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Appendix: Lemmas and Proofs

Lemma 1 (Fan and Yao, 2006). Suppose that

1. {Xt, Yt} are strictly stationary and α-mixing with
∑

l≥1 l
λ[α(l)]1−

2
δ ≤ ∞

and E{|Yt|δ|Xt = x} <∞ for some δ > 2 and λ > 1− 2/δ.

2. The conditional density fX0,Xl|Y0,Yl(x0, xl|y0, yl) ≤ A < ∞ for some A > 0

and all l > 0.

3. The conditional distribution of Yt given Xt = u, denoted by G(y|u) is

continuous at the point u = x.

4. As T →∞, h→ 0 and there exists a sequence of positive integers sT →∞
and sT = o((Th)1/2) such that (T/h)1/2α(sT )→ 0 as T →∞.

5. K(·) is a symetric and bounded kernel with a bounded support [−1, 1] such

that
∫
K(u)du = 1.

6. σ2(·) = V ar(Yt|Xt = ·) and the density function f(·) of Xt are continuous

at the point x.
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Let m̂(x) be the local linear estimator of the conditional mean m(x) = E(Yt|Xt =

x), then

√
Th(m̂(x)−m(x)− 1

2

∫
u2K(u)du m′′(x)h2)

d−→ N(0,
σ2(x)

f(x)

∫
K2(u)du)

Lemma 2. Suppose xt ∼ FMA(1). For j = 0, 1, Let

(â∗j (z), b̂
∗
j (z)) = argmin(a,b)

T∑
t=1

{(xt − µ)(xt−j − µ)− a− b(zt − z)}2K(
zt − z
h

),

then under the assumptions (A1)∼(A6), it holds that

√
Th

(
â∗1(z)− (1 + θ2(z))σ2 − 1

2σ
2
Kθ
′′(z)σ2h2

â∗0(z)− θ(z)σ2 − σ2
K(θ(z)θ′′(z) + θ′2(z))σ2h2

)
d−→ N(0,

Γ(z)

p(z)
σ4R(K)).

Proof. For any v = (v0, v1)T ∈ R2, let yt(v) = v0(xt−µ)2 + v1(xt−µ)(xt−1−µ).

Denote â∗(z; v) by the local linear estimator of E(yt(v)|zt = z) = v0(1+θ2(z))σ2+

v1θ(z)σ
2, i.e.

(â∗(z; v), b̂∗(z; v)) = argmina(z),b(z)

T∑
t=2

(yt(v)− a− b(zt − z))2K(
zt − z
h

)

Then it is easy to show that â∗(z; v) = v0â
∗
0(z) + v1â

∗
1(z). If we proved that

√
Th(â∗(z; v)− E(yt(v)|zt = z)− 1

2
σ2h2σ2

K vT

(
θ′′(z)

2(θ(z)θ′′(z) + θ′2(z))

)
)

d−→ N(0,
vTΓ(z)v

p(z)
σ4R(K)).

(1)

Then Lemma 2 will be proved by Cramér Device. Now we prove (1).

First, by Assumptions (A2) and (A3), {yt(v), zt} is strictly stationary and α-

mixing such that

E(|yt(v)|δ|zt = z) < C||v||2E(|εt|2δ + |εt−1|2δ + |εt−2|2δ|zt = z) <∞
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and α(m) ≤ Am−β. Let λ = β
2 −

1
δ , then λ > 1 since β > (2δ − 2)/(δ − 2) and∑

l≥1

lλ(α(l))1− 2
δ ≤ A1− 2

δ

∑
l≥1

l−(1− 2
δ

)(β
2

+ 1
δ−2

) <∞.

Thus, the condition 1 of Lemma 1 is satisfied.

By Assumption (A1), it holds that h = O(T−(1−ε0)). Let sT = [(Th)1/2/ log T ],

then sT = o((Th)1/2) and

(T/h)1/2α(sT ) = O(T 1− 1+β
2
ε0(log T )−β) = o(1).

Thus, the condition 4 of Lemma 1 is satisfied.

Further, it follows Assumptions (A4), (A5) and (A6) that the conditions 2,3,5,6

of Lemma 1 hold. Therefore, (1) is proved by Lemma 1 and hence the lemma is

proved by Cramér Device.

Lemma 3. Suppose that Assumptions (A1)∼(A6) holds. Then

|âj(z)− â∗j (z)| = Op(
1√
T

) (2)

Proof. First, we show that x̄ = Op(T
−1/2).

TV ar(x̄) =
∑
|j|<T

(1− |j|
T

)γ(j) ≤
∞∑
−∞

(1− |j|
T

)γ(j) <∞.

