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Supplementary Material

The supplementary material is organized as follows.

• Section S1 discusses the curious case of n = 1 in HDLSS contexts.

• Section S2 shows additional simulation results for Example 5.1 in the main paper. These

results provide empirical support for the theoretical convergence stated in Theorem 5.1.

• Section S3 defines the angle between a vector and a linear space which is introduced in

Section 5.1.1 of the paper.

• Section S4 presents the extensions of Theorems 5.1 and 5.2 under the growing sample size

context.

• Section S5 shows several extensions of Theorem 5.3 under the HDLSS setting.

• Section S6 presents the detailed proofs of the growing sample size asymptotic results.

Specifically, Section S6.1 presents the proof of sample eigenvalues’ properties in Theorem

5.2, Section S6.2 provides the proofs of Propositions S4.1 and S4.2, Section S6.3 shows

the proof of Theorem 4.2, and Section S6.4 provides the proofs of several Lemmas.

• Section S7 shows the detailed proofs of HDLSS results. Section S7.1 provides the proof of

Theorem 5.3, Sections S7.2-S7.5 include the proofs of Propositions S5.1-S5.4, Section S7.6

provides the proof of Theorem 4.1, and Section S7.7 includes the detailed proofs of needed

lemmas.

S1 The Curious Case of n = 1

Interesting context for HDLSS results comes from the observation that the mathematical results

hold for any sample size, including n = 1. Of course no statistician would think of attempting to

do meaningful inference with only one data point. Furthermore the contemplation of consistency

in such a context at first sounds absurd to most classically trained mathematical statisticians.

However the mathematics in Section 3 of the main paper still apply in this case. The reason is

that in the limit as d → ∞, because of the growing stretch of the spike distribution, the first

sample eigenvector (just the unit vector in the direction of the single data point) will tend to

lie increasingly in the direction of the first population eigenvector.

1



Dan Shen, Haipeng Shen, Hongtu Zhu, and J. S. Marron

This phenomenon as a demonstration that the spike assumption, in particular the α > 1

case in Section 3, is unrealistically strong for any practical setting, thus casting doubt on the

whether any practically useful insights can be gained from the mathematical results in Section

3. But while studying this issue two major points need to be kept in mind:

• There are real data situations where PCA reveals scientifically important structure in

data. Figure 1 shows just one example of this, but there are many other cases as well.

• The mathematics of (3.1) in Section 3 gives a clear dichotomy, which shows that in HDLSS

cases PCA will tend to either find important structure in data or else will find random

directions which will show pure noise as projections.

Taking both sides of the data analytic and mathematical components together, leads to the

conclusion that while the α > 1 spike may feel very strong, in fact it is a reasonable model for

many natural phenomena.

S2 Additional simulation results

As mentioned in Example 5.1 of the main paper, we carried out 100 simulation runs under

various settings with sample size n = 50, 100, 200, 500, 1000, 2000; d
n

= 50; and ratios c1 =

0.2, c2 = 0.4, c3 = 1, to study the convergence of the sample eigenvectors to the respective

cones around the corresponding population eigenvectors. The simulation results are plotted in

Figure A.

Each panel in the first column is for a particular sample size, and plots the estimated angles

between the sample eigenvectors and the corresponding population eigenvectors (as jittered

points), along with the corresponding kernel density estimates and the theoretical angles (in

vertical dash lines). Note that Panel (A) of Figure 3 in the main paper is for the case of

n = 200. The plots clearly show that, as sample size n increases from 50 to 2000, the kernel

density estimators are getting more and more concentrated around the corresponding theoretical

angles θj , j = 1, 2, 3, which validates the convergence results.

The panels in the right column depicts the randomness of the sample eigen-directions

within the cones, as in Panel (B) of Figure 3 for the case of n = 200. Within each panel, the

jittered points are the angles between a random pair of sample eigenvectors (that correspond to

the same population eigenvector), superimposed with the corresponding kernel density estimates

(colored accordingly). As sample size n increases, the pairwise angles are increasingly close to

90 degrees, which is consistent with the randomness in high dimensions that has been identified

in the literature.

S3 Angle between a vector and a linear space

This section rigorously defines the angle between a vector and a linear space, which was intro-

duced in Section 5.1.1 of the paper. Denote H to be an index set, e.g. H = {m + 1, · · · , d},
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Figure A: Additional simulation plots for Example 5.1 in the main paper. Panels from

top to bottom correspond to n = 50, 100, 200, 500, 1000, and 2000, respectively. In

particular, the panels in the third row correspond to Figure 3 in the main paper.

and S = span{uk, k ∈ H} to be the subspace generated by {uk, k ∈ H}, shown as the light gray

space in Figure B. For each sample eigenvector ûj , j ∈ H, define the projection vector onto the

subspace S as ûprojj =
∑
k∈H < ûj , uk > uk. Then, the angle between ûj and S is defined as

angle < ûj , S >= angle < ûj , û
proj
j >= cos−1

√∑
k∈H

< ûj , uk >2,

which is shown as θ in Figure B.
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uʌj

S= span{uj,  j   H}

Figure B: Angle between the sample eigenvector ûj and the space S. The dark gray

vector is the projection of the black vector ûj onto the space S.

S4 Extensions under the growing sample size asymp-

totic framework

In this section, we discuss the extensions of Theorems 5.1 and 5.2 under the growing sample

size asymptotic framework. Section S4.1 is about the extensions of Theorem 5.1. Section S4.2

shows the extensions of Theorem 5.2.

S4.1 Extensions of Theorem 5.1

This section presents two natural extensions of Theorem 5.1 that include random matrix (n
d
→ c,

as n→∞), and High Dimension Medium Sample Size (HDMSS, d� n→∞) cases.

The first extension of Theorem 5.1 includes the random matrix cases, by allowing cm0 = 0

for some m0 ≤ m, which suggests that positive information dominates in the leading m0 spikes.

Then Assumptions A1 and A2 respectively become

A3. as n, d→∞, the population eigenvalues satisfy

λ1 > · · · > λm0 � λm0+1 > · · · > λm � λm+1 → · · · → λd = 1.

A4. as n, d → ∞, d
nλj
→ cj for j = 1, · · · ,m, where 0 = c1 = · · · = cm0 < cm0+1 < · · · <

cm <∞.

