section 3.2.

In estimating the marginal cdf of a stationary process, let g,(t,s) = n~1/2¢
(my(s) — mn(s)), t =1,...,n be the GS counterpart of \/n(m,(s) —m(s)); we
approximate the distribution of ||\/n(m, —m)|« by

n
S (g V2 t(m — )l < ).

t=1

The p-value
n
— GS
pvaln,g =n"! Z 1 (gn_l/%”mt =My loo > \/ﬁHmn - m”oo) (3.6)
t=1

has a limiting null distribution of

1
Hy = / 1 <g sup |K(s,r) —rK(s,1)| > sup | K (s, 1)]) dr,
0 seR seR
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where the Gaussian process K (s,r) has a covariance structure determined by
the unknown dependence structure of Xy, see (EIl). Therefore a second-stage
subsampling needs to be employed. Specifically, let n’ be the subsampling window
size at the second stage. For each subsample { Xy, ..., X¢1,/_1}, the subsampling

—GS |
counterpart of puval,, , is
n/
t — — .
B = ()3 g (n) V2l mie o1 — a1l
7j=1

> (n/)l/QHmt,Hn’—l — Mnlloo)

fort = 1,...,n —n' + 1. Then we approximate the sampling distribution of
GS

n’g7
{hif,{ g}?z_lnlﬂ, which is denoted as

pfv\c;l or its limiting null distribution H,, by the empirical distribution of

n—n/+1

Jn,n’7g($) = (n — n/ + 1)—1 Z 1(h7(1t/)7g < x)
t=1

Let H4(c) be the a-th quantile of H, and ﬁg(a) be the subsampling-based
estimator, Hy(a) = inf{x : J;, »r 4(x) > a}. Then the confidence band for m(-)
is

——Gs ~
{m : m is a distribution function and pval,, , in (B86) > ’Hg(a)} . (3.7)

The following proposition states the consistency of subsampling in the second
stage, which implies that the coverage for the calibrated confidence band is
asymptotically correct. Let

Vy(r,e) = P{|gsup [K(s,r) = 1K (s,1)] = sup | K(s,1)]| = ¢}
seR seR
Proposition 1. Suppose that 1/n’ +n'/n = o(1), and (4) in Shac_and Polifis
(2013) holds.
— GS
(a) The limiting null distribution of the p-value pval,, , is the distribution of H,
provided Vy(r,0) = 0 for every r € [0, 1].

(b) Suppose that the process Xy is a-mizing, Hy is a continuous random variable
and Vy(r,e) =0 for every r € [0,1] and e > 0. Then

sup ’Jmn’,g(l‘) - P(Hg <) = Op(l)-
zeR

This result is analogous to Theorem 3 in Shaoand Polifis (2013) in terms of
technical conditions and results, and the arguments for the proof of Theorems 3 in



GENERALIZED SUBSAMPLING 1515

Shao and Politid (2013) can be extended in a straightforward fashion to prove it.
The conditions on H, and Vy(r, €) are not easy to verify and this may be related
to the regularity of the distribution of the maximum of Gaussian processes; see
Azais_and Wschehor (2001) and the references therein. The assumption that
1/n'4+n'/n = o(1) implies that the consistency of second-stage subsampling holds
under the small-b asymptotics, where b = n//n. If we view b = n//n as fixed,
then the asymptotic coverage of the calibrated confidence set is still different
from the nominal level. One can perform further calibration by subsampling,
but the selection of the subsampling window size at each stage usually requires
expensive computation and the finite sample improvement in coverage accuracy is
not guaranteed by doing iterative subsampling. Our GS is a form of prepivoting
(Beran (987, TY8R)), but the limiting null distribution of the p-value is not
U(0,1) in our setting; it depends on g and possibly some aspects of the data
generating process (for vector and infinitely dimensional parameters).

3.2. Coverage bound for GS

Here we adopt the set-up in Section 2.3 and investigate the finite sample
coverage bound of GS.

Tables 5 and 6 give the coverage bound for the vector mean and median
respectively, by GS. Without the scaling parameter g (i.e., g = 1), the coverage
bound is at most 60%, indicating the ‘crude’ confidence interval is not meaningful
at usual confidence levels (say, 95%). There is an increasing trend in the coverage
bound as ¢ increases, and the bound is close to 1 on the range g € [3,00). We
refrain from using large values of g since they lead to a wider CI while preserving
similar coverage probability, see Section 4 for more details. Simulation study
shows that g € [3,5] is a sensible choice for most data generating processes.
Although strong positive dependence makes the coverage bound lower, it seems
GS quickly adapts to dependence, and brings the coverage bound close to 1 by
increasing g.

