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Abstract: This paper studies theory and inference related to a class of time series

models that incorporates nonlinear dynamics. It is assumed that the observations

follow a one-parameter exponential family of distributions given an accompanying

process that evolves as a function of lagged observations. We employ an iterated

random function approach and a special coupling technique to show that, under

suitable conditions on the parameter space, the conditional mean process is a geo-

metric moment contracting Markov chain and that the observation process is ab-

solutely regular with geometrically decaying coefficients. Asymptotic theory of the

maximum likelihood estimates of the parameters is established under some mild

assumptions. These models are applied to two examples; the first is the number of

transactions per minute of Ericsson stock and the second is related to return times

of extreme events of Goldman Sachs Group stock.
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1. Introduction

With a surge in the range of applications from economics, finance, environ-

mental science, social science and epidemiology, there has been renewed interest

in developing models for time series of counts. Many of these models assume that

the observations follow a Poisson distribution conditioned on an accompanying

intensity process that drives the dynamics of the models, e.g., Davis, Dunsmuir,

and Wang (2000), Davis, Dunsmuir, and Streett (2003), Fokianos, Rahbek, and

Tjøstheim (2009), Neumann (2011), Streett (2000) and Doukhan, Fokianos, and

Tjøstheim (2012). According to whether the evolution of the intensity process

depends on the observations or solely on an external process, Cox (1981) classified

the models into observation-driven and parameter-driven. This paper focuses on

the theory and inference for a particular class of observation-driven models.

Many of the models proposed in the literature, such as the Poisson integer-

valued GARCH (INGARCH), are special cases of our model. For an INGARCH,
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the observations {Yt} given the intensity process {λt} follow a Poisson distribu-

tion and λt is a linear combination of its lagged values and lagged Yt. The model

is capable of capturing positive temporal correlation in the observations and it

is relatively easy to fit via maximum likelihood. Ferland, Latour, and Oraichi

(2006) showed second moment stationarity through a sequence of approximating

processes and Fokianos, Rahbek, and Tjøstheim (2009) established the consis-

tency and asymptotic normality of the MLE by introducing a perturbed model.

However, these results rely heavily on the Poisson assumption and the GARCH-

like dynamics of λt. Later Zhu (2010) and Zhu (2012b) considered negative

binomial and zero-inflated Poisson-based models. But the authors only estab-

lished conditions under which the processes are moment stationary, which is not

sufficient to study such inference properties as the asymptotic behavior of the

maximum likelihood estimates. Neumann (2011) relaxed the linear assumption

on the Poisson INGARCH to a general contracting evolution rule and proved the

absolute regularity for this Poisson count process, and Doukhan, Fokianos, and

Tjøstheim (2012) showed the existence of moments under similar conditions by

utilizing the concept of weak dependence. More recently, Blasques, Koopman,

and Lucas (2012) considered a class of generalized autoregressive score processes

which includes the integer-valued GARCH as a special case and used the Dudley

entropy integral to obtain a wider non-degenerate parameter region that guar-

antees the stationarity and ergodicity of the processes. Zhu (2012a) considered

the INGARCH with generalized Poisson as the conditional distribution.

In our study the conditional distribution of the observation Yt given the

past is assumed to follow a one-parameter exponential family. The temporal

dependence in the model is defined through recursions relating the conditional

mean process Xt with its lagged values and lagged observations. Theory from

iterated random functions (IRF), see e.g., Diaconis and Freedman (1999) and Wu

and Shao (2004), is utilized to establish some key stability properties, such as

existence of a stationary and mixing solution. This theory allows us to consider

both linear and nonlinear dynamic models as well as inference questions. In

particular, the asymptotic normality of the maximum likelihood estimates can be

established. The nonlinear dynamic models are also investigated in a simulation

study and both linear and nonlinear models are applied to two datasets.

The organization of the paper is as follows. Section 2 formulates the model

and establishes stability properties. The maximum likelihood estimates of the

parameters and the relevant asymptotic theory are derived in Section 3. Ex-

amples of both linear and nonlinear dynamic models are considered in Section

4. Numerical results, including a simulation study and two data applications

are given in Section 5, where the models are applied to the number of trans-

actions per minute of Ericsson stock and to the return times of extreme events
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of Goldman Sachs Group (GS) stock. Some diagnostic tools for assessing and

comparing model performance are also given in Section 5. Appendix A reviews

some standard properties of the one-parameter exponential family, Appendix B

summarizes application to the linear dynamic models, and Appendix C contains

the proofs of the key results in Sections 2−4.

2. Model Formulation and Stability Properties

2.1. One-parameter exponential family

A random variable Y is said to follow a distribution of the one-parameter

exponential family if its probability density function with respect to some σ-finite

measure µ is given by

p(y|η) = exp{ηy −A(η)}h(y), y ≥ 0, (2.1)

where η is the natural parameter, and A(η) and h(y) are known functions. If

B(η) = A′(η), then it is known that EY = B(η) and Var(Y ) = B′(η). The

derivative of A(η) generally exists for the exponential family, see e.g., Lehmann

and Casella (1998). Since B′(η) = Var(Y ) > 0, so B(η) is strictly increasing,

which establishes a one-to-one association between the values of η and B(η).

Moreover, because we assume that the support of Y is non-negative throughout

this paper, B(η) = EY > 0, which implies that A(η) is strictly increasing. Other

properties of this family of distributions are presented in Appendix A.

Many familiar distributions belong to this family, including Poisson, negative

binomial, Bernoulli, exponential, etc. If the shape parameter is fixed, then the

gamma distribution is also a member of this family. While we restrict considera-

tion to the univariate case, extensions to the multi-parameter exponential family

is a topic of future research.

2.2. Model formulation

Set F0 = σ{η1}, where η1 is a natural parameter of (2.1), assumed fixed

for the moment. Let Y1, Y2, . . . be observations from a model that is defined

recursively as

Yt|Ft−1 ∼ p(y|ηt), Xt = gθ(Xt−1, Yt−1) (2.2)

for all t ≥ 1, where p(y|ηt) is defined in (2.1), Ft = σ{η1, Y1, . . . , Yt}, and Xt is

the conditional mean process, Xt = B(ηt) = E(Yt|Ft−1). Here gθ(x, y) is a non-

negative bivariate function defined on [0,∞) × [0,∞) when Yt has a continuous

conditional distribution, or on [0,∞)× N0, where N0 = {0, 1, . . .}, when Yt only

takes non-negative integers. Throughout, we assume that the function gθ satisfies

a contraction condition: for any x, x′ ≥ 0, and y, y′ ∈ [0,∞) or N0,

|gθ(x, y)− gθ(x
′, y′)| ≤ a|x− x′|+ b|y − y′|, (2.3)
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where a and b are non-negative constants with a+ b < 1. Here (2.3) implies

gθ(x, y) ≤ gθ(0, 0) + ax+ by, for any x, y ≥ 0. (2.4)

Model (2.2) with the function gθ satisfying (2.3) includes the Poisson INGARCH

model (see Example 1 in Section 4.1) and the exponential autoregressive model

(4.11) as special cases under some restrictions on the parameter space. The

generalized linear autoregressive moving average model (GLARMA) (see Davis,

Dunsmuir, and Streett (2003)) also belongs to this class, although the contraction

condition is not necessarily satisfied. Only under very simple model specifications

have the stability properties of GLARMA been established and the relevant work

is still ongoing. The primary focus of this paper is on the conditional mean

process {Xt} that, by the dynamics described in (2.2), is easily seen to be a

time-homogeneous Markov chain. The observation process {Yt} is not a Markov

chain itself.

2.3. Strict stationarity

The iterated random function approach (see e.g., Diaconis and Freedman

(1999) and Wu and Shao (2004)) provides a useful tool when investigating the

stability properties of Markov chains, and is particularly instrumental in our

research. In the definition of iterated random functions (IRF), the state space

(W, ρ) is assumed to be a complete and separable metric space. Then a sequence

of iterated random functions {fUt} is defined through

Wt = fUt(Wt−1), t ∈ N,

where {Ut}t≥1 take values in another measurable space Ψ and are indepen-

dently distributed with identical marginal distribution, and W0 is independent

of {Ut}t≥1.

In working with iterated random functions, Wu and Shao (2004) introduced

the idea of geometric moment contraction (GMC), which is useful for deriving

further properties of IRF. Our research also relies heavily on GMC. Suppose

there exists a stationary solution to the Markov chain {Wt}, denoted by ϖ, let

W0,W
′
0 ∼ ϖ be independent of each other and of {Ut}t≥1, and define Wt(w) =

fUt ◦ fUt−1 ◦ . . . ◦ fU1(w). Then {Wt} is said to be geometric moment contracting

if there exist an α > 0, a C = C(α) > 0, and an r = r(α) ∈ (0, 1) such that, for

all t ∈ N,
E{ρα(Wt(W0),Wt(W

′
0))} ≤ Crt.

The conditional mean process {Xt} specified in (2.2) can be embedded into the

framework of IRF and shown to be GMC.



THEORY AND INFERENCE FOR A CLASS OF NONLINEAR MODELS 1677

In this section and the next we use g to represent the function gθ in (2.2)

evaluated at the true parameter. For any u ∈ (0, 1), the random function fu(x)

is

fu(x) := g
(
x, F−1

x (u)
)
, (2.5)

where Fx is the cumulative distribution function of p(y|η) in (2.1) with x = B(η),

and its inverse F−1
x (u) := inf{t ≥ 0 : Fx(t) ≥ u} for u ∈ [0, 1]. Let {Ut} be a

sequence of independent and identically distributed (iid) uniform (0, 1) random

variables, then the Markov chain {Xt} defined in (2.2) starting from X0 = x can

be represented as the so-called forward process Xt(x) = (fUt ◦fUt−1 ◦ . . .◦fU1)(x).

The corresponding backward process is Zt(x) = (fU1 ◦ fU2 ◦ . . . ◦ fUt)(x), which

has the same distribution as Xt(x) for any t.