Thus limT→∞ TV ar(x̄) =
∑∞
−∞ γ(h) and then x̄ = Op(T

−1/2). Let wt(z) =

K( zt−zh )(sn,2 − (zt − z)sn,1), where sn,j =
∑T

t=1K( zt−zh )(zt − z)j , then

âj(z) =

∑T
t=j+1wt(z)(xt − x̄)(xt−j − x̄)∑T

t=j+1wt(z)
, â∗j (z) =

∑T
t=j+1wt(z)(xt − µ)(xt−j − µ)∑T

t=j+1wt(z)
.

Notice that

|âj(z)− â∗j (z)| ≤ |µ2 − x̄2|+ |µ− x̄|
∣∣∣∣
∑T

t=j+1wt(z)(xt + xt−j)∑T
t=j+1wt(z)

∣∣∣∣.
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On the one hand,

µ2 − x̄2 = (µ− x̄)(µ+ x̄) = Op(
1√
T

).

On the other hand,
∑T
t=j+1 wt(z)(xt+xt−j)∑T

t=j+1 wt(z)
is the local linear estimator of E(xt +

xt−j |zt = z). Let Then by Lemma 1, it is easy to prove that∣∣∣∣
∑T

t=j+1wt(z)(xt + xt−j)∑T
t=j+1wt(z)

∣∣∣∣ = Op(1)

and hence

|âj(z)− â∗j (z)| = Op(
1√
T

).

Proof of Theorem 1.

Without loss of generality, we assume µ = 0. Let MT = T−1
∑T

t=1Kh(zt − z),

ĝ{θ(z)} − g{θ(z)} =
â1(z)

â0(z)
− θ(z)

1 + θ2(z)
=
â∗1(z) +Op(T

− 1
2 )

â∗0(z) +Op(T
− 1

2 )
− θ(z)

1 + θ2(z)

=
θ(z)σ2 + 1

2σ
2
Kθ
′′(z)σ2h2 + (Th)−

1
2A1 +Op(T

− 1
2 )

(1 + θ2(z))σ2 + σ2
K(θ(z)θ′′(z) + θ′2(z))σ2h2 + (Th)−

1
2A0 +Op(T

− 1
2 )
− θ(z)

1 + θ2(z)

= G(z)h2 + (Th)−
1
2

(1 + θ2(z))A1 − θ(z)A0 +Op(1)

(1 + θ2(z))2 + op(1)

where the second equality follows from Lemma 3, the third quality follows from

Lemma 2 and (
A0

A1

)
∼ N(0,

Γ(z)

p(z)
σ4R(K))

Then it follows from Slusky Theorem that

√
Th(ĝ{θ(z)} − g{θ(z)} −G(z)h2)

d−→ N(0, ν(z)).
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Proof of Theorem 2. For (i), by Theorem 1, it suffices to prove√
Th/ν(z)(g̃{θ(z)} − ĝ{θ(z)}) d−→ 0.

For arbitrary ε > 0,

P (
√
Th/ν(z)(g̃{θ(z)} − ĝ{θ(z)}) > ε) ≤ P (g̃{θ(z)} 6= ĝ{θ(z)})

=P (|ĝ{θ(z)}| > 1

2
) ≤ P (|ĝ{θ(z)} − g{θ(z)}| > 1

2
− |g{θ(z)}|)→ 0.

Thus, (i) is proved. Now turn to (ii). Notice that G = 0 when g{θ(z)} = 1
2 , thus

by Theorem 1, we know that√
Th/ν(z)(ĝ{θ(z)} − 1

2
)
d−→ Z

where Z ∼ N(0, 1). Let f(x) = min{x, 0}, then√
Th/ν(z)(g̃{θ(z)} − 1

2
) = f [

√
Th/ν(ĝ{θ(z)} − 1

2
)].

Since f is continuous, by continuous mapping theorem, we have√
Th/ν(z)(g̃{θ(z)} − 1

2
)
d−→ f(Z),

where f(Z) ∼ Φ−. Therefore, (ii) is proved and similarly (iii) is proved.

Proof of Theorem 3. (i) is directly followed from Lemma 2 and Delta Method.

Now we prove (ii) while (iii) can be dealt with in similar way. It follows Remark

1 that G(z) = 0 when θ(z) = 1, by Theorem 1, we know that√
Th/ν(z)(ĝ{θ(z)} − 1

2
)
d−→ N(0, 1),

where Z ∼ N(0, 1). For any positive d, we have

P

{
4

√
Th

ν(z)
(θ̂(z)− 1) ≤ −r

}
= P

{
θ̂(z) ≤ 1−

r 4
√
ν(z)

4
√
Th

}

=P

{
g(θ̂(z)) ≤ g(1−

r 4
√
ν(z)

4
√
Th

)

}
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=P

{
√
Th[g(θ̂(z))− 1

2
] ≤
√
Th[g(1−

r 4
√
ν(z)

4
√
Th

)− g(1)]

}

=P

{
√
Th[g(θ̂(z))− 1

2
] ≤
√
Th[−

r2
√
ν(z)

4
√
Th

+ o(
1√
Th

)]

}

=P

{√
Th/ν(z)(g(θ̂(z))− 1

2
) ≤ −r

2

4
+ o(1)

}
→ Φ(−r

2

4
).

