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Abstract: We consider two-level fractional factorial designs under a baseline

parametrization that arises naturally when each factor has a control or baseline

level. While the criterion of minimum aberration can be formulated as usual on

the basis of the bias that interactions can cause in the estimation of main effects,

its study is hindered by the fact that level permutation of any factor can impact

such bias. This poses a serious challenge especially in the practically important

highly fractionated situations where the number of factors is large. We address this

problem for regular designs via explicit consideration of the principal fraction and

its cosets, and obtain certain rank conditions which, in conjunction with the idea

of minimum moment aberration, are seen to work well. The role of simple recursive

sets is also examined with a view to achieving further simplification. Details on

highly fractionated minimum aberration designs having up to 256 runs are provided.
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1. Introduction

Fractional factorial designs have been widely studied in the recent litera-

ture, with particular emphasis on their exploration under the minimum aberra-

tion (MA) and allied model robustness criteria; see Mukerjee and Wu (2006),

Xu, Phoa, and Wong (2009) and Cheng (2014) for surveys and further refer-

ences. While a vast majority of this work centers around the usual orthogonal

parametrization (OP), a baseline parametrization (BP) for factorial designs has

started gaining attention in recent years. It arises naturally in many situations

where each factor has a control or a baseline level. An example, from Kerr

(2006), is given by a toxicological study with binary factors, each representing

the presence or absence of a toxin, the state of absence being a natural baseline

level of each factor. The BP has found use in microarray experiments (Yang and

Speed (2002)). It can also arise in agricultural or industrial experiments, with

the currently used level of each factor constituting the baseline level.

Optimal paired comparison designs for full factorials under BP were investi-

gated by several authors in the context of microarrays; see Banerjee and Mukerjee
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(2008), Zhang and Mukerjee (2013), and the references there. The study of fac-

torial fractions under BP was initiated by Mukerjee and Tang (2012). Focusing

on the two-level case in view of its popularity among practitioners, they observed

that orthogonal arrays (OAs) of strength two ensure optimal estimation of main

effects when interactions are absent, and hence explored MA designs as OAs

which sequentially minimize the bias that interactions of successively higher or-

ders can cause in the estimation of main effects. Further results on two-level MA

designs were reported by Li, Miller, and Tang (2014). Very recently, Miller and

Tang (2015) obtained certain useful formulae for the bias terms under BP in the

case of two-level regular designs.

As noted by these authors, BP has a special feature that significantly com-

plicates the task of finding MA designs - level permutation of any factor can

influence the bias terms which the MA criterion seeks to minimize. As a result,

with m two-level factors, one needs to account for all the 2m possible factor level

permutations in any OA. This looks formidable, if not impossible, when m is

large and, precisely because of this reason, existing tables of two-level MA de-

signs under BP (Mukerjee and Tang (2012), Li, Miller, and Tang (2014)) cover

only up to 19 factors. Even the formulae in Miller and Tang (2015), as they

stand, are very hard to apply for large m.

In the present paper, we continue with two-level regular designs and build

on the findings in Miller and Tang (2015). Through explicit consideration of

the interplay between the principal fraction and its cosets, we obtain certain

rank conditions which, jointly with the idea of minimum moment aberration

(MMA; (Xu (2003)), are seen to work well especially for large m, i.e., in highly

fractionated situations which are of practical importance due to their economy. It

is also seen that simple recursive sets, introduced recently by Tang and Xu (2014)

in a different context, play an effective role in achieving further simplification.

We present the MMA formulation for BP in the next section. The main results

appear in Section 3 preceded by a brief review of the relevant background material

for regular designs. Design tables and other details are given in Section 4 and

we conclude in Section 5 with some remarks on future work.

There are several reasons, in addition to their popularity among users, for

considering regular designs as done here. First, they are very prospective, e.g.,

Mukerjee and Tang (2012) found that 16-run regular designs having MA under

BP enjoy the same property also among all designs. Therefore, it is of natural

interest to investigate how far the existing rich literature on regular de-signs

under OP can be exploited under BP. An even more compelling reason is that

our results on regular designs provide an important benchmark against which any

future work on the nonregular case has to be compared. Unless the regular case

is well understood, there is no way of assessing, through future research, whether
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nonregular designs are more advantageous or not. Indeed, a complete listing of

nonisomorphic OAs for large m is neither available nor likely to emerge in the

foreseeable future and our findings in the regular case will certainly provide an

attractive option until such discovery takes place. Finally, as noted in Section

4, regular designs tend to compare very favorably with some nonregular designs

that have been of recent interest.

2. Minimum Moment Aberration

For ease of reference, we first introduce BP and the MA criterion under this

parametrization, following Mukerjee and Tang (2012). Then the MMA formula-

tion is presented and its advantages discussed. The contents of this section apply

to both regular and nonregular designs.