Proposition 1. If (2.2) holds, and g satisfies (2.3), then

1. there exists a random variable Z∞ such that, for all x ∈ S, Zn(x) → Z∞
almost surely, Z∞ does not depend on x and has distribution π, the stationary

distribution of {Xt};
2. the Markov chain {Xt, t ≥ 1} is geometric moment contracting with π as its

unique stationary distribution, and EπX1 < ∞;

3. if {Xt, t ≥ 1} starts from π, X1 ∼ π, then {Yt, t ≥ 1} is a stationary time

series.

Proposition 1 implies that, starting from any state x, the limiting distribution

of the Markov chain Xn(x) exists and the n-step transition probability measure

Pn(x, ·) converges weakly to π as n → ∞.

2.4. Ergodicity

In this section we investigate the stability properties, including ergodicity

and mixing, under (2.2). Under the conditions of Proposition 1, the process

{(Xt, Yt)} is strictly stationary, so we can extend it to be indexed by all the

integers. The following proposition establishes ergodicity and absolute regularity

when Yt is discrete.

Proposition 2. Assume (2.2) with the support of Yt a subset of N0 = {0, 1, . . . , },
and that g satisfies (2.3). Then

1. there exists a measurable function g∞ : N∞
0 = {(n1, n2, . . .), ni ∈ N0, i =

1, 2, . . .} −→ [0,∞) such that Xt = g∞(Yt−1, Yt−2, . . .) almost surely;

2. the count process {Yt} is absolutely regular with coefficients satisfying

β(n) ≤ (a+ b)n

1− (a+ b)
,

and hence {(Xt, Yt)} is ergodic.
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3. Likelihood Inference

In this section, we consider maximum likelihood estimates of the parame-

ters and study their asymptotic behavior. Denote the d−dimensional parameter

vector by θ ∈ Rd, and the true parameter vector by θ0 = (θ01, . . . , θ
0
d)

T . Then

the likelihood function of (2.2), conditioned on η1 and based on the observations

Y1, . . . , Yn, is

L(θ|Y1, . . . , Yn, η1) =
n∏

t=1

exp{ηt(θ)Yt −A(ηt(θ))}h(Yt),

where ηt(θ) = B−1(Xt(θ)) is updated through the iterations Xt = gθ(Xt−1, Yt−1).

The log-likelihood function is, up to a constant independent of θ,

l(θ) =

n∑
t=1

lt(θ) =

n∑
t=1

{ηt(θ)Yt −A(ηt(θ))}, (3.1)

with score function

Sn(θ) =
∂l(θ)

∂θ
=

n∑
t=1

{Yt −B(ηt(θ))}
∂ηt(θ)

∂θ
. (3.2)

The maximum likelihood estimator θ̂n is a solution to Sn(θ) = 0. Let Pθ0 be the

probability measure under the true parameter θ0 and, unless otherwise indicated,

E[·] is taken under θ0. Recall that Xt = gθ∞(Yt−1, Yt−2, . . .) according to part

(a) of Propositions 2. We derive the asymptotic properties of the maximum

likelihood estimator θ̂n based on a set of regularity conditions

(A0) θ0 is an interior point in the compact parameter space Θ ∈ Rd.

(A1) For any θ ∈ Θ, gθ∞ ≥ x∗θ ∈ R(B), where R(B) is the range of B(η).

Moreover x∗θ ≥ x∗ ∈ R(B) for all θ.

(A2) For any y ∈ [0,∞)∞ or N∞
0 , the mapping θ 7→ gθ∞(y) is continuous.

(A3) g(x, y) is increasing in (x, y) if Yt given Ft−1 has a continuous distribution.

(A4) E{Y1 supθ∈ΘB−1(gθ∞(Y0, Y−1, . . .))} < ∞.

(A5) If there exists a t ≥ 1 such that Xt(θ) = Xt(θ0), Pθ0-a.s., then θ = θ0.

(A6) The mapping θ 7→ gθ∞ is twice continuously differentiable.

(A7) E{B′(η1(θ0))(∂η1(θ)/∂θi)
2|θ=θ0} < ∞, for i = 1, . . . , d.

Strong consistency of the estimates is derived from a lemma that is adapted from

Lemma 3.11 in Pfanzagl (1969).
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Lemma 1. Assume that Θ ⊂ Rd is a compact set, and that (Ω,F , P ) is a

probability space. Let {fθ : R∞ 7→ [−∞,∞], θ ∈ Θ} be a family of Borel mea-

surable functions such that θ 7→ fθ(x) is upper-semicontinuous for all x ∈ R∞,

supθ∈C fθ(x) is Borel measurable for any compact set C ⊂ Θ, and E{supθ∈Θ fθ(X)}
< ∞ for some random variable X defined on (Ω,F , P ). Then

1. θ 7→ E[fθ(X)] is upper-semicontinuous;

2. if {Xt : Ω 7→ R∞, t ∈ Z} is an ergodic stationary process defined on (Ω,F , P )

and, for all t, Xt has the same distribution as X, then

lim sup
n→∞

sup
θ∈C

1

n

n∑
i=1

fθ(Xi) ≤ sup
θ∈C

E{fθ(X1)}, a.s.-P,

for any compact set C.

Theorem 1. If (2.2) holds with g satisfying (2.3), and (A0)−(A5) hold, then

θ̂n
a.s.−→ θ0, as n → ∞.

The asymptotic distribution of the MLE and its proof is similar to that in

Davis, Dunsmuir, and Streett (2003). Unless otherwise indicated, ηt = ηt(θ0)

and η̇t = (∂ηt/∂θ)|θ=θ0 .

Theorem 2. If (2.2) holds with g satisfying (2.3), and (A0)−(A7) hold, then
√
n(θ̂n − θ0)

L−→ N(0,Ω−1), as n → ∞, where Ω = E{B′(ηt)η̇tη̇
T
t }.

In practice, the population quantities in Ω can be replaced by their estimated

counterparts. Examples are given in specific models.

4. Examples

4.1. Linear dynamic models

The conditional mean process {Xt} in these models has GARCH-like dy-

namics, and specifically

Yt|Ft−1 ∼ p(y|ηt), Xt = δ + αXt−1 + βYt−1, (4.1)

where Xt = B(ηt) = E(Yt|Ft−1), and δ > 0, α, β ≥ 0 are parameters. Model (4.1)

is a special case of (2.2) with

gθ(x, y) = δ + αx+ βy, (4.2)

where θ = (δ, α, β)T and (2.3) corresponds to α + β < 1. Under this condition,

{Yt} can be represented as a causal ARMA(1,1) process. To see this, if dt =

Yt − Xt, then it follows from E(dt|Ft−1) = 0 that {dt, t ∈ Z} is a martingale

difference sequence. Therefore (4.1) can be written as

Yt − (α+ β)Yt−1 = δ + dt − αdt−1. (4.3)
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Let γY (h) denote the auto-covariance function of {Yt}. If γY (0) < ∞, then

γY (h) = (α + β)h−1γY (1), for h ≥ 1, see for example Brockwell and Davis

(1991). A direct application of Propositions 1 and 2 gives the stability properties

of (4.1).

Proposition 3. If (4.1) holds with α + β < 1, then {Xt, t ≥ 1} has a unique

stationary distribution π, and {(Xt, Yt), t ≥ 1} is ergodic if X1 ∼ π.

If θ0 = (δ0, α0, β0)
T denotes the true parameter vector, then the log-likelihood

function l(θ) and the score function Sn(θ) of (4.1) are given by (3.1) and (3.2),

respectively, where ∂ηt(θ)/∂θ = (∂ηt/∂δ, ∂ηt/∂α, ∂ηt/∂β)
T is determined recur-

sively by

∂ηt
∂θ

=

 1

B(ηt−1)

Yt−1

 /B′(ηt) + α
B′(ηt−1)

B′(ηt)

∂ηt−1

∂θ
. (4.4)

The maximum likelihood estimator θ̂n is a solution of Sn(θ) = 0. In order to

apply Theorem 2 when investigating the asymptotic behavior of the MLE, we

need to impose regularity conditions

(L0) θ0 lies in a compact neighborhood Θ ∈ R3
+ of θ0, where Θ = {θ = (δ, α, β)T ∈

R3
+ : 0 < δL ≤ δ ≤ δU , ϵ ≤ α+ β ≤ 1− ϵ} for some ϵ > 0.

(L1) E{Y1 supθ∈ΘB−1(δ/(1− α) + β
∑∞

k=0 α
kY−k)} < ∞.

(L2) E{B′(η1(θ0))(∂η1(θ)/∂θi)
2|θ=θ0} < ∞, for i = 1, 2, 3.

Theorem 3. If (4.1) and (L0)−(L2) hold, the maximum likelihood estimator θ̂n
is strongly consistent and

√
n(θ̂n − θ0)

L−→ N(0,Ω−1), as n → ∞,

where Ω = E{B′(ηt)η̇tη̇
T
t }, ηt = ηt(θ0), and η̇t =

∂ηt
∂θ |θ=θ0.

In practice, it can be difficult to verify (L1) and (L2), so we provide some

alternative sufficient conditions for them. Proofs can be found in Appendix B.

Remark 1. A sufficient condition for (L1) is

E
{
Y1B

−1
(δU

ϵ
+

∞∑
k=1

(1− ϵ)kY1−k

)}
< ∞,

provided δU/ϵ+
∑∞

k=1(1− ϵ)kY1−k is in the range of B(η).

Remark 2. If A′′(ηt) ≥ c for some c > 0 (true, for example, when A′′(η) is

increasing and A′′(B−1(δL))>0), then a sufficient condition for (L2) is γY (0)<∞.
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Example 1. The Poisson INGARCH(1, 1) model is

Yt|Ft−1 ∼ Pois(λt), λt = δ + αλt−1 + βYt−1, (4.5)

where δ > 0, α, β ≥ 0 are parameters. If α + β < 1, then {λt} has a unique

stationary distribution π; moreover if λ1 ∼ π, then {(Yt, λt), t ≥ 1} is ergodic.