Figure 2 has the same format as Figure 1, it depicts how the dimensional-
ity affects the coverage bound of GS. We find that the coverage bound quickly
stabilizes and gets up to 95% for g € [3,5] regardless of d, when the crude CI
bound (g = 1) reaches zero for large d. Compared to Figure 1, we can see that
although high coverage bound can be achieved by shrinking the fraction b in a
high-dimensional case, it leads to instability as the subsample shrinks.

Table 4 summarizes the coverage bound for the marginal cdf by GS. The
bound for GS at small samples (n = 50, 100) is quite close to 1 as long as g > 3.5.
For large samples, the coverage bound is quite robust to the choice of g (other
than the g = 1 case), and it is comparable to the best coverage bound for the
fixed-b method.
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Coverage Bounds
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Figure 2. Bounds on the coverage probabilities of GS for the mean at nom-
inal level 95% (dashed line). The data were generated from multivariate
standard normal distribution with n = 5,000 and the number of Monte
Carlo replications was 5,000.

4. Numerical Studies

We have illustrated the improvement on the least upper bound on coverage
probability by GS over the fixed-b subsampling. Here we compare the empirical
coverage probability of the confidence set by GS, fixed-b, and SN methods, and
pay particular attention to the case where the finite sample bound for the fixed-b
subsampling is substantially below 1.

We simulated Gaussian (vector) AR(1) model and constructed the confi-
dence set for the finite-dimensional parameter (univariate mean, vector mean) or
confidence band for the marginal cdf. In the univariate mean case, the limiting
null distribution of the p-value is pivotal for both fixed-b and GS, and the quan-
tile Hy(ov) can be simulated, while Gy(c) has been tabulated in Shan and Palifis
(2013). In vector and infinite-dimensional parameter cases, we employed a sec-
ond stage subsampling method to approximate the limiting null distribution of
the p-value for both fixed-b method and GS, as described in Section 3.1. Follow-
ing the proposal by Bickel'and Sakov (2008), a data-driven bandwidth selection
procedure in the second stage subsampling was carried out as follows.
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Step 1. For a predetermined interval [K7, Ko] and v € (0,1), take a sequence of
n;’s of the formn; = [y~ Ky, forj = 1,2, ..., [log(K2/K1)/log(1/7)].

Step 2. For each nj, find JInnjs where Jnon; 18 the subsampling-based distribution
estimator for the sampling distribution of the p-value.

Step 3. Set jo = argmin;_; |1og(Ks/K1)/{ log()}] SWPzeR |[Jnn; (€)= Jnn; (7).
Then the optimal block size is 170 Ky. If the difference is minimized for
a few values of j, then pick the largest among them.

In the simulation, we set (K1, K2,v) = (5,0.3n,0.75), which corresponds to a
sequence of block lengths of (30,22,16,12,9,7,5) when n = 100.

Figure 3 compares the empirical coverage probability for the CI of the uni-
variate mean constructed by GS, fixed-b and SN methods. Following Shaoc and
Polifis (2013), the range of b is [0.01,0.16] since the formula given therein for
the critical value éb(a) may become negative for b > 0.16 and o = 0.05. The
range of g is [2.5, 10]. It shows that, for p = 0,0.5,0.8, GS delivers more accurate
coverage probability than fixed-b subsampling, and is quite comparable to SN for
a range of g’s. As p > 0 becomes larger, fixed-b subsampling encounters more
severe undercoverage, whereas GS manages to bring the coverage probability to-
ward the nominal level. The fixed-b subsampling relies heavily on the choice of b,
while GS performs quite stably for g € [3,10] and is comparable to SN method in
terms of both coverage accuracy and interval length. When p = —0.5, all three
methods exhibit over-coverage phenomena, which is consistent with the high cov-
erage bound presented in Tables 1 and 5. The coverage probability delivered by
the GS confidence interval is closer to the nominal level and, as a trade off, the
length of CI is moderately longer compared to fixed-b approach. The pattern is
the same for median and quantiles, and is not shown.