If there are two factors, each at levels 0 and 1 with 0 as the control or baseline

level, then under BP, the effects of the four treatment combinations are expressed

as
τ00 = θ0, τ10 = θ0 + θ1, τ01 = θ0 + θ2, τ11 = θ0 + θ1 + θ2 + θ12,

where θ0 is the baseline effect, θ1 and θ2 are the two main effects, and θ12 rep-

resents the two-factor interaction. This can be readily extended to m two-level

factors using heavier notation. With a 2m factorial and BP as above, consider

now an N -run design, where each treatment combination is obviously a binary

m-tuple. Let Z = (zuj), 1 ≤ u ≤ N , 1 ≤ j ≤ m, be the N × m binary design

matrix with rows given by these N treatment combinations. As noted by Muk-

erjee and Tang (2012), in the absence of interactions, the design estimates each

of the m main effects with the smallest possible variance if and only if Z forms

an OA of strength (at least) two. This is just as in OP, and hence in the spirit

of what is done under OP (Tang and Deng (1999)), one can discriminate among

such OAs by taking cognizance of the bias that interactions of successive orders

can cause in the estimation of main effects. From this perspective, in conformity

with the effect hierarchy principle, Mukerjee and Tang (2012) proposed choosing

Z as an OA which sequentially minimizes K2, . . . ,Km, where Ks is a measure of

bias due to the s-factor interactions. In order to present the expression for Ks

as given by them, let Ωs be the set of s-tuples g1 · · · gs, 1 ≤ g1 < · · · < gs ≤ m,

and for any g1 · · · gs ∈ Ωs, let c(g1 · · · gs) be the binary N ×1 vector with the uth

element
∏s

l=1 zugl , 1 ≤ u ≤ N . Then from their equations (4)−(6),

Ks = 4N−2
∑
Ωs

c(g1 · · · gs)′WW ′c(g1 · · · gs), 2 ≤ s ≤ m, (2.1)

where the sum
∑

Ωs
extends over g1 · · · gs ∈ Ωs, the primes denote transposition,

and

W = JNm − 2Z, (2.2)
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with JNm as the N ×m matrix of ones. Here W is obtained from Z replacing 0

and 1 there by 1 and −1, respectively.

A major problem with (2.1) is that the sum
∑

Ωs
becomes unmanageable

for large m, unless s is small or close to m. The following result alleviates this

difficulty. Here (ZZ ′)[s] is the s-fold Schur product of ZZ ′, any element of (ZZ ′)[s]

is the sth power of the corresponding element of ZZ ′.

Lemma 1. Sequential minimization of K2, . . . ,Km is equivalent to that of M2, . . .,

Mm, where

Ms = N−2tr{(ZZ ′)[s]WW ′}, 2 ≤ s ≤ m.

Proof. Denote the N rows of W by w′
(1), . . . , w

′
(N). Then from (2.1),

Ks = 4N−2tr{HsWW ′} = 4N−2
N∑

u=1

N∑
v=1

Hs(u, v){w′
(u)w(v)}, 2 ≤ s ≤ m,

(2.3)

whereHs =
∑

Ωs
c(g1 · · · gs)c(g1 · · · gs)′ is a square matrix of orderN andHs(u, v)

is the (u, v)th element of Hs. By the definition of c(g1 · · · gs),

Hs(u, v) =
∑
Ωs

s∏
l=1

(zuglzvgl), 1 ≤ u, v ≤ N. (2.4)

Let T (u, v) be the set of indices j such that zuj = zvj = 1. Since Z is binary,

the product in (2.4) equals 1 if {g1, . . . , gs} ⊆ T (u, v), and 0 otherwise. Hence,

from (2.4), writing t(u, v) for the cardinality of T (u, v), we get Hs(u, v) =
(
t(u,v)

s

)
.

Using this in (2.3),

Ks = 4N−2
N∑

u=1

N∑
v=1

(
t(u, v)

s

)
{w′

(u)w(v)}, 2 ≤ s ≤ m. (2.5)

Now, write z′(1), . . . , z
′
(N) for the rows of Z, and observe that

t(u, v) = z′(u)z(v), 1 ≤ u, v ≤ N. (2.6)

Hence, using (2.2) and the fact that Z is an OA of strength two, after some

simplification,

N∑
u=1

N∑
v=1

t(u, v){w′
(u)w(v)} = tr(ZZ ′WW ′) =

mN2

4
,

which does not depend on the design. So, by (2.5), sequential minimization of

K2, . . . ,Km is equivalent to that of
∑N

u=1

∑N
v=1{t(u, v)}s{w′

(u)w(v)}, 2 ≤ s ≤ m.

The result now follows from (2.6).
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We call M2, . . . ,Mm the moment sequence due to their similarity with mo-
ments, and a design sequentially minimizing M2, . . . ,Mm is called an MMA de-
sign. While Lemma 1 shows the equivalence of the MA and MMA criteria, the
Ms do not involve any sum over Ωs, allow direct matrix calculation, and hence
are much easier to compute than the Ks. Indeed, consideration of the Ms can
also facilitate theoretical results. For instance, they allow a proof of Lemma 2 in
the next section which, though not necessarily shorter than the original proof in
Miller and Tang (2015), is more straightforward in the sense of eliminating the
case enumeration in the original proof. We omit the details to save space.

These points are akin to those in Xu (2003) regarding MA vis-à-vis MMA
under OP. But there is a major difference. MMA is dictated under OP by
numbers of positions where pairs of rows of Z have the same level, whereas
under BP it is dictated by numbers of positions where both rows in such pairs
have 1. This is due to the asymmetry between the levels of any factor under BP.

3. Main Results

3.1. Background material

In what follows, all vector and matrix operations, including rank statements,
are over the finite field GF (2). A regular design d(B, y), for a 2m factorial in N =
2r (2 ≤ r < m) runs, is specified by (a) a set of m distinct nonnull r × 1 binary
vectors b1, . . . , bm such that the r×m matrix B = [b1 · · · bm] has rank r, and (b)
a 1×m binary vector y = (y1, . . . , ym). The design consists of the N treatment
combinations obtained by adding y to each of the N vectors in R(B), the row
space of B. Given B, there are 2m−r distinct designs of this form, as d(B, y) and
d(B, y∗) are identical if y − y∗ ∈ R(B) due to the subgroup structure of R(B).
We call d(B, y) the principal fraction if it contains the treatment combination
(0, . . . , 0), and a coset thereof otherwise. Clearly, the principal fraction is given
by R(B) itself and each coset is obtained by level permutation of one or more
factors in the principal fraction. Hence, the principal fraction and the cosets are
anticipated to play a crucial role under BP.

