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Abstract: As an extension of linear cointegration, threshold cointegration has been

a vibrant research topic in finance and statistics. Existing estimation procedures of

threshold cointegration are usually based on the threshold vector error correction

model (TVECM); however, only one threshold cointegration is considered. In this

paper, we investigate estimation of the multiple-threshold cointegration that is more

widely used in application. Two proposed methods, the LSE and the Smoothed

LSE are studied, via the multiple-regime TVECM. The convergence rate of the

LSE is obtained and the limiting distribution of the smoothed LSE is developed.

To assess the performance of these estimators, a simulation study was conducted,

in which the results support the asymptotic theories. As an example, we study the

term structure of interest rates by a two-threshold cointegration model.

Key words and phrases: Convergence rate, error correction model, multiple-threshold
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1. Introduction

The idea of co-integration stems from the notion of transforming multiple

time series into stationary components, as first discussed in Box and Tiao (1977).

This idea was subsequently codified in the notion of cointegration in Granger

(1983) and Engle and Granger (1987) in econometrics front. The basic idea of

cointegration is that given two (or more) nonstationary time series, a linear (or

non-linear) combination of them may be stationary. The classic cointegration

implies constant adjustment towards the long-run equilibrium, which was found

to be too strict in certain situations. Balke and Fomby (1997) argued that the

existence of transaction cost may lead to nonlinear adjustment to long-run equi-

librium and proposed the idea of threshold cointegration. Their model suggests

that there exist disjoint regimes determined by the size or the sign of the equi-

librium error and system adjustments are different from regime to regime. In

the past two decades, estimation methods of threshold cointegration have been

extensively pursued, including Balke and Fomby (1997), Hansen and Seo (2002)

and Seo (2011). Some testing procedures have also been proposed. For instance,
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Hansen and Seo (2002) consider testing for the presence of threshold effect assum-

ing the presence of cointegration, and Seo (2006) studies testing for the presence

of cointegration within the threshold cointegration model. In applications, this

model has been widely used in econometrics and finance, including the study of

purchasing power parity (PPP), law of one price (LOP), and the relation between

long-term and short-term interest rates, see Walter and Kamol (2004), Enders

and Siklos (2001), Enders and Granger (1998), Michael, Nobay, and Peel (1997)

and Lo and Zivot (2001), among others.

Although several estimation methods have been proposed for cointegration

models, theoretical results are rare. Even estimation consistency may not be ob-

tained by standard methods. As alluded by Saikkonen (1995), the log-likelihood

function does not converge uniformly in the whole parameter space, and the

directions in which it converges fastest determine the convergence rate of each

component of the maximum likelihood estimators. Without uniform conver-

gence, it is difficult to obtain the limiting distribution with Taylor expansions.

Existing methods can be divided into two categories: two-step estimation and

joint-estimation. The two-step estimation was proposed by Balke and Fomby

(1997), based on Engle and Granger’s two-step estimation of linear cointegra-

tion. They suggested estimating the long-run parameter (cointegrating vector)s

first and then plugging in the estimated parameter as if it were the true value

and estimating the short-run parameters. Although this two-step procedure is

based on the super-consistency of the estimate of the cointegrating vector, its

global optimization is not yet clear. In fact, for a smooth transition cointegra-

tion model, de Jong (2001) found that the estimation error in the first step is

non-negligible, unless some regularity conditions are satisfied.

The joint estimation methods estimate the long-run and short-run parame-

ters jointly based on the corresponding threshold vector error correction model

(TVECM) representations. For a two-regime TVECM, Hansen and Seo (2002)

derived the maximum likelihood estimator (MLE) under the normality assump-

tion. They also proposed a SupLM test for the presence of one threshold coin-

tegration. However, consistency of the MLE is still an open question. For the

same two-regime TVECM, Seo (2011) considered the LSE and the smoothed-LSE

(SLSE). Under suitable conditions, Seo (2011) showed that the least squares esti-

mates of the cointegrating vector and the threshold converge at rate n3/2 and n,

respectively. In addition, the SLSE of the cointegrating vector and thresholds are

found to converge jointly to a functional of Brownian motions, at rates slightly

slower than that of the corresponding LSEs in Seo (2011).

Asymptotic theories are mainly focused on one threshold cointegration. How-

ever, there is an increasing interest in application of multiple-threshold cointe-

gration. For example, Lo and Zivot (2001) applied a two-threshold VECM to
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analyze the PPP and the LOP of tradable goods in the US. The large sample

theories of the estimators of multiple-regime TVECM are still unknown, how-

ever. For models with multiple threshold parameters, Seo (2011) suggested the

sequential estimation discussed in Bai and Perron (1998), but did not develop

consistency of the estimator. For the multiple-threshold AR model without coin-

tegration, Li and Ling (2012) first gave the limiting distribution of the LSE of

the multiple thresholds. They found that each threshold estimate converges to

the minimizer of a compound Poisson process.

The goal of this paper is to develop asymptotic theories of estimation of

multiple-threshold cointegration, based on the corresponding multiple-regime

TVECM representations. We first study the LSE of a general multiple-regime

TVECM and obtain its convergence rate under suitable conditions. The LSEs of

the thresholds and cointegrating vector are found to be n- and n3/2-consistent,

respectively, and the estimate of the slope parameter is asymptotically normal

and
√
n-consistent. Moreover, the SLSE is explored and its limiting distribution

is established. The SLSEs of the cointegrating vector and the multiple thresholds

are found to be super-consistent and asymptotically mixed normal; this enables

one to conduct statistical inference. The SLSE of the slope parameter has the

same limiting distribution as the LSE. Estimation of asymptotic variance of the

limiting distribution is given. A simulation study is conducted to assess the two

proposed estimators and additionally, a three-regime TVECM is applied to the

120-month and twelve-month interest rates of the US in the period 1952-1991.

The paper is organized as follows. Section 2 investigates the convergence rate

of LSE of multiple-regime TVECM. Section 3 establishes the limiting distribution

of the SLSE. In Section 4, results of a simulation study and empirical study are

reported. Section 5 concludes.