In addition, under the assumption (L0), the maximum likelihood estimator θ̂n is

consistent and asymptotically normal.

The iterated random function approach can be used to study the properties

of INGARCH models with higher orders. A Poisson INGARCH(p, q) model takes

the form

Yt|Ft−1 ∼ Pois(λt), λt = δ +

p∑
i=1

αiλt−i +

q∑
j=1

βjYt−j , (4.6)

where δ > 0, αi, βj ≥ 0, i = 1, . . . , p; j = 1, . . . , q. Applying similar ideas as in

the INGARCH(1, 1) case, we have the following.

Proposition 4. Consider the INGARCH(p, q) model (4.6). If
∑p

i=1 αi+
∑q

j=1 βj
< 1, then {λt} is geometric moment contracting and has a unique stationary

distribution.

The proof can be found in Appendix B.3.

Example 2. The negative binomial INGARCH(1, 1) model (NB-INGARCH) is

Yt|Ft−1 ∼ NB(r, pt), Xt = δ + αXt−1 + βYt−1, (4.7)

where Xt = r(1 − pt)/pt, δ > 0, α, β ≥ 0 are parameters, and the notation

Y ∼ NB(r, p) means

P (Y = k) =

(
k + r − 1

r − 1

)
(1− p)kpr, k = 0, 1, 2, . . . .

When r = 1, the conditional distribution of Yt is geometric with probability of

success pt, in which case (4.7) reduces to a geometric INGARCH model.

By virtue of Proposition 3, if α + β < 1, then {Xt, t ≥ 1} is a geometric

moment contracting Markov chain with a unique stationary distribution π, and

when X1 ∼ π, {(Xt, Yt), t ≥ 1} is ergodic. As for inference, we can first estimate

θ = (δ, α, β)T for r fixed and calculate the profile likelihood as a function of r.

Then r is estimated by choosing the one that maximizes the profile likelihood,

and θ̂ can be obtained correspondingly. Moreover, if we assume r is known and

(α + β)2 + β2/r < 1, then under (L0), the maximum likelihood estimator θ̂n
is strongly consistent and asymptotically normal. The proof can be found in

Appendix B.4.
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4.2. Nonlinear dynamic models

It is possible to generalize (4.1) to nonlinear dynamic models. While the

theory developed in Sections 2 and 3 can be applied to many general nonlinear

dynamics, we will elaborate on one approach that is based on the idea of spline

basis functions, see for example, Ruppert, Wand, and Carroll (2003). In this

framework, the model specification is

Yt|Ft−1 ∼ p(y|ηt), Xt = δ + αXt−1 + βYt−1 +
K∑
k=1

βk(Yt−1 − ξk)
+, (4.8)

where K ∈ N0, δ > 0, α, β ≥ 0, β1, . . . , βK are parameters, {ξk}Kk=1 are the

so-called knots, and x+ is the positive part of x. In particular, when K = 0,

(4.8) reduces to the linear model (4.1). It is easy to see that (4.8) is a special

case of (2.2) by taking gθ(x, y) = δ + αx + βy +
∑K

k=1 βk(y − ξk)
+, where θ =

(δ, α, β, β1, . . . , βK)T .

Being piecewise linear in Yt−1, (4.8), in principle, provides a wide and flexible

family of nonlinear dynamics. In each of the pieces segmented by the knots, (4.8)

has INGARCH-like dynamics. For example, if Yt−1 ∈ [ξs, ξs+1) for some s < K,

then Xt = (δ −
∑s

k=1 βkξk) + αXt−1 + (β +
∑s

k=1 βk)Yt−1. This can be viewed

as one of the generalizations (e.g., Samia and Chan (2010)) to the threshold au-

toregressive model (Tong (1990)). Wang et al. (2014) proposed the self-excited

threshold Poisson autoregression model as a generalization to the Poisson IN-

GARCH (4.5) is an attempt to model negative autocorrelation. Model (4.8)

turns out to be a special case of it, in that the same α is shared across regimes.

According to Propositions 1 and 2, we can establish the stability properties of

(4.8).

Proposition 5. If (4.8) holds with α + β < 1, β +
∑s

k=1 βk ≥ 0 and α + β +∑s
k=1 βk < 1 for s = 1, . . . ,K, then {Xt} is geometric moment contracting and

has a unique stationary distribution π. Moreover if X1 ∼ π, then {(Xt, Yt), t ≥ 1}
is ergodic.

We consider inference for this model. If we assume the knots {ξk}Kk=1 are

known for K fixed, then the parameter vector θ = (δ, α, β, β1, . . . , βK)T can

be estimated by maximizing the conditional log-likelihood function, which is

available according to (3.1). The number of knots K can be selected by virtue of

an information criteria, such as AIC and BIC. As for the locations of knots, there

are different strategies one can adopt for choosing them. One method is to place

the knots at the {j/(K + 1), j = 1, . . . ,K} quantiles of the population, which

can be estimated from the data. A second method is to choose the locations that
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maximize the log likelihood. We will apply both procedures to datasets in the

next section.

To study the asymptotic behavior of the estimates, first note that by iterating

the recursion,

Xt =
δ

1− α
+ β

∞∑
i=0

αiYt−1−i +

K∑
k=1

βk

∞∑
i=0

αi(Yt−1−i − ξk)
+

=
δ

1− α
+

∞∑
i=0

αi{βYt−1−i +

K∑
k=1

βk(Yt−1−i − ξk)
+}. (4.9)

This defines the function gθ∞ as in Xt = gθ∞(Yt−1, Yt−2, . . .) and also verifies

assumptions (A1)−(A3). Hence, to apply Theorem 3, we need only impose some

regularity assumptions on (4.8).

(NL1) θ0 is an interior point in the parameter space Θ, which is a compact subset

of the parameter set satisfying the conditions in Proposition 5.

(NL1) E[Y1 sup
θ∈Θ

B−1((δ/(1− α) +
∞∑
i=0

αi{βYt−1−i +
K∑
k=1

βk(Yt−1−i − ξk)
+})] < ∞.

(NL2) E[B′(η1(θ0)){∂η1(θ)/∂θi)}2|θ=θ0 ] < ∞, for i = 1, . . . ,K + 3.

Sufficient conditions for assumptions (NL1) and (NL2) can be established simi-

larly to those given in Remarks 1 and 2 in Appendix B.

Theorem 4. If (4.8) holds with known placement of the knots, and (NL0)−(NL2)

hold, then the maximum likelihood estimator θ̂n is strongly consistent and

√
n(θ̂n − θ0)

L−→ N(0,Ω−1), as n → ∞,

where Ω = E{B′(ηt)η̇tη̇
T
t }.

We use the Poisson nonlinear dynamic model as an example of the results;

see Section 5 for implementation of the estimation procedure. The model is

Yt|Ft−1 ∼ Pois(λt), λt = δ + αλt−1 + βYt−1 +

K∑
k=1

βk(Yt−1 − ξk)
+. (4.10)

Under the conditions of Proposition 5 and Theorem 4, {(λt, Yt), t ≥ 1} is a

stationary and ergodic process, and the estimates are strongly consistent and

asymptotically normal. In practice the covariance matrix of the estimates can

be obtained by recursively applying

∂λt

∂θ
=

(
1, λt−1, Yt−1, (Yt−1 − ξ1)

+, . . . , (Yt−1 − ξK)+
)T

+ α
∂λt−1

∂θ
.
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Another example is the Poisson exponential autoregressive model proposed by

Fokianos, Rahbek, and Tjøstheim (2009). Here

Yt|Ft−1 ∼ Pois(λt), λt = (α0 + α1 exp{−γλ2
t−1})λt−1 + βYt−1, (4.11)

where α0, α1, β, γ > 0 are parameters. If α0 + α1 + β < 1, then model (4.11)

belongs to the class of models at (2.2) and hence enjoys the stability properties

stated in Propositions 1 and 2. As for the inference of the model, see Fokianos,

Rahbek, and Tjøstheim (2009).

5. Numerical Results

The performance of the estimation procedure for the Poisson nonlinear dy-

namic model is illustrated in a simulation study. The MLE was obtained by

optimizing the log-likelihood function (3.1) using a Newton-Raphson method.

Simulation results of the Poisson INGARCH can be found in Fokianos, Rahbek,

and Tjøstheim (2009). Other models, including the negative binomial linear and

nonlinear dynamic models and the exponential autoregressive model (4.11) were

applied to two datasets, and tools for checking goodness of fit were considered.

5.1. Simulation for the nonlinear model

A 1-knot nonlinear dynamic model was simulated according to

Yt|Ft−1 ∼ Pois(λt), λt = 0.5 + 0.5λt−1 + 0.4Yt−1 − 0.2(Yt−1 − 5)+

with different sample sizes. Each sample size and parameter configuration was

replicated 1,000 times. For each realization, the first 500 simulated observations

were discarded as burn-in in order to let the process reach its stationary regime.

We first estimated the parameters assuming the true underlying model (4.8)

with only one knot at 5. The means and standard errors of the estimates from

all 1,000 runs are summarized in Table 1, and the histograms of the estimates

are depicted in Figure 1. The performance of these estimates is reasonably good

and consistent with the theory in Theorem 4. As for estimating the parameters

without knowing the location of the knots, the corresponding results of the MLE

obtained by fitting a 1-knot model to all the 1,000 replications are summarized

in Table 2. Here the locations of the knots were determined by sample quantiles.

The performance of the maximum likelihood estimates of β and β1 is not as good

as in the known knot case, but the overall model performance, as reflected in the

computation of the scoring rules (described in the next section), is competitive

with the known knot case.

For the problem of selecting the number of knots using an information crite-

rion, simulations with different sample sizes were implemented; model selection
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Table 1. Estimation results for 1-knot model with known knot location.

