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Abstract: This paper focuses on factor analysis of multivariate time series. We

propose statistical methods that enable analysts to leverage their prior knowledge or

substantive information to sharpen the estimation of common factors. Specifically,

we consider a doubly constrained factor model that enables analysts to specify

both row and column constraints of the data matrix to improve the estimation of

common factors. The row constraints may represent classifications of individual

subjects whereas the column constraints may show the categories of variables. We

derive both the maximum likelihood and least squares estimates of the proposed

doubly constrained factor model and use simulations to study the performance of

the analysis in finite samples. The Akaike information criterion is used for model

selection. Monthly U.S. housing start data from nine geographical divisions are

used to demonstrate the application of the proposed model.
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1. Introduction

Big data have become common in statistical applications. In many situ-

ations, it is natural to entertain the data as a 2-dimensional array with row

representing subjects and column denoting variables, for instance, large panel

data in the econometric literature and multivariate time series data in statistics.

For a specific example, consider the United States (U.S.) housing markets. The

U.S. Census Bureau publishes monthly housing starts from nine geographical di-

visions shown in Figure 1. We employ 10 years of the data from January 1997

to December 2006. Here the data matrix Z is a 120-by-9 matrix with each col-

umn representing a division and each row denoting a particular calendar month.

Figure 2 shows the time plots of the logarithms of monthly housing starts of the

nine divisions. From the plots, it is clear that U.S. housing starts have strong

seasonality, and that housing starts exhibit some common characteristics. It is

then natural to consider seasonality (row constraints) and geographical divisions

(column constraints) in searching for common factors driving the U.S. housing
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markets. The goal of this paper is to consider such constraints when we search

for common factors in a big data set.

Factor models are widely used in econometric and statistical applications,

and constrained factor models have also been studied in the literature. Bai and

Ng (2002), Bai (2003), Lam, Yao, and Bathia (2011), Lam and Yao (2012), and

Chang, Guo, and Yao (2013) represent multiple time series using a few common

factors defined in various ways. Forni et al. (2000, 2005) generalize the static

approximate factor model of Chamberlain and Rothschild (1983) to the general-

ized dynamic-factor model that allows for infinite dynamics and nonorthogonal

idiosyncratic components. Tsai and Tsay (2010) proposed constrained and par-

tially constrained factor models for multivariate time series analysis; they show

that column constraints can be used effectively to obtain parsimonious factor

models for high-dimensional series. Only column constraints are considered in

that paper, however, when both row and column constraints are informative

in some applications. We investigate doubly constrained factor models in this

paper. The theoretical framework of the proposed model is the constrained prin-

cipal component analysis of Takane and Hunter (2001), and our study focuses on

estimation and applications of the proposed model. Principal component analy-

sis was proposed originally for independent data, but it has been widely used in

the time series analysis, see, for instance, Peña and Box (1987) and Tiao, Tsay,

and Wang (1993).

Consider a T by N data matrix Z, rows and columns of which represent

subjects and variables, respectively. Let G be a T bym matrix of row constraints

of rank m, and H be an N by s matrix of column constraints of rank s. Both

G and H are known a priori based on some prior knowledge or substantive

information of the problem at hand. For instance, Tsai and Tsay (2010) use H

to represent the level, slope, and curvature of interest rates, and to denote the

industrial classification of U.S. stocks.

Let ω1 = [ω1(i, j)] (s by r), ω2 = [ω2(i, j)] (N by p), and ω3 = [ω3(i, j)] (s

by q) be the loading matrices of full rank, and E (T by N) a matrix of residuals,

where p < N , max{r, q} ≤ s < N , and q ≤ min{r, p}. The postulated doubly

constrained factor (DCF) model for Z = [Zi,j ] = [Z ′
1, · · · , Z ′

T ]
′ is

Z = F1ω
′
1H

′
+GF2ω

′
2 +GF3ω

′
3H

′
+E, (1.1)

where A′ denotes the transpose matrix of A, F1 = [F
(1)′

1 , . . . , F
(T )′

1 ]
′
(T by r),

F2 =[F
(1)′

2 , . . . , F
(m)′

2 ]
′
(m by p), F3 = [F

(1)′

3 , . . . , F
(m)′

3 ]
′
(m by q), and E =

[e′1, . . . , e
′
T ]

′
(T by N) with E(ei) = 0, and var(ei) = Ψ = [Ψ(j, k)]. We refer to

the model at (1.1) as a DCF model of order (r, p, q) with r, p, and q denoting the

number of common factors in F1,F2 and F3, respectively. For statistical factor

models, one further assumes that Ψ is a diagonal matrix. In the econometric
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and finance literature, Ψ is not necessarily diagonal and the model becomes an

approximate factor model.

For the DCF model at (1.1), the Fi are common factors. Under the model,

the first term pertains to what in Z can be explained by H but not by G, the

second term to what can be explained by G but not by H, the third term to

what can be explained jointly by both G and H, and the last term to what

can be explained by neither G nor H. Often the third term of (1.1) denotes

the interaction between the constraints G and H. Thus, F1,F2 and F3 can be

interpreted as column, row, and interaction factors, respectively. Similar to the

conventional factor models, the scales and orderings of the latent common factors

Fi are not identifiable.

The model studied in this paper is not an approximate factor model in the

sense of Chamberlain and Rothschild (1983) and Bai (2003). Our model is an

extension of the traditional orthogonal factor models in the sense that the cross-

section size N is fixed and finite, and E, the covariance matrix of the idiosyn-

cratic errors, is diagonal. The class of approximate factor models allows the

idiosyncratic components to be ’poorly’ correlated. An important property of

approximate factor models is that as N → ∞, if the factors are white noises and

orthogonal to the idiosyncratic terms, the common components of a factor model

with r factors can be recovered by the first r principal components of the covari-

ance matrix of the observations. In this sense, the main principal components

can approximate the common components when N is large. The simulations in

Section 3 deal with N = 6 and N = 24, and in the application in Section 4,

N = 9. The model studied in this paper also differs from the dynamic models in

Forni et al. (2000) because it does not allow the factors to be auto-correlated.