2. Least Squares Estimation

2.1. Model specification

Let {xt} be a p-dimensional vector of I(1) time series that is cointegrated

with a single cointegrating vector, denoted by (1, β′)′. Define the error correction

term zt(β) = x1,t+x′2,tβ, where xt = (x1,t, x
′
2,t)

′. Then a general multiple-regime

TVECM can be written as:

∆xt =
m∑
j=1

A′
jXt−1(β)I(γj−1, γj , zt−1(β)) + ut, t = l + 1, . . . , n, (2.1)

where m is the number of regimes, I(γj−1, γj , zt−1(β)) =1{γj−1 ≤ zt−1(β) < γj},
Xt−1(β) = (1, zt−1(β), ∆x′t−1, . . . ,∆x′t−l+1)

′ with ∆xt−i, i = 1, . . . , l being the
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lagged first order difference terms, γ = (γ1, . . . , γm−1)
′ is the vector of m − 1

thresholds with −∞ = γ0 < γ1 < · · · < γm = ∞, and Aj is the coefficient in

the jth regime. Throughout this paper, (β0, γ0, λ0) indicates the true values of

parameters, zt = zt(β
0) and Xt = Xt(β

0).

To simplify the notation, (2.1) can be rewritten as:

y =
[(

X̃1(β, γ), . . . , X̃m(β, γ)
)
⊗ Ip

]
λ+ u, (2.2)

where X̃j(β, γ) is the matrix stacking X ′
t−1(β)I(γj−1, γj , zt−1(β)), j = 1, . . . ,m,

y and u are vectors that stack ∆xt and ut, respectively, λ = vec((A′
1, A

′
2, . . . ,

A′
m)′), and ⊗ denotes the Kronecker product of two matrices. The column in A′

j

associated with zt−1(β) is denoted by λz
j .

Let θ = (β′, γ′, λ′)′ and Θ be the compact parameter space. If u(θ) =

y −
[(

X̃1(β, γ), . . . , X̃m(β, γ)
)
⊗ Ip

]
λ and Sn(θ) = u′(θ)u(θ), then the LSE is

defined as θ̂ = argmin θ∈Θ Sn(θ).

Here Sn(θ) is not continuous with respect to γ, and θ̂ does not have a closed

form. Therefore, a grid search is necessary. Observing that once (β, γ) is fixed,

X̃j(β, γ) is observed and we denote it by X̃j , j = 1, . . . ,m, so that the λ̂ that

minimizes Sn(β, γ, λ) is simply the ordinary LSE:

λ̂(β, γ) =




X̃ ′
1X̃1 X̃ ′

1X̃2 . . . X̃ ′
1X̃m

X̃ ′
2X̃1 X̃ ′

2X̃2 . . . X̃ ′
2X̃m

...
...

. . .
...

X̃ ′
mX̃1 X̃

′
mX̃2 . . . X̃

′
mX̃m


−1

X̃ ′
1

X̃ ′
2
...

X̃ ′
m

⊗ Ip

 y. (2.3)

Hence, a grid search over (β, γ) is suggested, as follows, and λ̂ is then calculated

by (2.3).

1. For fixed (β, γ), calculate λ̂(β, γ) based on (2.3). Then plug β, γ and λ̂(β, γ)

into Sn(θ) and denote Sn(β, γ, λ̂(β, γ)) by Sc
n(β, γ).

2. For a fixed β, Sc
n(β, γ) takes at most (n− l)!/[(m− 1)!(n−m− l + 1)!] pos-

sible values with different γ, so we can find its minimum by enumeration and

denote it by Scc
n (β). Once β is fixed, zt(β), t = l, . . . , n − 1, are observed

and can be arranged in an increasing order z(1)(β), . . . , z(n−l)(β). As Sc
n(β, γ)

is a constant over the (m − 1)-dimensional cube [z(j1)(β), z(j1+1)(β)) × · · · ×
[z(jm−1)(β), z(jm−1+1)(β)) of γ = (γ1, γ2, . . . , γm−1)

′, it is sufficient to choose

γj from z(i)(β), i = 1, . . . , n − l and j = 1, . . . ,m − 1 in order to get all pos-

sible values of Sc
n(β, γ). If we further require at least one data point for each

regime, then γj < γj+1, for j = 1, . . . ,m − 1 . In this way, the number of

different values of Sc
n(β, γ) is (n− l)!/[(m− 1)!(n−m− l + 1)!].
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3. The minimizer of Scc
n (β) is obtained within the grids set over Rp−1. This

could be time consuming when p increases; to enhance the efficiency, β can

be searched around a preliminary estimate.

The preliminary estimate of β is always chosen to be Johansen’s MLE based

on a misspecified linear cointegration model. This estimate performs well in

such a grid search, as reported in Hansen and Seo (2002), Seo (2011), and the

simulation studies reported in Section 4.

Remark 1. When the sample size or the number of thresholds is large, the

grid search algorithm for estimating multiple threshold parameters in the co-

integrating systems carries a high computational burden. Two procedures that

potentially yield more computationally efficient solutions are the sequential test-

ing approach and the genetic algorithm. The sequential testing procedure applies

the test to a single threshold case in Hansen and Seo (2002), repeatedly so that

multiple thresholds can be detected one by one. Specifically, a single threshold

test is conducted for a given time series. If a threshold is found, then one pro-

ceeds by testing for the presence of an additional threshold in each regime, until

no threshold is detected in all the regimes. Since repeated testings are conducted,

bias can be introduced and further investigation is required to establish the con-

sistency of this procedure. Interestingly, the idea of the supremum F -type test

of Bai and Perron (1998) for sequential testing of structural-change could also be

considered to derive a modified test statistic, which accounts for the sequential

nature.

On the other hand, the genetic algorithm is a stochastic search heuristic that

mimics the process of natural selection. It seeks an approximate solution to min-

imizing Sn(θ) with respect to the θ. This procedure has shown some promises in

problems such as multiple change-point detection of piece-wise stationary time

series (Davis, Lee, and Rodriguez-Yam (2006)) and the multiple thresholds esti-

mation of threshold autoregressive models (Yau, Tang, and Lee (2015)). As such,

we expect the genetic algorithm to be useful in the current multiple thresholds

cointegration setting. This computational issue will be dealt with in a future

project.

2.2. Convergence rate

To establish consistency of θ̂, we need the following assumptions.

Assumption 1.