δ α β β1 n
True 0.5 0.5 0.4 -0.2

Estimates 0.5596 0.4861 0.3990 -0.2009 500
s.e. (0.0087) (0.0030) (0.0026) (0.0051)

Estimates 0.5265 0.4944 0.3991 -0.2016 1,000
s.e. (0.0041) (0.0016) (0.0013) (0.0025)

Table 2. Estimation for 1-knot model with unknown knot location.

δ α β β1 n
True 0.5 0.5 0.4 -0.2

Estimates 0.5387 0.4852 0.4187 -0.1614 500
s.e. (0.0089) (0.0030) (0.0031) (0.0047)

Estimates 0.5002 0.4943 0.4197 -0.1679 1,000
s.e. (0.0042) (0.0016) (0.0015) (0.0023)

Table 3. Model selection of 1-knot simulation.

Criteria 0 knot 1 knot 2 knots 3 knots ≥ 4 knots n
AIC 34.3% 37.6% 20.9% 5.2% 2.0% 500
BIC 80.5% 18.8% 0.6% 0.1% 0
AIC 12.4% 45.0% 29.9% 8.3% 4.4% 1,000
BIC 59.4% 38.4% 2.0% 0.2% 0

results are summarized in Table 3. Numbers in the table stand for the proportion

of times that each particular model was selected in the 1,000 runs. For AIC, the

1-knot model was selected most often followed by a 2-knot model, at least in the

cases when n =1,000.

In interpolating the nonlinear dynamic of λt by a piecewise linear function,

we plot in Figure 2 the fitted functions β̂y+
∑K

k=1 β̂k(y− ξ̂k)
+ for each run of the

simulations against its true form 0.4y − 0.2(y − 5)+. In the graph, the piecewise

linear function fitted by the 1-knot model is closest to the true curve.

5.2. Two data applications

1. Number of transactions of Ericsson stock

Both linear and nonlinear dynamic models were employed to fit the number

of transactions per minute for the stock Ericsson B during July 2nd, 2002 which

consists of 460 observations. Figure 3 plots the data and the autocorrelation

function. The positive dependence displayed in the data suggests the application

of the models in our study.
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Figure 1. Histograms of the 1-knot model with sample size 1,000 assuming
the knot is known. The overlaying curves are the density estimates and the
dashed vertical lines represent the true values of the parameters.

By computing the MLE of the parameters, the fitted Poisson INGARCH

model is given by

λ̂t = 0.2912 + 0.8312λ̂t−1 + 0.1395Yt−1,

(0.1000) (0.0242) (0.0188)

and the fitted NB-INGARCH model is

Yt|Ft−1 ∼ NB(8, p̂t), X̂t = 0.2676 + 0.8447X̂t−1 + 0.1282Yt−1,

(0.1406) (0.0350) (0.0274)

where X̂t = 8(1 − p̂t)/p̂t. The standard deviations in the parentheses were cal-

culated according to the remark after Theorem 2.

As for the Poisson nonlinear dynamic model, AIC and BIC were used to help

select the number of knots among 0 to 5; the values are reported in Table 4. The
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Figure 2. Left: the thick black curve is the true function 0.4y − 0.2(y −
5)+, and the other curves are the piecewise linear functions fitted in each
simulation where the number of knots K is selected via AIC; Right: for each
value of K, we plot the fitted curve from one specific run that chooses the
particular number of knots.

Table 4. Model selection results for Ericsson data.

0-knot 1-knot 2-knot 3-knot 4-knot 5-knot
LogL -1433.19 -1431.21 -1431.08 -1430.58 -1429.65 -1431.12
AIC 2874.38 2872.41 2874.17 2875.17 2875.30 2880.25
BIC 2890.90 2893.07 2898.95 2904.08 2908.35 2917.43

fitted 1-knot Poisson model, which had the smallest AIC, is given by

λ̂t = 0.5837 + 0.8319λ̂t−1 + 0.0906Yt−1 + 0.0722(Yt−1 − 9)+.

(0.1884) (0.0241) (0.0295) (0.0373)

The AIC values of the 2-knot and 3-knot models are both close to that of the

1-knot model, and therefore are used as a basis for comparison with the minimum

AIC model. These models are given by λ̂t = 0.5519+ 0.8326λ̂t−1 +0.0961Yt−1 +
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Figure 3. Top: Number of transactions per minute of the stock Ericsson B
during July 2nd 2002; Bottom: ACF of the data.

0.0154(Yt−1−7)++0.0559(Yt−1−11)+ and λ̂t = 0.3614+0.8361λ̂t−1+0.1206Yt−1+
0.0433(Yt−1 − 6)+ − 0.0914(Yt−1 − 9)+ + 0.0914(Yt−1 − 13)+, respectively.

From our model checking, the negative binomial INGARCH model seems
to outperform the Poisson-based models. This could be explained by the over-
dispersion exhibited by the data, since the mean and variance are 9.91 and 32.84,
respectively. To this end, we fit the nonlinear negative binomial models and
selected the number of knots by minimizing the AIC. The AIC value of a 1-knot
model was the second smallest among all the candidates, with 2,674.69 compared
to the smallest value 2,674.04, which is attained by the negative binomial fitted
INGARCH. The fitted 1-knot negative binomial nonlinear model is given by
Yt|Ft−1 ∼ NB(8, p̂t), where X̂t = 8(1− p̂t)/p̂t follows

X̂t = 0.4931 + 0.8444X̂t−1 + 0.0903Yt−1 + 0.0603(Yt−1 − 9)+.

(0.2559) (0.0350) (0.0412) (0.0546)

Here the locations of knots for the nonlinear dynamic model were estimated
by the corresponding sample quantiles. We also tried estimating the knots by
maximizing the likelihood and, in this application, the results by both methods
were nearly identical. The exponential autoregressive model (4.11) is also applied
to this dataset by Fokianos, Rahbek, and Tjøstheim (2009); it is given by

λ̂t = (0.8303 + 7.030 exp{−0.1675λ̂2
t−1})λ̂t−1 + 0.1551Yt−1.
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Figure 4. Top: Dotted curve represents the number of transactions of Er-
icsson stock, and the black curve is the fitted conditional mean process by
1-knot NB-based model; Bottom: ACF of the standardized Pearson residu-
als.

(0.0232) (3.0732) (0.0592) (0.0218)

To assess the adequacy of fit, we consider an array of graphical and quan-

titative diagnostic tools for time series, some of which are specifically designed

for time series of counts. Readers can refer to Davis, Dunsmuir, and Streett

(2003) and Jung and Tremayne (2011) for a comprehensive treatment of

the tools. We first consider the standardized Pearson residuals et = (Yt −
E(Yt|Ft−1))/

√
Var(Yt|Ft−1) which can be obtained by replacing the population

quantities by their estimated counterparts. If the model is correctly specified,

then the residuals {êt} should be a white noise sequence with constant vari-

ance. All the models considered above give very similar fitted conditional mean

processes and the standardized Pearson residuals appear to be white. Figure 4

displays the fitted result for the 1-knot negative binomial model.

Another model check uses probability integral transform (PIT); when the

underlying distribution is continuous, the PIT is standard uniform. If the un-

derlying distribution is discrete, some adjustments are required and the so-called

randomized PIT is introduced by perturbing the step function characteristic of

the CDF of discrete random variables (see Brockwell (2007)). More recently,
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Table 5. Quantitative model checking for Ericsson data.

Model log likelihood p-value of PIT LS QS RPS
Poisson INGARCH -1433.19 < 10−5 3.1167 -0.0576 2.6883
NB INGARCH -1332.02 0.7386 2.8958 -0.0671 2.6063
1-knot Poisson model -1431.21 < 10−5 3.1123 -0.0573 2.6848
2-knot Poisson model -1431.08 < 10−5 3.1121 -0.0575 2.6843
3-knot Poisson model -1430.58 < 10−5 3.1110 -0.0580 2.6779
1-knot NB model -1331.34 0.8494 2.8942 -0.0671 2.6021
Exp-auto model -1448.69 < 10−5 3.1504 −0.0600 2.6924

Czado, Gneiting, and Held (2009) proposed a non-randomized version of PIT as
an alternative adjustment. Since it usually gives the same conclusion for model
checking, we do not provide the non-randomized version here. For any t, the
randomized PIT is

ũt := Ft(Yt − 1) + νt
[
Ft(Yt)− Ft(Yt − 1)

]
,

where {νt} is a sequence of iid uniform (0, 1) random variables, and Ft(·) is the
predictive cumulative distribution. Here Ft(·) is simply the CDF of a Poisson or a
negative binomial distribution. If the model is correct, then ũt is an iid sequence
of uniform (0, 1) random variables. Jung and Tremayne (2011) reviewed several
ways to depict this and we adopt their method in our study. To test if the PIT
is uniform (0, 1), the histograms of PIT from different models were plotted and a
Kolmogorov-Smirnov test was carried out. The results are summarized in Figure
5, and the p-values are reported in Table 5. The two negative binomial-based
models pass the PIT test, while none of the Poisson-based models does. This
observation could again be explained by the over-dispersion phenomenon of the
data.

To measure the power of predictions by models, various scoring rules have
been proposed in literature, see e.g., Czado, Gneiting, and Held (2009) and Jung
and Tremayne (2011). Most of them are computed as the average of quantities
related to predictions and take the form (n − 1)−1

∑n
t=2 s(Ft(Yt)) where Ft(·)

is the CDF of the prediction distribution and s(·) denotes some scoring rule.
We calculated three scoring rules for the fitted models: logarithmic score (LS),
quadratic score (QS) and ranked probability score (RPS). For definitions, see
Jung and Tremayne (2011). Table 5 summarizes these scores for all of the fitted
models. As seen from the table, most of the diagnostic tools favor the one-knot
negative binomial model for the Ericsson data.