Let 0r be the null column vector of order r. Then the wordlength pattern of
the design d(B, y) is given by the sequence (A3, . . . , Am), with

As =
∑
Ωs

ϕ(bg1 , . . . , bgs), 3 ≤ s ≤ m, (3.1)

where
∑

Ωs
is as in (2.1) and, for any g1 · · · gs ∈ Ωs, ϕ(bg1 , . . . , bgs) equals 1 or 0

according as whether bg1 + · · ·+ bgs equals 0r or not, respectively. The resolution
of the design is the smallest s such that As > 0. With reference to d(B, y), we
also define

A0
s =Σ0

Ωs
ϕ(bg1 , . . . , bgs), A1

s =Σ1
Ωs
ϕ(bg1 , . . . , bgs), (3.2)
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the sum
∑l

Ωs
being over g1 · · · gs ∈ Ωs such that yg1 + · · · + ygs = l (mod 2);

l = 0, 1. Note that B alone determines As, whereas A0
s and A1

s depend on

y as well. Thus a regular MA design under OP, which sequentially minimizes

A3, . . . , Am, is determined by B alone. We are now in a position to present a

lemma from Miller and Tang (2015).

Lemma 2. For any regular design,

(a) K2 = m(m− 1)/4 + (3/4)A3, and

(b) K3 = (1/16){3
(
m
3

)
+ 4A4 + 3(m− 4)A0

3 + 3mA1
3}.

(c) Furthermore, if A3 = 0, then K4 = (1/64){4
(
m
4

)
+5A5+4(m−1)A0

4+4(m−
5)A1

4}.

Lemma 2(a), applicable to nonregular designs as well, is also implicit in

Mukerjee and Tang (2012) while Miller and Tang (2015) gave a more general

version of (c) without the condition A3 = 0. However, the present form of (c)

will suffice for our purpose.

3.2. Rank conditions and their application

As a first step towards finding the regular MA design under BP, we need to

sequentially minimize K2 and K3. By Lemma 2(a), (b), this calls for

(i) characterizing B so as to sequentially minimize A3 and A4, and if the smallest

possible A3 is positive which happens for m > N/2, then

(ii) for every B as in (i), characterizing y = (y1, . . . , ym) so that

bg1 + bg2 + bg3 = 0r ⇒ yg1 + yg2 + yg3 = 0 (mod 2), ∀ g1g2g3 ∈ Ω3. (3.3)

Condition (ii) is evident from (3.1) and (3.2), because A3 = A0
3 +A1

3 and A0
3 has

a smaller coefficient than A1
3 in K3, by Lemma 2(b). While (3.3) is obviously

met by any y in the principal fraction, we need to characterize all such y in order

to assess their possible impact on K4, . . . ,Km.

To that end, suppose m > N/2. For any given B, define Q3 as the A3 ×m

matrix such that each g1g2g3 ∈ Ω3 with bg1 + bg2 + bg3 = 0r contributes a row to

Q3 having 1 in the g1th, g2th, g3th positions, and 0 elsewhere. Clearly, BQ′
3 = 0,

so that R(B) ⊆ R̄(Q3), where R̄(Q3) is the ortho-complement of the row space of

Q3. Since rank(B) = r, this yields r ≤ m− ρ or ρ ≤ m− r, where ρ = rank(Q3).

If ρ < m − r, in which case R(B) is a proper subspace of R̄(Q3), let B̃ be an

(m − ρ − r) × m matrix such that the rows of [B′ B̃′]′ form a basis of R̄(Q3),

and write R(B̃) for the row space of B̃. Using the standard softwares for matrix

calculation, suitably adapted to GF (2), one can obtain Q3, ρ, and B̃ readily

– in fact, up to N = 128 runs, almost instantaneously. We now have a result

summarizing two useful rank conditions.
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Proposition 1. Suppose m > N/2 and consider any B.

(a) If ρ = m− r, then y meets (3.3) if and only if y is in the principal fraction.

(b) If ρ < m − r, then y meets (3.3) if and only if y is in d(B, ỹ) for some

ỹ ∈ R(B̃).

Proof. By the definition of Q3, y meets (3.3) if and only if y ∈ R̄(Q3). If

ρ = m − r, then R̄(Q3) = R(B), and (a) follows. Else, if ρ < m − r, then the

rows of [B′ B̃′]′ span R̄(Q3). Therefore, y meets (3.3) if and only if y− ỹ ∈ R(B)

for some ỹ ∈ R(B̃), and (b) follows.

Proposition 1 goes a long way in reducing the complexity due to factor level

permutations which, for regular designs, is manifest in the principal fraction and

its cosets. The gains are particularly significant in highly fractionated situations

where even the smallest possible A3 is large and hence ρ is often close, if not

equal, to m − r. Given B, if ρ = m − r, then one needs to consider only the

principal fraction. On the other hand, if ρ < m− r, then it suffices to take care

of only as many as 2m−ρ−r designs d(B, ỹ), ỹ ∈ R(B̃), which typically form a

much smaller subclass of the totality of the 2m−r distinct designs d(B, y) arising

from B. The next result is immediate from Proposition 1(a). Here 0 denotes the

1×m vector of zeros.