1.1. {ut} is an i.i.d. sequence of random vectors with Eut = 0, and Eutu
′
t = Σ

is positive definite.
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1.2. {△xt, zt} is a sequence of strictly stationary and strongly mixing random

vectors with mixing numbers αH ,H = 1, 2, . . . , that satisfy for some α0 > 1,

αH = o(H−(α0+1)/(α0−1)) as H → ∞, and for some ε > 0, E||XtX
′
t||

α0+ε <

∞ and E||Xt−1u
′
t||

α0+ε < ∞, where ||A|| = tr(A′A)1/2. Furthermore,

E△xt = 0, and the partial sum process, x[ns]/
√
n, s ∈ [0, 1], converges

weakly to a vector of Brownian motions B with a covariance matrix Ω,

that is the long-run covariance matrix of △xt and has rank p− 1 such that

(1, β0′)Ω = 0. In particular, assume that x2,[ns]/
√
n converges weakly to a

vector of Brownian motions B with a covariance matrix Ω, which is finite

and positive definite.

1.3. The parameter space Θ is compact with min1≤i<j≤m−1{|γi − γj |} and max

{|λz
1|, |λz

m|} bounded away from zero, where |λz
j | is the Euclidean norm of

the vector λz
j .

1.4. Let ut(ξ, γ, λ) be the error ut when zt−1(β) is replaced by zt−1 + ξ, where ξ

belongs to a compact set in R, and let S(ξ, γ, λ) = E(u′t(ξ, γ, λ) ut(ξ, γ, λ)).

Assume that 1/nΣtu
′
t(ξ, γ, λ) ut(ξ, γ, λ)

p→ S(ξ, γ, λ) uniformly in (ξ, γ, λ)

on any compact set and S(ξ, γ, λ) is continuous in all its arguments and is

uniquely minimized at (ξ, γ, λ) = (0, γ0, λ0).

Assumptions 1.1, 1.2 and 1.4 are the same as those in Seo (2011). They are

standard assumptions in time series and explanations are given in Seo (2011).

Assumption 1.3 is about the parameter space, especially on λz
j and γ. This

assumption excludes the possibility of a reduced model with less than m regimes

by requiring γj < γj+1, j = 1, 2, . . . ,m−2. Additionally, it requires the coefficient

of zt−1(β) be bounded away from zero in the outer regimes, which means that

zt−1(β) should be included in the error correction model in at least one of the

two outer regimes. This assumption simplifies the analysis of the consistency

of the LSE. For the LSE of a two-regime TVECM, Seo (2011) made a similar

assumption requiring (λz′
1 , λ

z′
2 ) to be bounded away from zero, which means, at

least one of the two regimes has zt−1(β) included in the error correction model.

With Assumptions 1, we can establish the consistency of θ̂. To obtain the

super-consistency of β̂ and γ̂, we need another assumption.

Assumption 2.

2.1. The probability distribution of {zt} has a density with respect to Lebesgue

measure that is continuous, bounded, and everywhere positive, and the den-

sity function f(zt|x2,t) is bounded by K > 0 for almost every x2,t, t =

1, 2, . . . , n.

2.2. There exist nonrandom vectors W ∗
j = (1, wj,1, wj,2, . . . , wjl)

′ with wj,1 = γ0j ,

such that (A0
j −A0

j+1)
′W ∗

j ̸= 0p, ∀ j = 1, 2, . . . ,m− 1.
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Assumption 2 is common in estimation of threshold model, as used in Chan

(1993), Gonzalo and Wolf (2005), and Li and Ling (2012). Assumption 2.1 is for

identification of thresholds, as used in Seo (2011). Assumption 2.2 implies that

the regression model is discontinuous at each threshold point. These assumptions

imply that with positive probability, X ′
t−1(A

0
j −A0

j+1)(A
0
j −A0

j+1)
′Xt−1 is bigger

than a positive constant. It is found from the proof of convergence rates of γ̂ and

β̂ that the discontinuity of the regression model at threshold γ0j is crucial for the

super consistency of γ̂j , j = 1, . . . ,m− 1.

Theorem 1. Under Assumptions 1 and 2, n3/2(β̂ − β0) is Op(1), n(γ̂ − γ0) is

Op(1) and

√
n(λ̂∗ − λ0)

d
=⇒ N

0,

E


I1 0 · · · 0

0 I2 · · · 0
...

...
. . .

...

0 0 · · · Im

⊗Xt−1X
′
t−1



−1

⊗ Σ

 ,

where Ij = 1{γ0j−1 ≤ zt−1(β
0) < γ0j } and

d
=⇒ stands for convergence in distribu-

tion.

For a multiple-regime TAR model that does not involve cointegration, Li and

Ling (2012) found that the LSE of threshold converges at rate n and the LSE

of the slope parameter is asymptotically normal. Gonzalo and Pitarakis (2002)

considered estimating the multiple thresholds of a multiple-regime TAR model in

a sequential way and established the n−convergence rate of the sequential esti-

mates. Theorem 1 shows that for the multiple-regime TVECM, the convergence

rate of the LSE of thresholds is still n, although the model is much more com-

plicated under the presence of cointegration. As pointed out by Seo (2011), the

n3/2 convergence rate is surprising, but reasonable; since the estimated threshold

variable zt−1(β̂) = zt−1+(x′2,t−1/
√
n)
√
n(β̂−β0) and sup1≤t≤n |xt−1| = Op(n

1/2),

it is expected that γ̂ and
√
nβ̂ should converge at the same rate.

The limiting distribution of (β̂′, γ̂′) is difficult to establish because the ob-

jective function of LSE is highly irregular: the threshold variable zt(β) needs to

be estimated and its estimate is nonstationary if β̂ does not equal β0. Besides,

the objective function is discontinuous with respect to the cointegrating vector

and the thresholds. The nonstationarity is an intrinsic difficulty, but the discon-

tinuity can be removed with some smoothing techniques, in which case we can

apply a Taylor expansion to derive the limiting distribution of the estimator.
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3. Limiting Distribution of Smoothed LSE

3.1. Limiting distribution

The smoothed LSE (SLSE) was first proposed by Seo and Linton (2007), and

subsequently used for the one threshold cointegration (Seo (2011)). The key point

of SLSE is to approximate the indicator function 1{zt−1(β) > γ1} by a smooth

function Kt−1,h(β, γ1) = K((zt−1(β)− γ1)/h), where h = h(n) is the bandwidth

that approaches 0 when n → ∞ and limn→∞Kt−1,h(β, γ1) = 1{zt−1(β) > γ1}.
Herein K is a smooth and bounded function satisfying lims→−∞K(s) = 0 and

lims→+∞K(s) = 1.