The paper is organized as follows. In Section 2 we consider estimation of the

proposed DCF model, including model selection and the common factors. We

use simulations in Section 3 to investigate the efficacy of the estimation methods

in finite samples. Section 4 applies the proposed analysis to the monthly U.S.

housing starts, and Section 5 concludes.

2. Estimation

The proposed doubly constrained factor model at (1.1) can be estimated

by least squares (LS) or maximum likelihood. In either case, we assume, for

simplicity, that the row constraint G satisfies

G′G =
T

m
Im, (2.1)

where Im is the m × m identity matrix. This is not a strong condition. For

example, if (i) G = Im ⊗ 1T/m, where 1T/m is the T/m-dimensional vector of 1,
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or if (ii) G = 1T/m ⊗ Im, then (2.1) holds. The U.S. housing starts data follow

(ii). The LS estimates are less efficient, but easier to obtain, we begin with them.

2.1. Least squares estimation

Consider the doubly constrained factor model in (1.1) subject to the follow-

ing.

Assumption A.

F ′
1F1 = TIr,F

′
2F2 = mIp,F

′
3F3 = mIq,G

′F1ω
′
1 = O, and F2ω

′
2H = O. (2.2)

The least squares estimates (LSE) of ω1, ω2, ω3, F1, F2, and F3 can be

obtained by minimizing the objective function

l(ω1,ω2,ω3,F1,F2,F3)

= tr{(Z−F1ω
′
1H

′−GF2ω
′
2−GF3ω

′
3H

′)(Z−F1ω
′
1H

′−GF2ω
′
2−GF3ω

′
3H

′)′}
= tr{ZZ ′ + F1ω

′
1H

′Hω1F
′
1 +GF2ω

′
2ω2F

′
2G

′ +GF3ω
′
3H

′Hω3F
′
3G

′

−2Z(Hω1F
′
1 + ω2F

′
2G

′ +Hω3F
′
3G

′)}, (2.3)

where the second equality follows from the zero constraints of Assumption A.

Taking the partial derivative of l(ω1,ω2,ω3,F1,F2,F3) with respect to ω1, ω2,

and ω3, respectively, and equating the results to zero, we obtain

ω̂1 = (H ′H)−1H ′Z ′F1(F
′
1F1)

−1, (2.4)

ω̂2 = Z ′GF2(F
′
2G

′GF2)
−1, (2.5)

ω̂3 = (H ′H)−1H ′Z ′GF3(F
′
3G

′GF3)
−1. (2.6)

Plugging ω̂1, ω̂2, and ω̂3 into (2.3), and using the fact that F ′
1F1 = TIr, F

′
2F2 =

mIp, F ′
3F3 = mIq, G′G = TIm/m, and tr(AB) = tr(BA), we obtain the

concentrated function

l(F1,F2,F3) = tr

{
ZZ ′ − 1

T
F ′
1ZH(H ′H)−1H ′Z ′F1

− 1

T
F ′
2G

′ZZ ′GF2 −
1

T
F ′
3G

′ZH(H ′H)−1H ′Z ′GF3

}
. (2.7)

The objective function (2.7) is minimized when the second, the third, and the last

term is maximized with respect to F1, F2, and F3, respectively. Applying Theo-

rem 6 of Magnus and Neudecker (1999) or Proposition A.4 of Lütkepohl (2005),

we have F̂1 = [g1
1, · · · ,g1

r ], where g
1
i is an eigenvector of the ith largest eigenvalue

λ1i of ZH(H′H)−1H′Z′. Similarly, F̂2 = [g2
1, · · · ,g2

p], where g2
i is an eigenvec-

tor of the ith largest eigenvalue λ2i of G′ZZ′G, and F̂3 = [g3
1, · · · ,g3

q ], where
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g3
i is an eigenvector of the ith largest eigenvalue λ3i of G′ZH(H ′H)−1H ′Z ′G.

Note that the eigenvectors are standardized so that F̂′
1F̂1 = T Ir, F̂

′
2F̂2 = mIp.

F̂′
3F̂3 = mIq. The corresponding estimate of ωi, i = 1, 2, 3, are computed

by (2.4), (2.5), and (2.6). Specifically, by the fact that F ′
1F1 = TIr, F

′
2F2 = mIp,

F ′
3F3 = mIq, and G′G = TIm/m, (2.4), (2.5), and (2.6) yield

ω̂1 =
1

T
(H ′H)−1H ′Z ′F̂1, (2.8)

ω̂2 =
1

T
Z ′GF̂2, (2.9)

ω̂3 =
1

T
(H ′H)−1H ′Z ′GF̂3. (2.10)

The Ψ matrix is estimated by Ψ̂ = Ê′Ê/T , where Ê = Z− F̂1ω̂
′
1H

′−GF̂2ω̂
′
2−

GF̂3ω̂
′
3H

′. It is understood that Ψ̂ = diag(Ê′Ê/T ) if Ψ is diagonal.

2.2. Maximum likelihood estimation

For maximum likelihood estimation, we assume that, for 1 ≤ t ≤ T , var(et)

= Ψ is a diagonal N by N matrix. We further assume that E(F
(k)
i ) = 0, and

var(F
(k)
i ) = I, the identity matrix, for 1 ≤ i ≤ 3, and all k. We also assume

cov(F
(k)
i , F

(l)
j ) = 0 for k ̸= l or i ̸= j, cov(ei, ej) = 0 for all i ̸= j, cov(F

(k)
i , ej)

= 0 for all i, j, and k, and ej is an N -dimensional Gaussian random vector with

mean zero and diagonal covariance matrix Ψ.