Theorem 1. Let m > N/2. If up to isomorphism, there is a unique B, say B0,

which sequentially minimizes A3 and A4, and the condition ρ = m− r holds for

B0, then the principal fraction d(B0, 0) has MA among all regular designs under

BP.

This has wide-ranging applications. For instance, it applies to 19 ≤ m ≤ 31

if N = 32, and m = 36 as well as 39 ≤ m ≤ 63 if N = 64. Examples 1 and 2

below illustrate its use. More generally, for m > N/2, if any of the conditions in

Theorem 1 fails, then the following procedure, illustrated in Examples 3 and 4

below, turns out to be quite convenient. The last step of the procedure involves

calculation of the moment sequence M2, . . . ,Mm which, as discussed earlier, is

much easier than computing K2, . . . ,Km.

Step I. List all nonisomorphic B which sequentially minimize A3 and A4. Ex-

isting catalogs of regular designs, such as the one in Xu (2009), together with

complementary design theory as reviewed in Mukerjee and Wu (2006, Chap. 3),

are helpful for this purpose.

Step II. For every such B, consider the principal fraction d(B, 0) if ρ = m− r, or

the designs d(B, ỹ), ỹ ∈ R(B̃), if ρ < m− r. Let D be the class of all designs so

obtained. By Proposition 1, the designs in D are the only ones that sequentially

minimize K2 and K3 among regular designs.
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Step III. Find an MMA design in D. By Lemma 1, this design has MA in D

and hence among all regular designs under BP.

Here are a few examples. We follow the standard practice of representing

any nonnull binary vector b = (b(1), . . . , b(r))′ by the number
∑r

l=1 b(l)2
l−1, so

(1, 0, 0, 0, 1)′ and (0, 1, 1, 0, 1, 1)′ are denoted by 17 and 54, respectively.

Example 1. Let N = 32 and m = 28. From Xu (2009), up to isomorphism,

there is a unique B, say

B0=[1 2 4 8 16 31 7 11 21 25 13 14 19 22 26 28 3 5 9 17 15 23 27 29 6 10 18 30],

that sequentially minimizes A3 and A4. Here r = 5 and, upon finding Q3, one

can check that ρ = rank(Q3) = 23 = m− r. Hence by Theorem 1, the principal

fraction d(B0, 0) has MA among all regular designs under BP.

Example 2. Let N = 256 and m = 245. By complementary design theory, up to

isomorphism, there is a unique B, say B0, which sequentially minimizes A3 and

A4. Following Tang andWu (1996), B0 has all nonnull binary 8×1 vectors, except

1, 2, 3, 4, 5, 6, 8, 9, 10 and 12, as columns. Here again, ρ = 237 = m−r, and the

MA property of the principal fraction d(B0, 0) holds as before by Theorem 1.

Example 3. Let N = 32 and m = 18. From Xu (2009), up to isomorphism,

there is a unique B, say

B0 = [1 2 4 8 16 31 7 11 21 25 13 14 19 22 26 28 3 5],

that sequentially minimizes A3 and A4. Here ρ = 12 < m− r, and B̃ consists of

the single row

1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.

It suffices to consider designs d(B0, ỹ), ỹ ∈ R(B̃). There are only two such designs

and, comparing their moment sequences, we find that the design d(B0, ỹ0), where

ỹ0 is the row of B̃ as shown above, has MMA and hence MA among regular

designs under BP.

Example 4. Let N = 64 and m = 37. Complementary design theory, used in

conjunction with Xu’s (2009) catalog, shows that, up to isomorphism, there are

two choices of B, say B1 and B2, that sequentially minimize A3 and A4. The

choice B1 has all nonnull binary 6× 1 vectors except

1, 2, 4, 8, 16, 31, 7, 11, 21, 13, 14, 26, 3, 17, 23, 9, 27, 29, 5, 19, 28, 6, 10, 18, 12,

and 15

as columns, while B2 has all such vectors except

1, 2, 4, 8, 16, 31, 7, 11, 21, 25, 13, 14, 19, 22, 26, 28, 3, 5, 9, 17, 15, 23, 10, 18,

6, and 24
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as columns. For both B1 and B2, it turns out that ρ = 31 = m − r. Hence

one needs to consider only the two principal fractions d(B1, 0) and d(B2, 0).

Comparing their moment sequences, we find that d(B1, 0) has MMA and hence

MA among regular designs under BP. Incidentally, B1 also has MA under OP

and is isomorphic to the design 37-31.1 shown in Mee (2009, p.491).

3.3. Simple recursive sets

Some of the developments in the last subsection are closely linked with the

idea of simple recursive sets considered recently by Tang and Xu (2014) for three-

level regular designs with quantitative factors. We now examine how this idea

helps in avoiding actual rank calculation in many situations, especially in the

highly fractionated case. In our context, a set S of distinct nonnull r × 1 binary

vectors is called simple recursive, if there exist r linearly independent vectors,

say b1, . . . , br, in S and a sequence S0 ⊂ S1 ⊂ · · · ⊂ Sq of sets of vectors, such

that S0 = {b1, . . . , br} and

Sl+1 = Sl ∪ {b : b ∈ S, b = a1 + a2 where a1, a2 ∈ Sl}, 0 ≤ l ≤ q − 1, Sq = S.