For d � n, m0 = m = d in Assumptions A3 and A4. For random matrix cases with

n ∼ d, m0 = m in Assumptions A3 and A4. Since c1 = · · · = cm0 = 0 in Assumption A3,

if the eigenvalue index is less than or equal to m0, the corresponding sample eigenvalues and

eigenvectors are consistent. These results are summarized in the following Proposition S4.1(a).
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Another extension of Theorem 5.1 is to allow cm0+1 =∞ for some m0 ≤ m, i.e. negative

information dominates in higher-order spikes. This contains the HDMSS cases (Cabanski et al.,

2010; Yata and Aoshima, 2012; Aoshima and Yata, 2015), where d� n→∞. Assumption A1

then becomes Assumption A3, and Assumption A2 becomes

A5. as n, d → ∞, d
nλj
→ cj for j = 1, · · · ,m, where 0 < c1 < · · · < cm0 < cm0+1 = · · · =

cm =∞.

Since cm0+1 = · · · = cm = ∞, for index j ≥ m0 + 1, the proportional error between the

sample and population eigenvalues goes to infinity, and the angle between the corresponding

sample and population eigenvectors converges to 90 degrees. These results are summarized in

Proposition S4.1(b).

Proposition S4.1. (a) Under Assumptions 4.1, A3 and A4, the sample eigenvalues and

eigenvectors satisfy

λ̂j
λj

and |< ûj , uj >|
a.s−−→ 1, 1 ≤ j ≤ m0,

and the properties of the other sample eigenvalues and eigenvectors remain the same as

in Theorem 5.1.

(b) Let H = {m0 + 1, · · · , d} and define S as in (5.1). If Assumption A4 in (a) is replaced

by Assumption A5, the sample eigenvalues satisfy

nλ̂j
d

a.s−−→ 1, m0 + 1 ≤ j ≤ m,

and the sample eigenvectors satisfy |< ûj , uj >|= Oa.s

{
(
nλj

d
)
1
2

}
,

angle < ûj , S >
a.s−−→ 0,

m0 ≤ j ≤ [n ∧ d];

the properties of the other sample eigenvalues and eigenvectors remain the same as in

Theorem 5.1.

S4.2 Extensions of Theorem 5.2

In this section, we discuss two natural extensions of Theorem 5.2 that include d � n, random

matrix (n
d
→ c, as n→∞), and High Dimension Medium Sample Size (HDMSS, d� n→∞)

cases.

One way to extend Theorem 5.2 is to allow cr0 = 0 for some r0 ≤ r. Then, Assumptions

B2 and B3 of Section 5.1.2 (main paper), respectively, become

B4. as n, d→∞, the eigenvalues in different tiers have different limits:

δ1 > · · · > δr0 � δr0+1 > · · · > δr � λm+1 → · · · → λd = 1.
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B5. as n, d→∞, d
nδk
→ ck, for k = 1, · · · , r, where 0 = c1 = · · · = cr0 < cr0+1 · · · < cr <∞.

This scenario contains d � n and the random matrix cases. For d � n, r0 = r and m = d in

Assumptions B4 and B5. For random matrix cases with n ∼ d, r0 = r in Assumptions B4 and

B5. Since c1 = · · · = cr0 = 0, the sample eigenvalues and eigenvectors, whose subgroup index

is less than or equal to r0, are, respectively, consistent and subspace consistent. These results

are summarized in Proposition S4.2(a).

Another extension of Theorem 5.2 is obtained by allowing cr0+1 = ∞. Then Assumption

B2 becomes Assumption B4, and Assumption B3 becomes

B6. as n, d →∞, d
nδk
→ ck, for k = 1, · · · , r, where 0 < c1 < · · · < cr0 < cr0+1 = · · · = cr =

∞.

This scenario contains the HDMSS case. Since cr0+1 = · · · = cr = ∞, for eigenvalue index

k ≥ r0+1, the ratios between the sample and corresponding population eigenvalues go to infinity.

Furthermore, the corresponding angles between the sample eigenvectors and their population

counterparts converge to 90 degrees. These results are summarized in Proposition S4.2(b).

Proposition S4.2.

(a) Under Assumptions 4.1, B1, B4 and B5, the sample eigenvalues and eigenvectors satisfy

that

λ̂j
λj

and angle < ûj , Sk >
a.s−−→ 1, j ∈ Hk, k = 1, · · · , r0; (S4.1)

in addition, the properties of the rest sample eigenvalues and eigenvectors remain the

same as those in Theorem 5.2.

(b) Let H =
⋃r+1
k=r0+1Hk and define S as in (5.1). If Assumption B5 in (a) is replaced by

Assumption B6, the sample eigenvalues satisfy:

nλ̂j
d

a.s−−→ 1,

r0∑
k=1

qk + 1 ≤ j ≤ m; (S4.2)

the sample eigenvectors satisfy that |< ûj , uj >|= Oa.s

{
(
nλj

d
)
1
2

}
,

angle < ûj , S >
a.s−−→ 0,

r0∑
k=1

qk + 1 ≤ j ≤ [n ∧ d]; (S4.3)

in addition, the properties of the rest sample eigenvalues and eigenvectors remain the

same as those in Theorem 5.2.

Remark S4.1. If every tier only contains one eigenvalue, then r = m and Proposition S4.2

reduces to Proposition S4.1.
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S5 Extensions under the HDLSS asymptotic frame-

work

We discuss two extensions of Theorem 5.3 under the HDLSS contexts. In Scenario 1 , we

allow cm0 = 0 for some m0 ≤ m, and summarize the corresponding results in Propositions S5.1

and S5.2, which, respectively, correspond to Scenario (a) in Propositions S4.2 and S4.1 in the

growing sample size asymptotic contexts. For Scenario 2 , we allow cm0+1 =∞, and state the

corresponding results in Propositions S5.3 and S5.4, which similarly correspond to Scenario (b)

in Propositions S4.2 and S4.1.

S5.1 Scenario 1

This subsection studies the HDLSS asymptotic properties of PCA under the first scenario, where

the first m population eigenvalues are further partitioned into two groups, and the positive

information dominates in the first subgroup, e.g d
nλj
→ 0 for j ≤ m0. Then we can obtain

different asymptotic properties of PCA in these two groups.