For the purpose of identifiability, we adopt the approach of Anderson (2003)

by imposing the restrictions that the matrices Γ1, Γ2, and Γ3 are all diagonal,

where

Γ1 = ω′
1H

′
Ψ−1Hω1, Γ2 = ω′

2Ψ
−1ω2, Γ3 = ω′

3H
′
Ψ−1Hω3. (2.11)

We also assume that the diagonal elements of Γ1, Γ2, and Γ3 are ordered and

distinct (γ111 > γ122 > · · · > γ1rr, γ
2
11 > γ222 > · · · > γ2pp, and γ311 > γ322 > · · · >

γ3qq), and that the first non-zero element in each column of the matrices ωi,

i = 1, 2, 3, is positive, so ω1, ω2 and ω3 are uniquely determined; see the online

supplementary material for a proof. It can readily be checked that the covariance

matrix of vec(Z ′) is Σ̃ = IT ⊗A +GG′ ⊗B, where A = Hω1ω
′
1H

′ +Ψ, and

B = ω2ω
′
2 +Hω3ω

′
3H

′. For the definitions of the matrix operators vec(·) and

⊗, see, for example, Schott (1997).

We divide the discussion of maximum likelihood estimation into subsections

to better understand the flexibility of the proposed model. Also, the existence of

row constraints requires an additional condition to simplify the estimation.
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2.2.1. Case 1: ω2 = ω3 = 0

Here the proposed model is

Z = F1ω
′
1H

′
+E, (2.12)

which is the column constrained factor model of Tsai and Tsay (2010). An

iterated procedure was proposed there to perform estimation.

2.2.2. Case 2: ω1 = ω3 = 0

With ω1 = ω3 = 0, the doubly constrained factor model is

Z = GF2ω
′
2 +E. (2.13)

Here the model can be estimated by an iterated procedure similar to that of Tsai

and Tsay (2010). Let Y = (G
′
G)−1G

′
Z, and CY = Y ′Y /m. The estimating

procedure is as follows:

1. Compute initial estimates of the diagonal matrix Ψ̂ = [Ψ̂(j, k)]. Following

Jöreskog (1975), set Ψ̂(i, i) = (1− r/(2N))/sii, i = 1, . . . , N , where sii is the

ith diagonal element of S−1 and S = Z′Z/(T − 1).

2. Construct the symmetric matrix RB = Ψ̂−1/2(CY −mΨ̂/T )Ψ̂−1/2 and per-

form a spectral decomposition on RB, say RB = LBWBLB
′, where WB =

diag(γ̂j) and γ̂1 > γ̂2 > · · · > γ̂N are the ordered eigenvalues of RB.

3. Let Γ̂B = WB and Γ̂2 = W2, where W2 is the left-upper r × r submatrix of

WB. Obtain ω̂2 from Ψ̂−1/2ω̂2 = L2, where L2 consists of the first r columns

of LB. The eigenvectors are normalized such that ω̂′
2Ψ̂

−1ω̂2 = Γ̂2. More

precisely, ω̂2 is a normalized version of ω̂∗
2 = Ψ̂1/2L2, where the normalization

is to ensure that ω̂′
2Ψ̂

−1ω̂2 = Γ̂2, a diagonal matrix.

4. Substitute ω̂2 obtained in Step 3 into the objective function

m

T
ln |Q̂|+ T −m

T
ln |Ψ̂|+ tr(CY Q̂

−1) + tr((C −CY )Ψ̂
−1), (2.14)

where Q̂ = T ω̂2ω̂
′
2/m + Ψ̂, and minimize (2.14) with respect to Ψ̂(1, 1), . . .,

Ψ̂(N,N). A numerical search routine must be used. The resulting values

Ψ̂(1, 1), . . . , Ψ̂(N,N) are employed at Steps 2 and 3 to create a new ω̂2. Steps

2, 3 and 4 are repeated until the differences between successive values of

ω̂2(i, j) in ω̂2 = [ω̂2(i, j)] and Ψ̂(i, i) are negligible.

2.2.3. Case 3. The full model

In this case, the log-likelihood function of vec(Z ′) is

log f(vec(Z ′)) = −TN
2

log(2π)− 1

2
log |Σ̃| − 1

2
{vec(Z ′)}′Σ̃−1vec(Z ′).
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Lemma 1. If G′G = (T/m)Im, then

(a) |Σ̃| = |Q|m|A|T−m, where Q = A+ (T/m)B,

(b) Σ̃−1 = IT ⊗A−1 +GG′ ⊗U , where U = (m/T )(Q−1 −A−1).

(c) {vec(Z ′)}′Σ̃−1vec(Z ′) = tr(ZA−1Z ′) + tr(ZUZ ′GG′).

Proof. See the online supplementary material for a proof.

Recall that Y = (G
′
G)−1G

′
Z, and CY = Y ′Y /m, and let C = Z

′
Z/T .

Using (2.1), Lemma 1 (a) and (c), the log likelihood function of ω1, ω2, ω3 and

Ψ given Z is

lnL(ω1,ω2,ω3,Ψ)

= −TN
2

ln(2π)− m

2
ln |Q| − T −m

2
ln |A| − T 2

2m
tr(CY U)− T

2
tr(CA−1)

= −TN
2

ln(2π)− m

2
ln |Q| − T −m

2
ln |A| − T

2
tr(CY Q

−1)

−T
2
tr[(C −CY )A

−1].

Thus the objective function can be written as

− 2 lnL(θ) = TN ln(2π) +m ln |Q|+ (T −m) ln |A|+ T tr(CY Q
−1)

+T tr[(C −CY )A
−1], (2.15)

where A = Hω1ω
′
1H

′ + Ψ, B = ω2ω
′
2 + Hω3ω

′
3H

′, Q = A + TB/m, and

we minimize (2.15) with respect of θ = (ω1,ω2,ω3,Ψ) to obtain the maximum

likelihood estimate θ̂.

2.2.4. Case 4. ω3 = 0

Here there is no interaction between the row and column constraints, and

the model is

Z = F1ω
′
1H

′
+GF2ω

′
2 +E. (2.16)

The associated objective function is

− 2 lnL(θ) = TN ln(2π) +m ln |Q|+ (T −m) ln |A|+ T tr(CY Q
−1)

+T tr((C −CY )A
−1), (2.17)

where θ = (ω1,ω2,Ψ), A = Hω1ω
′
1H

′ + Ψ, and Q = A + Tω2ω
′
2/m. We

minimize (2.17) to obtain the estimate θ̂.