To extend the SLSE to multiple-threshold cointegration, we propose to ap-

proximate the indicator function 1{γj−1 ≤ zt−1(β) < γj} by Kt−1,h(β, γj−1, γj)

= K((zt−1(β)−γj−1)/h)+K((γj − zt−1(β))/h)−1. It is immediate that limn→∞
Kt−1,h (β, γj−1, γj) = 1{γj−1 ≤ zt−1(β) < γj}. In this way, Model (2.2) is

smoothed to

y = [(X∗
1 (β, γ), X

∗
2 (β, γ), . . . , X

∗
m(β, γ))⊗ Ip]λ+ u∗, (3.1)

where X∗
j (β, γ) is the matrix stacking X ′

t−1(β)Kt−1,h(β, γj−1, γj) and the rest are

defined in the same way as at (2.2).

Let u∗(θ)=y−[(X∗
1 (β, γ), X

∗
2 (β, γ), . . . , X

∗
m(β, γ))⊗ Ip]λ, and S∗

n(θ)= u∗′(θ)

u∗(θ). Since S∗
n(θ) converges in probability to the limit of Sn(θ) as n → ∞, their

minimizers will be close to each other. Hence, we define the SLSE of Model (2.2)

as the LSE of Model (3.1): θ̂∗ = argmin θ∈Θ S∗
n(θ). We first study consistency of

θ̂∗, which requires an assumption.

Assumption 3.

3.1. K is twice differentiable everywhere, K(1) is symmetric around zero, and

K(1) and K(2) are uniformly bounded and uniformly continuous, where g(i)

indicates the ith derivative of g. Further,
∫
|K(1)(s)|4ds,

∫
|s2K(1)(s)|ds,∫

|K(2)(s)|2ds, and
∫
|s2K(2)(s)|ds are finite.

3.2. K(s) − K(0) has the same sign as s, and for some integer ν ≥ 2 and

each integer i (1 ≤ i ≤ ν),
∫
|siK(1)(s)|ds < ∞,

∫
si−1sgn(s)K(1)(s)ds =

0 , and
∫
sν−1sgn(s)K(1)(s)ds ̸= 0.

3.3. For some ϵ > 0,

lim
n→∞

hi−ν

∫
|hs|>ϵ

|siK(1)(s)|ds = 0 and lim
n→∞

h−1

∫
|hs|>ϵ

|siK(2)(s)|ds = 0.

3.4. h is a function of n and satisfies that for some sequence q ≥ 1, nh3 → 0,

log(nq)(n1−6/rh2q−2)−1 → 0, and h−9k/2−3n(9k/2+2)/r+ϵαq → 0, where k is

the dimension of θ and r > 4 is specified in Assumption 4.
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Assumption 3 is imposed in Seo and Linton (2007) for the consistency of

SLSE of a two-regime threshold regression model and is common in the smoothed

estimation method, see Horowitz (1992). When we extend the SLSE to the

multiple-threshold regression model, we need to deal with the interaction of ad-

jacent regimes like X ′
t−1(β)Kt−1,h(β, γj−1, γj)Xt−1(β)Kt−1,h(β, γj , γj+1). It turns

out that under Assumption 3, those interaction terms are negligible when estab-

lishing consistency of SLSE. One example of K is constructed based on normal

distribution and h can be chosen to be n−1/2log(n) ∗ C, where C is a constant.

Further details can be found in Section 4.

Theorem 2. Under Assumptions 1 and 3, θ̂∗ − θ0 is op(1), and
√
n(β̂∗ − β0) is

op(1).

With K satisfying Assumptios 3, the argument in proof of Lemma 5 in Ap-

pendix holds if we replace the indicator function by K. Therefore, Theorem

2 can be proved. Since the objective function of the SLSE is smooth, we can

apply aTaylor expansion to derive the limiting distribution, which requires an

additional assumption.

Assumption 4.

4.1. E||Xtu
′
t||

r < ∞, E||XtX
′
t||

r < ∞, for some r > 4.

4.2. {(△x′t, zt)
′} is a sequence of strictly stationary and strongly mixing random

vectors with mixing coefficients αH ,H = 1, 2, . . . , satisfying for positive C

and η, αH ≤ CH−(2r−2)/(r−2)−η as H → ∞.

4.3. Let ∆t,t−l+1 = (∆xt,∆xt−1, . . . ,∆xt−l+1) and f(zt|∆t,t−l+1) be the condi-

tional density function. For some integer ν ≥ 2 and each integer i such that

1 ≤ i ≤ ν−1, for all z in a neighborhood of threshold γ0j , j = 1, . . . ,m−1, for

almost every ∆t,t−l+1 = ∆ and some K < ∞, f (i)(z|∆) exists and is a con-

tinuous function of z satisfying |f (i)(z|∆)| < K. In addition, f(z|∆) < K

for all z and almost every ∆.

4.4. The conditional joint density f(zt, zt−H |∆t,t−l+1,∆t−H,t−l−H+1) < K, for

all (zt, zt−H) and almost every (∆t,t−l+1,∆t−H,t−l−H+1).

4.5. θ0 is an interior point of Θ.

Assumption 4 is analogous to assumptions imposed in Seo and Linton (2007),

Seo (2011), and Horowitz (1992). These assumptions are common in standard

smooth estimation methods, and are interpreted in Seo (2011).
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Theorem 3. Under Assumptions 1, 2, 3, and 4,(
nh−1/2(β̂∗ − β0)√
nh−1(γ̂∗ − γ0)

)

d
=⇒


σ2
q

∫ 1
0 BB′ σ2

q1

∫ 1
0 B σ2

q2

∫ 1
0 B . . . σ2

qm−1

∫ 1
0 B

σ2
q1

∫ 1
0 B′ σ2

q1 0 . . . 0

σ2
q2

∫ 1
0 B′ 0 σ2

q2 . . . 0
...

...
...

. . .
...

σ2
qm−1

∫ 1
0 B′ 0 0 . . . σ2

qm−1



−1
−
∫ 1
0 Bd

∑m−1
j=1 σvjWj

σv1W1(1)

σv2W2(1)
...

