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Abstract

In this supplement we present some additional proofs, and discuss
further the assumptions of the main manuscript.

Appendices

A Some further empirical coverage results

Table 1: Empirical coverage probabilities for the proposed confidence bands
with α = 0.05.

β R n = 100 n = 1000 n = 5000

mixture
of
uniforms

0
Sn 0.972 0.963 0.959

supp(p0) 0 0.953 0.959

0.25
Sn 0.991 0.971 0.970

supp(p0) 0 0.961 0.970

0.5
Sn 0.959 0.953 0.991

supp(p0) 0 0.944 0.991

double
logarithmic
p = 0.9

0
Sn 0.956 0.949 0.949

p0(R) ≈ 0.95 0.001 0.922 0.949

0.25
Sn 0.970 0.950 0.948

p0(R) ≈ 0.95 0.001 0.922 0.948

0.5
Sn 0.980 0.989 0.989

p0(R) ≈ 0.95 0.001 0.959 0.990
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Let R ⊆ S0. The results in Table 1 give the empirical coverage on the set
R as indicated in the third column. That is, we report the proportion of
times that

ĉn,l(s) ≤ p0(s) ≤ ĉn,l(s), for all s ∈ R

was observed. The confidence bands are optimized for R = supp(p̂n), and
this allows us to compare the behavior for other choices of R.

The results of Table 1 clearly show the cost of only defining the confi-
dence bands on supp(p̂n) = Sn in the simulations. For larger sample sizes,
this cost decreases. However, for small sample sizes, the undercoverage is
drastically big, simply because Sn does not cover the set R yet. This issue
aside, we find that the confidence bands perform rather well. In the double
logarithmic setting for β < 0.5, we expect to obtain asymptotically correct
coverage bands, and hence, empirical coverage probabilities not statistically
different from 0.95 are shown in bold. In all uniform mixture scenarios, we
expect an asymptotically conservative result; that is, the asymptotic cov-
erage should is expected to be greater than 0.95. In the table, empirical
coverage probabilities not statistically smaller than 0.95 are shown in bold
(for the mixture of uniforms case).

B Proofs and technical details

B.1 Note on finding the MLE

In several proofs, we make use of the following idea (a well known practice
in shape-constrained estimation problems):

To compute p̂n∣κ, we first relax consideration over pmfs to positive se-
quences, U ∣κ(Sn) , by changing the criterion function Ln to

Φn(p) = Ln(p) −
J−1
∑
j=0

p(zj) = Ln(p) − ∑
z∈Sn

p(z). (B - 1)

This is possible because the two maximization problems are equivalent. To
see this, note that if p is a positive sequence with support Sn maximizes Φn,
then for all c ∈ R with ∣c∣ very small

0 = lim
c→0

Φn(p + cp) −Φn(p)

c
= 1 − ∑

z∈Sn
p(z)

implying that p is necessarily a pmf. In the sequel, we denote by U(Sn) the
space of positive unimodal sequences with support Sn.
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B.2 Proofs from Section 4

Proof of Theorem 4.1. We first recall that

ρ(p∣p0) ≥ 0, (B - 2)

with equality if and only if p = p0 (P0 a.s.). This result is often referred to as
Gibbs’ inequality. We now proceed progressively in steps. We first assume
that ∣S0∣ ≥ 2.

1. Let Q denote the cdf of any discrete distribution on N and Q̂ denote
its least concave majorant (on N). Let q̂ denote the pmf associated
with Q̂. We first claim that q̂ is such that

∫ log
q̂

p
dQ ≥ 0, for all decreasing pmf p.

This follows from the results of Patilea (1997, 2001) for decreasing
densities as follows: Let F0(z) = Q(z − 1) denote a cdf on R+, and let
F̂0 denote its least concave majorant on R+ (LCM), with associated
pdf f̂0. Then, from Patilea (1997, 2001) it follows that f̂0 satisfies

∫ log
f̂0
f
dF0 ≥ 0,

for all decreasing densities f , and hence also for all decreasing densities
with the form f(x) = ∫

∞
0 θ−11[0,θ](x)dµ(θ), where µ is discrete with

mass only at Z+. In other words, any f which is piecewise constant,
with points of jump occurring possibly only at Z+. For such densities f,
let p(z) = ∫

z+1
z f(x)dx = f(z + 1), z ∈ N. In addition, note that q̂(z) =

∫
z+1
z f̂0(x)dx = f̂0(z + 1), from the definition of Q̂ and F̂0. Then we

have that

∫ log
q̂

p
dQ = ∑

z≥0
log

q̂(z)

p(z)
q(z)

= ∑
z≥0

log
f̂0(z + 1)

f(z + 1)
{F0(z + 1) − F0(z)}

= ∫ log
f̂0
f
dF0 ≥ 0,

and the result follows.

2. Next, let α = ∑i≥κ p0(si), q1(i) = α
−1p0(si+κ), and q2(i) = (1−α)−1p0(sκ−1−i).

Both q1 and q2 are pmfs on N and we apply step one above to find their
q̂1, q̂2. Define p̂0∣κ(si) = αq̂1(i−κ), i ≥ κ and p̂0∣κ(si) = (1−α)q̂2(κ−1−i)
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for i ≤ κ − 1. Then clearly p̂0∣κ ∈ U1∣κ(S0). Furthermore, for any
p ∈ U1∣k(S0)

∫ log
p̂0∣κ
p
dP0 = ∑

i≤κ−1
log

p̂0∣κ(si)

p(si)
p0(si) +∑

i≥κ
log

p̂0∣κ(si)

p(si)
p0(si)

= ∑
i≤κ−1

log
(1 − α)q̂2(κ − 1 − i)

p(si)
p0(si)

+∑
i≥κ

log
αq̂1(i − κ)

p(si)
p0(si)

= (1 − α) ∑
i≤κ−1

log
(1 − α)q̂2(κ − 1 − i)

p(si)

p0(si)

1 − α

+α∑
i≥κ

log
αq̂1(i − κ)

p(si)

p0(si)

α

= (1 − α)∑
z≥0

log
q̂2(z)

p2(z)
q2(z) + α∑

z≥0
log

q̂1(z)

p1(z)
q1(z),

where p2(z) = (1 − α)−1p(sκ−1−z) and p1(z) = α
−1p(sκ+z). Now, let c1

denote the constant such that c1∑z≥0 p1(z) = 1, and let p̃1 = c1p1 (and
similarly for p2). Let β = ∑z≥0 p(sκ+z). Then, we have that the above
is equal to

(1 − α)∑
z≥0

log
q̂2(z)

p2(z)
q2(z) + α∑

z≥0
log

q̂1(z)

p1(z)
q1(z)

= (1 − α) log c2 + α log c1 + (1 − α)∑
z≥0

log
q̂2

p̃2(z)
q2(z)

+α∑
z≥0

log
q̂1

p̃1(z)
q1(z)

≥ (1 − α) log c2 + α log c1 = (1 − α) log
(1 − α)

(1 − β)
+ α log

α

β
≥ 0,

where the last inequality follows from the Gibbs’ inequality in (B - 2)
applied to two Bernoulli distributions with success probabilities α and
β respectively. It follows that

∫ log
p̂0∣κ
p
dP0 ≥ 0

for any p ∈ U1∣κ(S0). We have therefore proved existence of p̂0∣κ.

3. Finally, we prove that p̂0∣κ as defined above is the unique solution to
(4.11) in the two cases stated in the proposition.