2. Return times of extreme events of Goldman Sachs Group (GS) stock

We constructed a time series based on daily log-returns of Goldman Sachs
Group (GS) stock from May 4th, 1999 to March 16th, 2012. We first calculated
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Figure 5. Left: histograms of randomized PIT’s for all of the models fitted
to the Ericsson stock data; Right: QQ-plots of ũt against standard uniform
distribution for the corresponding models, where the straight line is the 45◦

line with zero intercept.

the hitting times, τ1, τ2, . . ., for which the log-returns of GS stock falls outside

the 0.05 and 0.95 quantiles of the data. The discrete time series of interest is the

return (or inter-arrival) times Yt = τt − τt−1. If the data are in fact iid, or do

not exhibit clustering of large values, then the Yt’s should be independent and

geometrically distributed with probability of success p = 0.1 (Chang (2010)).

Figure 6 plots the return times of the stock, and the ACF and histogram of the
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Figure 6. Top left: Return times of GS stock, the dashed horizontal line
locates at 80; Top right: Return times truncated at 80 in order to ameliorate
the visual effect of the five large observations that are represented by solid
triangles; Bottom left: ACF of the return times; Bottom right: Histogram
of the return times, where the curve overlaid is the density function of a
geometric distribution with p = 0.1.

return times. In order to ameliorate the visual effect of some extremely large

observations, the time series is also plotted in the top right panel of Figure 6 on

a reduced vertical scale in which it is truncated at 80, and the five observations

that are affected are depicted by solid triangles.

To explore this time series, the geometric INGARCH (negative binomial

INGARCH (4.7) with r = 1), and the 1-knot and 2-knot geometric-based models

were fitted to the data. The number of knots for the nonlinear dynamic models

was chosen by minimizing the AIC, and the locations of knots were estimated

by maximizing the likelihood based on a grid search. A constraint was imposed:

there should be at least 30 observations in each of the regimes segmented by

the knots in order to guarantee that there are sufficient observations to obtain

quality estimates of the parameters. The sample quantile method for estimating

knot locations did not perform as well.

Since Yt ≥ 1 for any t, we used a version of the geometric distribution that

counts the total number of trials, instead of the failures. In particular, the fitted
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Table 6. Quantitative model checking for GS return times.

Model log likelihood p-value of PIT LS QS RPS
Poisson INGARCH -2681.06 < 10−5 8.2842 -0.0675 4.1373
Geom INGARCH -857.73 0.2581 2.6477 -0.1436 3.4100
3-knot Poisson model -2670.33 < 10−5 8.2510 -0.0693 4.1400
1-knot Geom model -857.58 0.3988 2.6472 -0.1436 3.4041
2-knot Geom model -857.42 0.2006 2.6468 -0.1435 3.3939

1-knot geometric-based model is given by Yt − 1|Ft−1 ∼ Geom(pt), where

Xt = 0.5042 + 0.4729Xt−1 + 0.5271(Yt−1 − 1)− 0.0526(Yt−1 − 5)+,

and the fitted 2-knot geometric-based model is

Xt = 0.5414+0.4531Xt−1+0.5469Yt−1−0.2333(Yt−1−9)++0.2332(Yt−1−18)+,

where Xt = (1 − pt)/pt. In both models, α̂ + β̂ is very close to unity, so the

estimated parameters are close to the boundary of the parameter space. This

is similar to the integrated GARCH (IGARCH) model in which α + β = 1. In

our application, the mean of the time series of return times is about 10, while

the variance is 1,101. A simulation according to the fitted model gave mean and

median close to those of the data, but the variance of the simulated data was

extraordinarily large, resembling the feature of the observed data. Because, the

fitted models are still stationary, the parameters no longer satisfy the conditions

specified in Theorem 4 that ensure a finite variance.

The fitted geometric-based models are capable of capturing the high volatility

part of the data. Their standardized Pearson residuals were also calculated and

appear to be white. Results of the PIT test are depicted in Figure 7, and the

prediction scores and the p-values of the PIT test are summarized in Table 6.

Two Poisson-based models are also included for comparison and, as expected,

they do not perform as well as the geometric-based models.
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Appendix A. Properties of the exponential family

An important property of the one-parameter exponential family is stochastic

monotonicity. A random variable X is said to be stochastically smaller than a

random variable Y (written as X ≤ST Y) if F (x) ≥ G(x) for all x, where F (x)

and G(x) are the cumulative distribution functions of X and Y respectively. We

refer readers to Yu (2009) for the related theory.
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Figure 7. Left: histograms of randomized PIT’s for the models fitted to GS
return times; Right: QQ-plots of ũt against standard uniform distribution
for the corresponding models, where the straight line is the 45◦ line with
zero intercept.

Proposition A.1. Suppose random variables Y ′ and Y ′′ follow distributions
belonging to the one-parameter exponential family (2.1) with the same A, h, and
µ, but with natural parameters η′ and η′′, respectively. If η′ ≤ η′′, then Y ′ is
stochastically smaller than Y ′′.

Proof. Let the probability density functions of Y ′ and Y ′′ be p(y|η′) and p(y|η′′),
respectively. Then their log ratio is

l(y) = log
p(y|η′)
p(y|η′′)

= log
exp{η′y −A(η′)}h(y)
exp{η′′y −A(η′′)}h(y)
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= y(η′ − η′′) + [A(η′′)−A(η′)],

a concave function in y. From Definition 2 in Yu (2009), Y ′ is log concave relative

to Y ′′, Y ′ ≤lc Y
′′. As A(η) is increasing in η, limy↓0 l(y) = A(η′′)−A(η′) ≥ 0 for

continuous p(y|η), and p(0|η′)/p(0|η′′) ≥ 1 for discrete p(y|η). Hence, according

to Theorem 1 in Yu (2009), Y ′ is stochastically smaller than Y ′′, Y ′ ≤ST Y ′′.

Let Fx be the cumulative distribution function of p(y|η) in (2.1) with x =

B(η), and its inverse be F−1
x (u) := inf{t ≥ 0 : Fx(t) ≥ u} for u ∈ [0, 1].

Proposition A.2. Suppose U is uniform (0, 1), and take Y ′ = F−1
x′ (U) and Y ′′ =

F−1
x′′ (U), where x′ = B(η′) and x′′ = B(η′′). Then E|Y ′ − Y ′′| = |x′ − x′′|.

Proof. It follows from the construction of Y ′ and Y ′′ that they follow the one-

parameter exponential family (2.1) with natural parameters η′ and η′′ respec-

tively, and EY ′ = x′, EY ′′ = x′′. If x′ ≤ x′′, then Y ′ is stochastically smaller than

Y ′′ by virtue of Proposition A.1. It follows that F−1
x′ (θ) ≤ F−1

x′′ (θ) for θ ∈ (0, 1),

i.e., Y ′ ≤ Y ′′. This implies E|Y ′ − Y ′′| = E(Y ′′ − Y ′) = x′′ − x′. Similarly if

x′ ≥ x′′, then E|Y ′ − Y ′′| = x′ − x′′. Hence we have E|Y ′ − Y ′′| = |x′ − x′′|.

Appendix B. Linear dynamic models and examples

At (4.1), note that by recursion we have, for all t,

Xt(θ) =
δ

1− α
+ β

∞∑
k=0

αkYt−1−k. (B.1)

It follows that Xt(θ) ≥ x∗ = δ/(1− α) since Yt only takes non-negative values.

B.1. Hessian matrix

In addition to the score function derived in Section 4.1, the Hessian matrix

can be found by taking derivatives of the score function:

Hn(θ) =
∂2l(θ)

∂θ∂θT
=

n∑
t=1

[−B′(ηt(θ))
∂ηt(θ)

∂θ

∂ηt(θ)

∂θT
+ {Yt −B(ηt(θ))}

∂2ηt(θ)

∂θ∂θT
],

where

∂2ηt
∂θ∂θT

=

(
B′′(ηt)

(B′(ηt))2
∂ηt
∂θ

B′(ηt−1)B
′(ηt)

(B′(ηt))2
∂ηt−1

∂θ
− B′(ηt−1)B

′′(ηt)

(B′(ηt))2
∂ηt
∂θ

−Yt−1B
′′(ηt)

(B′(ηt))2
∂ηt
∂θ

)
+ (0 1 0)T

B′(ηt−1)

B′(ηt)

∂ηt−1

∂θT
+ α

B′′(ηt−1)B
′(ηt)

(B′(ηt))2

∂ηt−1

∂θ

∂ηt−1

∂θT
− α

B′(ηt−1)B
′′(ηt)

(B′(ηt))2
∂ηt
∂θ

∂ηt
∂θT

+ α
B′(ηt−1)

B′(ηt)

∂2ηt−1

∂θ∂θT
.
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B.2. Proofs of Remarks 1 and 2

Proof. Remark 1 can ben seen by noting that X1(θ) ≤ δU/ϵ+
∑∞

k=1(1−ϵ)kY1−k.
For Remark 2, the most difficult case is the derivative with respect to θ2 = α and
we only give its proof, since the arguments for δ and β are similar. First note
that

E{B′(η1(θ0))
(∂η1(θ0)

∂α

)2} = E{ 1

B′(η1)

(∂B(η1)

∂α

)2} ≤ 1

c
E{∂B(η1)

∂α
}2,

where ∂B(η1)/∂α = δ/(1− α)2 + β
∑∞

k=1 kα
k−1Y−k. On account of stationarity,

one can show that

E
( ∞∑
k=1

kαk−1Y−k

)2 ≤ {γY (0) +
2γY (1)

1− α(α+ β)
}

∞∑
k=1

k2α2k−2

+
2αγY (1)

1− α2(α+ β)2

∞∑
k=1

kα2k−2 + µ2
( ∞∑
k=1

kαk−1
)2

< ∞,

where µ = EYt < ∞. Hence E[B′(η1(θ0)){∂η1(θ0)/∂α}2] < ∞ if γY (0) < ∞.