Scenario 1 furthermore contains two different scenarios. The first one is where the sample

eigenvalues and eigenvectors within the first subgroup are asymptotically indistinguishable,

which corresponds to Proposition S4.2 (a). Now Assumptions C1 and C2 in Theorem 5.3,

respectively, become

C3. For fixed n, as d→∞, the population eigenvalues satisfy

λ1 ≥ · · · ≥ λm0 � λm0+1 ≥ · · · ≥ λm � λm+1 → · · · → λd = 1.

C4. For fixed n, as d→∞, d
nλj
→ cj , for j = 1, · · · ,m, where 0 = c1 = · · · = cm0 < cm0+1 ≤

· · · ≤ cm <∞.

Assumption C3 assumes that the first m population eigenvalues are further separated into

two groups. Assumption C4 guarantees that the positive information dominates in the first

subgroup.

We now define several non-negative random matrices, whose eigenvalues describe the

HDLSS asymptotic properties of PCA. Denote

c∗j = limd→∞
λm0

λj
, j = 1, · · · ,m0. (S5.4)

Then define m0 × d and (m−m0)× d matrices M1
1 and M1

2 as following:

M1
1 =

[
C1

1, 0m0×(d−m0)

]
m0×d

,

M1
2 =

[
0(m−m0)×m0

,C1
2, 0(m−m0)×(d−m)

]
(m−m0)×d

,

where C1
1 = diag(c∗

− 1
2

1 , · · · , c∗−
1
2

m0 ), C1
2 = diag(c

− 1
2

m0+1, · · · , c
− 1

2
m ), and 0k×l is the k×l zero matrix.

Finally, we define random matrices

W1
1 = M1

1Z
TZM1

1
T

and W1
2 = M1

2Z
TZM1

2
T
, (S5.5)
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whose eigenvalues describe the HDLSS limiting behavior of PCA.

Since the sample eigenvalues are asymptomatically indistinguishable, similar to Theorem

5.3, we will study subspace consistency and need to define spaces

S1
k = span{uj , j ∈ H1

k}, k = 1, 2, 3,

where H1
1 = {1, · · · ,m0}, H1

2 = {m0 + 1, · · · ,m} and H1
3 = {m+ 1, · · · , d}.

Proposition S5.1. Under Assumptions 4.1, C3 and C4, for fixed n, as d→∞, we have
λ̂j

λj

a.s−−→ c∗j
n
λj(W1

1 ), 1 ≤ j ≤ m0,
λ̂j

λj

a.s−−→ cj
n
λj−m0(W1

2 ) + cj , m0 + 1 ≤ j ≤ m,
(S5.6)

and  angle < ûj , S1
1 >

a.s−−→ 1, 1 ≤ j ≤ m0,

angle < ûj , S1
2 >

a.s−−→ arccos

{(
1 + n

λj−m0
(W1

2 )

)− 1
2

}
, m0 + 1 ≤ j ≤ m.

(S5.7)

Moreover, the properties of the rest sample eigenvalues and eigenvectors remain the same as

those in Theorem 5.3.

Remark S5.1. If m0 = 0, then 0 < cj <∞ for j = 1, · · · ,m and Proposition S5.1 reduces to

Theorem 5.3. If m0 = m, the angles between domain sample eigenvectors and the corresponding

subspace converge to 0.

Remark S5.2. Since the positive information dominates in the first subgroup, it follows

from (S5.7) that the angles between the sample eigenvectors within the first subgroup and

the corresponding space converge to 0. However, the angles between the sample eigenvectors

within the second subgroup and the corresponding space converge to non-degenerate random

variables.

The second sub-scenario within Scenario 1 is where the sample eigenvalues and eigenvectors

within the first subgroup are asymptotically distinguishable. It corresponds to Proposition S4.1

(a). Then Assumption C1 becomes

C5. For fixed n, as d→∞, the population eigenvalues satisfy

λ1 � · · · � λm0 � λm0+1 ≥ · · · ≥ λm � λm+1 → · · · → λd = 1.

Proposition S5.2. Under Assumptions 4.1, C4 and C5, for fixed n, as d→∞, we have

λ̂j
λj

a.s−−→ Rj , 1 ≤ j ≤ m0, (S5.8)

where Rj is in (4.8), and

|< ûj , uj >|
a.s−−→ 1, 1 ≤ j ≤ m0. (S5.9)

Moreover, the properties of the rest sample eigenvalues and eigenvectors remain the same as

those in Proposition S5.1. If Assumption 4.1 is strengthened to normal distribution, then Rj

has the same distribution with
χ2
n
n

.
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Remark S5.3. If m0 = 0, then 0 < cj < ∞ for j = 1, · · · ,m and Proposition S5.2 becomes

Theorem 5.3. If m0 = m, the first m sample eigenvalues and eigenvectors are all asymptotically

distinguishable, and the angles between the sample and corresponding population eigenvectors

converge to 0.

Remark S5.4. The difference between Propositions S5.1 and S5.2 is that λ1 ≥ · · · ≥ λm0 is

replaced by λ1 � · · · � λm0 . This determines whether the sample eigenvalues and eigenvectors

within the first subgroup can be asymptotically identified or not.

S5.2 Scenario 2

This subsection studies the HDLSS asymptotic properties of PCA in Scenario 2. In this case,

the negative information dominates in the second subgroup (e.g d
nλj
→∞ for j > m0). Similar

to Scenario 1, Scenario 2 also contains two sub-scenarios. The first one is where the sample

eigenvalues and eigenvectors within the first subgroup are asymptotically indistinguishable,

which corresponds to Proposition S4.2 (b). Then Assumption C1 becomes Assumption C3 and

Assumption C4 becomes

C6. For fixed n, as d→∞, d
nλj
→ cj , for j = 1, · · · ,m, where 0 < c1 < · · · < cm0 < cm0+1 =

· · · = cm =∞.

For j = 1, · · · ,m0, replace c∗j by cj in the definition of W1
1 in (S5.5) to define W2, whose

eigenvalues determine the HDLSS asymptotic behavior of PCA within the first subgroup. In

addition, we need to define spaces S2
1 = S1

1 and S2
2 = span{uj ,m0 + 1 ≤ j ≤ d} to explore the

subspace consistency.

Under Assumptions C3 and C6, the sample eigenvalues λ̂j for j = m0 +1, · · · ,m cannot be

asymptotically identified. This leads to that the angles between ûj and uj for j = m0+1, · · · ,m
converges to 90 degrees. These results are summarized in the following proposition.