● Suppose that p0 ∈ U1∣κ(S0). Then, by Gibbs’ inequality, we have
that

∫ log
p0
p
dP0 ≥ 0, ∀p ∈ U1∣κ(S0).
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Suppose then that p̂0 is another candidate for the KL projection, as
above. Then we would have that

∫ log
p0
p̂0
dP0 ≥ 0 and also ∫ log

p̂0
p0
dP0 ≥ 0.

But this implies that

∫ log
p0
p̂0
dP0 = 0,

and (again by Gibbs’ inequality) it follows that p̂0 = p0, P0 a.s..

● Suppose that p0 ∉ U1∣κ(S0) with ∑j≠0 log ∣j∣p0(sj) < ∞. Then,
by Proposition 4.3, we have that supp∈U1∣κ(S0) ∫ log pdP0 ∈ (−∞,0].
Hence, (4.11) is equivalent to

p̂0 = argmaxp∈U1∣κ(S0)∫ log pdP0.

By the strict concavity of log, we have that log(αa+(1−α)b) ≥ α log a+
(1 − α) log b, with equality iff a = b. Suppose that p̂1 and p̂2 are two
different pmfs at which the cross entropy achieves its maximum. Then,
by convexity of U1∣κ(S0), p̂0 = αp̂1 + (1 − α)p̂2 is also in U1∣κ(S0), and
hence

∫ log p̂0 dP0 = ∫ log {αp̂1 + (1 − α)p̂2}dP0

> α∫ log p̂1dP0 + (1 − α)∫ log p̂2dP0

= argmaxp∈U1∣κ(S0)∫ log pdP0

which yields a contradiction. Therefore, we must have that p̂1 = p̂2, P0-
almost surely. But this implies that on the set {s ∈ S0 ∶ p0(s) > 0}, p̂1
and p̂2 must both be equal to the slope of the greatest convex minorant
(GCM) of the cumulative sum of p0(si) to the left of sκ−1 and the slope
of its LCM to the right of sκ. Since the latter has the same support
as p0, we conclude that uniqueness has to hold everywhere.

Lastly, suppose that ∣S0∣ = 1. Then p0 ∈ U1∣κ(S0) must be unimodal with
S0 = {sκ}, and p̂0 = p0. The same proof as the first part of point three above
applies.

Lemma B.1. Suppose that ∑j≠0 log ∣j∣p0(sj) <∞. Then for each κ ∈ Z such
that sκ ∈ S0, there exists a q ∈ U1∣κ(S0) such that ∫ log q dP0(x) ∈ (−∞,0].
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Proof. Fix κ ∈ Z with κ ≠ 0. Then

∑
j≠κ

log ∣j − κ∣p0(sj) = ∑
j∉{κ,0}

log ∣j∣
∣j − κ∣

∣j∣
p0(sj) + log ∣κ∣p0(s0)

= ∑
j≠0,κ

log ∣j∣p0(sj) + ∑
j∉{κ,0}

log
∣j − κ∣

∣j∣
p0(sj) + log ∣κ∣p0(s0)

≤ ∑
j≠0

log ∣j∣p0(sj) + ∑
j∉{κ,0}

log
∣j − κ∣

∣j∣
p0(sj) + log ∣κ∣.

Now, since lim∣j∣→∞ log (∣j − κ∣/∣j∣) = 0, and by the assumption of the lemma,
all three terms above are finite, and it follows that ∑j≠κ log ∣j −κ∣p0(sj) <∞
for all κ ∈ Z.

Define a pmf q with support S0 as

q(sj) ∝

⎧⎪⎪
⎨
⎪⎪⎩

1
∣j−κ∣ log2 ∣j−κ∣ j ≠ κ − 1, κ, κ + 1,

1
2 log2 2

j = κ − 1, κ, κ + 1,
(B - 3)

for sj ∈ S0. Since ∫
∞
2 (x log2 x)−1dx = 1/(log 2), there exists a normalizing

constant for q ∈ U1∣κ(S0). It remains to calculate its entropy. That is,

∑
j

log q(sj)p0(sj) = D − ∑
∣j−κ∣≥2

log ∣j − κ∣p0(sj) − 2 ∑
∣j−κ∣≥2

log log ∣j − κ∣p0(sj),

where D is some finite constant. The second term is also finite by the first
part of this proof. For the last term we have that

0 ≤ ∑
∣j−κ∣≥e

log log ∣j − κ∣p0(sj) ≤ ∑
∣j−κ∣≥e

log ∣j − κ∣p0(sj),

and hence this term is also finite. The result follows.

Proof of Theorem 4.2. The first point can be shown using Gibbs’ inequality
as done above in the proof of Theorem 4.1. To prove the second point, we
first note that by Proposition 4.3, under the assumptions of the theorem,
(4.9) and (4.10) are equivalent. Therefore, to prove that (4.9) holds, it is
sufficient to show that (4.10) holds, for some p̂0. By Lemma B.1, for each
κ ∈ Z there exists a q ∈ U1∣κ(S0) such that ∫ log qdP0 > −∞. Therefore, each

∫ log p̂0∣κ(x)dP0(x) > −∞ (although this bound is not uniform in κ). Next,
by Lemma C.1, we have that

∫ log p̂0∣κ(x)dP0(x) = ∑
j

log p̂0∣κ(sj)p0(sj)

≤ −∑
j≠κ

log ∣j − κ∣p0(sj)

≤ − log ∣κ −m∣p0(sm),
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for some fixed m such that sm ∈ S0. Letting κ → ±∞, it follows that the
maximum cannot be attained for large values of ∣κ∣, and hence the supremum
of ∫ log p̂0∣κ(x)dP0(x) can be found by considering a finite collection of
values of κ. This proves existence of a maximizer p̂0 ∈ U

1(S0) (and also that
{p̂0} is a finite set).

Proof of Proposition 4.3. We first show that if ∑j≠0 log ∣j∣dP0 = ∞, then

∫ log pdP0 = −∞, for any unimodal p. This follows since, if p is unimodal,
then p ∈ U1∣κ(S0) for some κ ∈ Z. Hence, by Lemma C.1, we have that

∫ log pdP0 ≤ ∑
j

log min (1, ∣j − κ∣−1)p0(sj)

= −∑
j≠κ

log ∣j − κ∣p0(sj).

Now, if κ = 0, then ∫ log pdP0 ≤ −∑j≠κ log ∣j − κ∣p0(sj) = ∑j≠0 log ∣j∣p0(sj).
If κ ≠ 0, then

−∑
j≠κ

log ∣j − κ∣p0(sj) = − ∑
j∉{κ,0}

log ∣j∣
∣j − κ∣

∣j∣
p0(sj) − log ∣κ∣p0(s0)

= −∑
j≠0

log ∣j∣p0(sj) − ∑
j∉{κ,0}

log
∣j − κ∣

∣j∣
p0(sj) − log ∣κ∣p0(s0) + log ∣κ∣p0(sκ)

≤ −∑
j≠0

log ∣j∣p0(sj) − ∑
j∉{κ,0}

log
∣j − κ∣

∣j∣
p0(sj) + log ∣κ∣.

Since lim∣j∣→∞ log (∣j − κ∣/∣j∣) = 0, there exists an integer J > 0 such that for
all ∣j∣ > J

log
∣j − κ∣

∣j∣
∈ [−

1

2
,
1

2
] .