(3.4)

With a view to illustrating the recursive process in (3.4) clearly, we present an

example where any nonnull binary vector (b(1), . . . , b(r))′ is represented by the

string 1b(1) · · · rb(r), with the convention that jb(j) is dropped if b(j) = 0, e.g.,

the vector (1 0 1 0 1)′, which was earlier denoted by 21, is now represented as

135. Thus the addition of two such vectors amounts to multiplication of the

corresponding strings with squared symbols dropped.

Example 5. Let S consist of the columns of B0 in Example 1. In our present

notation,

S = {1, 2, 3, 4, 5, 12345, 123, 124, 135, 145, 134, 234, 125, 235, 245,
345, 12, 13, 14, 15, 1234, 1235, 1245, 1345, 23, 24, 25, 2345}.

It is readily seen that S is simple recursive because it meets (3.4) with

S0 = {1, 2, 3, 4, 5}, S1 = S0 ∪ {12, 13, 14, 15, 23, 24, 25},
S2 = S1 ∪ {123, 124, 125, 134, 135, 234, 235, 145, 245, 1234, 1235, 1245},
S3 = S2 ∪ {1345, 2345, 12345, 345} = S.

Example 5 shows the set of columns of B0 to be simple recursive, and earlier

in Example 1, the condition ρ = m− r of Proposition 1(a) was seen to hold for

B0. We present a general result in this direction which links simple recursive sets

with this rank condition.
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Proposition 2. Let S be a set of m distinct nonnull r× 1 binary vectors and B

be the r ×m matrix with these vectors as columns. If S is simple recursive then

B satisfies the rank condition ρ = m− r.

Proof. If S is simple recursive then there exists a sequence of sets S0 ⊂ S1 ⊂
· · · ⊂ Sq such that S0 contains r linearly independent vectors of S, and (3.4)

holds. Arrange the columns of B such that the first r columns are the vectors

in S0, followed by columns given by the vectors in S1 but not in S0, and so on.

With columns so arranged, if we write B = [b1 · · · bm], then by (3.4), for each

r + 1 ≤ j ≤ m, there exist δ(j) and ϵ(j) satisfying 1 ≤ δ(j) < ϵ(j) < j, such

that bj = bδ(j)+ bϵ(j). Let G be an (m− r)×m binary matrix with rows indexed

by r + 1, . . . ,m and columns indexed by 1, . . . ,m, such that row j of G has 1 in

positions δ(j), ϵ(j), and j, and 0 elsewhere, r + 1 ≤ j ≤ m. Then

(a) BG′ = 0,

(b) G has three ones in each row, and

(c) G = [G1 G2], where G1 is (m− r)× r and G2 is a lower triangular matrix of

order m− r with each diagonal element 1.

By (a) and (b), each row of G is also a row of the Q3 introduced earlier, while

by (c), rank(G) = m− r. So, ρ = rank(Q3) ≥ m− r, which completes the proof

because as noted earlier, we also have ρ ≤ m− r.

Our next result shows a general structure of S that ensures the simple recur-

sive property. Let Fr be the space of the 2r binary vectors of order r × 1, Fr−1

be any (r− 1)-dimensional subspace of Fr, and F̄ be the complement of Fr−1 in

Fr. Consider

S = F̄ ∪ F, (3.5)

where F is any subset of nonnull vectors of Fr−1.

Proposition 3. If F contains r− 1 linearly independent vectors, then the set S

in (3.5) is simple recursive.

Proof. The case r = 2 is trivial. With r ≥ 3, let f1, . . . , fr−1 be linearly

independent vectors in F and fr be any vector in F̄ . For 1 ≤ l ≤ r− 1, write El

for the set of the
(
r−1
l

)
vectors of the form fr + f , where f is the sum of any l of

f1, . . . , fr−1, e.g., E1 = {fr + f1, . . . , fr + fr−1}, etc. Clearly,

F̄ = {fr} ∪ E1 ∪ · · · ∪ Er−1. (3.6)

Consider now the sets

V0 = {f1, . . . , fr−1, fr}, Vl+1 = Vl ∪ El+1, 0 ≤ l ≤ r − 2, Vr = S.
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From (3.5), (3.6) and the definition of E1, . . . , Er−1, observe that V0 consists of

r linearly independent members of S and that

Vl+1 ⊆ Vl ∪ {b : b ∈ S, b = a1 + a2 where a1, a2 ∈ Vl}, 0 ≤ l ≤ r − 1.

This is similar to (3.4) with the only change that the equality in (3.4) connecting

Sl+1 with Sl is now replaced by the set inclusion (⊆) connecting Vl+1 with Vl.

Hence it is clear that if we take S0 = V0 and obtain S1, S2, . . ., recursively as in

(3.4), then V1 ⊆ S1, V2 ⊆ S2, and so on. As Vr = S, it follows that the process

will end up with Sq = S, for some q ≤ r. This guarantees the existence of a

sequence S0 ⊂ S1 ⊂ · · · ⊂ Sq of sets meeting (3.4), and completes the proof.

Propositions 2 and 3 lead to a result that significantly narrows the search

for the regular MA design under BP, or even pinpoints it over a wide range of m,

without rank calculation. Here mj is the largest m such that a regular m-factor

two-level design having resolution five or higher exists in 2j runs. For instance,

from Mukerjee and Wu (2006) and Xu (2009), m2 = 2, m3 = 3, m4 = 5, m5 = 6,

m6 = 8, m7 = 11.

Theorem 2. Let m ≥ N/2 +mr−2 + 1.