Also, since θ̂(z) ≤ 1, we have

4
√
Th/ν(z)(θ̂(z)− θ(z)) d−→ H−Φ .

Proof of Theorem 4. Write θ̂(z) = h[g{â1(z)/â0(z)}] =: q{â1(z), â0(z)}, say.

By Taylor expansion,

θ̂(z) = q{a1(z), a0(z)}+

1∑
j=0

∂q{a1(z), a0(z)}
∂aj(z)

{âj(z)− aj(z)}+Op((Th)−1/2 + h2)

The test statistic can be expressed as

DT = Th1/2
[∫
{θ̂(z)− E{θ̂(z)}}2π(z)dz

+2

∫
{θ̂(z)− E{θ̂(z)}}{E{θ̂(z)− θ̂}π(z)dz

+

∫
{E{θ̂(z)− θ̂}2π(z)dz

= DT1 +DT2 +DT3, say. (3)

Let us first study DT1, which can be expressed as

DT1 = Th1/2

∫
(â(z)− E{â(z)})T ∂q(z)

~a

∂T q(z)

~a
(â(z)− E{â(z))π(z)dz.

Take expectation, we have

E(DT1) = h−1/2

∫
{g′{θ(z)}2ν(z)

]
π(z)dz{1 + o(1)}. (4)



FUNCTIONAL MOVING AVERAGE MODEL 7

It can be shown (Chen, Gao and Tang, 2008; Chen and Gao, 2011) that

V ar(DT1)

= 2T 2h

∫ ∫
Cov2{θ̂(z1)− E{θ̂(z1)}, θ̂(z2)− E{θ̂(z2)}}π(z1)π(z2)dz1dz2

= 2T 2h

∫ ∫ [ 1∑
i,j=0

∂q(z1)

∂ai

∂q(z2)

∂aj
Cov{âi(z1)− E{âi(z1)}, âj(z2)− E{âj(z2)}

]2
×π(z1)π(z2)dz1dz2{1 + o(1)}.

Standard derivations in kernel regression estimation show that, for i, j = 0 or 1,

Cov{âi(z1)− E{âi(z1)}, âj(z2)− E{âj(z2)}}

= (Th)−1f−1(z2)K(2)

(
z1 − z2

h

)
mi,j(z1){1 + o(1)}.

These lead to

σ2(DT1) =: V ar(DT1)

= 2h−1

∫ ∫
{K(2)

(
z1 − z2

h

)
}2f−2(z2)

[ 1∑
i,j=0

∂q(z1)

∂ai

∂q(z2)

∂aj
mi,j(z1)

]2
×π(z1)π(z2)dz1dz2{1 + o(1)}

= 2K(4)(0)

∫
f−2(z)

[ 1∑
i,j=0

∂q(z)

∂ai

∂q(z)

∂aj
mi,j(z)

]2
π2(z)dz{1 + o(1)} (5)

where K(2)(·) is the convolution of K and K(4)(·) is the convolution of K(2). Let

σ2
DT

denote the leading order term of (5).

Employing the same technique used in Chen and Gao (2011) for goodness-

of-test statistics for α-mixing sequences, it can be shown that the statistic DT1

is asymptotically normally distributed so that

σ−1(DT1){DT1 − E(DT1)} d→ N(0, 1) as T →∞. (6)

To study the properties of DT2, let θ∗ be the limit of the estimator θ̂ such

that θ̂
p→ θ∗ at the rate of

√
T . Clearly, under H0, θ∗ = θ(z) for any z. Under

H1, θ∗ can be viewed as the one in Θ which minimizes a criterion function for the

estimation, like a likelihood or a distance function. This is a common provision
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made in testing hypothesis (White, 1982; Chen and Gao, 2007). Let

DT21 = 2Th1/2

∫
{θ̂(z)− E{θ̂(z1)}}{E{θ̂(z1)} − θ∗}π(z)dz.

Under H0, DT21 vanishes. Under H1, E(DT21) = 0 and V ar(DT21) = O(Th).

Hence, DT21 is at most Op{(Th)1/2}. As

DT2 = Th1/2

∫
{θ̂(z)− E{θ̂(z1)}}{E{θ̂(z1)} − θ∗ + θ∗ − θ̂}π(z)dz,

DT2 = Op(h
1/2) under H0 and Op{(Th)1/2} under H1.

We can argue similarly that DT3 = Th1/2
∫
{E{θ̂(z)} − θ̂}2π(z)dz is op(1)

under H0, but diverges to positive infinity at the rate of Th1/2 under H1, which

is faster than TT2. In summary,

DT − E(DT ) = DT1 − E(DT1) + op(1) under H0 and (7)

DT − E(DT1) = Op(Th
1/2) under H1. (8)

These together with (6) lead to the conclusion of Theorem 4.
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