Then,

∑
j∉{κ,0}

log
∣j − κ∣

∣j∣
p0(sj)

= ∑
j∉{κ,0},∣j∣≤J

log
∣j − κ∣

∣j∣
p0(sj) + ∑

j∉{κ,0},∣j∣>J
log

∣j − κ∣

∣j∣
p0(sj)

≥ ∑
j∉{κ,0},∣j∣≤J

log
∣j − κ∣

∣j∣
p0(sj) −

1

2
∑

j∉{κ,0},∣j∣>J
p0(sj)

≥ ∑
j∉{κ,0},∣j∣≤J

log
∣j − κ∣

∣j∣
p0(sj) −

1

2
= −C,

for some finite constant C. Therefore,

∫ log pdP0 ≤ −∑
j≠0

log ∣j∣p0(sj) +C+ log ∣κ∣,
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and the first part of the claim follows (noting that since κ ∈ Z and κ ≠ 0,
then log ∣κ∣ < ∞). The second part of the claim follows immediately from
Lemma B.1.

B.2.1 Proof of Theorem 4.4

We start by showing the following lemma.

Lemma B.2. Suppose that ∑i≠0 log ∣i∣p0(si) < ∞. Let M̂n be the modal
region of p̂n. Then, we can find M > 0 sufficiently large, such that with
probability one there exists an integer n0 > 0 such that

sup
n≥n0

max
κ∈M̂n

∣κ∣ ≤M + 1.

Proof. Fix ε1 ∈ (0, p0(s0)/4), and define the event that Acn = {sup ∣Fn −F0∣ ≤

ε1}. By the Dvoretzky-Kiefer-Wolfowitz inequality the probability of An is

at most 2e−2nε
2
1 . Applying Lemma C.1, we have that

∫ log p̂n∣κdFn ≤ −∑
i≠κ

log ∣i − κ∣pn(si)

≤ − log ∣κ∣pn(s0) ≤ − log ∣κ∣(p0(s0) − 2ε1)

≤ − log ∣κ∣p0(s0)/2 ≤ − logM p0(s0)/2,

if ∣κ∣ > M. Let Bn denote the event that ∫ log p̂n∣κdFn > − logM p0(s0)/2,
whenever ∣κ∣ > M. By the above, we have that Bn ⊂ An. Since P (An) is
summable, the Borel-Cantelli lemma implies that P (Bn i.o.) = 0. Thus, we
have shown that, with probability one, there exists an integer n1 such that
for all n ≥ n1

∫ log p̂n∣κdFn ≤ − logM p0(s0)/2, ∀∣κ∣ >M.

Without loss of generality, we can assume that S0 = {si, i ∈ K} with
K = Z. Next, define q as in (B - 3), and note that here we have

∑
i

∣ log q(si)∣p0(si) <∞,

using similar arguments to those used in the proof of Proposition 4.3. Recall
that the pmf q ∈ U1∣κ=0(S0). Fix ε2 > 0. By the strong law of large numbers,
we can find with probability one an integer n2 such that for all n ≥ n2

∫ log q dFn ≥ ∫ log q dF0 − ε2.

Since ∫ log q dF0 ∈ R, we can furthermore choose ε2 and M so that

∫ log q dFn > − logM p0(s0)/2.
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Thus, it follows that with probability one, there exists an n0 (in fact, n0 =
max{n1, n2}), such that

∫ log q dFn > ∫ log p̂n∣κdFn

for all ∣κ∣ > M. But this implies that p̂n∣κ cannot be equal to the MLE p̂n
when ∣κ∣ >M, proving the result.

Proof of Theorem 4.4. We want to show that p̂n → p̂0. First, we recall that
pointwise convergence and convergence in `k,1 ≤ k ≤ ∞ and Hellinger dis-
tance h are all equivalent for sequences of pmfs. This follows for example
from Lemma C.2 in the on-line supporting material of Balabdaoui et al.
(2013). We also recall that a collection of probability measures is tight if,
for all ε > 0, there exists a compact set K =K(ε), such that for all measures
µ in the collection, we have µ(Kc) < ε. Let P̂n denote the measure induced
by p̂n. We first claim that {P̂n}n≥1 is tight with probability one. Fix ε > 0.
Then, by the Glivenko-Cantelli theorem, we can find with probability one an
integer n1 > 0 such that for all n ≥ n1, sups∈S0

∣Fn(s) − F0(s)∣ < ε/6. Also, by
definition of the cdf, there exists a constant M0 > 0 such that for all M ≥M0,

1 − F0(M) + F0(−M − 1) < ε/6.

Note that this implies that we have with probability one

1 − Fn(M) + Fn(−M − 1)

= 1 − F0(M) + F0(−M − 1)

+{F0(M) − Fn(M)} + {Fn(−M − 1) − F0(−M − 1)}

< ε/2,

for all n ≥ n1 and all M ≥M0.
Next, let κ̂n be such that p̂n ∈ U

1∣κ̂n(S0). Then, by the result of Lemma B.2,
with probability one, there exist M >M0 and an integer n2 > 0 such that for
all n ≥ n2, supn≥n2

∣κ̂n∣ ≤M . On this event, we have that

P̂n ([−M,M]
c
) = ∑

z≥M+1
p̂n(z) + ∑

z≤−M−1
p̂n(z)

≤ ∑
z≥M+1

pn(z) + ∑
z≤−M−1

pn(z)

= 1 − Fn(M) + Fn(−M − 1) < ε/2

where the inequality in the second line follows from Proposition C.2. We
have therefore shown that there exists a sufficiently large n0 = max{n1, n2}
such that {P̂n}n≥n0 is tight. Since any finite collection of distributions is also
tight, it follows that {P̂n}n≥1 is tight, with probability one.

Since {P̂n} is tight, it is also sequentially compact. Thus, let {P̂nk} de-
note a weakly convergent subsequence, which, for convenience, we continue

9



to denote as {P̂n}. The Portmanteau theorem then implies that the associ-
ated pmf p̂n(si) converges for all si ∈ S0 (since (s − δ, s + δ) are continuity
sets for appropriate choice of δ), and we let p̃ denote the limiting pmf. To
complete the proof, we need only show that p̃ is an element of {p̂0}. Note
that convergence in the set metric then follows because {p̂0} is necessarily a
finite set.

Now, since we maximize the criterion function ∫ log pdFn − ∑z∈Sn p(z)
(B - 1) over positive and unimodal sequences and since ∑z∈Sn p̂n(z) = 1, we
can write

∑ log p̂0(zj)pn(zj) −∑ p̂0(zj) ≤ ∑ log p̂n(zj)pn(zj) − 1

≤ ∑ log(b + p̂n(zj))pn(zj) − 1,

for b > 0. Re-arranging the terms above, this yields

0 ≤ ∑ log(b + p̂n(zj))pn(zj) −∑ log p̂0(zj)pn(zj) +∑ p̂0(zj) − 1

≤ ∑ log(b + p̂n(zj))pn(zj) −∑ log p̂0(zj)pn(zj),

where the last inequality follows since ∑ p̂0(zj) ≤ 1. Finally, because pn puts
all of its mass only on the zj , we can re-write the latter as

0 ≤ ∑ log(b + p̂n(sj))pn(sj) −∑ log p̂0(sj)pn(sj).

On the other hand, we have that

∑ log(b + p̂n(sj))pn(sj) −∑ log p̂0(sj)pn(sj)

=∑ log(b + p̂n(sj)) (pn(sj) − p0(sj)) +∑ log p̂0(sj) (p0(sj) − pn(sj))

+∑ log(
b + p̂n(sj)

b + p̂0(sj)
) p0(sj) +∑ log(

b + p̂0(sj)

p̂0(sj)
) p0(sj).

(B - 4)

Next we get rid of the first two terms on the right-hand side. First, using
summation by parts,

∑ log (b + p̂n(sj)) (pn(sj) − p0(sj))

=∑(Fn(sj) − F0(sj)) [log (b + p̂n(sj)) − log (b + p̂n(sj−1))] .