Proposition S5.3. Under Assumptions 4.1, C3 and C6, for fixed n, as d → ∞, the sample

eigenvalues satisfy 
λ̂j

λj

a.s−−→ cj
n
λj(W2) + cj , 1 ≤ j ≤ m0,

nλ̂j

dλd

a.s−−→ 1, m0 + 1 ≤ j ≤ m;
(S5.10)

in addition, the properties of the rest sample eigenvalues remain the same as those in Theorem

5.3. Moreover, we have
angle < ûj , S2

1 >
a.s−−→ arccos

{(
1 + n

λj(W2)

)− 1
2

}
, 1 ≤ j ≤ m0,

|< ûj , uj >|= Oa.s

{
(
λj

d
)
1
2

}
, m0 + 1 ≤ j ≤ n,

angle < ûj , S2
2 >

a.s−−→ 1, m0 + 1 ≤ j ≤ n.

(S5.11)

Remark S5.5. If there is no cj =∞ for j = 1, · · · ,m, Proposition S5.3 reduces to Theorem 5.3.

If all cj =∞ for j = 1, · · · ,m, then all sample eigenvalues cannot be asymptotically identified

and the corresponding angles between the sample and population eigenvectors converge to 90◦.
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The second sub-scenario in Scenario 2 is where the sample eigenvalues and eigenvectors

within the first subgroup are asymptotically distinguishable, which corresponds to Proposition

S4.1 (b). Now Assumption C1 becomes Assumption C5 and Assumption C2 becomes

C7. For fixed n, as d→∞, d
nρj
→ cj , for j = 1, · · · ,m, where 0 = c1 = · · · = cm0 < cm0+1 =

· · · = cm =∞.

The results can be summarized as

Proposition S5.4. Under Assumptions 4.1, C5 and C7, for fixed n, as d → ∞, the sample

eigenvalues and eigenvectors, whose index is less than or equal to m0, have the same proper-

ties as those in Proposition S5.2. Moreover, the properties of the rest sample eigenvalues and

eigenvectors remain the same as those in Proposition S5.3.

Remark S5.6. Proposition S5.4 is a combination of Propositions S5.2 and S5.3. Proposi-

tion S5.4 is consistent with the results in Jung and Marron (2009); Shen et al. (2012).

S6 Proofs for the growing sample size asymptotic re-

sults

This section provides detailed proofs of the theorems, propositions and lemmas in the growing

sample size contexts. Section S6.1.1 proves the asymptotic properties of the sample eigenvalues

as stated in Theorem 5.2. Section S6.2 shows the proofs of Propositions S4.1 and S4.2. Sec-

tion S6.3 presents the proof of Theorem 4.2. Section S6.4 proves the lemmas needed in proving

Theorem 5.2.

S6.1 The proof of sample eigenvalues’ properties in Theorem 5.2

This subsection shows the detailed proof of asymptotic properties of sample eigenvalues. With-

out loss of generality (WLOG), we assume that λm+1 = · · · = λd = 1. Due to the invariance

property of the angle between the sample and population eigenvectors, see Shen et al. (2012),

we assume WLOG that the population eigenvectors uj = ej , j = 1, . . . , d, where the j-th compo-

nent of ej equals 1 and the rest are zero. The sample eigenvalue properties are studied through

the dual matrix Σ̂D, which shares the same nonzero eigenvalues with the sample covariance

matrix Σ̂. Since uj = ej , j = 1, . . . , d, then it follows from (4.2) and (4.8) that the dual matrix

can be written as

Σ̂D =
1

n
XTX =

1

n

d∑
j=1

λjZ̃jZ̃
T
j ,

which is partitioned into two matrices as follows:

Σ̂D = A+B, with A =
1

n

m∑
j=1

λjZ̃jZ̃
T
j , B =

1

n

d∑
j=m+1

λjZ̃jZ̃
T
j . (S6.12)
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The following proof contains two steps. The first one is to show the asymptotic properties

of the eigenvalues of A and B in Lemmas S6.1 and S6.2, respectively. The second one is to use

the Wielandt’s Inequality (Rao, 2002), now restated as Lemma S6.3, to study the asymptotic

properties of the sample eigenvalues.

We first give out three preliminary lemmas.

Lemma S6.1. As n, d→∞, the eigenvalues of the matrix A in (S6.12) satisfy

λk(A)

λk

a.s−−→ 1, k = 1, · · · ,m,

where λk(A) denotes the kth largest eigenvalue of the matrix A.

Lemma S6.2. As n, d→∞, the eigenvalues of the matrix B in (S6.12) satisfy

nλk(B)

dλk+m

a.s−−→ 1, k = 1, · · · , [n ∧ (d−m)].

Lemma S6.3. Assume that A,B are m×m real symmetric matrices, then for all k = 1, . . . ,m,

maxi+j=k+m {λi(A) + λj(B)} ≤ λk(A+B) ≤ mini+j=k+1 {λi(A) + λj(B)} .

The proofs of Lemmas S6.1 and S6.2 are, respectively, shown in Sections S6.4.1 and S6.4.2.

S6.1.1 Asymptotic properties of the sample eigenvalues

According to Lemma S6.3, we have that

λj(A)

λj
+
λn(B)

λj
≤ λ̂j
λj
≤ λj(A)

λj
+
λ1(B)

λj
. (S6.13)

According to Lemma S6.2 and Assumption B3 and λm+1 = · · · = λd = 1, we have that as

n, d→∞

λ1(B)

λj
=
dλ1+m

nλj
× nλ1(B)

dλ1+m

a.s−−→ ck, j ∈ Hk, k = 1, · · · , r,

λn(B)

λj
=
dλn+m
nλj

× nλn(B)

dλn+m

a.s−−→ ck, j ∈ Hk, k = 1, · · · , r,

which, together with (S6.13) and Lemma S6.1, yields that

λ̂j
λj

a.s−−→ 1 + ck, j ∈ Hk, k = 1, · · · , r. (S6.14)

In addition, since rank(A) ≤ m, then λj(A) = 0 for j > m. Combining above with (S6.13)

and Lemma S6.2, we have

nλ̂j
dλj

a.s−−→ 1, j = m+ 1, · · · , [n ∧ d]. (S6.15)

which, together with (S6.14), yields the asymptotic properties of sample eigenvalues (5.6) in

Theorem 5.2.
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S6.2 Proofs of Propositions S4.1 and S4.2

This section provides the proofs of Propositions S4.1 and S4.2. Since Proposition S4.1 is a

special case of Proposition S4.2, we just need to show the proof of Proposition S4.2.