σvm−1Wm−1(1)

,

√
n(λ̂∗ − λ0)

d
=⇒ N

0,

E


I1 0 · · · 0

0 I2 · · · 0
...

...
. . .

...

0 0 · · · Im

⊗Xt−1X
′
t−1



−1

⊗ Σ

 ,

and

(
nh−1/2(β̂∗ − β0)√
nh−1(γ̂∗ − γ0)

)
and

√
n(λ̂∗ − λ0) are asymptotically independent.

Notations of Theorem 3 are given below. In view of Jensen’s inequality,∫ 1
0 BB′ −

∫ 1
0 B

∫ 1
0 B′ is positive definite with probability 1. It follows that the

inverse matrix appearing in the joint limiting distribution of β̂∗ and γ̂∗ exists

with probability 1. The normal distribution to which
√
n(λ̂∗ − λ0) converges is

the same as that of
√
n(λ̂−λ0). Both are the same as when β0 and γ0 are known.

1. B is the vector of Brownian motions defined in Assumption 1.1, and W1, . . . ,

Wm−1 are mutually independent standard Brownian motions that are inde-

pendent of B.
∫ 1
0 BB′ stands for

∫ 1
0 B(t)B′(t)dt.

2. Ij are the same as defined in Theorem 1.

3. K̃1(s) = K(1)(s)(1{s > 0}−K(s)). For j=1, . . . ,m−1, σ2
vj = E

[
Fj |zt−1 = γ0j

]
fZ(γ

0
j ), where Fj = ||K(1)||22(X ′

t−1(A
0
j − A0

j+1)ut)
2 + ||K̃1||22(X ′

t−1(A
0
j − A0

j+1)

(A0
j −A0

j+1)
′Xt−1)

2, with ||g||2 = (
∫∞
−∞ g(x)2dx)1/2.

4. For j = 1, . . . ,m−1, σ2
qj = K(1)(0)E[X ′

t−1(A
0
j−A0

j+1)(A
0
j−A0

j+1)
′Xt−1)|zt−1 =

γ0j ]fZ(γ
0
j ) and σ2

q =
∑m−1

j=1 σ2
qj .

By virtue of Theorem 3 and the definitions of σ2
qj , σ

2
q and σ2

vj , it is found that

the asymptotic variance of β̂∗ is determined by K, h, discontinuities of Model

(2.2) and densities of zt at the m − 1 thresholds. By simple calculations based
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on Theorem 3, the limiting distribution of β̂∗ is obtained as

nh−1/2(β̂∗−β0)
d

=⇒ 1

σ2
q

(∫ 1

0
BB′−

∫ 1

0
B

∫ 1

0
B′
)−1(m−1∑

j=1

σvj [Wj(1)
∫
B−

∫
BdWj ]

)
.

Theorem 3 shows that the SLSEs of the multiple thresholds are not asymp-

totically independent. The reason is that the convergence rate of β̂∗ is not fast

enough to make the estimation error negligible. The following Corollary states

that when β0 is known, the smoothed least squares estimators of the m − 1

thresholds are asymptotically independent. Therefore, making use of the LSE β̂

that converges faster than β̂∗, an alternative estimation method for the thresh-

olds can be developed. First, we obtain β̂, then plug it into the TVECM as if it

were true and estimate the thresholds by the SLSE, which is denoted as γ̂∗(β̂).

The following corollary shows that γ̂∗(β̂) has the same limiting distribution as if

β0 were known.

Corollary 1. Suppose that Assumptions 1, 2, 3 and 4 hold. Let γ̂∗(β) be the

smoothed LSE of γ when β is given. Then,
√
nh−1(γ̂∗(β̂) − γ0) has the same

asymptotic distribution as that of
√
nh−1(γ̂∗(β0) − γ0), and

√
nh−1(γ̂∗(β0) −

γ0)
d

=⇒ N(0, V ) with V = diag(σ2
v1/σ

4
q1 , . . . , σ

2
vm−1

/σ4
qm−1

), where σ2
vj and σ2

qj

are the same as in Theorem 3.

This corollary is useful for constructing confidence intervals for γ. Estimation

of the asymptotic variance of γ̂∗(β̂) is much easier than the case based on the

result given in Theorem 3, since the vector of Brownian motions B is not involved.

Further, estimates of the m−1 thresholds are asymptotically independent, hence

we can construct confidence intervals for each of them individually, as will be

discussed in Section 3.3. This corollary can be proved by similar arguments used

in Corollary 2 of Seo (2011).

3.2. Asymptotic variance

Given the asymptotic normality of the SLSE, we have to estimate the vari-

ances of the limiting distributions for inference. Since λ̂∗ is asymptotically inde-

pendent of (β̂∗, γ̂∗) , we can estimate its asymptotic variance first; this involves

the expectation of 1{γ0j−1 ≤ zt−1(β
0) < γ0j }, j = 1, . . . ,m−1. Since β̂∗ and γ̂∗ are

super-consistent, we can input them into the indicator function as if they were

the true values. Then λ̂∗ is the ordinary LSE and estimation of its asymptotic

variance is standard.

Inference for β and γ is more complicated. It involves estimating Ω, σ2
vj , and

σ2
qj , j = 1, 2, . . . ,m− 1, Ω being the variance matrix of the multiple-dimensional
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Brownian motions to which x2,[ns]/
√
n, s ∈ [0, 1] converges. Since ∆xt is a station-

ary p-dimensional time series, estimation of Ω is standard, see Andrews (1991).

The variances σ2
vj and σ2

qj that appear in joint limiting distribution of (β̂∗, γ̂∗) are

limits of certain elements of the score and Hessian matrix of S∗
n(θ). We estimate

them based on a Taylor expansion of S∗
n(θ).

With θ̂∗ = argmin θ∈Θ S∗
n(θ) and a Taylor expansion, we have:

√
n(DnQn(θ)|θ̃Dn)D

−1
n (θ̂∗ − θ0) = −

√
nDnTn(θ

0),

where θ̃ lies between θ0 and θ̂∗, Qn(θ) = ∂2S∗
n(θ)/2n∂θ∂θ

′, Tn = ∂S∗
n(θ)/2n∂θ,

and Dn = diag(
√

h/n1′p−1,
√
h1′m−1,1

′
kλ
), with kλ the length of λ and 1k the

vector of length k and all elements being 1.