Now, we know that p̂n = p̂n∣κ for some κ. Then,

∣∑ log (b + p̂n(sj)) (pn(sj) − p0(sj))∣

≤ sup ∣Fn(sj) − F (sj)∣

⎧⎪⎪
⎨
⎪⎪⎩

∑
j≤κ−1

[log (b + p̂n(sj)) − log (b + p̂n(sj−1))]

+ ∣log (b + p̂n(sκ)) − log (b + p̂n(sκ−1))∣

+ ∑
j≥κ+1

[log (b + p̂n(sj)) − log (b + p̂n(sj−1))]

⎫⎪⎪
⎬
⎪⎪⎭

≤ 4∣ log(b +max
j
p̂n(sj))∣ sup ∣Fn(sj) − F0(sj)∣

≤ 4 max{log(1 + b), ∣ log(b)∣} sup ∣Fn(sj) − F0(sj)∣,
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which converges to zero. The law of large numbers shows that the second
term also converges to zero. This follows because supp∈U1(S0) ∫ log pdP0 >

−∞, which implies that ∑ ∣ log p̂0(sj)∣p0(sj) < ∞. Therefore, rearranging
(B - 4), we find that

lim sup
n
∑ log(

b + p̂0(sj)

b + p̂n(sj)
) p0(sj) ≤ ∑ log(

b + p̂0(sj)

p̂0(sj)
) p0(sj).

Now, letting b→ 0, we have by Fatou’s lemma that

lim sup
b→0

lim sup
n
∑ log(

b + p̂0(sj)

b + p̂n(sj)
) p0(sj) ≤ 0.

Next, we take the limits on the right-hand side. First, by the dominated
convergence theorem

lim sup
n
∑ log(

b + p̂0(sj)

b + p̂n(sj)
) p0(sj) = ∑ log(

b + p̂0(sj)

b + p̃(sj)
) p0(sj),

since ∣ log((b + p̂0)/(b + p̂n))∣ ≤ 2 max{log(b + 1), ∣ log b∣}. Next, we want to
show that

lim
b↓0
∑ log(

b + p̂0(sj)

b + p̃(sj)
) p0(sj) = ∑ log(

p̂0(sj)

p̃(sj)
) p0(sj). (B - 5)

To do this, consider both pieces separately. First, log(b+ p̂0(z)) is decreasing
in b and bounded above by log 2, and hence by the monotone convergence
theorem we have that

lim
b
∑ log (b + p̂0(sj)) p0(sj) = ∑ log p̂0(sj)p0(sj).

Similarly − log(b+ p̃(sj)) is increasing as b decreases, and bounded below by
− log 2. Therefore also,

lim
b
∑ log (b + p̃(sj)) p0(sj) = ∑ log p̃(sj)p0(sj).

Note that ∫ log pdP0 is always finite for any unimodal p, and therefore we
may subtract the last two lines above to yield (B - 5). We have thus shown
that

∑ log(
p̂0(sj)

p̃(sj)
) p0(sj) ≤ 0.

Rearranging, this gives

sup
p∈U1(S0)

∫ log pdP0 = ∑ log p̂0(si)p0(si) ≤ ∑ log p̃(si)p0(si),

and hence p̃ ∈ {p̂0}.
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Recall the definition of knots in (5.14) and the preceding paragraph.

Lemma B.3. Suppose that ∑j≠0 log ∣j∣p0(sj) < ∞ and ∣{p̂0}∣ = 1. Let τ ∈ T

be a knot point of p0. Then, almost surely, there exists an n0 such that for
all n ≥ n0 we have that τ is also a knot of p̂n.

Proof. Without loss of generality, assume that τ = sk0 and that p̂0(sk0) >

p̂0(sk0−1). Then, from Theorem 4.4, we know that sup ∣p̂0(sj) − p̂n(sj)∣ < ε,
where ε < (p̂0(sk0) − p̂0(sk0−1))/2, for all sufficiently large n. Therefore,

p̂n(sk0) ≥ p̂0(sk0) − ε > p̂0(sk0−1) + ε ≥ p̂n(sk0−1),

and the result follows.

Proof of Corollary 4.6. Write M = {sk1 , . . . , sk2}, and note that, by def-
inition, we have that p̂0(sk1) > p̂0(sk1−1) and p̂0(sk2) > p̂0(sk2+1). From
Lemma B.3 and the `1 consistency results of Theorem 4.4, it follows that,
with probability one, there exists an n0 such that for all n ≥ n0,

p̂n(sj) ≤ p̂n(sk1−1) < p̂n(sk1), j ≤ k1 − 1,

p̂n(sk2) > p̂n(sk2+1) ≥ p̂n(sj), j ≥ k2 + 1.

This, of course, implies that the mode of p̂n must be in M = {sk1 , . . . , sk2}.

Proof of Corollary 4.7. This is an immediate consequence of Theorem 4.4
and the inequality

∣F̂n(si) − F̂0(si)∣ ≤ ∑
j

∣p̂n(sj) − p̂0(sj)∣.

B.3 Proof of Theorem 5.1

Let {Wn(s), s ∈ Sn} ≡ {
√
n(pn(s) − p0(s)), s ∈ Sn}, denote the empirical

white noise process.

Proposition B.4. Let C = {∪kj=1Ij} ∪ {∪kj=1Dj} with k finite and Ij ,Dj

defined as in (5.13). Then, with probability one, there exists an integer
n0 > 0 such that for n ≥ n0

√
n(p̂n − p0)(s) = ϕ[Wn](s), for all s ∈ C.

Proof. By the strong law of large numbers, with probability one, we can find
an integer n1 > 0 such that for all n ≥ n1, C ⊂ Sn. Next, by Corollary 4.6,
with probability one, we can find n2 ≥ n1 such that for n ≥ n2 we have that
M̂n ⊂ M. This means that the p̂n is found as the minimizer in U1∣κ(S0)
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where κ ∈M. By Lemma B.3, again with probability one, we can find an
n3 ≥ n2 such that the knots τ Ii , τ

D
i , i = 0, . . . , k are also knots of p̂n for all

n ≥ n3 (recall the definitions of the knots from (5.14) and the preceding
paragraph). Therefore, by Lemma C.4, for all n ≥ n3 we have that for
1 ≤ j ≤ k

p̂n(s) = iso[(pn)Ij ](s), s ∈ Ij ,

p̂n(s) = anti[(pn)Dj ](s), s ∈Dj .

That is, we have that p̂n(s) = ϕ[pn](s), s ∈ C, for n ≥ n3. Since p0 is constant
on each Ij ,Dj by definition, this implies that

√
n(p̂n − p0)(s) = ϕ[Wn](s), for all s ∈ C,

see Lemma C.5.

Lemma B.5. Let V be a mean-zero Gaussian vector of dimension d > 0
with variance-covariance matrix Σ given by cov(Vi,Vj) = d−1δi=j−d−2. Then
uni[V] is unique with probability one.

Proof. Suppose that V̂1 and V̂2 are two different solutions for the minimiza-
tion problem. Our goal will be to show that P (V̂1 ≠ V̂2) = 0. Since any
minimizer of uni(V) can be re-written as local averages of the original vec-
tor V, it follows that we can find d×d matrices Â1 and Â2 such that V̂1 = Â1V
and V̂2 = Â2V, where Âi, i = 1,2 can be written as

Âi =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Â1
i 0 0 . . . 0

0 Â2
i 0 . . . 0

...

0 0 0 0 Âmii

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

with Âji , 1 ≤ j ≤mi, given by the lj × lj matrix

Âji =
1

lj

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 1 . . . 1
⋮ ⋮ . . . ⋮

1 1 . . . 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Also, note that if V̂i = ÂiV then

∣∣V̂i −V∣∣
2
2 = VT (I − Âi)V.