2.2.5. Initial estimates for Cases 3 and 4

For Cases 1 and 2, the MLE are computed by iterated procedures. For Cases

3 and 4, no iterative procedure is available, and the MLE must be obtained by
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some numerical optimization method with certain initial estimates. We use the

LS estimates of Subsection 2.1 as the initial estimates.

2.3. Estimation of latent factors for maximum likelihood approach

Treating the ML estimates of ωi as given, we can estimate the latent factors

Fi by using the weighted least squares method. Specifically, given ω1, ω2, and

ω3, the weighted least squares estimates of F1, F2, and F3 can be obtained

by minimizing f(F1,F2,F3) = tr(EΨ−1E′) = tr((Z − F1ω
′
1H

′ − GF2ω
′
2 −

GF3ω
′
3H

′)Ψ−1(Z−F1ω
′
1H

′−GF2ω
′
2−GF3ω

′
3H

′)′). Taking the partial deriva-

tive of f(F1,F2,F3) with respect to F1, and equating the result to zero, we obtain

∂f

∂F1
=

∂

∂F1
tr(−2F1ω

′
1H

′Ψ−1(Z−GF2ω
′
2−GF3ω

′
3H

′)′+F1ω
′
1H

′Ψ−1Hω1F
′
1)

= −2(Z −GF2ω
′
2 −GF3ω

′
3H

′)Ψ−1Hω1 + 2F1ω
′
1H

′Ψ−1Hω1

= 0. (2.18)

The second equality follows from the fact that

∂

∂X
tr(AX) =A′,

∂

∂X
tr(XAX ′B) =BXA+B′XA′.

Equation (2.18) implies that

F1 = (Z −GF2ω
′
2 −GF3ω

′
3H

′)Ψ−1Hω1(ω
′
1H

′Ψ−1Hω1)
−1. (2.19)

Similarly,

∂f

∂F2
=

∂

∂F2
tr(−2GF2ω

′
2Ψ

−1(Z − F1ω
′
1H

′ −GF3ω
′
3H

′)′ +GF2ω
′
2Ψ

−1ω2F
′
2G

′)

= −2G′(Z − F1ω
′
1H

′ −GF3ω
′
3H

′)Ψ−1ω2 + 2G′GF2ω
′
2Ψ

−1ω2

= 0.

If G̃ = (G′G)−1G′ and Ḡ = G(G′G)−1G′, then

F2 = G̃(Z − F1ω
′
1H

′ −GF3ω
′
3H

′)Ψ−1ω2(ω
′
2Ψ

−1ω2)
−1. (2.20)

Thirdly,

∂F

∂F3
=

∂

∂F3
tr(−GF3ω

′
3H

′Ψ−1(Z − F1ω
′
1H

′ −GF2ω
′
2)

′

+GF3ω
′
3H

′Ψ−1Hω3F
′
3G

′)

= −2G′(Z − F1ω
′
1H

′ −GF2ω
′
2)Ψ

−1Hω3 + 2G′GF3ω
′
3H

′Ψ−1Hω3

= 0.
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Therefore,

F3 = G̃(Z − F1ω
′
1H

′ −GF2ω
′
2)Ψ

−1Hω3(ω
′
3H

′Ψ−1Hω3)
−1. (2.21)

Using (2.11) and letting Γ12=Γ′
21=ω′

1H
′Ψ−1ω2, Γ13=Γ′

31=ω′
1H

′Ψ−1Hω3,

Γ23 = Γ′
32 = ω′

2Ψ
−1Hω3, Γ01 = ZΨ−1Hω1, Γ02 = ZΨ−1ω2, and Γ03 =

ZΨ−1Hω3, (2.19), (2.20), and (2.21) become

F1 = (Γ01 −GF2Γ21 −GF3Γ31)Γ
−1
1 , (2.22)

F2 = (G̃Γ02 − G̃F1Γ12 − F3Γ32)Γ
−1
2 , (2.23)

F3 = (G̃Γ03 − G̃F1Γ13 − F2Γ23)Γ
−1
3 . (2.24)

Multiplying both sides of (2.24) by Γ3 we obtain

F3Γ3 = G̃Γ03 − G̃F1Γ13 − F2Γ23. (2.25)

Plugging (2.23) into (2.25) we have

F3Γ3 = G̃Γ03 − G̃F1Γ13 − (G̃Γ02 − G̃F1Γ12 − F3Γ32)Γ
−1
2 Γ23

= G̃{F1(Γ12Γ
−1
2 Γ23 − Γ13) + Γ03 − Γ02Γ

−1
2 Γ23}+ F3Γ32Γ

−1
2 Γ23.

Subtracting both sides by F3Γ32Γ
−1
2 Γ23, and post-multiplying by ∆32 = (Γ3 −

Γ32Γ
−1
2 Γ23)

−1 we obtain

F3 = G̃{F1(Γ12Γ
−1
2 Γ23 − Γ13) + Γ03 − Γ02Γ

−1
2 Γ23}∆32. (2.26)

Similarly, multiplying both sides of (2.23) by Γ2 we get

F2Γ2 = G̃Γ02 − G̃F1Γ12 − F3Γ32. (2.27)

Plugging (2.24) into (2.27) we have

F2Γ2 = G̃Γ02 − G̃F1Γ12 − (G̃Γ03 − G̃F1Γ13 − F2Γ23)Γ
−1
3 Γ32

= G̃{F1(Γ13Γ
−1
3 Γ32 − Γ12) + Γ02 − Γ03Γ

−1
3 Γ32}+ F2Γ23Γ

−1
3 Γ32.