B.3. More on the Poisson INGARCH

The Poisson INGARCH(1, 1) model is

Yt|Ft−1 ∼ Pois(λt), λt = δ + αλt−1 + βYt−1,

where δ > 0, α, β ≥ 0 are parameters. When α + β < 1, {(Yt, λt), t ≥ 1}
is an ergodic stationary process and the MLE θ̂n is strongly consistent and
asymptotically normal by Theorem 3. To see this, we need only verify assump-
tions (L1) and (L2). From Fokianos, Rahbek, and Tjøstheim (2009), we have
γY (0) = {1 − (α + β)2 + β2}/{1 − (α + β)2} and γY (h) = µC(θ)(α + β)h−1 for
h ≥ 1, where µ = EYt = δ/(1−α−β) and C(θ) is a positive constant dependent
on θ. Hence by the Monotone Convergence Theorem, we have

E[Y1 log{δU/ϵ+
∞∑
k=1

(1− ϵ)kY1−k}] ≤ E[Y1{δU/ϵ+
∞∑
k=1

(1− ϵ)kY1−k}]

=
δU
ϵ
EY1 +

∞∑
k=1

(1− ϵ)kEY1Y1−k

= µ
δU
ϵ

+

∞∑
k=1

(1− ϵ)k{γY (k) + µ2} < ∞.

Hence assumption (L1) holds according to Remark 1. Now B(ηt) = λt ≥ λ∗ :=
δ/(1−α) for all t, so A′′(ηt) = eηt is bounded away from 0, so (L2) holds according
to Remark 2.
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We now give a proof of Proposition 4.

Proof. The proof considers two separate cases: q = 1 and q > 1, since they
require different methods to construct the state space.
q = 1: Without loss of generality we consider p = 2. If Xt = (λt, λt+1), then Xt

is a Markov chain. Here λt ≥ λ∗ = δ/(1 − α1 − α2). Xt can be constructed by
iteratively imposing the random function fu, u ∈ (0, 1),

fu : [λ∗,∞)× [λ∗,∞) −→ [λ∗,∞)× [λ∗,∞),

x = (λ1, λ2) 7−→ (λ2, δ + α1λ2 + α2λ1 + βF−1
λ2

(u)).

For any x = (x1, x2),y = (y1, y2) in the state space S = [λ∗,∞) × [λ∗,∞), let
ρ(x,y) = w1|x1 − y1|+ w2|x2 − y2|, where wi > 0, i = 1, 2, and w1, w2 are to be
decided. If x1 = (λ0

1, λ
0
2) := (λ∗, λ∗) then, for any x = (λ1, λ2), we have

Eρ(X1(x),X1(x1)) =

∫ 1

0
ρ(fu(x), fu(x1))du

= a2w2|λ1 − λ0
1|+ {w1 + w2(a1 + b)}|λ2 − λ0

2|,

where the last equality holds because λt ≥ λ∗. Therefore it is sufficient to
find an r ∈ (0, 1) and strictly positive (w1, w2) such that Eρ(X1(x),X1(x1)) ≤
rρ(x,x1) = r{w1|λ1 − λ0

1| + w2|λ2 − λ0
2|}. This can be obtained if the equation

r2 − (a1 + b)r − a2 = 0 yields a root r+ = (a1 + b+
√

(a1 + b)2 + 4a2)/2 < 1. It
can be shown that under α1 + α2 + β < 1 the root r+ ∈ (0, 1). Here the choice
of (w1, w2) is not unique.

q > 1: Without loss of generality we consider the INGARCH(2,2) model. With
the Markov chain Xt = (Yt, λt, λt+1), then the chain can be obtained by defining
the iterated random functions fu : Z0×[λ∗,∞)×[λ∗,∞) → Z0×[λ∗,∞)×[λ∗,∞)
as f(x) = f(n, λ1, λ2) = (F−1

λ2
(u), λ2, δ + α1λ2 + α2λ1 + β1F

−1
λ2

(u) + β2n), where
λ∗ = δ/(1−α1−α2) and u ∈ (0, 1). Take a metric ρ on S = Z0×[λ∗,∞)×[λ∗,∞)
as ρ(x,y) =

∑3
i=1wi|xi − yi|, where x = (xi)

3
i=1,y = (yi)

3
i=1 and wi > 0, i =

1, 2, 3. If x1 = (n0, λ
0
1, λ

0
2) := (0, λ∗, λ∗) then, for any x = (n, λ1, λ2), we have

Eρ(X1(x),X1(x1)) =

∫ 1

0
|fu(x)− fu(x1)|du

= β2w3|n− n0|+ w3α2|λ1 − λ0
1|

+{w1 + w2 + (α1 + β1)w3}|λ2 − λ0
2|.

As in the first case, one needs to solve the inequality (α2 + β2)(w1 + w2) ≤
[r − (α1 + β1)](α2 + β2)w3 ≤ r(w1 + w2)[r − (α1 + β1)] for an r ∈ (0, 1) and a
strictly positive triple (w1, w2, w3). This can be achieved if α1+α2+β1+β2 < 1,
which implies the quadratic equation r2 − (α1 + β1)r − (α2 + β2) = 0 has a root
r+ ∈ (0, 1). The result hence follows by a simple induction.
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B.4. More on the NB-INGARCH

The NB-INGARCH(1, 1) model is

Yt|Ft−1 ∼ NB(r, pt), Xt = δ + αXt−1 + βYt−1,

where Xt = r(1 − pt)/pt and δ > 0, α, β ≥ 0 are parameters. If α + β <

1, then {Xt, t ≥ 1} is a geometric moment contracting Markov chain with a

unique stationary distribution π and, when X1 ∼ π, {(Xt, Yt), t ≥ 1} is ergodic.

Moreover, if we assume r is known and (α + β)2 + β2/r < 1, then under (L0),

the maximum likelihood estimator θ̂n is strongly consistent and asymptotically

normal with mean θ0 and covariance matrix Ω−1/n, where Ω = E{r/Xt/(Xt +

r)(∂Xt/∂θ)(∂Xt/∂θ)
T }. Verification of (L1) and (L2) is sufficient for this. Since

B−1(x) = log{x/(x + r)} < 0, so (L1) holds according to Remark 1. Now

A′′(ηt) = reηt/(1 − eηt)2 is increasing, so (L2) holds if γY (0) < ∞ according to

Remark 2. Because Var(X1) = α2Var(X0)+β2Var(Y0)+2αβCov(X0, Y0), where

Var(Y0) = E{Var(Y0|X0)}+Var{E(Y0|X0)}

= E{r(1− p0)

p20
}+Var(X0) = µ+

1

r
EX2

0 +Var(X0),

and Cov(X1, Y1) = EY1X1 − µ2 = EX2
1 − µ2 = Var(X1), it follows from the

stationarity that

Var(X0) =
β2µ(1 + µ/r)

1− (α+ β)2 − β2/r
.

Hence γY (0) < ∞ provided (α+ β)2 + β2/r < 1.

Appendix C. Proofs

C.1. Proof of Proposition 1

It suffices to verify the two conditions formulated in Wu and Shao (2004).

For any y0 in the state space S, E|y0 − fu(y0)| =
∫ 1
0 |y0 − g(y0, F

−1
y0 (u))|du ≤

y0 + g(0, 0) + ay0 + b
∫ 1
0 F−1

y0 (u)du ≤ g(0, 0) + (1 + a + b)y0 < ∞. Next, for a

fixed x0 ∈ S, there exists a unique η0 such that x0 = B(η0) due to the strict

monotonicity of B(η). For any x ≥ x0, there exists a unique η ≥ η0 such that

x = B(η) ≥ B(η0) = x0. Hence, by (2.3), we have

E|X1(x)−X1(x0)| =
∫ 1

0

∣∣g(x, F−1
x (u)

)
− g

(
x0, F

−1
x0

(u)
)∣∣du

≤ a|x− x0|+ b

∫ 1

0

∣∣F−1
x (u)− F−1

x0
(u)

∣∣du. (C.1)

It follows from x ≥ x0 and Proposition A.1 that for any u ∈ (0, 1), F−1
x0

(u) ≤
F−1
x (u). Therefore
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E|X1(x)−X1(x0)| ≤ a(x− x0) + b
{∫ 1

0
F−1
x (u)du−

∫ 1

0
F−1
x0

(u)du
}

= (a+ b)(x− x0).

Similarly for x < x0, we have E|X1(x)−X1(x0)| ≤ (a+ b)(x0−x). Now suppose

E|Xn(x)−Xn(x0)| ≤ (a+ b)n|x− x0|, then

E|Xn+1(x)−Xn+1(x0)| = E[E{|Xn+1(Xn(x))−Xn+1(Xn(x0))|
∣∣U1, . . . , Un}]

≤ E{(a+ b)|Xn(x)−Xn(x0)|}
≤ (a+ b)n+1|x− x0|.

By induction, {Xt} is geometric moment contracting and as a result, π is its

unique stationary distribution.

To show that EπX1 < ∞, by taking conditional expectation on both sides

of (2.4) we have E(Xt|Xt−1) ≤ g(0, 0) + (a + b)Xt−1. Inductively one can show

that, for any t ≥ 1,

E(Xt|X1) ≤
1− (a+ b)t−1

1− (a+ b)
g(0, 0) + (a+ b)t−1X1.

Since for any x ∈ S, Xt(x)
L−→ X1 ∼ π as t → ∞, Xt(0)

L−→ X1 ∼ π and, by

Theorem 3.4 in Billingsley (1999), we have

EπX1 ≤ lim inf
t→∞

E(Xt|X1 = 0) ≤ g(0, 0)

1− (a+ b)
< ∞.

To prove (c), let {ξt, t ≥ 1} be a sequence of independent uniform (0, 1) random

variables, independent of {Xt, t ≥ 1}, so Yt = F−1
Xt

(ξt). Since {(Xt, ξt), t ≥ 1} is

a stationary sequence if X1 ∼ π, so {Yt, t ≥ 1} must also be a stationary process.