Finally, let A denote the set of all possible matrices Âi, and note that
∣A∣ is finite. Hence,

P (V̂1 ≠ V̂2) = P (V̂1 ≠ V̂2,VT (I − Â1)V = VT (I − Â2)V)

≤ ∑
B1,B2,∈A,B1≠B2

P (VT (I −B1)V = VT (I −B2)V)

= ∑
B1,B2,∈A,B1≠B2

P (VT (B1 −B2)V = 0) .
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Let S = Σ1/2 so that we can write V = SZ for Z ∼ Nd(0, I). The ma-
trix ST (B1 − B2)S is Hermitian, and therefore admits a spectral decom-
position, which we write as ΓΛΓT , where Γ is an orthogonal matrix and
Λ = diag(λ1, . . . , λp,−λp+1, . . . ,−λd) with λi ≥ 0, 1 ≤ i ≤ d. Note that since
B1 ≠ B2, there exists at least one index i ∈ {1, . . . , d} such that λi ≠ 0. It is
also important to note that only B ∈ A with m = 1 yields BV = 0. Finally,
let U = ΓTZ. Note that U ∼ N (0, I). Then, we can write

P (VT (B1 −B2)V = 0) = P (ZTΓΛΓTZ = 0)

= P (UTΛU = 0)

= P (λ1U
2
1 + . . . + λpU

2
p = λp+1U

2
p+1 + . . . + λdU

2
d ).

Notice that in the last line at least one of the quantities on the left or
right hand side is not equal to zero and that in such case it is a continuous
random variable (in fact, each has a gamma distribution). Also, notice that
the left hand side is independent of the right hand side. This shows that
P (VT (B1 −B2)V = 0) = 0, and the result follows.

Proof of Theorem 5.1. The proof is divided into several main steps. We first
address a slight technicality: the MLE p̂n is defined on Sn, while p0 is defined
on S0. The results we prove here all “live” in the space of `k sequences defined
on S0. To make our results concrete, we therefore embed all sequences on Sn
into sequences on S0 by setting them equal to zero for s ∉ Sn.

Below, we present the proof for `k(S0) with k = 2 only. Convergence for
3 ≤ k ≤ ∞ follows immediately, because ∣∣q∣∣k ≤ ∣∣q∣∣2 for k ≥ 2 and q ∈ `2 and
hence ∣∣ ⋅ ∣∣k is a continuous mapping on `2(S0) for k ≥ 2.

1. We first show that Wn converges in `2(S0) to the limit W. This is essen-
tially a well known result (cf. Jankowski and Wellner (2009, Theorem
3.1)), noting that for s ∉ Sn, Wn(s) = −

√
np0(s) =

√
n(pn(s) − p0(s))

is still well-defined, since for s ∉ Sn, pn(s) = 0.

2. We will next show that
√
n(p̂n − p0)⇒ ϕ[W] in `2(S0 ∖M). That is,

we consider the sequence only on the set S0 ∖M. This result is proved
in two sub-steps:

(a) We first show that ϕ is continuous in `2(S0 ∖M). This, together
with step one above implies that ϕ[Wn]⇒ ϕ[W] in `2(S0 ∖M).

(b) The next step is to show that ∣∣
√
n(p̂n−p0)−ϕ[Wn]∣∣

2
2

p
→ 0 (where

the `2 norm is calculated only on the support S0 ∖M). In fact,
we prove slightly stronger convergence (in expectation).

3. Finally, we will tackle convergence on the set M. This follows essen-
tially from the argmax continuous mapping theorem. Note that since
∣M∣ is necessarily finite, we also have convergence in `2(M) of the
process on the set M.
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4. To put the two results together, note that the convergence in steps
two and three can also be stated as joint convergence (and not just
convergence of marginals). This holds because of the joint convergence
of Wn in step one. From here the full result follows.

We now fill in the details in steps 2 and 3 above. To prove 2(a), consider
a converging sequence qn → q in `2(S0 ∖M) and fix ε > 0. Then we can find
an integer n0 and K > 0 large enough such that

sup
n≥n0

∑
∣i∣>K

q2n(si) < ε/6, and ∑
∣i∣>K

q2(si) < ε/6.

Now, let K1 ≤ −K and K2 ≥K be such that sK1 , sK2 ∈ T . We then have that

∑
si∉M

(ϕ[qn](si) − ϕ[q](si))
2

≤ ∑
i∈[K1,K2],si∉M

(ϕ[qn](si) − ϕ[q](si))
2

+2 ∑
i∉[K1,K2]

ϕ[qn]
2
(si) + 2 ∑

i∉[K1,K2]
ϕ[q]2(si).

Now, by Lemma C.5 (choosing p = q = 0) we have that

∑
i∉[K1,K2]

ϕ[qn]
2
(si) ≤ ∑

i∉[K1,K2]
q2n(si),

and similarly for qn replaced with q. Also, by continuity of the operators iso
and anti (Proposition C.6), we can choose an n1 ≥ n0 such that for all n ≥ n1

∑
i∈[K1,K2],si∉M

(ϕ[qn](si) − ϕ[q](si))
2
< ε/3.

It follows that for all n ≥ n1, we have that

∑
si∉M

(ϕ[qn](si) − ϕ[q](si))
2

≤ ε/3 + 2 ∑
∣i∣≥K

q2n(si) + 2 ∑
∣i∣≥K

q2(si)

≤ ε/3 + 4ε/6 = ε.

This shows that ϕ is continuous in `2(S0 ∖M).
To prove 2(b), we fix ε > 0 and pick K large enough so that ∑∣i∣>K p0(si) <

ε. Now, let K1 ≤ −K and K2 ≥ K be such that sK1 , sK2 ∈ T . Let Ŵn(s) =√
n(p̂n − p0)(s). Then

∑
si∉M

(Ŵn − ϕ[Wn])
2
(si) ≤ ∑

i∈[K1,K2],si∉M
(Ŵn(si) − ϕ[Wn](si))

2

+2 ∑
i∉[K1,K2],si∈Sn

Ŵ2
n(si) + 2 ∑

i∉[K1,K2],si∈Sn
W2
n(si)

+4 ∑
i∉[K1,K2],si∉Sn

W2
n(si).
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Now, for n large enough, by Proposition B.4 we have that Ŵn(si) = ϕ[Wn](si)
for all i ∈ [K1,K2], si ∉M.Also, ∑i∉[K1,K2],si∈Sn Ŵ

2
n(si) ≤ ∑i∉[K1,K2],si∈Sn W

2
n(si)

by Lemma C.5. We therefore have that for n sufficiently large

∣∣Ŵn − ϕ[Wn]∣∣
2
2 ≤ 4 ∑

∣i∣>K
W2
n(si).

0 ≤ limE [∣∣Ŵn − ϕ[Wn]∣∣
2
2] ≤ E [lim ∣∣Ŵn − ϕ[Wn]∣∣

2
2]

≤ 4E

⎡
⎢
⎢
⎢
⎢
⎣

lim ∑
∣i∣>K

W2
n(si)

⎤
⎥
⎥
⎥
⎥
⎦

≤ 4E

⎡
⎢
⎢
⎢
⎢
⎣

∑
∣i∣>K

W2
(si)

⎤
⎥
⎥
⎥
⎥
⎦

= ∑
∣i∣>K

p0(si) < ε.

Since ε was arbitrary, this proves the result.
Finally, we tackle step 3. We will do this by applying the argmax con-

tinuous mapping theorem, cf. van der Vaart and Wellner (1996, Theorem
3.2.2, page 286). Let Ln(p) denote again the empirical log-likelihood, and
recall that

p̂n = argmaxκ∈Sn Ln(p̂n∣κ).