Through the convergence of DnQn(θ)Dn in a neighborhood of θ0, we find

suitable quantities to estimate σ2
qj . From the proof of Theorem 3, we know that

DnQn(θ̂
∗)Dn

d⇒


σ2
q

∫ 1
0 B(s)B(s)′ds σ2

q1

∫ 1
0 B(s)ds · · · σ2

qm−1

∫ 1
0 B(s)ds 0

σ2
q1

∫ 1
0 B(s)′ds σ2

q1 · · · 0 0
...

...
. . .

...
...

σ2
qm−1

∫ 1
0 B(s)′ds 0 · · · σ2

qm−1
0

0 0 · · · 0 N

 ,

where N is the asymptotic covariance matrix of
√
n(λ̂∗ − λ0).

As a result, we propose to estimate σ2
qj by (σ̂∗

qj )
2=(DnQn(θ̂

∗)Dn)p−1+j,p−1+j ,

the (p− 1+ j)th diagonal element of DnQn(θ̂
∗)Dn, for j = 1, 2, . . . ,m− 1. Then

the proof of Theorem 3 ensures the consistency of σ2
qj .

From the proof of the convergence of
√
nDnTn(θ

0), we propose an estimation

method for σ2
vj . Since

√
nDnTn(θ

0) converges in distribution to(
−
∫
B′d

∑m−1
j=1 σvjWj , σv1W1(1), σv2W2(1), . . . , σvm−1Wm−1(1), 0

′
kλ

)′
,

σ2
vj is the asymptotic variance of

√
nh[∂S∗

n(θ
0)/2n∂γj ]. Let ϕ

γj
n,t = [∂u∗t

′(θ0)/∂γj ]

u∗t (θ
0), then it is shown in the proof of Theorem 3 that limn→∞

√
nE(

√
hϕ

γj
n,t) = 0

and

lim
n→∞

Var

(√
nh

∂S∗
n(θ

0)

2n∂γj

)
= lim

n→∞
Var

(√
hϕ

γj
n,t

)
.

As a result, we estimate σ2
vj by (σ̂∗

vj )
2 = (1/n)

∑n
t=1

(√
hϕ

γ̂j
∗

n,t

)2
, where ϕ

γ̂j
∗

n,t =

[∂u∗t
′(θ̂∗)/∂γj ]u

∗
t (θ̂

∗) = X ′
t−1(β̂

∗)(Â∗
j+1−Â∗

j ){[K(1)((γ̂∗j − zt−1(β̂
∗))/h)]/h}û∗t (θ̂∗).

The consistency of (σ̂∗
vj )

2 can be proved by an argument similar to that

of the proof of Theorem 4 of Seo and Linton (2007). With (σ̂∗
vj )

2, (σ̂∗
qj )

2, j =
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1, 2, . . . ,m− 1, and B being simulated based on estimates of Ω, we can estimate

the variance of the joint limiting distribution of (β̂∗, γ̂∗) and construct confidence

intervals for β and γ jointly.

If we are only interested in inference for γ, its confidence intervals can be

constructed by the alternative estimation method based on Corollary 1. We esti-

mate β̂ by the LSE and plug it into the TVECM as if it were the true value, then

the SLSE of the multiple thresholds converge to independent normal variables.

By Corollary 1, this two-step estimator γ̂∗(β̂) has an asymptotic variance matrix

that does not involve B. Therefore, we only need to estimate σ2
vj and σ2

qj with

aforementioned methods, without worrying about Ω.

4. Simulation and Empirical Studies

4.1. Simulation study

We focused on the LSE and the SLSE of multiple-threshold cointegration,

especially estimates of the cointegrating vector and thresholds, and assessd their

performance through a simulation study.

The model was

∆xt =

(
−1

0

)
zt−1 +

(
0

0.3

)
zt−11{zt−1 > γ02}

+

(
0

0.8

)
zt−11{zt−1 < γ01}+ ut, (4.1)

where zt−1 = x1,t−1 + β0x2,t−1, β
0 = −2, γ01 < γ02 , ut ∼ i.i.d N(0, I2) for t =

l + 1, . . . n, and ∆x0 = u0.

This model is a simple extension of the two-regime TVECM of Hansen and

Seo (2002) and Seo (2011). We estimated (4.1) based on a three-regime TVECM

that contains ∆xt−1 and ∆xt−2, although the true model contains no lagged

terms of ∆xt. This should be reasonable since we are only interested in estimators

of the cointegrating vector and thresholds.

We considered two cases: experiments with sample sizes n = 100 and n = 250

were performed for case I, γ = (−1, 1) and one experiment with a sample size

n = 250 was performed for case II, γ = (−3, 3). Each experiment had 800

simulation replications. For the SLSE, we followed Seo’s (2011) suggestion and

chose K = Φ(s)+sϕ(s) and h = σ̂∗n−1/2logn, where Φ and ϕ are, respectively, the

cumulative distribution function and the probability density function of N(0, 1),

and σ̂∗ is the sample standard deviation of zt(β̂
∗).

As discussed in Section 3, the LSE and the SLSE are to be searched over

grids in R3 for (4.1), which is time consuming. To reduce computing time, we

constructed grids in two steps.
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Table 1. Comparison of estimation for different n, case I.

mean sd MAE in log
n = 100

β̂ − β0 2.34e-05 0.0026 -6.2415
γ̂1 − γ0

1 0.4162 1.409 0.1381
γ̂2 − γ0

2 0.2049 1.777 0.3913

β̂∗ − β0 5.19e-05 0.0029 -6.1557
γ̂∗
1 − γ0

1 0.4571 1.474 0.1779
γ̂∗
2 − γ0

2 0.2095 1.838 0.4253
n = 250

β̂ − β0 7.8611e-06 0.00054 -7.7729
γ̂1 − γ0

1 0.1821 0.9852 -0.2869
γ̂2 − γ0

2 -0.0679 1.6558 0.3177

β̂∗ − β0 1.7008e-05 0.00058 -7.7381
γ̂∗
1 − γ0

1 0.1448 1.0029 -0.2587
γ̂∗
2 − γ0

2 -0.0525 1.6951 0.3334

1. Denote Johansen’s MLE by β̃. We used β̃ as a preliminary estimate and set

100 grids around it.