(a) If B1, . . . , Bp represent all nonisomorphic choices of B which sequentially

minimize A3 and A4, then the MA design under BP among the principal

fractions d(B1, 0), . . . , d(Bp, 0) also enjoys the same MA property among all

regular designs.

(b) In particular, if up to isomorphism there is a unique B, say B0, that se-

quentially minimizes A3 and A4, then the principal fraction d(B0, 0) has MA

among all regular designs under BP.

Proof. With reference to any set F as in (3.5), let A3(F ) and A4(F ) denote,

respectively, the numbers of triplets and quadruplets formed by the vectors in

F that are linearly dependent, adding to 0r; cf. (3.1). Consider any B that

sequentially minimizes A3 and A4. By complementary design theory, the set, S,

of columns of B must

(i) have the structure in (3.5), with

(ii) the set F sequentially minimizing A3(F ) and A4(F ) among all subsets of

Fr−1 that have the same cardinality as F and consist of nonnull vectors.

Since S consists of the m columns of B, by (i), m = 2r−1 + (#F ), where

#F is the cardinality of F . As m ≥ N/2 +mr−2 + 1 and N = 2r, #F > mr−2.

As a result, if there are at most r − 2 linearly independent vectors in F , then

either A3(F ) > 0 or A3(F ) = 0, A4(F ) > 0. Clearly, in this situation there

exists a nonnull vector, say f0, in Fr−1 which is not spanned by the vectors in
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F . If A3(F ) > 0, then F̃ (⊆ Fr−1) obtained from F by replacing any vector in

F appearing in a linearly dependent triplet by f0 has the same cardinality as F

but entails A3(F̃ ) < A3(F ), contradicting (ii) above. A similar contradiction is

reached if A3(F ) = 0, A4(F ) > 0. Thus F must contain r−1 linearly independent

vectors. By Propositions 2 and 3, therefore, B satisfies the rank condition ρ =

m− r, and the theorem follows from Proposition 1(a).

For m ≥ N/2 +mr−2 + 1, Theorem 2 considerably simplifies Step II of the

procedure described in the previous subsection and makes Examples 1 and 2 there

more transparent. However, it does not cover Examples 3 and 4 where the need

for rank calculation remains. We remark that Theorem 2 comes quite close to

capturing all situations where m > N/2 and the regular MA design under BP is

given by a principal fraction. For example, with 32, 64 and 128 runs, r = 5, 6 and

7, Theorem 2 tells that this should happen for m ≥ 20, 38, and 71, respectively,

while as reported in the next section, rank calculation shows that this actually

happens for m ≥ 19, 36 and 70, respectively. In addition to providing a neat

theoretical result, Theorem 2 is practically useful for large N , such as N = 512,

and correspondingly large m, where direct calculation of Q3 and ρ can be slow.

An illustrative example follows. To save space, we revert to the notation of the

previous subsection for nonnull binary vectors, with any such vector denoted by

a single number.

Example 6. Let N = 512. Then Theorem 2 applies to m ≥ 268. Consider

m = 462. By complementary design theory, together with Xu’s (2009) catalog, up

to isomorphism, there are three choices of B, say B1, B2 and B3, that sequentially

minimize A3 and A4. Of these, B1 has all nonnull binary 9 × 1 vectors except

those in the complement of

{1, 2, 4, 8, 16, 32, 31, 39, 41, 51, 13, 21, 11, 52}

in {1, 2, . . . , 63} as columns. Similarly, B2 and B3 have all such vectors except

those in the complements of

{1, 2, 4, 8, 16, 32, 31, 39, 41, 51, 42, 21, 22, 52},

and {1, 2, 4, 8, 16, 32, 31, 39, 41, 51, 13, 21, 11, 46},

respectively, in {1, 2, . . . , 63} as columns. By Theorem 2(a), it suffices to consider

only the three principal fractions d(B1, 0), d(B2, 0) and d(B3, 0). On the basis

of M2, . . . ,M5 alone, we find that d(B1, 0) has smaller MMA than the two other

designs. Thus d(B1, 0) has MMA and hence MA among regular designs under

BP. We note that B1 also entails MA under OP.
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3.4. The case m ≤ N/2

If m ≤ N/2, then this approach does not work because the smallest possible

A3 is 0, and, for any B with A3 = 0, (3.3) leading to Proposition 1 does not arise.

By Lemma 2, as a first step towards finding the MA design, now one needs to

(i)′ characterize B with A3 = 0 and, subject to this condition, minimize A4; and

if the minimum A4 so obtained is positive, then

(ii)′ for every B as in (i)′, characterize y so that A1
4 is the largest possible.

Condition (i)′ ensures sequential minimization of K2 and K3, and as A4 = A0
4 +

A1
4, then (ii)′ minimizes the contribution of 4(m − 1)A0

4 + 4(m − 5)A1
4 to K4

without affecting the term A5 there. Because of (3.2) and in the hope of finding

a counterpart of Proposition 1, one may wonder if, along the lines of (3.3),

condition (ii)′ amounts to characterizing y = (y1, . . . , ym) so that

bg1+bg2+bg3+bg4 = 0r ⇒ yg1+yg2+yg3+yg4 = 1 (mod 2), ∀ g1g2g3g4 ∈ Ω4.

(3.7)

This turns out to be too ambitious because, unlike with (3.3), a choice of B

meeting (i)′ may not admit any y that satisfies a condition as strong as (3.7).