Now, by Lemma B.3 applied to τ I0 and τD0 , and by Lemma C.4 we can also
have that

p̂n = argmaxκ∈MLn(p̂n∣κ),

and furthermore, each p̂n∣κ(s), s ∈ M is determined by the LCM/GCM
characterization only on M. Let d = ∣M∣ and recall the definition of Ud
from Section 2.2.2 as the space of unimodal vectors of length d. Also, let
U+d = {u ∈ Ud ∶ u > 0}. For s ∈M, and for sufficiently large n, we have that

√
n(p̂n − p0) =

√
n{argminp∈U+

d
[− ∑

s∈M
log(

p

pn
)pn + ∑

s∈M
p] − p0}

= argminq∈
√
n(U+

d
−p0) [− ∑

s∈M
log(

p0 + q/
√
n

pn
)pn + ∑

s∈M
(p0 + q/

√
n)]

= argminq∈
√
n(U+

d
−p0)

⎡
⎢
⎢
⎢
⎢
⎣

− ∑
s∈M

log
⎛

⎝

p0 +
q√
n

pn

⎞

⎠
pn + ∑

s∈M

q
√
n
− ∑
s∈M

Wn
√
n

⎤
⎥
⎥
⎥
⎥
⎦

,

since ∑s∈M p0 and ∑s∈MWn are constants on which the minimization does
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not depend. Now, let

Mn(q) = − ∑
s∈M

log(
p0 + q/

√
n

pn
)pn +

1
√
n
∑
s∈M

q −
1

√
n
∑
s∈M

Wn

= − ∑
s∈M

log(1 +
1

√
n

q −Wn

pn
)pn +

1
√
n
∑
s∈M

q −
1

√
n
∑
s∈M

Wn

≈ − ∑
s∈M

⎧⎪⎪
⎨
⎪⎪⎩

1
√
n

q −Wn

pn
−

1

2
(

1
√
n

q −Wn

pn
)

2⎫⎪⎪
⎬
⎪⎪⎭

pn + ∑
s∈M

q
√
n
− ∑
s∈M

Wn
√
n

=
1

2n
∑
s∈M

(q −Wn)
2

p̄n
= M̃n(q)

where

nM̃n(q) ⇒
1

2
∑
s∈M

(q −W)2

p0
.

Finally, since p0 is constant on M, we would therefore like to conclude that
√
n(p̂n − p0) ⇒ argminq∈U∣M∣ ∑

s∈M
(q −W)

2
= uni[WM],

where WM denotes the vector of random variables {W(s), s ∈M}. To do
this, we need to check the criteria of the argmax continuous mapping theo-
rem, that is

1.
√
n(p̂n−p0) is tight (“uniformly tight” in the sense of van der Vaart and

Wellner (1996)) since it is equal to
√
n(p̂n∣κ̂n−p0) for some κ̂n ∈M, and

each
√
n(p̂n∣k − p0) converges, using for example, Marshall’s lemma.

2. The requirement that Mn(
√
n(p̂n − p0)) ≥ supqMn(q) is satisfied by

definition of the p̂n.

3. By Lemma B.5, ∑s∈M(q −W)2 has a unique minimum on Ud, that is,
uni[WM] has a unique solution. To see this, recall that onM,W is nor-
mally distributed with mean zero and covariance given by
cov(W(si),W(sj)) = θδi,j − θ

2, letting θ = p0(s), s ∈ M. Now, define
V(s) = (θ∣M∣)−1/2(W(s) − ∑s∈MW(s)/∣M∣), so that W = (θd)1/2V +

∑s∈MW(s)/d, using d = ∣M∣. A quick check shows that V is still nor-
mally distributed with mean zero and cov(V(si),V(sj)) = d

−1δi,j −d
−2.

Applying Lemma C.5, we have that

uni[W] = (θd)1/2 uni[V] + ∑
s∈M

W(s)/d.

By Lemma B.5, uni[V] has a unique solution, and therefore, uni[W]

does also.

4. Note lastly that ∑s∈M(q −W)2 is a.s. continuous in q.

The result follows.
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B.4 Proof of Proposition 5.3

Lemma B.6. Suppose that ∑s∈S0
p
1/2
0 (s) <∞. Then

√
n ∑
s∉Sn

p0(s) = op(1).

Proof. Let P0(A) = ∑s∈A p0(s) and Pn(A) = ∑s∈A pn(s). By the Borisov-
Durst theorem (Dudley, 1999, Theorem 7.9, page 279) the power set of S0,

2S0 , is a Donsker class for P0 if and only of ∑s∈S0
p
1/2
0 (s) < ∞. Now, let G

denote the zero-mean Gaussian random field on 2S0 with covariance

E [G(A)G(B)] = P0(A ∩B) − P0(A)P0(B).

The Borisov-Durst theorem tells us that
√
n(Pn − P0) ⇒ G in `∞(2S0). (B - 6)

Since S0 is countable, we have that

sup
A∈2S0

∣Pn(A) − P0(A)∣ =
1

2
`1(p̄n, p0)→ 0,

almost surely as n → ∞ since the class 2S0 is also Glivenko-Cantelli. Since
by definition, Pn(Scn) = 0, the latter implies that

lim
n→∞

P0(S
c
n) = 0 (B - 7)

almost surely. Furthermore, using the Skorokhod representation the conver-
gence in (B - 6) (see e.g. Theorem 1.10.4 of van der Vaart and Wellner, 1996)
implies that we can assume that there exists a common probability space on
which

√
n(Pn − P0) and G are defined such that

sup
A∈2S0

∣
√
n(Pn(A) − P0(A)) −G(A)∣→ 0

almost surely. This implies that

lim
n→∞

(
√
n(Pn(Scn) − P0(S

c
n)) −GP0(S

c
n)) = 0

almost surely. However, G(Scn)
d
= Z

√
P0(Scn)(1 − P0(Scn)) with Z ∼ N (0,1).

Using this along with Pn(Scn) = 0 and (B - 7) it follows that

lim
n→∞

√
nP0(S

c
n) = 0.

We conclude that on the original probability space
√
nP0(S

c
n)→d 0 which is

equivalent to

√
nP0(S

c
n) =

√
n ∑
s∈Scn

p0(s)
p
→ 0,

because the limit is degenerate.
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Proof of Proposition 5.3. Let us first fix κ ∈M. From Corollary 4.6 we have
that with probability one, there exists a sufficiently large n0 such that p̂n =
p̂n∣κ̂n with κ̂n ∈M if n ≥ n0. This also implies that M ⊂ Sn for all n ≥ n0.
Consider such an n.

Since κ ∈M, we know that p0 ∈ U
1∣κ(S0). From the characterization of

the restricted MLE, we know that F̂n∣k(s), s ∈ Sn (the associate CDF) is
found as the least concave majorant of the graph

{(i,Fn(zi)), k ≤ i ≤m}

where zi denotes an ordered enumeration of the elements of Sn = {z1, . . . , zm}

and k = k(κ,Sn) is such that zk = sκ (recalling that M ⊂ Sn). Next, define
the function

F 0(zi) = ∑
j≤i
p0(zj).

This depends of course on the observed Sn. Note that by definition this
function is concave on k ≤ i ≤m and convex on 1 ≤ i ≤ k − 1. Now, the usual
proof of Marshall’s lemma applies. That is, let a = supi≥k ∣Fn(zi) − F 0(zi)∣.
Then for all i ≥ k, we have (1)

F̂n∣k(zi) − F 0(zi) ≥ Fn(zi) − F 0(zi) ≥ −a.