Subtracting both sides by F2Γ23Γ
−1
3 Γ32, and post-multiplying by ∆23 = (Γ2 −

Γ23Γ
−1
3 Γ32)

−1 we obtain

F2 = G̃{F1(Γ13Γ
−1
3 Γ32 − Γ12) + Γ02 − Γ03Γ

−1
3 Γ32}∆23. (2.28)

Now, multiplying both sides of (2.22) by Γ1, we have

F1Γ1 = Γ01 −GF2Γ21 −GF3Γ31. (2.29)
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Plugging (2.26) and (2.28) into (2.29), we obtain

F1Γ1 = Γ01 − Ḡ{F1(Γ13Γ
−1
3 Γ32 − Γ12) + Γ02 − Γ03Γ

−1
3 Γ32}∆23Γ21

−Ḡ{F1(Γ12Γ
−1
2 Γ23 − Γ13) + Γ03 − Γ02Γ

−1
2 Γ23}∆32Γ31. (2.30)

Pre-multiplying both sides of (2.30) by G′, and noting that G′Ḡ = G′, we have

G′F1Γ1 =G′Γ01 −G′{F1(Γ13Γ
−1
3 Γ32 − Γ12) + Γ02 − Γ03Γ

−1
3 Γ32}∆23Γ21

−G′{F1(Γ12Γ
−1
2 Γ23 − Γ13) + Γ03 − Γ02Γ

−1
2 Γ23}∆32Γ31. (2.31)

One solution to (2.31) is

F1Γ1 = Γ01 − {F1(Γ13Γ
−1
3 Γ32 − Γ12) + Γ02 − Γ03Γ

−1
3 Γ32}∆23Γ21

−{F1(Γ12Γ
−1
2 Γ23 − Γ13) + Γ03 − Γ02Γ

−1
2 Γ23}∆32Γ31. (2.32)

From (2.32), we obtain

F1 =
{
Γ01 − (Γ02 − Γ03Γ

−1
3 Γ32)∆23Γ21 − (Γ03 − Γ02Γ

−1
2 Γ23)∆32Γ31

}{
Γ1 + (Γ13Γ

−1
3 Γ32 − Γ12)∆23Γ21 + (Γ12Γ

−1
2 Γ23 − Γ13)∆32Γ31

}−1
. (2.33)

We use (2.33) to compute F1 first, then use (2.28) to compute F2, and (2.26)

to compute F3.

2.4. Model selection

In applications, the data generating process is unknown and one needs to se-

lect a proper constrained factor model based on the available data. In particular,

the validity of row and/or column constraints should be verified. To this end, we

consider the Akaike information criterion (AIC) (Akaike (1974)) for each of the

fitted models,

AIC = −2 lnL(θ̂) + 2λ,

where λ is the number of parameters of the model, and θ̂ is the MLE. Our

simulation study and empirical example show that AIC works well in model

selection.

Tsai and Tsay (2010) used hypothesis testing to check the validity of column

constraints. The testing procedure is complicated for doubly constrained factor

models because it involves non-nested hypothesis testing. Thus, the model with

only column constraints is not a sub-model of the one with only row constraints.
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3. Simulation Study

In this section, we report some finite-sample performance of the MLE and the

AIC of Subsections 3.1 and 3.3, respectively. All computations were performed

using Fortran code with IMSL subroutines.

3.1. Finite sample properties of the MLE and the LSE

To evaluate the performance of the numerical optimization in finding the

MLE discussed in Subsection 2.2.3 for the full model (Case 3), we considered the

following data generating process.

MHG∩1: N = 24, r = 2, p = 2, q = 1, s = 3, m = 12, G = 1T/m ⊗ Im, where

1m denotes the m× 1 vector of ones, H = [h1,h2,h3], h1 = 124, h2 =

[−1(6),0(12),1(6)]′, h3 = [−1(6),0(3),2(6),0(3),−1(6)]′, and r(j) de-

notes a j-dimensional row-vector of integer r, ω1 = Ψ
1/2
0 Λ1diag(1.2, 0.6),

ω2 = Ψ1/2Λ2diag(0.6, 0.3), ω3 = 0.3Ψ
1/2
0 Λ3, vec(Λ1), vec(Λ2), and

vec(Λ3) are independent random vectors from N (0, I6), N (0, I48), and

N (0, I3), respectively, Ψ = diag(Ψ(j, j)), Ψ(j, j) = 0.1 + 0.2 × ui,

and ui are i.i.d. uniform on [0,1]. Adding 0.1 to the variance avoids

near-zero values (see also page 453 of Bai and Li (2012)), and Ψ0 =

diag(ψ0(j, j)), where {Ψ0(1, 1)}−1 =
∑N

j=1{Ψ(j, j)}−1, {Ψ0(2, 2)}−1 =∑6
j=1{Ψ(j, j)}−1+

∑24
j=19{Ψ(j, j)}−1, and {Ψ0(3, 3)}−1 = {Ψ0(2, 2)}−1

+4
∑15

j=10{Ψ(j, j)}−1.

We computed MLE by minimizing (2.15) using the optimizing subrou-

tine DNCONF from FORTRAN’s IMSL library. The least squares estimates of

Subsection 2.1 were used as the initial values of the subroutine DNCONF. We

took sample sizes T = 24, 36, 60, 120, 240, 480, and 960. To measure the accuracy

between ω̂i and ωi, for i = 1, 2, 3, we computed the smallest nonzero canonical

correlation between them. Canonical correlation is widely used as a measure of

goodness-of-fit in factor analysis; see, for example, Doz, Giannone, and Reichlin

(2006), Goyal, Perignon, and Villa (2008), and Bai and Li (2012). For the es-

timated variances of ei, we calculated the squared correlation between diag(Ψ̂)

and diag(Ψ). Table 1 reports the average canonical correlations based on 1,000

repetitions for each sample size T . For comparison purpose, we also report the

results for LSE in Table 1. From Table 1, both the MLEs and the LSEs show

convergence to their corresponding true values as the sample size increases. In

general, the MLE performs better than the LSE, except for T = 24.
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Table 1. Finite Sample Performance of the Maximum Likelihood Estimates
(MLE) and the Least Square Estimates (LSE).