2. For each grid point of β, we calculated zt(β), t = 3, . . . , n−1 and determined

the interval (min{zt(β)},max{zt(β)}). For sample sizes n = 100 and n = 250,

we set 20 and 50 grids in the interval respectively.

Exact implementation of the grid search is described at the end of Section 2.1.

We present the estimation results of the LSE, SLSE, Johansen’s MLE, and

other estimators. γ̂∗r is the restricted SLSE when β0 is known and γ̂r is the

restricted LSE when β0 is known. The LSE and the SLSE are both joint esti-

mators that estimate all parameters simultaneously. We compare them with the

sequential estimators which estimate one threshold at a time. Define γ̂s and γ̂∗s
as the sequential LSE and sequential SLSE respectively, similarly we have β̂s and

β̂∗
s . The performance of different estimators are reported in Tables 1, 2 and 3,

in terms of mean, standard deviation (sd) of the biases and mean absolute error

(MAE) of the 800 replications.

Table 1 shows that for case I, γ = (−1, 1), the performances of the LSE and

the SLSE of β and γ are much improved when n increases, in terms of mean,

sd and MAE. In Table 2, results of the two estimators of β and γ are reported

for n = 250 and different γs. When the magnitude of thresholds increases, the

overall performances of γ̂ and γ̂∗ decline. One possible explanation to the decline

in performance is that when the magnitude of γ increases, most of the data falls

in the middle regime as a result of normal sample setting and the TVECM model

behaves more like a linear ECM. Therefore, only a small fraction of the data is
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Table 2. Comparison of estimation for different γs.

mean sd MAE in log
case I, n = 250, γ = c(−1, 1)

β̂ − β0 7.8611e-06 0.00054 -7.7729
γ̂1 − γ0

1 0.1821 0.9852 -0.2869
γ̂2 − γ0

2 -0.0679 1.6558 0.3177

β̂∗ − β0 1.7008e-05 0.00058 -7.7381
γ̂∗
1 − γ0

1 0.1448 1.0029 -0.2587
γ̂∗
2 − γ0

2 -0.0525 1.6951 0.3334
case II, n = 250, γ = c(−3, 3)

β̂ − β0 -3.0012e-02 0.2433 -3.4921
γ̂1 − γ0

1 0.1623 0.5483 -1.3868
γ̂2 − γ0

2 -0.6184 1.1678 -0.2426

β̂∗ − β0 -3.0029e-02 0.2433 -3.4920
γ̂∗
1 − γ0

1 0.1566 0.5421 -1.3881
γ̂∗
2 − γ0

2 -0.6757 1.2554 -0.1726

Table 3. Result of different estimators for case I, n=250.

mean sd MAE in log

β̃ − β0 2.1381e-05 0.00045 -7.9221

β̂ − β0 7.8611e-06 0.00054 -7.7729

β̂∗ − β0 1.7008e-05 0.00058 -7.7381

β̂s − β0 2.0909e-05 0.00053 -7.7798

β̂∗
s − β0 3.9289e-06 0.00052 -7.8185

LSE and SLSE
γ̂1 − γ0

1 1.8213e-01 0.9852 -0.2869
γ̂2 − γ0

2 -6.7928e-02 1.6557 0.3177
γ̂∗
1 − γ0

1 1.4489e-01 1.0028 -0.2587
γ̂∗
2 − γ0

2 -5.2532e-02 1.6951 0.3334
(sequential)LSE and SLSE

γ̂s,1 − γ0
1 4.8364e-02 0.971 -0.3241

γ̂s,2 − γ0
2 6.6848e-01 1.6701 0.3741

γ̂∗
s,1 − γ0

1 -4.5039e-02 0.9764 -0.3141
γ̂∗
s,2 − γ0

2 6.8553e-01 1.763 0.4305
(restricted) LSE and SLSE

γ̂r,1 − γ0
1 1.7321e-01 0.993 -0.2475

γ̂r,2 − γ0
2 -6.3433e-02 1.6141 0.2866

γ̂∗
r,1 − γ0

1 8.0666e-02 0.9798 -0.2910
γ̂∗
r,2 − γ0

2 -3.5652e-02 1.6840 0.3346

used to estimate the threshold parameter, leading to slower convergence of the

estimate.

Next we compare the performances of the proposed estimators with other
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estimators mentioned in this section, see Table 3. Five estimators of β are re-
ported: Johansen’s MLE, LSE, SLSE, sequential LSE, and sequential SLSE, all
of which estimate β very accurately. In terms of mean, Johansen’s MLE does not
perform as well as the other estimators, which are obtained from estimating the
correctly specified multiple-threshold cointegration model. The LSE outperforms
the SLSE, agreeing with the theoretical result that the LSE converges faster.

We also compare the performances of different estimators of thresholds γ.
The LSE γ̂ has slightly smaller MAE than the SLSE γ̂∗, supporting the theory of
faster convergence rate of γ̂. The joint estimators γ̂ and γ̂∗ show superiority over
the sequential estimators γ̂s and γ̂∗s , respectively, in terms of mean. Although
the sequential estimators can reduce computing time of grid search, their accu-
racies are not satisfactory; This was also reported by Lo and Zivot (2001). The
restricted estimators γ̂r and γ̂∗r outperform the unrestricted estimators γ̂ and γ̂∗,
respectively, which means knowledge of the true value of β helps to improve the
performance of estimators. However, the improvement from γ̂ to γ̂r is limited,
the reason of which may be the extremely fast convergence rate n3/2 of β̂.

The simulation study supports the theoretic results obtained in Sections 3
and shows the superiority of the LSE and the SLSE over sequential estimators.
With our choice of K and h, the SLSE performs almost as well as the LSE. The
SLSE is recommended because of its asymptotic normality.

4.2. Term structure of interest rates

In economics and finance, yields of different maturities appear to move
together. This observation inspired many theories and empirical studies; the
present value model of stock prices, expectation theory of interest rates, market
segmentation theory, and preferred habitat theory. These studies are based on
the hypothesis that interest rates of a security with different maturities should
not deviate too much from each other.

Let rt and Rt be the interest rates of a one-period and multi-period bonds,
respectively. Campbell and Shiller (1987) suggested that the term structure of
interest rates implies a linear cointegration relationship between rt and Rt with
cointegrating vector (1,−1).