On the other hand F 0(zi) + a is a concave majorant of Fn(zi) on i ≥ k,
and hence (2) F 0(zi) + a ≥ F̂n(zi). Combining the results of (1) and (2)
gives that supi≥κ ∣F̂n(zi) − F 0(zi)∣ ≤ supi≥κ ∣Fn(zi) − F 0(zi)∣. Repeating the
argument on greatest concave minorants, yields a similar result for i ≤ κ− 1,
which combined gives

supz∈Sn ∣F̂n∣k(z) − F 0(z)∣ ≤ supz∈Sn ∣Fn(z) − F 0(z)∣.

This result holds for any choice of κ ∈ M. Next, from Corollary 4.6 we
have that with probability one, there exists a sufficiently large n0 such that
p̂n = p̂n∣κ̂n with κ̂n ∈ M. Let F̂n denote the CDF associated with p̂n. We
then have that

sup
z∈Sn

∣F̂n(z) − F 0(z)∣ ≤ sup
κ∈M

sup
z∈Sn

∣F̂n∣k(z) − F 0(z)∣

≤ sup
z∈Sn

∣Fn(z) − F 0(z)∣.

Next, it follows that

sup
s∈Sn

∣F̂n(s) − F 0(s)∣ ≤ sup
s∈Sn

∣Fn(s) − F0(s)∣ + sup
s∈Sn

∣F0(si) − F 0(si)∣

≤ sup
s∈S0

∣Fn(s) − F0(s)∣ + ∑
s∈Scn

p0(s).
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On the other hand,

∣F̂n(s) − F 0(s)∣ = ∣F̂n(s) − F0(s) + F0(s) − F 0(s)∣

≥ ∣F̂n(s) − F0(s)∣ − ∣F0(s) − F 0(s)∣

This yields

sup
s∈S0

∣F̂n(s) − F0(s)∣ ≤ sup
s∈S0

∣Fn(s) − F0(s)∣ + 2 ∑
s∈Scn

p0(s).

The full result is obtained by applying Lemma B.6.

B.5 Proofs for Section 6

Proof of Proposition 6.1. Using our assumption of finite support, the result
follows immediately from Theorems 4.4 and 5.1 via Slutsky’s theorem and
the continuity of norms on Rd. Next, recall the definition of ϕ in (5.15). We
have that

ϕ(W)

pβ0
= ϕ

⎛

⎝

W
pβ0

⎞

⎠

since p0 is constant on the intervals Ij ,M,Dj . The final inequality now
follows as in Proposition 5.2.

Proposition B.7. Let W denote a mean zero Gaussian process defined
on S0 such that cov(W(si),W(sj)) = p0(si)δi,j − p0(si)p0(sj), si ∈ S0. Let
W̃n denote a mean zero Gaussian process defined on supp(p̂n) such that
cov(W̃n(si),W̃n(sj)) = p̂n(si)δi,j − p̂n(si)p̂n(sj), si ∈ supp(p̂n). Let q0,α and
q̃0,α denote the quantiles such that

P (∣∣W∣∣∞ > q0,α) = α, P (∣∣W̃n∣∣∞ > q̃0,α) = α,

respectively. Then q̃0,α → q0,α almost surely.

Proof. First, let pn denote any fixed pmf such that pn converges to p0 and
has the same properties as p̂n ∶

(a) pn converges pointwise to p0, and

(b) limm→∞ limn∑∣si∣>m pn(si) = 0.

Suppose also that W̃n is defined as above, except that pn replaces p̂n in
the definition (in essence, we remove the randomness associated with this
choice). Then one can easily show that W̃n converges weakly to W in `2.
This follows from (a) convergence of finite dimensional distributions, which
is immediate from convergence of pn to p0, and (b) tightness in `2. To prove
tightness, we refer again to Jankowski and Wellner (2009, Lemma 6.2). Note
that we have that
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1. E[∣∣W̃n∣∣
2
2] ≤ 1 for all n

2. For sufficiently large n, we have that

∑
∣si∣>m

E[W̃2
n(si)] ≤ ∑

∣si∣>m
pn(si),

which shows that W̃n is tight in `2. The required weak convergence follows.
Now, since the `∞ is continuous in `2, convergence of the quantiles follows.

Thus, we obtain convergence of the quantiles (as numbers), based on
conditions (a) and (b) of pn. We will now show that these conditions hold
almost surely, establishing the full result. Condition (a) follows immediately
from Theorem 4.4. To see also that Condition (b) holds, note that from
Propositions C.2 and B.4, there exists a sufficiently large n such that with
probability one

∑
∣si∣>m

p̂n(si) = F̂n(−m) + 1 − F̂n(m) ≤ Fn(−m) + 1 − Fn(m)

for m ∉M. That limm limn(Fn(−m) + 1 − Fn(m)) = 0 almost surely follows
from the properties of the empirical CDF and CDFs in general.

C Additional Technical Results

C.1 Useful bounds

Lemma C.1. Any p ∈ U1∣κ(S0) satisfies

p(sj) ≤ min{1, ∣j − κ∣−1} .

Proof. We have that

1 ≥

j

∑
i=κ
p(si) ≥

j

∑
i=κ
p(sj) = (j − κ + 1)p(sj) ≥ (j − κ)p(sj).

Similarly, we have

1 ≥
κ−1
∑
i=j

p(si) ≥
κ−1
∑
i=j

p(sj) = (κ − j)p(sj).

Together, these yield the first inequality.

Proposition C.2. The restricted MLE p̂n∣κ satisfies the inequalities

F̂n∣κ(z) ≥ Fn(z) z ≥ sκ,

F̂n∣κ(z) ≤ Fn(z) z ≤ sκ−1.

Proof. Follows immediately from the GCM/LCM characterization of p̂n∣κ.
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C.2 Proof of Proposition 2.1

Suppose that there exists q such that p satisfies (2.4). It is clear that p is a
pmf. We now verify that p is unimodal with mode either at sκ−1 or sκ. Let
(∆p)(j) = p(sj+1) − p(sj). We calculate

(∆p)(j) =

⎧⎪⎪
⎨
⎪⎪⎩

−
q(sj−κ)
j−κ+1 ≤ 0 j ≥ κ,

q(sj+1−κ)
∣j+1−κ∣ ≥ 0 j ≤ κ − 2.

Therefore, p is non-decreasing on {sj ∶ j ≥ κ} and non-increasing on {sj ∶ j ≤
κ − 1}. For j = κ − 1, we calculate

p(sκ) − p(sκ−1) =
∞
∑
i=κ

q(si)

i − κ + 1
−
i=κ−1
∑
−∞

q(si)

∣i − κ∣

which could be either ≥ 0 or < 0. This shows that p is unimodal with mode
either at sκ−1 or sκ.

Conversely, if p is a pmf which is unimodal with mode either at sκ−1 or
sκ. Let q be defined as

q(si) = {
−(i − κ + 1)(∆p)(i) i ≥ κ,
∣i − κ∣(∆p)(i − 1) i ≤ κ − 1.