MLE LSE
N T ω1 ω2 ω3 Ψ ω1 ω2 ω3 Ψ
24 24 0.6549 0.4055 0.5494 0.2293 0.7079 0.5399 0.5498 0.4636
24 36 0.8212 0.7646 0.6133 0.5362 0.7586 0.6458 0.5511 0.5640
24 60 0.8569 0.8626 0.6554 0.6661 0.8180 0.7549 0.5813 0.6745
24 120 0.8848 0.9238 0.7569 0.7996 0.8530 0.8332 0.5925 0.7837
24 240 0.9075 0.9601 0.8350 0.8925 0.8814 0.8644 0.6024 0.8508
24 480 0.9340 0.9762 0.8974 0.9440 0.9012 0.8782 0.6043 0.8866
24 960 0.9429 0.9834 0.9362 0.9706 0.9032 0.8854 0.6031 0.9069

3.2. Performance of AIC

To avoid the complications of non-nested hypothesis testing, we used AIC to

check the adequacy of the column and/or row constraints. In this subsection, we

consider the finite sample performance of the AIC in selecting the data generating

model among Cases 1−4 below. The data generating models considered were

MH1: ω2 = ω3 = 0, and ω1 is the same as that of model MHG∩1 (corre-

sponding to Case 1 of Subsection 2.2.1).

MG1: ω1 = ω3 = 0, and ω2 is the same as that of model MHG∩1 (corre-

sponding to Case 2 of Subsection 2.2.2).

MHG1: ω3 = 0, and ω1 and ω2 are the same as those of model MHG∩1 (cor-

responding to Case 4 of Subsection 2.2.4).

MHG∩1: N = 6, r = 2, p = 2, q = 1, s = 2, m = 12, G = 1T/m ⊗ Im, and

H = I2 ⊗ 13, ω1 = Ψ
1/2
0 Λ1diag(0.8, 0.6), ω2 = Ψ1/2Λ2diag(0.5, 0.3),

ω3 = 0.2Ψ
1/2
0 Λ3, Λ1 = [Λa,Λb], Λa = [1, 3]′, Λb = [3,−1]′, Λ2 =

[Λc,Λd], Λc = [2, 1, 2, 1, 2, 1]′, Λd = [1, 2, 1,−2,−1,−2]′, Λ1 = [4, 3]′,

Ψ = diag(0.2), and Ψ0 = diag(0.2) (corresponding to Case 3 of Sub-

section 2.2.3).

For singly constrained factor models (Cases 1 and 2), we implemented the es-

timation procedures described in Subsections 2.2.1 and 2.2.2, respectively. The

sample sizes employed were T = 480, 960, and 1,920. The experiment went as

follows. First, we generated data from the above data generating process. Then,

we estimated the parameters of a constrained factor model for orders (r, p, q)

that satisfy the conditions of Section 1, where 0 ≤ r, p, q ≤ 3. For example,

p < N , max{r, q} ≤ s < N , and q ≤ min{r, p}. For each simulated series, we

computed the AIC, and chose the order that corresponded to the smallest AIC.

The percentages of the orders determined by the AIC based on 1,000 repetitions
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Table 2. The frequencies of the order (r,p,q) selected by AIC The true model
considered are models MH1, MG1, MHG1, and MHG∩1.

true model MH1 MG1 MHG1 MHG∩1
true order (2,0,0) (0,2,0) (2,2,0) (2,2,1)
(r,p,q)\ T 480 960 1,920 480 960 1,920 480 960 1,920 480 960 1,920
(0,1,0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0,2,0) 0.000 0.000 0.000 0.877 0.880 0.882 0.000 0.000 0.000 0.000 0.000 0.000
(0,3,0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(1,0,0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(1,1,0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(1,1,1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(1,2,0) 0.000 0.000 0.000 0.116 0.108 0.108 0.000 0.000 0.000 0.000 0.000 0.000
(1,2,1) 0.000 0.000 0.000 0.004 0.008 0.005 0.000 0.000 0.000 0.000 0.000 0.000
(1,3,0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(1,3,1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(2,0,0) 0.964 0.967 0.968 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(2,1,0) 0.036 0.031 0.032 0.000 0.000 0.000 0.012 0.000 0.000 0.000 0.000 0.000
(2,1,1) 0.000 0.002 0.000 0.000 0.000 0.000 0.013 0.000 0.000 0.007 0.000 0.000
(2,2,0) 0.000 0.000 0.000 0.003 0.004 0.005 0.763 0.771 0.782 0.071 0.010 0.000
(2,2,1) 0.000 0.000 0.000 0.000 0.000 0.000 0.180 0.229 0.218 0.810 0.878 0.891
(2,2,2) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.005 0.007
(2,3,0) 0.000 0.000 0.000 0.000 0.000 0.000 0.032 0.000 0.000 0.099 0.098 0.092
(2,3,1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.009 0.010
(2,3,2) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

are reported in Table 2. The results show that the AIC works well in selecting a

proper doubly constrained factor model. The performance of AIC also improves

with the sample size.

3.3. A comparison with unconstrained factor model

To evaluate if there is, as postulated, an advantage in using prior knowledge

of the constraints in data analysis, we conducted the following experiment. The

data generating process was the Model of Table 5 of Section 4. First, we generated

T +km data points from the true model. For G = 1T/m⊗Im, let GT+im+j = Gj ,

for i = 0, . . . , k−1, and j = 1, . . . ,m, where Gj denotes the j-th row of the matrix

G. Second, used the first T data points to estimate the doubly constrained factor

model to get F̂i and ω̂i, i = 1, 2, 3. Third, for h = 1, . . . , km, we computed ẐT+h,

the prediction of ZT+h,

ẐT+h = F̂
(T+h)
1 ω̂′

1H
′ +GT+hF̂2ω̂

′
2 +GT+hF̂3ω̂

′
3H

′,

where F̂
(T+h)
1 =

∑T
j=1 F̂

(j)
1 /T , for h = 1, . . . , km. Fourth, we computed the

forecast errors êT+h = ZT+h−ẐT+h, h = 1, . . . , km. Fifth, we computed the root
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Table 3. Averages (standard errors) of 1,000 repetitions of the root mean
square errors of the forecasts of the DCF (doubly constrained factor) and
the UCF (unconstrained factor) models.