Thus if N = 32 and m = 8, then from Xu (2009), up to isomorphism, there is a

unique B = [1 2 4 8 16 15 19 21] meeting (i)′. This B has A3 = 0 and A4 = 3,

i.e., three members of Ω4 satisfy bg1 + bg2 + bg3 + bg4 = 0r, and one can check

that the relationship yg1 + yg2 + yg3 + yg4 = 1 (mod 2) holds for at most two of

these three, whatever be the choice of y.

In view of the above, unlike with m > N/2, a drastic reduction of the design

problem does not seem to be possible for m ≤ N/2. Nevertheless, a matrix

formulation and consideration of MMA allow us to make some progress and to

suggest a procedure below on the basis of (i)′ and (ii)′. Given B, here C(B) is a

set of 2m−r choices of y which account for the principal fraction and all its cosets,

the designs d(B, y), y ∈ C(B), are distinct; for instance, if the first r columns of

B are linearly independent, then C(B) can be taken as the set of all y with 0 in

first r positions.

Step I. List all nonisomorphic B that have A3 = 0 and, subject to this condition,

minimize A4.

Step II. (a) If the minimum A4 is positive, then for every B listed in Step I, find

the subset C0(B) of C(B) consisting of y which maximize A1
4; by (3.2), this is

facilitated by the fact that A1
4 equals the number of ones in yQ′

4 where, in the

same manner as Q3, the A4 × m matrix Q4 is constructed from g1g2g3g4 ∈ Ω4

satisfying bg1 + bg2 + bg3 + bg4 = 0r.

(b) If the minimum A4 is 0, then for every B listed in Step I, take C0(B) = C(B).

Step III. Find an MMA design over the class D of all d(B, y) such that B is

listed in Step I and y ∈ C0(B). By Lemma 1, this design also has MA in D and

hence among all regular designs under BP.
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In Step II, if (a) arises then C0(B) is often much smaller than C(B), while

if (b) arises then typically m is small and hence C(B) itself is quite small; e.g.,

with N = 32 or 64, (b) arises only for m = 6 or m = 7 and 8, respectively. This

simplifies the implementation of Step III where consideration of MMA also helps.

Indeed, as illustrated in Example 7 below, this procedure works well for N = 32

and 64, where it yields regular MA designs under BP for all m ≤ N/2, thus

complementing our earlier results. However, Step II itself calls for maximization

of A1
4 over the 2m−r choices of y in C(B), and this becomes formidable for

N ≥ 128, unless m is relatively small.

Example 7. Let N = 64 and m = 23. From Xu’s (2009) catalog, up to iso-

morphism, there are two choices of B which have A3 = 0 and, subject to this

condition, minimize A4. These are

B1 = [1 2 4 8 16 32 31 35 13 52 14 55 37 61 11 19 21 44 7 62 25 49 22],

and B2 = [1 2 4 8 16 32 31 35 13 52 14 55 37 61 11 19 21 44 7 62 25 22 41].

Step II yields C0(B1) and C0(B2) with respective sizes 6 and 96, both much

smaller than the size 2m−r of any C(B). Thus the class D in Step III has 102

designs and, comparing their moment sequences, we find that the design d(B1, y),

where

y = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1),

has MMA and hence MA among regular designs under BP. Note that B1 also

has MA under OP.

4. Design Tables and More Details

Along the lines of these examples, we now apply the techniques in Section 3

to describe and tabulate regular MA designs under BP for N = 32, 64, 128, and

256. For N = 32 and 64, all m are covered, while for N = 128 and 256, we cover

large m where our main interest lies.

The following notation and conventions are used in this section:

(a) The B entailing MA under OP is denoted by B∗. Over the range of N and

m considered here, this B∗ is unique up to isomorphism and can be found

either directly from Xu (2009) or Mee (2009), or by using complementary

design theory in addition.

(b) As before, 0 stands for the 1×m vector of zeros.

(c) The design tables show both B and y to make the correspondence between

the two clear.
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(d) The B for a larger m is often conveniently expressed in terms of the B for

a smaller m, e.g., the B for m = 8 in Table 1 is shown as [B(m = 7) 21] to

indicate that it is obtained by including the vector represented by 21 at the

end of the B for m = 7 in the same table.

(e) The binary vector y = (y1, . . . , ym) is written simply as y1 · · · ym. While

exhibiting y in Table 3, we also write 0u or 1u to denote a string of u zeros

or ones.

Our findings in this section on regular MA designs under BP are summarized

below.

N = 32: For 19 ≤ m ≤ 31, the design d(B∗, 0) has MA. Table 1 shows MA

designs for 6 ≤ m ≤ 18. In this table, the B reported for each m has MA under

OP.

N = 64: For m = 7, 8 as well as 36 ≤ m ≤ 63, the design d(B∗, 0) has MA. Table

2 shows MA designs for 9 ≤ m ≤ 35. In this table, the B reported for each m

has MA under OP, except for m = 26, where it is the second best under OP (Xu

(2009)).

N = 128: For 70 ≤ m ≤ 127, the design d(B∗, 0) has MA. Table 3 shows MA

designs for 65 ≤ m ≤ 69. Thus every m > N/2 is covered. In Table 3, the B

reported for each m has MA under OP, except for m = 69, where it is the second

best under OP by complementary design theory.

N = 256: For 192 ≤ m ≤ 255, the design d(B∗, 0) has MA.

It is satisfying to observe that over the ranges of m considered here, BP and

OP are in perfect agreement with regard to the choice ofB under the MA criterion

for N = 32 and 256, whereas their agreement is almost perfect for N = 64 and

128. From Mukerjee and Tang (2012), we also see that for m = N − 1 and

m = N −2, the saturated and nearly saturated cases, the designs reported above

have MA under BP among all designs, regular or not.