The development of threshold cointegration led to many empirical studies
that considered threshold cointegration through a TVECM. For detailed discus-
sions, see Hansen and Seo (2002), and Enders and Granger (1998). Hansen and
Seo (2002) considered using a two-regime TVECM to describe the dynamics of
the long-term and short-term interest rates as,

(
∆Rt

∆rt

)
=


µ1 + ρ1zt−1(β) + Γ1

(
∆Rt−1

∆rt−1

)
+ ut, zt−1 ≤ γ,

µ2 + ρ2zt−1(β) + Γ2

(
∆Rt−1

∆rt−1

)
+ ut, zt−1 > γ.

(4.2)
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Herein zt(β) = Rt−βrt, µj is an intercept and ρj ,Γj are slope parameters in the

j−th regime, j = 1, 2.

The two regimes stand for different situations: the long-term interest rate Rt

is relatively low or high compared to the short-term interest rate rt. Although

Rt ≥ rt is typical, Rt < rt was occurred in history. For example, in November

2004, the yield curve for UK Government bonds was partially inverted. The yield

for the ten-year bond was 4.68%, but was only 4.45% for the thirty-year bond.

We now take one step further to consider a three-regime TVECM. Data are

from the monthly interest rate series of the United States studied in McCulloch

and Kwon (1993). This data was used widely by many authors including Camp-

bell (1995), who investigated interest rates of different maturities ranging from

one month to 120 months, in the period 1952-1991, and found many pairs of

them to be cointegrated. Hansen and Seo (2002) examined the same pairs of

interest rates in this period and found some pairs to be threshold cointegrated.

We chose the same pair of the twelve-month and 120-month bonds as Hansen

and Seo (2002), who modeled them by a two-regime TVECM with one lagged

terms of ∆Rt and ∆rt. They estimated the model by the MLE as

∆Rt =

{
0.54 + 0.34zt−1 + 0.35∆Rt−1 − 0.17∆rt−1 + u1,t, if zt−1 ≤ −0.63,

0.01− 0.02zt−1 − 0.08∆Rt−1 + 0.09∆rt−1 + u1,t, if zt−1 > −0.63,

∆rt =

{
1.45 + 1.41zt−1 + 0.92∆Rt−1 − 0.04∆rt−1 + u2,t, if zt−1 ≤ −0.63,

−0.04 + 0.04zt−1 − 0.07∆Rt−1 + 0.23∆rt−1 + u2,t, if zt−1 > −0.63,

where zt−1 = Rt−1 − β̂rt−1 with β̂ = 0.984. The estimated cointegrating vector

(1,−0.984) is very close to Campbell and Shiller’s (1987) theory: (1,−1). The

two regimes determined by the threshold estimate −0.63 contained 8% and 92%

of the data and are defined as extreme regime and typical regime, respectively.

We model the data by a three-regime TVECM with one lagged term of ∆Rt

and ∆rt, as an analog of (4.2). The model is estimated by the two proposed

estimators. By the LSE, the model was estimated as

∆Rt=


0.543+0.344zt−1+0.351∆Rt−1−0.176∆rt−1+u1,t, if zt−1≤−0.62,

0.005−0.019zt−1−0.046∆Rt−1+0.090∆rt−1+u1,t, if 1.58≥zt−1>−0.62,
0.891−0.439zt−1−0.097∆Rt−1+0.044∆rt−1+u1,t, if zt−1>1.58,

∆rt=


1.467+1.391zt−1+0.750∆Rt−1−0.142∆rt−1+u2,t, if zt−1≤−0.62,

−0.023+0.009zt−1−0.120∆Rt−1+0.195∆rt−1+u2,t, if 1.58≥zt−1>−0.62,
0.794−0.350zt−1+0.162∆Rt−1+0.032∆rt−1+u2,t, if zt−1>1.58.

For the SLSE, K and h were determined as in the simulation study. The
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model was estimated as

∆Rt=


0.575+0.340zt−1+0.174∆Rt−1−0.147∆rt−1+u1,t, if zt−1≤−0.84,

0.025−0.051zt−1−0.050∆Rt−1−0.091∆rt−1+u1,t, if 1.57≥zt−1>−0.84,

0.840−0.418zt−1−0.085∆Rt−1+0.002∆rt−1+u1,t, if zt−1>1.57,

∆rt=


1.748+1.572zt−1+0.484∆Rt−1+0.081∆rt−1+u2,t, if zt−1≤−0.84,

0.002−0.031zt−1+0.324∆Rt−1+0.210∆rt−1+u2,t, if 1.57≥zt−1>−0.84,

0.757−0.325zt−1+0.041∆Rt−1−0.016∆rt−1+u2,t, if zt−1>1.57.

The two estimated cointegrating vectors are (1,-0.983) and (1,-0.981). Although

the estimators provide different estimates of thresholds, they both divide the

data into three regimes with similar groups of percentages, 8%, 72%, 20% for the

LSE and 5.4%, 73.15% and 21.45% for the SLSE.

We compare the three-regime TVECM models with the two-regime TVEM

model of Hansen and Seo (2002). It is obvious that they have almost the same

amount of data in the left regime, and the three-regime models further put the

remaining data into two regimes. Error-correction appears to occur only in the

two regimes that stand for abnormal situations. The short-rate equations have

larger error-correction effects when the spread is low and the long-rate equations

have larger error-correction effects when the spread is high.

In the two estimated three-regime TVECMs, the coefficients in the left

regime have larger absolute value than that in the right regime, indicating that

the system is more sensitive to low Rt than to high Rt. This observation re-

flects the market behavior: because the former phenomenon is more unusual and

unstable than the latter, the market adjusts more rapidly.

5. Conclusion

Existing asymptotic theories of estimation of threshold cointegration are lim-

ited to the one threshold case. We investigated the LSE and SLSE of multiple-

threshold cointegration, based on the multiple-regime TVECM representation.

The convergence rate of LSE was obtained and the limiting distribution of SLSE

was established. For the two proposed estimation methods, estimates of thresh-

olds and cointegration vector are super-consistent, while estimates of slope pa-

rameters are
√
n-consistent and asymptotically normal. The convergence rate of

SLSE is slower than that of LSE, as a cost of developing the limiting distribution.

Simulation study supports the theoretical result of the the convergence rate of

the two estimators.
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