T 480 960 1,920
model DCF UCF DCF UCF DCF UCF
k = 1 0.9457 1.0007 0.9440 0.9936 0.9358 0.9930

(0.1243) (0.1087) (0.1190) (0.1066) (0.1218) (0.1065)
k = 2 0.9800 1.0005 0.9773 0.9960 0.9710 0.9922

(0.1092) (0.0874) (0.1018) (0.0863) (0.1025) (0.0882)

mean square error (RMSE) of the forecasts, namely RMSE=[tr(Ê′
predictÊpredict)

/kmN ]1/2, where Êpredict = [ê′T+1, · · · , ê′T+km]′. For the same data generated,

we repeated the above steps by fitting an unconstrained factor (UCF) model

Z = F1ω
′
1 to get the corresponding RMSE. We repeated the above exercise 1,000

times to get 1,000 RMSE’s for each model. For the DCF model, m = 12, k = 1, 2,

and r = p = q = 2 were used. For the UCF model, the results for r = 3 are

reported. The sample sizes used in the simulation were T = 480, 960, and 1,920.

The average and standard deviation of the 1,000 RMSE’s for these two models

are summarized in Table 3. The results show that the DCF model outperforms

the UCF model if the data generating process is indeed a DCF model. Note that

the forecasting results of UCF models are almost identical for r = 1, 2, and 3.

For r = 4 or r = 5, we often encountered some numerical difficulties. Therefore,

we report the results for the UCF model with r = 3.

4. Application

To demonstrate the application of our proposed model, we considered the

total housing starts of the United States, obtained from the U.S. Census Bureau

website. The data period is from January 1997 to December 2006, so that we

have 120 monthly data for the nine geographical divisions of the U.S. shown in

Figure 1. The LOESS regression was applied to the log transformed data before

fitting the doubly constrained factor model so as to remove the trend of the series.

To specify the constraint matrix H, prior experience or geographical clus-

tering can be helpful. In this instance, we applied hierarchical clustering to the

variables to specify H. The result was consistent with geographical clustering.

Therefore, we employed three groups for the variables (divisions), as follows.

Group 1: “New England”, “Middle Atlantic”, “East North Central”, “West North

Central”.

Group 2: “South Atlantic”, “East South Central”, “West South Central”.

Group 3: “Mountain”, “Pacific”.
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Figure 1. The census regions and divisions of the United States.

The H matrix consists of the indicator variables for the 3 groups. From Figure 1,

Group 1 consists of the Northeast and Midwest of the U.S., Group 2 denotes the

South, and Group 3 is the West.

The time plots in Figure 2 show that housing starts exhibit strong seasonality

of period 12. Therefore, we let G = 110 ⊗ I12. Consequently, we have m = 12,

T = 120, N = 9, and s = 3. We considered the DCF models of order (r, p, q)

with 0 ≤ r, p, q ≤ 3, and q ≤ min{r, p}. Therefore, a total of 30 models were

entertained. Table 4 shows the ranking of these DCF models based on the AIC

criterion, where the model of order (0,0,0) is an unrestricted model. Based on the

AIC criterion, the doubly constrained factor model of order (2,2,1) was selected

with the model of order (2,2,2) as a close second. Model checking showed that

the residuals of the fitted DCF model of order (2,2,1) had some minor serial

correlations, but those of the model of order (2,2,2) were close to being white

noises. Therefore, we adopted the DCF model of order (2,2,2).

Figure 3 shows the time plots of the residuals, Ê, of the DCF(2,2,2) model.

The left panel consists of the residuals of least square estimation, the right panel

those of the maximum likelihood estimates. The two sets of residuals show similar

patterns, but also certain differences. Their sample autocorrelation functions

confirm that the residuals have no significant serial dependence; see Figure 4.

Table 5 gives the maximum likelihood estimates and the bootstrap standard



1468 HENGHSIU TSAI, RUEY S. TSAY, EDWARD M. H. LIN AND CHING-WEI CHENG

Figure 2. Time plots of monthly housing starts (in logarithms) of nine U.S.
divisions: 1997-2006.

errors of the ωi for the selected model. The standard errors of ω2 tend to be

larger. The LSE of the ωi are given in Table 6. These estimates are different from

those of MLE of Table 5 because different normalizations are used. Figure 5 shows

the time plots of the fitted common factors. The upper three panels show the

common factors obtained by the least squares method whereas the lower three

panels give the corresponding results for the maximum likelihood estimation.

Care must be exercised in comparing fitted common factors because their scales

and orderings are not identifiable. For instance, consider the fitted common

factors F̂3. The orderings seem to be interchanged between the two estimation

methods. Overall, the common factors F̂1 of the maximum likelihood estimation

appear to have some seasonality. We return to this point later.

4.1. Discussion

To gain insight into the decomposition of the housing starts implied by the

fitted DCF model of order (2,2,2), we consider in detail the results of maximum

likelihood estimation. Figures 6 to 8 show the time plots of the decompositions of

the housing starts series. The plots in Figure 6 consist ofGF̂2ω̂
′
2 of Equation(1.1).
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Table 4. The rankings of AIC for the proposed constrained factor models.

