Supplementary Material for "Estimation of smoothness of a stationary Gaussian random

field"

Wei-Ying Wu and Chae Young Lim

Wei-Ying Wu, Department of Applied Mathematics National Dong Hwa University, Hualien, Taiwan 974 e-mail: wwweiying1011@mail.ndhu.edu.tw

> Chae Young Lim, Department of Statistics Seoul National University, Seoul, Korea e-mail: limc@stats.snu.ac.kr

1. Proofs of Theorems in Section 2 of the Main Paper

Throughout the document, we let (Ω, \mathcal{F}, P) be the probability space where a stationary Gaussian random field Z(s) is defined. To self-contained, we state theorems and corollary again in this supplementary material.

Proof of Theorem 2.2. The proof of the consistency of θ_m is similar with Wu, Lim and Xiao (2013). So we only show (2.10) of the main paper.

We have

$$0 = \left. \frac{d}{d\theta} R_m(c^*, \theta) \right|_{\theta = \theta_m} = -\log(m) + \frac{\dot{g}_{c^*, \theta_m} \left(2\pi J/m\right)}{g_{c^*, \theta_m} \left(2\pi J/m\right)} + \log(m) \frac{1}{m^{d - \theta_m}} \frac{\hat{I}_m^{\tau}(2\pi J/m)}{g_{c^*, \theta_m} (2\pi J/m)} \\ - \frac{1}{m^{d - \theta_m}} \frac{\hat{I}_m^{\tau}(2\pi J/m)}{g_{c^*, \theta_m}^2 (2\pi J/m)} \dot{g}_{c^*, \theta_m} (2\pi J/m),$$

where $\dot{g_{c,\theta}} = dg_{c,\theta}/d\theta$. We can rewrite $\left.\frac{d}{d\theta}R_m(c^*,\theta)\right|_{\theta=\theta_m}$ as

$$\frac{d}{d\theta} R_m(c^*,\theta) \bigg|_{\theta=\theta_m} = -\log(m) + \frac{\dot{g}_{1,\theta_m}(2\pi J/m)}{g_{1,\theta_m}(2\pi J/m)} + \log(m) \frac{c_0}{c^*} m^{\theta_m-\theta_0} \frac{1}{m^{d-\theta_0}} \frac{\hat{I}_m^{\tau}(2\pi J/m)}{g_{c_0,\theta_m}(2\pi J/m)} \\ - \frac{c_0}{c^*} m^{\theta_m-\theta_0} \frac{1}{m^{d-\theta_0}} \frac{\hat{I}_m^{\tau}(2\pi J/m)}{g_{c_0,\theta_m}(2\pi J/m)} \frac{\dot{g}_{1,\theta_m}(2\pi J/m)}{g_{1,\theta_m}(2\pi J/m)}.$$

Note that we have $(1/m^{d-\theta_0}) \left(\hat{I}_m^{\tau} (2\pi \boldsymbol{J}/m) / g_{c_0,\theta_m} (2\pi \boldsymbol{J}/m) \right) \stackrel{p}{\longrightarrow} 1$ since $(1/m^{d-\theta_0}) \left(\hat{I}_m^{\tau} (2\pi \boldsymbol{J}/m) / g_{c_0,\theta_0} (2\pi \boldsymbol{J}/m) \right) \stackrel{p}{\longrightarrow} 1$ by Lim and Stein (2008) and θ_m is consistent. Thus, from the continuity of g, for any $0 < \epsilon < 1$, there exists a positive integer M_{ϵ} independent of the value of c^* such that

$$P\left\{ \left| \frac{1}{m^{d-\theta_0}} \frac{\hat{I}_m^{\tau}(2\pi \boldsymbol{J}/m)}{g_{c_0,\theta_m}(2\pi \boldsymbol{J}/m)} - 1 \right| < \epsilon \right\} \ge 1 - \epsilon$$

for all $m > M_{\epsilon}$. Note that

$$\left\{ \left| \frac{1}{m^{d-\theta_0}} \frac{\hat{I}_m^{\tau}(2\pi \boldsymbol{J}/m)}{g_{c_0,\theta_m}(2\pi \boldsymbol{J}/m)} - 1 \right| < \epsilon \right\} = \left\{ 1 - \epsilon < \frac{1}{m^{d-\theta_0}} \frac{\hat{I}_m^{\tau}(2\pi \boldsymbol{J}/m)}{g_{c_0,\theta_m}(2\pi \boldsymbol{J}/m)} < 1 + \epsilon \right\}.$$

Since $\dot{g} (2\pi J/m) < 0$ [Wu (2011)], we have the following inequalities by replacing $(1/m^{d-\theta_0}) \left(\hat{I}_m^{\tau} (2\pi J/m) / g_{c_0,\theta_m} (2\pi J/m) \right)$ with $1 - \epsilon$ and $1 + \epsilon$, respectively, in the expression of $\frac{d}{d\theta} R_m(c^*,\theta) \Big|_{\theta=\theta_m}$:

$$-\log(m) + \frac{\dot{g}_{1,\theta_m}(2\pi \mathbf{J}/m)}{g_{1,\theta_m}(2\pi \mathbf{J}/m)} + \log(m)\frac{c_0}{c^*}m^{\theta_m - \theta_0}(1 - \epsilon) - \frac{c_0}{c^*}m^{\theta_m - \theta_0}\frac{\dot{g}_{1,\theta_m}(2\pi \mathbf{J}/m)}{g_{1,\theta_m}(2\pi \mathbf{J}/m)}(1 - \epsilon) < \frac{d}{d\theta}R_m(c,\theta)\Big|_{\theta = \theta_m} = 0$$
(1.1)
$$-\log(m) + \frac{\dot{g}_{1,\theta_m}(2\pi \mathbf{J}/m)}{g_{1,\theta_m}(2\pi \mathbf{J}/m)} + \log(m)\frac{c_0}{c^*}m^{\theta_m - \theta_0}(1 + \epsilon) - \frac{c_0}{c^*}m^{\theta_m - \theta_0}\frac{\dot{g}_{1,\theta_m}(2\pi \mathbf{J}/m)}{g_{1,\theta_m}(2\pi \mathbf{J}/m)}(1 + \epsilon) > \frac{d}{d\theta}R_m(c,\theta)\Big|_{\theta = \theta_m} = 0.$$
(1.2)