Figure 4 shows the empirical coverage probability of the confidence region
for a 3-dimensional vector mean of a VAR(1) model. It can be seen that when
the dependence is moderate, say, p = 0.5, the coverage probability of the fixed-
b method is not far from the nominal level and, in this case, GS can barely
improve the coverage. As dependence grows (positively) stronger, the coverage
probability of the fixed-b subsampling deviates from the 95% level by a larger
amount, and GS brings the coverage probability much closer to the nominal
level. When p < 0, GS is still much better than fixed-b subsampling except for
b = 0.01. We also compare the volumes of the confidence regions. Notice that the
confidence region constructed by fixed-b subsampling and GS are d-dimensional
balls with radius determined by the p-value calibrated critical value, while SN
method results in a confidence ellipsoid. For an ellipsoid with semi-principal axes
of length a,b, ¢, take the equivalent radius to be R = (abc)/?
wider confidence region radius by GS as a reasonable trade-off for more accurate

. Again we see a
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Figure 3. Empirical coverage probabilities and CI width for the mean by GS
(‘47), fixed-b (‘o’) and SN (solid line) at nominal level 95% (dashed line).
The data were generated from Gaussian AR(1) models with n = 50, the
number of Monte Carlo replications was 5,000.
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Figure 4. Empirical coverage probabilities and (equivalent) radius of con-
fidence region for 3-dimensional vector mean by GS (‘4’), fixed-b (‘o) and
SN (solid line) at nominal level 95% (dashed line). The data were generated
from vector Gaussian AR(1) models with n = 100, the number of Monte

Carlo replications was 5,000.
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coverage probability. Overall, the performance of GS is stable for a wide range of
g, and its performance is comparable to the SN method in terms of coverage and
confidence region radius when p = 0.5, and can vastly outperform SN method in
coverage when p = 0.8 or 0.95; when p = —0.5, SN does better in coverage.

Figure 5 shows the empirical coverage probability of the confidence band
for the marginal cdf of AR(1) model by GS and the fixed-b method. The SN
method is not applicable for infinite-dimensional parameters. It appears that GS
is slightly worse than fixed-b subsampling when dependence is weak or moderate,
but GS’s advantage shows up as the dependence strengthens, for either positive
or negative p, and the coverage probability for GS is satisfactorily close to the
nominal level and quite stable across a wide range. As expected, the GS-based
confidence set is typically wider, as a price we pay for more accurate coverage.

Overall, GS’s performance is competitive, and it displays distinct advan-
tages over fixed-b subsampling when the dependence is (positively) strong; it is
comparable to SN for finite-dimensional parameters.

5. Conclusion

In this paper, we study the coverage upper bound on the coverage proba-
bilities of fixed-b subsampling based confidence sets. We derive the formulae for
both finite sample bound and the limiting bound, and tabulate them for sev-
eral combinations of (n,b) and time series models with strong/weak dependence.
This seems to be the first time that the coverage bound problem is recognized
for subsampling methods. Our numerical results show that the bound can be far
from 1 and the finite sample coverage can be far below the nominal level when
the dimension of the parameters is large, the dependence of the time series is
positively strong, or b is large. This finding suggests that caution be taken when
applying subsampling methods to time series inference with a high-dimensional
parameter or strong dependence.

Our proposed GS methodology combines the recursive subsample idea in the
self-normalization of Shad (P010) and the p-value calibration idea in Shao and
Polifid (P013), and introduces a scaling parameter g to alleviate the bound prob-
lem when g = 1. The numerical comparison with SN and fixed-b subsampling
shows that the GS can deliver comparable or sometimes favorable coverage accu-
racy for a range of g’s. It is interesting to ask about optimal g and whether there
is a data-driven algorithm for its choice. We leave this for future research. There
are a few variants of the GS method. For example, we can use different weights
for the values computed over blocks of possibly different size, generalizing the
scaling idea. Or we can use all possible blocks of consecutive observations in the
calculation of values of the subsample statistic. We expect the coverage bound
problem also occurs for a block bootstrap based confidence set, in view of the
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Figure 5. Coverage probabilities and widths of confidence bands for the
marginal cdf by fixed-b and generalized subsampling. The data were gen-
erated from AR(1) models with n = 100 and the number of Monte Carlo
replications was 5,000.
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developments on fixed-b block bootstrap in Shao and Polifis (2013). All these
topics are worthy of further investigation.
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