In order to prove Proposition S4.2, we need to redefine A and B in (S6.12) as follows:

A =
1

n

r0∑
j=1

λjZ̃jZ̃
T
j , B =

1

n

d∑
j=r0+1

λjZ̃jZ̃
T
j .

Then similar as (S6.14), we have

λ̂j
λj

a.s−−→ 1 + cl, j ∈ Hl, l = 1, · · · , r0. (S6.16)

Under Assumption B5, we have that cl = 0 for l = 1, · · · , r0. Then it follows from (S6.16) that

λ̂j
λj

a.s−−→ 1, j ∈ Hl, l = 1, · · · , r0. (S6.17)

Under Assumption B6, we have that cr0+1 = · · · = cr = ∞. Note that λm+1 → · · · →
λd = 1, and similar as (S6.15), we have

nλ̂j
d

a.s−−→ 1,

r0∑
k=1

qk ≤ j ≤ m. (S6.18)

Now we consider the asymptotic properties of sample eigenvectors. Under Assumption B5,

we have that cl = 0 for l = 1, · · · , r0 in (7.13). Then it follows that

∑
k∈Hl

û2
k,j

a.s−−→ 1, j ∈ Hl, l = 1, · · · , r0,

which, together with (7.2), yields

angle < ûj , Sl >
a.s−−→ 1, j ∈ Hl, l = 1, · · · , r0. (S6.19)

In addition, since λm+1 → · · · → λd = 1, then similar as the proof of (7.3) and (7.4) in the main

paper, we have  |< ûj , uj >|= Oa.s

{
(
nλj

d
)
1
2

}
,

angle < ûj , S >
a.s−−→ 0,

r0∑
k=1

qk + 1 ≤ j ≤ [n ∧ d], (S6.20)

where S is defined in Proposition S4.2.

Thus, according to (S6.17) and (S6.19), (S4.1) in Proposition S4.2 (a) is established. Ac-

cording to (S6.18) and (S6.20), (S4.2) and (S4.3) in Proposition S4.2 (b) are established.

12
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S6.3 Proof of Theorem 4.2

Similar as in the Proof of Theorem 5.2, we assume WLOG that the population eigenvectors

uj = ej . Then it follows from (4.2) that Xi has the following decomposition

Xi =

d∑
j=1

λ
1
2
j ejzi,j . (S6.21)

According to the definition of population PC scores (4.3), the j-th population PC scores are

Sj = (S1,j , · · · , Sn,j)T = (z1,j , · · · , zn,j)T . (S6.22)

According to the definition of sample PC scores (4.5), the j-th sample PC scores are

Ŝj = (Ŝ1,j , · · · , Ŝn,j) = λ̂
− 1

2
j (ûTj X1, · · · , ûTj Xn). (S6.23)

From (S6.21), (S6.22) and (S6.23), the ratios between the sample and population PC scores

are, for i = 1, · · · , n, j = 1, · · · ,m,

Ŝi,j
Si,j

=
λ

1
2
j

λ̂
1
2
j

ûj,j +

m∑
1≤k≤m,k 6=j

λ
1
2
k zi,k

λ̂
1
2
j zi,j

ûk,j +

d∑
k=m+1

λ
1
2
k zi,k

λ̂
1
2
j zi,j

ûk,j . (S6.24)

We denote the three terms on the right-hand-side of (S6.24) as Γk, k = 1, 2, 3. In order to

obtain the asymptotic properties of the sample PC scores (4.11), it follows from (S6.24) that

we just need to show that for i = 1, · · · , n, j = 1, · · · ,m,

|Γ1|
a.s−−→ 1, (S6.25)

|Γk|
a.s−−→ 0, k = 2, 3. (S6.26)

We first prove (S6.25). Note that under spike model (4.10), Lemma S6.1 still holds and

Lemma S6.2 becomes that almost surely

nλk(B)

dλk+m
∼ 1, k = 1, · · · , [n ∧ (d−m)],

which, together with Lemma S6.3 (Wielandt’s Inequality) and d

n
1
2 λm

→ 0, yields

λ̂j
λj

a.s→ 1, j = 1, · · · ,m. (S6.27)

In addition, (7.15) becomes

û2
j,j

a.s→ 1, j = 1, · · · ,m. (S6.28)

It follows from (S6.27) and (S6.28) that (S6.25) is established.

Secondly, to prove (S6.26) for k = 2, we need to show

λ
1
2
k λ̂
− 1

2
j ûk,j

a.s−−→ 0, 1 ≤ j 6= k ≤ m. (S6.29)
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Note that for 1 ≤ j 6= k ≤ m, we have λ
1
2
k λ̂
− 1

2
j

a.s−−→ λ
1
2
k λ
− 1

2
j → ck,j , where ck,j = 0 or ∞. Under

such a scenario, Shen et al. (2012) has showed (S6.29).

Finally, we show the proof of (S6.26) for k = 3. According to Cauchy-Schwarz Inequality,

we have that

Γ2
3 ≤ λm+1

λ̂jz2i,j

{
d∑

k=m+1

z2i,k

}{
d∑

k=m+1

û2
k,j

}

≤ λm+1

z2i,j

λj

λ̂j

d2

nλ2
j

{
1

d−m

d∑
k=m+1

z2i,k

}{
nλj
d

d∑
k=m+1

û2
k,j

}
. (S6.30)

Since
∑d
k=m+1 û

2
k,j = Oa.s(

d
nλj

) from Shen et al. (2012), it follows that almost surely
nλj

d

∑d
k=m+1 û

2
k,j =

Oa.s(1). In addition, note that λm+1 ∼ 1,
λj

λ̂j

a.s−−→ 1, d2

nλ2
j
→ 0 and 1

d−m
∑d
k=m+1 z

2
i,k

a.s−−→ 1.

Then it follows from (S6.30) that (S6.26) is established for k = 3.

S6.4 Proofs of Lemmas

We now prove the lemmas that are used to prove the Theorem 5.2 in the grow sample size

asymptomatic contexts. Sections S6.4.1- S6.4.3 respectively provide the proofs of Lemmas S6.1,

S6.2 and 7.2.