(1.1) and (1.2) can be rewritten as

$$\left(\frac{\dot{g}_{1,\theta_m}\left(2\pi\boldsymbol{J}/m\right)}{g_{1,\theta_m}\left(2\pi\boldsymbol{J}/m\right)} - \log(m)\right) \left(1 - \frac{c_0}{c^*}m^{\theta_m - \theta_0}(1-\epsilon)\right) < 0.$$
(1.3)

$$\left(\frac{\dot{g}_{1,\theta_m}\left(2\pi\boldsymbol{J}/m\right)}{g_{1,\theta_m}\left(2\pi\boldsymbol{J}/m\right)} - \log(m)\right) \left(1 - \frac{c_0}{c^*}m^{\theta_m - \theta_0}(1+\epsilon)\right) > 0.$$
(1.4)

From (1.3) and (1.4), we have

$$\frac{c_0}{c^*}m^{\theta_m-\theta_0}(1-\epsilon)<1 \ \text{ and } \ \frac{c_0}{c^*}m^{\theta_m-\theta_0}(1+\epsilon)>1,$$

since $(\dot{g}_{1,\theta_m} (2\pi J/m)/g_{1,\theta_m} (2\pi J/m) - \log(m)) < 0$ for large enough m due to the boundedness of g and \dot{g} shown in Wu, Lim and Xiao (2013). By taking the logarithm on both sides of the above inequalities, we obtain (2.10) of the main paper.

Proof of Corollary 2.1. First, it can be easily shown that when $\max\{0, (d-2)/d\} < \gamma < \frac{d-1}{d}$,

$$\frac{1}{m^{d-\theta_0}} \frac{\hat{I}_m^{\tau}(2\pi \boldsymbol{J}/m)}{g_{c_0,\theta_0}(2\pi \boldsymbol{J}/m)} \to 1 \quad a.e.$$
(1.5)

by the Borel-Cantelli lemma and the Chebyshev's inequality with

$$Var\left(\frac{1}{m^{d-\theta_0}}\frac{\hat{I}_m^{\tau}(2\pi \boldsymbol{J}/m)}{g_{c_0,\theta_0}(2\pi \boldsymbol{J}/m)}\right) \sim m^{-2\eta}.$$
(1.6)

Then, the strong consistency of θ_m can be shown in a similar way as the proof of Theorem 3 in Wu, Lim and Xiao (2013) by using (1.5).

Proof of Theorem 2.4. Only the proof of case (i) $(c^* > c_0)$ is presented, and that of case (ii) can be shown similarly.

Suppose that the result (i) does not hold, that is, there exists $\delta > 0$ and $M_1 > 0$ such that

$$P(\theta_0 > \theta_m) > \delta$$

for $m > M_1$. By the consistency of a smoothed periodogram (Lim and Stein (2008)), we have

$$d_m := \frac{\hat{I}_m^{\delta}(2\pi \boldsymbol{J}/m)}{m^{d-\theta_0}g_{c^*,\theta_0}(2\pi \boldsymbol{J}/m)} \stackrel{p}{\longrightarrow} c_0/c^*.$$

Then, there exists a subsequence of $\{m\}$, $\{m_k\}$, such that d_{m_k} converges to c_0/c^* almost surely. By the Egorov's Theorem (Folland, (1999)), there exists $\mathcal{G}_{\delta} \subset \Omega$ such that d_{m_k} converges to c_0/c^* uniformly on \mathcal{G}_{δ} and $P(\mathcal{G}_{\delta}) > 1 - \delta/2$. Since $c_0/c^* < 1$, there exists M_2 such that $d_{m_k} < 1$ on \mathcal{G}_{δ} for $m_k > M_2$ by the uniform convergence.

Let $\Omega_{m_k} = \{ \omega \in \Omega : \theta_0 > \theta_{m_k} \}$. On Ω_{m_k} , we have $g_{c^*,\theta_0}(2\pi J/m_k) < g_{c^*,\theta_{m_k}}(2\pi J/m_k)$ since $\dot{g}(2\pi J/m_k) < 0$. Then, we have

$$m_k^{\theta_{m_k}-\theta_0} \frac{g_{c^*,\theta_0}(2\pi \boldsymbol{J}/m_k)}{g_{c^*,\theta_{m_k}}(2\pi \boldsymbol{J}/m_k)} < 1 \text{ on } \Omega_{m_k}.$$

Thus, we can show $R_{m_k}(c^*, \theta_{m_k}) - R_{m_k}(c^*, \theta_0) > 0$ on $\Omega_{m_k} \bigcap \mathcal{G}_{\delta}$ using the Lemma 2 of Wu, Lim and Xiao (2013). Note that, by construction, $P(\Omega_{m_k} \bigcap \mathcal{G}_{\delta}) > \delta/2 > 0$ since $P(\Omega_{m_k}) > \delta$ and $P(\mathcal{G}_{\delta}) > 1 - \delta/2$ for $m_k > M = \max\{M_1, M_2\}$ which contradicts to the fact that θ_{m_k} is the minimizer of $R_{m_k}(c^*, \theta)$.