Model AIC ranks Model AIC ranks
(r,p,q) (r,p,q)
(0,0,0) -163.331 24 (3,3,0) -366.857 10
(0,1,0) 114.146 30 (1,1,1) -329.666 17
(0,2,0) -18.905 28 (2,1,1) -339.405 15
(0,3,0) -28.427 27 (3,1,1) -333.443 16
(1,0,0) 89.389 29 (1,2,1) -374.615 4
(2,0,0) -68.600 25 (2,3,1) -373.696 6
(3,0,0) -65.067 26 (2,3,2) -367.696 9
(1,1,0) -254.315 23 (1,3,1) -363.954 11
(2,1,0) -267.479 21 (3,2,1) -375.021 3
(3,1,0) -261.680 22 (3,2,2) -374.513 5
(1,2,0) -321.989 20 (2,2,1) -383.749 1
(2,3,0) -372.528 7 (2,2,2) -380.342 2
(1,3,0) -363.340 12 (3,3,1) -367.881 8
(3,2,0) -323.400 19 (3,3,2) -361.881 13
(2,2,0) -329.321 18 (3,3,3) -355.881 14

Table 5. Maximum likelihood estimates of the doubly constrained factor
model of order (2,2,2) for the U.S. housing starts data from 1997 to 2006.

(a) MLE of ω̂1

ω1[, 1] 0.3051 0.4518 0.4015
(std. error) (0.0197) (0.0316) (0.0423)

ω1[, 2] 0.0844 -0.0729 -0.1945
(std. error) (0.0164) (0.0418) (0.0465)

(b) MLE of ω̂2

ω2[, 1] 0.1317 0.1713 0.3943 0.3437 0.1214 0.3529 0.1641 0.1125 0.1132
(std. error) (0.2490) (0.2277) (0.2685) (0.2540) (0.2265) (0.2741) (0.2568) (0.2280) (0.2086)

ω2[, 2] 0.2151 0.1183 0.0127 0.0123 -0.0846 -0.1398 -0.1906 -0.1661 -0.0347
(std. error) (0.1120) (0.0856) (0.0969) (0.0762) (0.1501) (0.1527) (0.1517) (0.1379) (0.1238)

(c) MLE of ω̂3

ω3[, 1] 0.8218 0.5770 0.7214
(std. error) (0.1860) (0.1891) (0.1605)

ω3[, 2] 0.1118 -0.3868 -0.1905
(std. error) (0.0465) (0.1316) (0.0906)

Since the row constraints used are monthly indicator variables, these plots signify

the deterministic seasonal pattern of each housing starts series that is orthogonal

to the geographical divisions. From the plots, the deterministic seasonality varies

from series to series, but those of the East North Central and West North Central

are similar. This seems reasonable as these two divisions are the Midwest and

share close weather characteristics. New England and Middle Atlantic divisions
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Table 6. Least squares estimates of the doubly constrained factor model of
order (2,2,2) for the U.S. housing data from 1997 to 2006.

LSE of ω̂1

ω1[, 1] 0.0620 0.0547 0.0652
ω1[, 2] 0.0292 0.0186 -0.0434

LSE of ω̂2

ω2[, 1] 0.0419 0.0435 -0.0424 -0.0342 0.0149 -0.0225 -0.0007 -0.0056 0.0061
ω2[, 2] 0.0236 -0.0242 0.0025 -0.0012 0.0011 -0.0018 0.0001 -0.0063 0.0063

LSE of ω̂3

ω3[, 1] 0.1840 0.0841 0.1097
ω3[, 2] 0.0403 -0.0497 -0.0295

(a) residuals for LSE (b) residuals for MLE

Figure 3. Time series plots for (a) the least squares residuals and (b) the
maximum likelihood residuals of the DCF model order (r, p, q) = (2, 2, 2).

have their own deterministic seasonal patterns. The Mountain and West South

Central also share similar deterministic seasonal pattern.
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(a) ACF for LSE (b) ACF for MLE

Figure 4. ACF for the residuals of DCF model with order (r, p, q) = (2, 2, 2).
Results of the least squares estimation and the maximum likelihood estima-
tion are shown.

The plots in Figure 7 consist of F̂1ω̂
′
1H

′ of Equation (1.1), which denotes

housing variations due to the geographical locations, but orthogonal to the deter-

ministic seasonality. The column constraints essentially pool information within

each group to obtain the geographical housing variations. The series in Figure 7

also contain certain seasonality and we believe that they describe the stochastic
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seasonality of the three geographical groups. These stochastic seasonalities differ

from group to group.

Figure 8 shows the interactions GF̂3ω̂
′
3H

′ between geographical grouping

and deterministic seasonality in Equation (1.1). The plots show marked differ-

ences between the three interactions. For this particular example, the proposed

DCF model is capable of describing the seasonal and geographical patterns of

U.S. housing starts. The example demonstrates that the row and column con-

straints can be used to gain insight into the common structure of a multivariate

time series.

5. Concluding Remarks

In this paper, we considered both the least squares and maximum likelihood

estimations of a doubly constrained factor model, and demonstrated the proposed

methods by analyzing nine U.S. monthly housing starts series. The decompo-

sition of the housing starts series shows that the proposed model is capable of

describing characteristics of the data. Much work of the constrained factor mod-

els, however, remains open. For instance, the maximum likelihood estimation is

obtained under the normality assumption. In applications, such an assumption

might not be valid and the innovations of Equation (1.1) may contain conditional

heteroscedasticity. In addition, we only consider deterministic constraints in the

paper. It is of interest to investigate the proposed analysis when the constraints

are stochastic. Finally, it is also important to study the DCF models when the

number of series N goes to infinity.

Supplementary Materials

The online Supplement file contains the proofs of the identifiability of ω1,

ω2, and ω3 of the proposed model, and Lemma 1.
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(a) F̂i for LSE

(b) F̂i for MLE

Figure 5. Time series plots of common factors for a DCF model of order
(r, p, q) = (2, 2, 2) via least squares estimation and maximum likelihood es-
timation.
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Figure 6. Time series plots forGF̂2ω̂
′
2 of a fitted DCF model of order (2,2,2).

Maximum likelihood estimation is used.
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Figure 7. Time series plots for F̂1ω̂
′
1H

′ of a fitted DCF model of order
(2,2,2). Maximum likelihood estimation is used.
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Figure 8. Time series plots for GF̂3ω̂
′
3H

′ of a fitted DCF model of order
(2,2,2). Maximum likelihood estimation is used.
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