S6.4.1 Proof of Lemma S6.1

A in (S6.12) can be written as following:

A =
1

n
[λ

1
2
1 Z̃1, · · · , λ

1
2
mZ̃m][λ

1
2
1 Z̃1, · · · , λ

1
2
mZ̃m]T ,

whose m×m dual matrix AD is

AD =
1

n
[λ

1
2
1 Z̃1, · · · , λ

1
2
mZ̃m]T [λ

1
2
1 Z̃1, · · · , λ

1
2
mZ̃m]

= λm


λ1
λm

1
n

∑n
i=1 z

2
i,1 · · · ( λ1

λm
)
1
2 1
n

∑n
i=1 zi,1zi,m

...
. . .

...

( λ1
λm

)
1
2 1
n

∑n
i=1 zi,1zi,m · · · 1

n

∑n
i=1 z

2
i,m

 . (S6.31)

Since zi,j are i.i.d and have zero mean, unit variance, then it follows that as n→∞,

1

n

n∑
i=1

zi,kzi,l
a.s−−→

{
1 1 ≤ k = l ≤ m
0 1 ≤ k 6= l ≤ m

. (S6.32)

In addition, according to Assumptions B1-B3, as n, d→∞,

λi
λj
→ cl

ck
, i ∈ Hk, j ∈ Hl, 1 ≤ k, l ≤ m, (S6.33)

which, together with (S6.31) and (S6.32), yields that as n, d→∞

AD
λm

a.s−−→


cr
c1

· · · 0
...

. . .
...

0 · · · 1

 . (S6.34)
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Combining (S6.33) and (S6.34), we have that as n, d→∞

λk(A)

λk
=
λk(AD)

λk

a.s−−→ 1, k = 1, · · · ,m,

which yields Lemma S6.1.

S6.4.2 Proof of Lemma S6.2

Note that for k = 1, · · · , [n ∧ (d−m)],

dλd
n
× λk(

1

d

d∑
j=m+1

Z̃jZ̃
T
j ) ≤ λk(B) ≤ dλm+1

n
× λk(

1

d

d∑
j=m+1

Z̃jZ̃
T
j ). (S6.35)

Since n
d
→ 0, then it follows from Lemma 7.1 (Bai-Yin’s law) that

λk(
1

d

d∑
j=m+1

Z̃jZ̃
T
j )

a.s−−→ 1, k = 1, · · · , [n ∧ (d−m)],

which, together with (S6.35) and λm+1 → · · · → λd, yields Lemma S6.2.

S6.4.3 Proof of Lemma 7.2

We now show the detailed proof of Lemma 7.2 in the main paper, which is used to prove the

asymptotic properties of sample eigenvectors in Theorem 5.2. Note that the proof of Lemma

7.2 depends on the asymptotic properties of the sample eigenvalues, which have been proved in

Section S6.1.

Firstly, we prove (7.14) in Lemma 7.2. According to Assumptions B1, B3 and sample

eigenvalues properties (5.6), we have that for k ∈ Hh, h = 1, · · · , r,

λ−1
k λ̂j

a.s−−→ (1 + cl)chc
−1
l , j ∈ Hl, l ≤ r. (S6.36)

Since λj(A) = 0 for j > m and (S6.13), then we have

maxm+1≤j≤n|
n

d
λ̂j − 1| ≤ |n

d
λn(B)− 1|+ |n

d
λ1(B)− 1|. (S6.37)

Since n
d
→ 0, then it follows from Lemma 7.1 that

|n
d
λn(B)− 1| and |n

d
λ1(B)− 1| a.s−−→ 0,

which, together with (S6.37), Assumptions B1, B3 and [n∧ d] = n, yields that for k ∈ Hh, h =

1, · · · , r,
maxm+1≤j≤n|λ−1

k λ̂j − ch|
a.s−−→ 0. (S6.38)

Combining (S6.36), (S6.38), (7.5) and 1
n

∑n
i=1 z

2
i,k

a.s−−→ 1, we have that for k ∈ Hh, h = 1, · · · , r,

r∑
l=1

(1 + cl)chc
−1
l

∑
j∈Hl

û2
k,j + ch

[n∧d]∑
j=m+1

û2
k,j

a.s−−→ 1. (S6.39)
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According to (7.8) and
∑d
k=1 û

2
k,j = 1, we have that

∑m
k=1 û

2
k,j

a.s−−→ 0 for j = m+ 1, · · · , [n∧d].

Then it follows that for k ∈ Hh, h = 1, · · · , r,

[n∧d]∑
j=m+1

û2
k,j

a.s−−→ 0. (S6.40)

According to (S6.39) and (S6.40), we have (7.14) in Lemma 7.2.

Secondly, we prove (7.15) in Lemma 7.2. According to (7.9), we have that for j ∈ Hl, l =

1, · · · , r,
λd

λ̂j
λmin(

1

n
ZZT ) ≤

d∑
k=1

λdλ
−1
k û2

k,j ≤
λd

λ̂j
λmax(

1

n
ZZT ). (S6.41)

According to (5.6), Assumptions B1, B3 and Lemma 7.1, we have that for j ∈ Hl, l = 1, · · · , r,

λd

λ̂j
λmin(

1

n
ZZT ) and

λd

λ̂j
λmax(

1

n
ZZT )

a.s−−→ cl
1 + cl

. (S6.42)

Combining (S6.41), (S6.42) and the fact that λdλ
−1
k → 0 for k ≤ m and 1 for k > m, we have

that
d∑

k=m+1

û2
k,j

a.s−−→ cl
1 + cl

, j ∈ Hl, l = 1, · · · , r,

which further yields

r∑
h=1

∑
k∈Hh

û2
k,j = 1−

d∑
k=m+1

û2
k,j

a.s−−→ 1

1 + cl
, j ∈ Hl, l = 1, · · · , r,

Thus (7.15) in Lemma 7.2 is established.

Finally, we prove (7.16) in Lemma 7.2. Define the diagonal matrix Λ∗ = diag(λ∗1, · · · , λ∗d),
where λ∗j = 1 for j ∈ Hl, l = 1 or r + 1 and λ∗j = c−1

1 cl for l = 2, · · · , r. Let Z∗ = Z(Λ∗)
1
2 and

W ∗ = W (Λ∗)
1
2 . Consider the k-diagonal entries W ∗(W ∗)T = 1

n
(Z∗)TZ∗ on two sides, we have

d∑
j=1

λ−1
k λ∗j λ̂j û

2
k,j =

1

n

n∑
i=1

(Z∗i,k)2 =
1

n

n∑
i=1

λ∗kZ
2
i,k. (S6.43)

According to (S6.36) and (S6.38), we have that, for k ∈ H1,{
λ−1
k λ∗j λ̂j

a.s−−→ (1 + cl), j ∈ Hl, l ≤ r,
maxm+1≤j≤[n∧d]|λ−1

k λ∗j λ̂j − c1|
a.s−−→ 0, m+ 1 ≤ j ≤ [n ∧ d].