C.2. Proof of Proposition 2

Define a sequence of functions {gk, k ≥ 1} in a way such that g1 = g, and for

k ≥ 2, gk(x, y1, . . . , yk) = gk−1(g(x, yk), y1, . . . , yk−1). Then it follows from (2.2)

that for all t ∈ Z,
Xt = gk(Xt−k, Yt−1, . . . , Yt−k).

By virtue of (2.3), we have E
∣∣Xt−g1(0, Yt−1)

∣∣ = E
∣∣g1(Xt−1, Yt−1)−g1(0, Yt−1)

∣∣ ≤
aEXt−1. By induction, it follows that for any k ≥ 1,

E
∣∣Xt − gk(0, Yt−1, . . . , Yt−k)

∣∣ ≤ ak EXt−k.

Since EπX1 < ∞, it follows that gk(0, Yt−1, . . . , Yt−k)
L1

−→ Xt, as k → ∞. Hence

there exists a measurable function g∞ : N∞
0 = {(n1, n2, . . .), ni ∈ N0} −→ [0,∞)

such that Xt = g∞(Yt−1, Yt−2, . . .) almost surely, which proves (a).
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To prove (b), let FY
k,l = σ{Yk, . . . , Yl} for −∞ ≤ k ≤ l ≤ ∞. Then the

coefficients of absolute regularity of the stationary count process {Yt, t ∈ Z} are

defined as

β(n) = E
{

sup
A∈FY

n,∞

∣∣P (A|FY
−∞,0)− P (A)

∣∣},
where FY

−∞,0 = σ{X1, Y0, Y−1, . . .} according to (a). Because the distribution

of (Yn, Yn+1, . . .) given σ{X1, Y0, Y−1, . . .} is the same as that of (Yn, Yn+1, . . .)

given X1 for n ≥ 1, the coefficients of absolute regularity become

β(n) = E
{

sup
A∈FY

n,∞

∣∣P (A|σ{X1, Y0, Y−1, . . .})− P (A)
∣∣}

= E
{

sup
A∈FY

n,∞

∣∣P (A|X1)− P (A)
∣∣}. (C.2)

If B∞ is the σ-field in R∞ generated by the cylinder sets, then we can rewrite

the coefficients of absolute regularity as

β(n) = E
{

sup
A∈B∞

∣∣P (
(Yn, Yn+1, . . .) ∈ A|X1

)
− P

(
(Yn, Yn+1, . . .) ∈ A

)∣∣}. (C.3)

We provide an upper bound for (C.3) by coupling the two chains {(X ′
n, Y

′
n), n ∈

Z} and {(X ′′
n, Y

′′
n ), n ∈ Z} defined on a common probability space. Suppose

X ′
1 ∼ π, X ′′

1 ∼ π and that X ′
1 is independent of X ′′

1 . Let {Uk, k ∈ Z} as be an iid

sequence of uniform (0, 1) random variables, and construct the chains as

X ′
n = g

(
X ′

n−1, F
−1
X′

n−1
(Un−1)

)
, Y ′

n = F−1
X′

n
(Un),

X ′′
n = g

(
X ′′

n−1, F
−1
X′′

n−1
(Un−1)

)
, Y ′′

n = F−1
X′′

n
(Un).

Since X ′
1 and X ′′

1 are independent, for any A ∈ B∞, P ((Y ′′
n , Y

′′
n+1, . . .) ∈ A|X ′

1) =

P ((Yn, Yn+1, . . .) ∈ A). Hence we have∣∣P (
(Yn, Yn+1, . . .) ∈ A|X1 = x

)
− P

(
(Yn, Yn+1, . . .) ∈ A

)∣∣
=

∣∣P (
(Y ′

n, Y
′
n+1, . . .) ∈ A|X ′

1 = x
)
− P

(
(Y ′′

n , Y
′′
n+1, . . .) ∈ A|X ′

1 = x
)∣∣

≤ P
(
(Y ′

n, Y
′
n+1, . . .) ̸= (Y ′′

n , Y
′′
n+1, . . .)|X ′

1 = x
)
. (C.4)

Therefore the coefficients of absolute regularity are bounded by

β(n) ≤ P
(
(Y ′

n, Y
′
n+1, . . .) ̸= (Y ′′

n , Y
′′
n+1, . . .)

)
≤

∞∑
k=0

P (Y ′
n+k ̸= Y ′′

n+k). (C.5)

The construction of the two chains agrees with the definition of geometric moment

contraction (Definition 1 in Wu and Shao (2004)), so it follows from Proposition

1 that E|X ′
n −X ′′

n| ≤ (a+ b)n for all n. Then

P (Y ′
n ̸= Y ′′

n ) = E{P (Y ′
n ̸= Y ′′

n |Xn, X
′′
n)} = E{P (|Y ′

n − Y ′′
n | ≥ 1|Xn, X

′′
n)}
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≤ E{E|Y ′
n − Y ′′

n |
∣∣X ′

n, X
′′
n)} = E|X ′

n −X ′′
n| ≤ (a+ b)n.

Hence according to (C.5), the coefficients of absolute regularity satisfy β(n) ≤∑∞
k=0(a + b)n+k = (a + b)n/(1 − (a + b)). Recall that β-mixing implies strong

mixing (e.g., Doukhan (1994)), so {Yt, t ≥ 1} is stationary and strongly mixing

at geometric rate, in fact, it is ergodic. In particular, {Yt, t ≥ 1} is an ergodic

stationary process. It follows from Xt = g∞(Yt−1, Yt−2, . . .) that {Xt, t ≥ 1} is

also ergodic.

C.3. Proof of Theorem 1

We first show identifiability and then establish the consistency result using

Lemma 1. Throughout the proof, we assume that the process {(Yt, Xt), t ∈ Z} is

in its stationary regime. By assumption (A1), Xt(θ) ≥ x∗θ ∈ R(B), which implies

ηt(θ) ≥ B−1(x∗θ). So it follows from (A2) and (A4) that, for any θ ∈ Θ,

Elt(θ) = E
{
YtB

−1(Xt(θ))−A
(
B−1(Xt(θ))

)}
≤ E

{
Yt sup

θ∈Θ
B−1(Xt(θ))

}
−A((B−1(x∗θ)) < ∞.

This implies El+t (θ) < ∞. If Mn(θ) =
∑n

t=1 lt(θ)/n, then Mn(θ)
a.s.−→ M(θ) =

E
{
Y1η1(θ) − A(η1(θ))

}
according to the extended mean ergodic theorem (see

Billingsley (1995)). In order to prove identifiability, we need to show that θ0 is

the unique maximizer of M(θ), or that, for any θ ∈ Θ \ {θ0}, M(θ)−M(θ0) < 0.

It follows from (A5) that, for any θ ̸= θ0 and all t, Pθ0(Gt(θ, θ0)) > 0, where

Gt(θ, θ0) = {Xt(θ) ̸= Xt(θ0)}. If G = Gt(θ, θ0), then we have

M(θ)−M(θ0) = E
[
Yt
{
B−1(Xt(θ))−B−1

(
Xt(θ0)

)}
−
{
A(B−1(Xt(θ)))−A(B−1(Xt(θ0)))

}]
= E

[
Xt(θ0)

{
B−1(Xt(θ))−B−1

(
Xt(θ0)

)}
−
{
A(B−1(Xt(θ)))−A(B−1(Xt(θ0)))

}]
=

∫
G
Xt(θ0)

{
B−1(Xt(θ))−B−1

(
Xt(θ0)

)}
−
{
A(B−1(Xt(θ)))−A(B−1(Xt(θ0)))

}
dPθ0 .

On the set G, there exists c ∈ R between B−1
(
Xt(θ)

)
and B−1

(
Xt(θ0)

)
such

that A(B−1(Xt(θ))) − A(B−1(Xt(θ0))) = B(c){B−1(Xt(θ)) − B−1(Xt(θ0))} by

the Mean Value Theorem. As A′′(η) > 0, A(η) is strictly convex and c must

be strictly between B−1(Xt(θ)) and B−1(Xt(θ0)). So there exists ξ ∈ R lying

strictly between Xt(θ) and Xt(θ0) such that ξ = B(c). Therefore

M(θ)−M(θ0) =

∫
G
(Xt(θ0)− ξ){B−1(Xt(θ))−B−1(Xt(θ0))}dPθ0 .
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Since B(η) is strictly increasing, (Xt(θ0) − ξ){B−1(Xt(θ)) − B−1(Xt(θ0))} < 0

if either Xt(θ) < Xt(θ0) or Xt(θ) > Xt(θ0). Hence M(θ) −M(θ0) < 0, for any

θ ̸= θ0, which establishes identifiability. To show consistency, by (A4), we have

E sup
θ∈Θ

lt(θ) = E{Yt sup
θ∈Θ

B−1(Xt(θ))− inf
θ∈Θ

A(B−1(Xt(θ)))}

≤ E{Yt sup
θ∈Θ

B−1(Xt(θ))} −A(B−1(x∗)) < ∞.