By the property of p, q ≥ 0. Furthermore, using Fubini’s theorem and the
fact that p is a pmf, we have that

∑
j

q(sj) = −∑
j≥κ

(j − κ + 1)(∆p)(j) + ∑
j≤κ−1

(κ − j)(∆p)(j − 1)

= −
∞
∑
i=0

∞
∑
j=i+κ

(p(sj+1) − p(sj)) +
∞
∑
i=0

κ−1−i
∑
j=−∞

(p(sj) − p(sj−1))

=
∞
∑
i=0
p(si+κ) +

∞
∑
i=0
p(sκ−1−i)

= ∑
i≥κ
p(si) + ∑

i≤κ−1
p(si) = 1

and hence q is a pmf. Finally, q satisfies

∑
i

(∣i∣ + 1)−1q(si+κ) = ∑
i≥κ

q(si)

i − κ + 1
+ ∑
i≤κ−1

q(si)

κ − i

= −∑
i≥κ

(∆p)(i) + ∑
i≤κ−1

(∆p)(i − 1)

= p(sκ) + p(sκ−1) <∞

which completes the proof. ◻
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C.3 Properties of the anti, iso, and uni operators

There is a well-known equivalence between the monotonic projection in the
sense of least squares and likelihood maximization (e.g. the maximum likeli-
hood and least squares estimators are the same for a decreasing density).
As such equivalences are not always readily available in a standard ref-
erence on isotonic estimation, for completeness, we state this relationship
explicitly in the following lemma. Let I+d = Id ∩ {u ∈ Rd ∶ uj > 0} and
D+d = Dd ∩ {u ∈ Rd ∶ uj > 0}.

Lemma C.3. Suppose that v ∈ Rd such that vj > 0 for j = 1, . . . , d. Then

iso[v] = argmaxu∈I+
d
{

d

∑
j=1

vj log(uj) −
d

∑
j=1

uj},

anti[v] = argmaxu∈D+
d
{

d

∑
j=1

vj log(uj) −
d

∑
j=1

uj}.

Proof. It is known that

argminu∈Id

d

∑
j=1

(vj − uj)
2

is equal to the right slope of the GCM of the cumulative sum diagram
{(0,0), (j,∑

j
i=1 vj), j = 1, . . . , d}. Note that implies in particular that these

slopes have to be positive if vj > 0 for all j ∈ {1, . . . , d}, and hence

argminu∈Id

d

∑
j=1

(vj − uj)
2
= argminu∈I+

d

d

∑
j=1

(vj − uj)
2.

Now maximizing the criterion L(u) = ∑dj=1 vj log(uj)−∑
d
j=1 uj on I+d admits

a unique solution. Let {us}s∈N be a maximizing sequence of L. Suppose that
there exists j ∈ {1, . . . , d} such that

lim
s→∞

usj = 0 or lim
s→∞

usj =∞.

Then, in this case we would have lims→∞L(u
s) = −∞ contradicting the fact

that {us}s∈N is a maximizing sequence since it must satisfy lims→∞L(u
s) ≥

L(v) = ∑
d
j=1 vj log(vj) − ∑

d
j=1 vj > −∞. Hence, there exists K2 > K1 > 0

such that K1 ≤ uj ≤ K2 for j = 1, . . . , d. It follows that the maximization is
performed on a compact set and existence of the maximum is now guaranteed
by continuity of L. Uniqueness follows from strict concavity of L. We denote
this unique solution by v̂. Let j ∈ {1, . . . , d}. For ε ∈ R, let

v̂εi = v̂i + εI1≤i≤j , 1 ≤ i ≤ d.
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Then, for ε > 0 small enough, we have v̂ε ∈ I+d , and L(v̂ε) ≤ L(v̂). Therefore

lim
ε↘0

ε−1 (L(v̂ε) −L(v̂)) ≤ 0.

When j is a knot point, that is, v̂j+1 > v̂j then it is easy to see that

lim
ε→0

ε−1 (L(v̂ε) −L(v̂)) = 0.

This yields

j

∑
i=1

vi
v̂i

⎧⎪⎪
⎨
⎪⎪⎩

≤ j, for all j ∈ {1, . . . , d}

= j, if j is a knot point.
(C - 8)

Let B1, . . . ,Br denote a partition of {1, . . . , d} such that ∀l ∈ Bi, ul = ci some
positive constant, for i = 1, . . . , r. Let i1, i2, . . . , ir denote the largest integers
of B1, . . . ,Bd respectively. Note that ir = d. Then, if follows from (C - 8)
that

j

∑
i=1
vi

⎧⎪⎪
⎨
⎪⎪⎩

≤ jv̂1 = ∑
j
i=1 v̂i, for all j ∈ B1 = {1, . . . , i1}

= jv̂1 = ∑
j
i=1 v̂i, for j = i1.

The same reasoning can be applied for the other sets Bi,2 ≤ i ≤ r to conclude
that

j

∑
i=1
v̂i

⎧⎪⎪
⎨
⎪⎪⎩

≥ ∑
j
i=1 vi, for all j ∈ {1, . . . , d}

= ∑
j
i=1 vi, if j is a jump point.

(C - 9)

Hence, the solution v̂ is given by the slope of the LCM of the cumulative sum
of v. The same reasoning can be applied to the projection on D+d , proving
the result.

In the following, we state a result which shows that isotonic/antitonic
projections can be transformed into “localized”projections between the knots
of the “global” isotonic/antitonic solution. Recall that if v = (v1, . . . , vd) ∈
Rd, then vs∶t = (vs, . . . , vt) for 1 ≤ s ≤ t ≤ d.

Lemma C.4. Let v = (v1, . . . , vd) ∈ Rd such that vj > 0, j = 1, . . . , d. Also
let v̂ = iso[v] and 1 ≤ s1 < . . . < sr ≤ d the locations of the knot points of v̂,
that is

v̂1 = . . . = v̂s1 < v̂s1+1 = . . . v̂s2 < . . . < v̂sr+1 = . . . = v̂d.

Then, for 1 ≤ j < k ≤ r

v̂(sj+1)∶sk = iso[v(sj+1)∶sk].
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Proof. The proof follows immediately from the fact that v̂(sj+1)∶sk is charac-
terized by the same Fenchel conditions as iso(v(sj+1)∶sk). Indeed, we know
from the characterization of v̂ = iso(v) that

t

∑
i=1
v̂i

⎧⎪⎪
⎨
⎪⎪⎩

≥ ∑
t
i=1 vi, for all t ∈ {1, . . . , d}

= ∑
t
i=1 vi, if t is a jump point

and therefore

t

∑
i=sj

v̂i

⎧⎪⎪
⎨
⎪⎪⎩

≥ ∑
t
i=sj vi, for all t ∈ {sj + 1, . . . , sk}

= ∑
t
i=sj vi, if t is a jump point

which give exactly the characterization of the isotonic projection of the sub-
vector v(sj+1)∶sk .

Lemma C.5. Suppose that v ∈ Rd and let p ∈ Id, q ∈ Dd. Also, let a > 0, b ∈ R
denote two fixed constants. Then the following (in)equalities hold

∣∣ iso[v] − p∣∣22 ≤ ∣∣v − p∣∣22, ∣∣anti[v] − q∣∣22 ≤ ∣∣v − q∣∣22

anti[av + b] = aanti[v] + b, iso[av + b] = a iso[v] + b,

uni[av + b] = auni[v] + b.

Proof. The first two inequalities appear in Robertson et al. (1988, Theorem
1.6.1); cf. Jankowski and Wellner (2009, Lemma 6.1). The three equalities
are all proved in a similar manner. For example,

anti[v + b] = argminu∈Dd ∣∣u − (v + b)∣∣22

= argminu∈Dd ∣∣(u − b) − v∣∣
2
2

= argminu+b ∈Dd ∣∣u − v∣∣
2
2

= argminu∈Dd ∣∣u − v∣∣
2
2 + b = anti[v] + b.

Continuity of the operators anti and iso follows immediately from Jankowski
and Wellner (2009, Lemma 6.1).

Proposition C.6. Suppose that vn ∈ Rd and that limn→∞ vn = v. Then

lim
n→∞

iso[vn] = iso[v], and lim
n→∞

anti[vn] = anti[v].
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