We now briefly comment on how regular MA designs compare under BP with

an important class of nonregular designs, namely quaternary code (QC) designs,

which were introduced by Xu and Wong (2007) and have been of recent interest.

The notion of wordlength pattern can be extended to these designs via the J-

characteristics of Tang and Deng (1999). If N = 64 then, following Miller and

Tang (2015), under BP the MA QC design dominates the MA regular design for

m = 13 and 14; it is the other way round for m = 15 and 16. This is the same as

under OP. For large m relative to N , which is the main thrust of this paper, there

is not yet a single instance of the MA QC design having less aberration than the

MA regular design under OP though there are quite a few situations where the
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Table 1. Regular MA designs d(B, y) under BP for N = 32 and 6 ≤ m ≤ 18.

m B y
6 [1 2 4 8 16 31] 000001
7 [1 2 4 8 16 15 19] 0000001
8 [B(m = 7) 21] 00000001
9 [B(m = 8) 25] 000000011
10 [B(m = 9) 30] 0000000011
11 [1 2 4 8 16 31 7 11 21 25 13] 00000001110
12 [B(m = 11) 14] 000000010110
13 [B(m = 12) 19] 0000000101101
14 [B(m = 13) 22] 00000000001111
15 [B(m = 14) 26] 000000000011111
16 [B(m = 15) 28] 0000000000111111
17 [B(m = 16) 3] 00011001000010000
18 [B(m = 17) 5] 111000100000000000

reverse happens. Given the close conformity between BP and OP as seen above,

we anticipate the same pattern also under BP. As a test case, let N = 32, where

QC designs are well defined for m ≤ 24. Using the results in Mukerjee and Tang

(2013) on minimization of A3 for QC designs, together with Lemma 2(a) and a

complete enumeration of all factor level permutations, we found MA QC designs

under BP for 16 ≤ m ≤ 24. In agreement with OP (Xu and Wong (2007)), it was

seen that they are worse than their regular counterparts for m = 20 and 21, and

make a tie for other m in this range. Thus, from available indications, regular

designs tend to compare very favorably with QC designs under BP for large m.

5. Concluding Remarks

The present work leads to several open issues. The first of these concerns a

comprehensive study of nonregular designs under BP. While this is likely to be

very hard in general, it is of interest to explore QC designs in some detail, given

their structured nature.

Even for regular designs, the case m ≤ N/2 turns out to be more difficult

than m > N/2. Results that strengthen our findings in this case and further

reduce the design search would be very useful.

The case of more general factorials including mixed factorials opens up new

challenges. Under BP, Mukerjee and Tang (2012) found that OAs may not en-

tail optimal estimation of the main effects beyond the two-level case even in the

absence of interactions. Thus, in such general settings, formulation of the MA

criterion itself becomes difficult. Recently, Mukerjee and Huda (2015) investi-

gated model robust efficient designs under BP for general factorials under a

minimaxity criterion. This was in the spirit of the corresponding work by
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Table 2. Regular MA designs d(B, y) under BP for N = 64 and 9 ≤ m ≤ 35.

m B y
9 [1 2 4 8 16 32 31 39 41] 000000001
10 [B(m = 9) 51] 0000000011
11 [B(m = 10) 42] 00000000011
12 [B(m = 11) 60] 000000000011
13 [B(m = 11) 21 22] 0000000000111
14 [B(m = 10) 13 21 11 52] 00000000001011
15 [B(m = 14) 58] 000000000000111
16 [B(m = 15) 22] 0000000000011111
17 [B(m = 16) 25] 00000000000111110
18 [B(m = 17) 28] 000000000011100111
19 [B(m = 18) 46] 0000000000011011011
20 [B(m = 19) 61] 00000000000011110111
21 [1 2 4 8 16 32 31 35 13 52 14 55 000000001001000011111

37 61 11 19 21 44 7 62 25]
22 [B(m = 21) 49] 0000000010010000111111
23 [B(m = 22) 22] 00000000100100001111111
24 [B(m = 23) 41] 000000000011010011101111
25 [B(m = 24) 38] 0000000000000111110011011
26 [B(m = 25) 50] 00000000000001111100110111
27 [B(m = 25) 26 28] 000000000000011111001101110
28 [B(m = 27) 42] 0000000000000000111111111011
29 [B(m = 28) 47] 00000000000000000111011111101
30 [B(m = 29) 50] 000000000000000011110111111111
31 [B(m = 30) 56] 0000000000000000000011111111111
32 [B(m = 31) 59] 00000000000000000000111111111111
33 [1 2 4 8 16 32 7 11 13 14 19 21 25 100100000000101100101011111000000

31 35 37 44 52 55 61 62 49 22 41
38 26 28 42 47 50 56 59 63]

34 [B(m = 33) 60] 0000010000001111000000001110000000
35 [B(m = 34) 43] 00010101000001100110000000100000000

Table 3. Regular MA designs d(B, y) under BP for N = 128 and 65 ≤ m ≤
69.

m B y
65 [1 64-127] 02318041404140016001106

66 [1 2 64-127] 014180121120414012

67 [1 2 4 64-127] 019180818024

68 [1 2 4 8 64-127] 04116048

69 [1 2 4 8 15 64-127] 05116048

Yin and Zhou (2015) under OP. Any future result connecting this line of research

with some version of MA would be illuminating.
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