(S6.44)

Since λ∗k = 1 for k ∈ H1, then 1
n

∑n
i=1 λ

∗
kz

2
i,k = 1

n

∑n
i=1 z

2
i,k

a.s−−→ 1 for k ∈ H1, then it follows

from (S6.43) and (S6.44) that

r∑
l=1

(1 + cl)
∑
j∈Hl

û2
k,j + c1

[n∧d]∑
j=m+1

û2
k,j

a.s−−→ 1, k ∈ H1. (S6.45)

Combining (S6.40) and (S6.45), we have (7.16) in Lemma 7.2.
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S7 Proofs for the HDLSS asymptotic results

This section contains the detailed proofs of the theorems, propositions and lemmas under the

HDLSS contexts. Section S7.1 provides the proof of Theorem 5.3. Sections S7.2- S7.5 present

the proofs of Propositions S5.1-S5.4. Section S7.6 shows the Proof of Theorem 4.1. Section S7.7

provides the proofs of the lemmas.

S7.1 Proof of Theorem 5.3

Proof of Theorem 5.3 contains two parts. The first one is to show the sample eigenvalue

properties in Section S7.1.1. The second one is to show the sample eigenvector properties in

Section S7.1.2.

S7.1.1 Asymptotic properties of sample eigenvalues in Theorem 5.3

Similar as in Section S6.1, the sample eigenvalues are also studied through the dual matrix Σ̂D,

which are partitioned as A and B in (S6.12). Now we give out the asymptotic properties of the

eigenvalues of A and B.

Lemma S7.1. For fixed n, as d→∞, the eigenvalues of the matrix A in (S6.12) satisfy

λk(A)

λk

a.s−−→ ck
n
λk(W), k = 1, · · · ,m,

where W is defined in (5.8).

The detailed proof of Lemma S7.1 is in Section S7.7.1.

The HDLSS context doesn’t change the asymptotic properties of the eigenvalues of B,

shown in Lemma S6.2, with the only difference being that n → ∞ is replaced by d → ∞ and

[n ∧ (d −m)] = n. For completeness, we restate the asymptotic properties of eigenvalues of B

below.

Lemma S7.2. For fixed n, as d→∞, the eigenvalues of the matrix B in (S6.12) satisfy

nλk(B)

dλk+m

a.s−−→ 1, k = 1, · · · , n.

According to Lemma S7.2 and Assumption C2, we have

λ1(B)

λj
and

λn(B)

λj

a.s−−→ cj , j = 1, · · · ,m,

which, together with (S6.13) and Lemma S7.1, yields

λ̂j
λj

a.s−−→ cj
n
λj(W) + cj , j = 1, · · · ,m. (S7.46)
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In addition, since rank(A) ≤ m, then it follows from (S6.13) and S7.2 that

nλ̂j
dλj

a.s−−→ 1, j = m+ 1, · · · , n. (S7.47)

Combining (S7.46) and (S7.47), we have proved the asymptotic properties of the sample eigen-

values, as stated in (5.10) of Theorem 5.3.

S7.1.2 Asymptotic properties of the sample eigenvectors in Theorem 5.3

Similar as in Section 7.1 of the main paper, the proof procedure is also separated into two steps.

Step 1 is to show the asymptotic properties of ûj for j = m + 1, · · · , n, which contains

two small steps:

• The first one is to show that

|< ûj , uj >|2= û2
j,j = Oa.s(

1

d
), j = m+ 1, · · · , n, (S7.48)

which means that the angle between ûj and uj converges to 90 degrees.

• The second one is to show that

angle < ûj , S2 >
a.s−−→ 0, j = m+ 1, · · · , n, (S7.49)

where S2 is defined in front of Theorem 5.3.

According to (7.7), we have that

maxm+1≤j≤n |< ûj , uj >|2= maxm+1≤j≤nû
2
j,j ≤

λm+1

λ̂n
λmax(

1

n
Z̄T Z̄), (S7.50)

Since n is a fixed number, then λmax( 1
n
Z̄T Z̄) is a random variable. Then it follows from (S7.47)

and (S7.50) that (S7.48) is established. Proof of (S7.49) is the same as (7.4) and is skipped

here.

Step 2 is to show the asymptotic properties of ûj such that the angle between ûj and

S1 in (5.10) almost surely converges to arccos

{(
1 + n

λj(W)

)− 1
2

}
, j = 1, · · · ,m. According to

(7.2), we just need to show that

m∑
k=1

û2
k,j

a.s−−→ λj(W)

n+ λj(W)
, j = 1, · · · ,m. (S7.51)

According to (S7.46) and Lemma 7.1, we have that for j = 1, · · · ,m,

λd

λ̂j
λmin(

1

n
ZTZ) and

λd

λ̂j
λmax(

1

n
ZTZ)

a.s−−→ n

n+ λj(W)
,

which, together with (S6.41) and the fact that λdλ
−1
k → 0 for k ≤ m and 1 for k > m, yields

d∑
k=m+1

û2
k,j

a.s−−→ n

n+ λj(W)
, j = 1, · · · ,m. (S7.52)
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Since
∑d
k=1 û

2
k,j = 1, then it follows from (S7.52) that (S7.51) is established.

According to (S7.48), (S7.49) and (S7.51), we have proved the asymptotic properties of

the sample eigenvectors as stated in (5.10) of Theorem 5.3.

S7.2 Proof of Proposition S5.1

The sample eigenvalue properties are also studied through the dual matrix Σ̂D, which are

partitioned into three parts as Σ̂D = A1 +A2 +B, where

A1 =
1

n

m0∑
j=1

λjZ̃jZ̃
T
j , A2 =

1

n

m∑
j=m0+1

λjZ̃jZ̃
T
j , and B =

1

n

d∑
j=m+1

λjZ̃jZ̃
T
j . (S7.53)

The eigenvalue properties of A1 and A2 are similar as A in Lemma S7.1, and are shown in the

following lemma.