The function fθ in Lemma 1 can be taken as fθ(y) = y1B
−1(gθ∞(y0, y−1, . . .))−

A(B−1(gθ∞(y0, y−1, . . .))), where y = (y1, y0, y−1, . . .). Hence, from (A2) and

Lemma 1, M(θ) is upper-semicontinuous, and for any compact subset K ⊂ Θ,

lim supn→∞ supθ∈K Mn(θ) ≤ supθ∈K M(θ). If U0 is a local base of θ0 and U ∈ U0

is a neighborhood of θ0, then Lemma 1 can be applied to Θ \ U . Because a

u.s.c function attains its maximum on compact sets and M(θ) < M(θ0) for any

θ ̸= θ0, we have

lim sup
n→∞

sup
θ∈Θ\U

Mn(θ) ≤ sup
θ∈Θ\U

M(θ) < M(θ0), Pθ0-a.s. (C.6)

Here for any θ̃ /∈ U , Mn(θ̃) ≤ supθ∈Θ\U Mn(θ). Let ω ∈ Ω be such that (C.6)

holds and M(θ0) = limn→∞Mn(θ0). For such ω, suppose θ̂n /∈ U infinitely often,

say, along a sequence denoted by Ñ, then

lim inf
n→∞

Mn(θ̂n) ≤ lim inf
n→∞,n∈Ñ

Mn(θ̂n) ≤ lim sup
n→∞,n∈Ñ

Mn(θ̂n)

≤ lim sup
n→∞,n∈Ñ

sup
θ/∈U

Mn(θ) ≤ lim sup
n→∞

sup
θ/∈U

Mn(θ). (C.7)

However, according to (C.6), we have

lim sup
n→∞

sup
θ∈Θ\U

Mn(θ) ≤ sup
θ∈Θ\U

M(θ) < M(θ0) = lim
n→∞

Mn(θ0) ≤ lim inf
n→∞

Mn(θ̂n),

a contradiction. Hence there exists a null-set NU such that for all ω /∈ NU , θ̂n ∈ U

for all n large enough. It follows by taking any set U ∈ U0 that θ̂n converges to

θ0 almost surely.

C.4. Proof of Theorem 2

We define a linearized form of ηt(θ) as η
†
t (θ) := ηt(θ0) + (θ− θ0)

T η̇t, and the

corresponding linearized log-likelihood function of l(θ) as

l†(θ) :=

n∑
t=1

η†t (θ)Yt −
n∑

t=1

A(η†t (θ)).
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With u =
√
n(θ − θ0), define

R†
n(u) = l†(θ0)− l†(θ0 + un−1/2)

=

n∑
t=1

Ytηt −
n∑

t=1

A(ηt)−
n∑

t=1

(ηt + uTn−1/2η̇t)Yt +

n∑
t=1

A(ηt + uTn−1/2η̇t)

= −uTn−1/2
n∑

t=1

Ytη̇t +

n∑
t=1

{A(ηt + uTn−1/2η̇t)−A(ηt)}

= −uTn−1/2
n∑

t=1

{Yt −B(ηt)}η̇t

+
n∑

t=1

{A(ηt + uTn−1/2η̇t)−A(ηt)− uTn−1/2B(ηt)η̇t}. (C.8)

If st = n−1/2{Yt −B(ηt)}η̇t, then E(st|Ft−1) = n−1/2E[{Yt −B(ηt)}η̇t|Ft−1] = 0,
so {st, t ≥ 1} is a martingale difference sequence. Here

n∑
t=1

E(sts
T
t |Ft−1) =

1

n

n∑
t=1

E[{Yt −B(ηt)}2η̇tη̇tT |Ft−1]

=
1

n

n∑
t=1

B′(ηt)η̇tη̇t
T ,

which converges almost surely to Ω by the Mean Ergodic Theorem and (A7).
Moreover, for any ϵ > 0,

n∑
t=1

E{stsTt 1[|st|≥ϵ]|Ft−1}

=
1

n

n∑
t=1

η̇tη̇t
TE[{Yt −B(ηt)}21[|{Yt−B(ηt)}η̇t|≥ϵ

√
n]|Ft−1]

≤ 1

n

n∑
t=1

η̇tη̇t
TE[{Yt −B(ηt)}21[|{Yt−B(ηt)}η̇t|≥M ]|Ft−1]

−→ E[{Y1 −B(η1)}2η̇1η̇1T1[|{Yt−B(ηt)}η̇t|≥M ]] as n → ∞
−→ 0 as M → 0.

Then it follows from the Central Limit Theorem for martingale difference se-
quences that n∑

t=1

st
L−→ V ∼ N(0,Ω), as n → ∞,

where Ω is evaluated at θ0. The other term in (C.8), by Taylor expansion, is

1

2n

n∑
t=1

uT {B′(ηt)η̇tη̇t
T }u+Op

(
n−3/2

n∑
t=1

B′′(ηt)(u
T η̇t)

3
)
,
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which is of the order of uTΩu/2 + oP (1). Hence R†
n(u)

L−→ −uTV + (1/2)uTΩu,

where V ∼ N(0,Ω). It then follows that argminuR
†
n(u)

L−→ argminu{−uTV +

(1/2)uTΩu} = Ω−1V ∼ N(0,Ω−1).

In the rest of the proof, we show that the difference between Rn(u) :=

l(θ0) − l(θ0 + un−1/2) and R†
n(u) is negligible as n grows large. By writing

θ = θ0 + un−1/2, the difference is

R†
n(u)−Rn(u) =

n∑
t=1

{Yt −B(ηt)}{ηt(θ)− ηt − uTn−1/2η̇t}

−
n∑

t=1

[A(ηt(θ))−A(ηt + uTn−1/2η̇t)

−B(ηt){ηt(θ)− ηt − uTn−1/2η̇t}]. (C.9)

By Taylor expansion, the first term in (C.9) is 1/(2n)
∑n

t=1{Yt−B(ηt)}uT η̈t(θ∗t )u
= 1/(2n)uT [

∑n
t=1{Yt−B(ηt)}η̈t+

∑n
t=1{Yt−B(ηt)}{η̈t(θ∗t )− η̈t}]u, where θ∗t lies

between θ and θ0, and η̈t = ∂2ηt/∂θ∂θ
T . Since

1

n

n∑
t=1

{Yt −B(ηt)}η̈t
a.s.−→ E[{Yt −B(ηt)}η̈t]

= E[η̈tE{Yt −B(ηt)|Ft−1}] = 0,

and 1/n
∑n

t=1{Yt−B(ηt)}{η̈t(θ∗t )− η̈t}
a.s.−→ 0 under the smoothness assumption,

the first term in (C.9) converges to 0 uniformly on [−K,K] for any K > 0. We

now apply a Taylor expansion to each component in the second term of (C.9),

A(ηt(θ)) = A(ηt) + uTn−1/2B(ηt)η̇t

+
1

2n
uT {B(ηt(θ

∗
1))η̈t(θ

∗
1) +B′(θ∗1)η̇t(θ

∗
1)η̇t(θ

∗
1)

T }u,

A(ηt + uTn−1/2η̇t) = A(ηt) +B(ηt)u
Tn−1/2η̇t +

1

2n
uTB′(c)η̇tη̇t

Tu,

ηt(θ) = ηt(θ0 + un−1/2) = ηt + η̇tu
Tn−1/2 +

1

2n
uT η̈t(θ

∗
2)u,

where 0 ≤ c ≤ uTn−1/2η̇t, and θ∗1 and θ∗2 both lie between θ0 and θ. Here the

second term in (C.9) is
n∑

t=1

[A(ηt(θ))−A(ηt + uTn−1/2η̇t)−B(ηt){ηt(θ)− ηt − uTn−1/2η̇t}]

=

n∑
t=1

[A(ηt) + uTn−1/2B(ηt)η̇t+
1

2n
uT {B(ηt(θ

∗
1))η̈t(θ

∗
1)+B′(θ∗1)η̇t(θ

∗
1)η̇t(θ

∗
1)

T }u

−A(ηt)−B(ηt)u
Tn−1/2η̇t −

1

2n
uTB′(c)η̇tη̇t

Tu−B(ηt)
1

2n
uT η̈t(θ

∗
2)u]
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=
1

2n
uT

n∑
t=1

[{B(ηt(θ
∗
1))η̈t(θ

∗
1)−B(ηt)η̈t(θ

∗
2)}+ {B′(θ∗1)η̇t(θ

∗
1)η̇t(θ

∗
1)

T

−B′(c)η̇tη̇t
T }]u,

which converges to 0 on a compact set of u under smoothness assumptions.

So (C.9) converges to 0 as n → ∞, which implies that argminuRn(u) and

argminuR
†
n(u) have the same asymptotic distribution argminuRn(u)

L−→ Ω−1V ∼
N(0,Ω−1). Here argminuRn(u) = argmaxu l(θ0 + un−1/2) =

√
n(θ̂n − θ0), where

θ̂n is the conditional maximum likelihood estimator. Hence
√
n(θ̂n − θ0)

L−→
N(0,Ω−1), as n → ∞.

C.5. Proof of Theorem 3

According to Theorems 1 and 2, it is sufficient to verify (A5). If for some t ∈
Z, Xt(θ) = Xt(θ0), Pθ0-a.s, then δ+αXt−1(θ)+βYt−1 = δ0+α0Xt−1(θ0)+β0Yt−1.

It follows from (B.1) that

(β − β0)Yt−1 = δ0 − δ + α0

( δ0
1− α0

+ β0

∞∑
k=0

αk
0Yt−k−2

)
−α

( δ

1− α
+ β

∞∑
k=0

αkYt−k−2

)
.

If β ̸= β0, then Yt−1 ∈ span{Yt−2, Yt−3, . . .}, which contradicts the fact that

Var(Yt−1|Ft−2) > 0. So β must be the same as β0. Similarly one can show that

α = α0 and δ = δ0, which implies θ = θ0. Hence the model is identifiable.

C.6. Proof of Theorem 4

According to Theorem 2, we need only establish the identifiability of the

model. Similar to the proof of Theorem 3, one can demonstrate that if Xt(θ) =

Xt(θ0), Pθ0-a.s. for some t, where θ0 = (δ0, α0, β0, β1,0, . . . , βK,0), then

(β − β0)Yt−1 +

K∑
k=1

(βk − βk,0)(Yt−1 − ξk)
+

= δ0 − δ + α0Xt−1(θ0)− αXt−1(θ) ∈ σ{Yt−2, Yt−3, . . .}.

It follows that β = β0 and β = βk,0, k = 1, . . . ,K. Similarly one can show that

δ = δ0 and α = α0, hence θ = θ0.
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