Lemma S7.3. For fixed n, as d → ∞, the eigenvalues of the matrices A1 and A2 in (S7.53)

satisfy {
λk(A1)
λk

a.s−−→ c∗k
n
λk(W1

1 ), 1 ≤ k ≤ m0,
λk(A2)
λk+m0

a.s−−→ ck+m0
n

λk(W1
2 ), 1 ≤ k ≤ m−m0,

where c∗k are defined in (S5.4), and W1
1 and W1

2 are defined in (S5.5).

The properties of the eigenvalues of B in (S7.53) remain the same as B in Lemma S7.2.

According to Lemmas S6.3, S7.2 and S7.3 and Assumption C3, the sample eigenvalues satisfy
λ̂j

λj

a.s−−→ c∗j
n
λj(W1

1 ), 1 ≤ j ≤ m0,
λ̂j

λj

a.s−−→ cj
n
λj−m0(W1

2 ) + cj , m0 + 1 ≤ j ≤ m,

which yields (S5.6) in Proposition S5.1.

In addition, following the proof procedure of (S7.51), we have
∑m0
k=1 û

2
k,j

a.s−−→ 1, 1 ≤ j ≤ m0,∑m
k=m0+1 û

2
k,j

a.s−−→ λj−m0
(W1

2 )

n+λj−m0
(W1

2 )
, m0 + 1 ≤ j ≤ m,

(S7.54)

which yields

 angle < ûj , S1
1 >

a.s−−→ 1, 1 ≤ j ≤ m0,

angle < ûj , S1
2 >

a.s−−→ arccos

{(
1 + n

λj−m0
(W1

2 )

)− 1
2

}
, m0 + 1 ≤ j ≤ m.

It then follows that (S5.7) in Proposition S5.1 is established, which concludes the proof of

Proposition S5.1.
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S7.3 Proof of Proposition S5.2

The proof is again through the dual matrix Σ̂D = A1 + A2 + B, where the eigenvalue prop-

erties of A2 and B remain the same as in Section S7.2. However, under the assumptions in

Proposition S5.2, A1 has different properties such that for fixed n, as d→∞,

λk(A1)

λk

a.s−−→ Rk, 1 ≤ k ≤ m0. (S7.55)

Since A2 and B have the properties as in Section S7.2, it follows from (S7.55), Assumption C5
and Lemma S6.3 that the sample eigenvalues satisfy

λ̂j
λj

a.s−−→ Rj , 1 ≤ j ≤ m0, (S7.56)

which yields (S5.8) in Proposition S5.2.

Since (S7.56) shows that the first m0 sample eigenvalues can be asymptotically distin-

guished, then their corresponding sample eigenvectors can be distinguished and are consistent

with the corresponding population eigenvectors. In fact, similar as (S7.51) and (S7.54), we have

|< ûj , uj >|2= û2
j,j

a.s−−→ 1, 1 ≤ j ≤ m0, (S7.57)

which yields (S5.9) in Proposition S5.2.

S7.4 Proof of Proposition S5.3

The critical difference between the proofs of Proposition S5.3 and Theorem 5.3 is that the dual

matrix Σ̂D should be partitioned into the following two parts:

A =
1

n

m0∑
j=1

λjZ̃jZ̃
T
j , B =

1

n

d∑
j=m0+1

λjZ̃jZ̃
T
j . (S7.58)

Then following the proof procedure of (S7.46), we have

λ̂j
λj

a.s−−→ cj
n
λj(W2) + cj , j = 1, · · · ,m0. (S7.59)

Since λm+1 → · · · → λd = 1, then similar as (S7.47), we have

nλ̂j
dλd

a.s−−→ 1, j = m0 + 1, · · · , n. (S7.60)

According to (S7.59) and (S7.60), we have (S5.10) in Proposition S5.3.

In addition, following the proof procedure of (5.10) in Theorem 5.3, we have (S5.11) in

Proposition S5.3.
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S7.5 Proof of Proposition S5.4

The difference between the proofs of Propositions S5.4 and S5.3 is that A in (S7.58) has the

following properties that for fixed n, as d→∞,

λk(A)

λk

a.s−−→ Rj , 1 ≤ k ≤ m0,

which yields

λ̂j
λj

a.s−−→ Rj , 1 ≤ j ≤ m0.

Thus the sample eigenvalues and eigenvectors whose index is less than or equal to m0 have

the same properties as in Proposition S5.2. Furthermore, the properties of the other sample

eigenvalues and eigenvectors remain the same as in Proposition S5.3.

S7.6 Proof of Theorem 4.1

To prove Theorem 4.1, it follows from definition of Γk, k = 1, 2, 3 in (S6.24) that we just need

to show that for i = 1, · · · , n, j = 1, · · · ,m,

|Γ1|
a.s−−→ R

− 1
2

j , (S7.61)

|Γk|
a.s−−→ 0, k = 2, 3. (S7.62)

Under spike model (4.6), (S7.56) and (S7.57) respectively become

λ̂j
λj

a.s→ Rj , j = 1, · · · ,m,

û2
j,j

a.s→ 1, j = 1, · · · ,m,

which yields (S7.61). In addition, following the proof procedure of (S6.26), we have (S7.62).

According to (S6.24), (S7.61) and (S7.62), we have∣∣∣∣∣ Ŝi,jSi,j

∣∣∣∣∣ a.s−−→ R
− 1

2
j , i = 1, · · · , n, j = 1, · · · ,m,

which yields (4.9) in Theorem 5.1.

S7.7 Proofs of the Lemmas

This section contains the detailed proofs of the necessary lemmas under the HDLSS contexts.

Section S7.7.1 provides the proof of Lemma S7.1. We skip the proofs for Lemmas S7.2 and S7.3,

as they are essentially the same as Lemmas S6.2 and S7.1, respectively.

S7.7.1 Proof of Lemma S7.1

The eigenvalue properties of A in Lemma S7.1 are also studied through its dual matrix AD

in (S6.31). According to Assumption C2, we have

nλk
dλd

→ c−1
k , k = 1, · · · ,m, (S7.63)
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which, together with (5.8) and (S6.31), yields that for fixed n, as d→∞,

n2AD
dλd

a.s−−→W. (S7.64)

Thus it follows from (S7.63) and (S7.64) that

λk(A)

λk
=
λk(AD)

λk

a.s−−→ ck
n
λk(W), k = 1, · · · ,m,

which yields Lemma S7.1.
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