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Abstract: In this paper, we propose a statistical methodology to test whether the

texture of an image is isotropic or not. This methodology is based on the well-

known quadratic variations defined as averages of square image increments. Spe-

cific to our approach, these variations are computed in different directions using

grid-preserving image rotations. We study these variations asymptotically in a

framework of intrinsic random fields allowing us to take into account the presence

of polynomial trends in images. We establish a convergence result linking variation

and scale logarithms through an asymptotic Gaussian linear model. This model in-

volves direction-dependent intercepts which are equal when textures are isotropic.

Hence, we test the texture isotropy using Fisher tests that check the validity of the

assumption of the intercept equality. These tests are validated using 6,000 realiza-

tions of anisotropic fractional Brownian fields simulated on a grid of size 100×100.

Results show that more than 70% of anisotropic cases can be detected with less

than 1% of misclassified isotropic cases. Eventually, we apply our methodology to

the segmentation of some biological microscopic images.

Key words and phrases: Anisotropy, biological imaging, fractional Brownian field,

image processing, intrinsic random field, isotropy, microscopy, statistical test,
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1. Introduction

The notion of Texture usually refers to an image aspect which is essential for

processing images (see Davies (2008); Tuceryan and Jain (1998) and references

therein for an introduction to Texture). From one study to another, the definition

of textures varies depending mainly on analysis approaches, those approaches

being based on statistical models (Besag (1986); Cross and Jain (1983); Geman

and Geman (1984); Kaplan and Kuo (1995); Pentland (1984)), variational image

decompositions (Aujol et al. (2006, 2005); Meyer (2001)), patches (Efros and

Leung (1999); Peyré (2009); Wei et al. (2009)), image filters (Demanet and Ying

(2007); Jain and Farrokhsia (1991); Portilla and Simoncelli (2000); Unser (1995);

Zhu, Wu, and Mumford (1998)), textons (Desolneux, Moisan, and Ronsin (2012);

Galerne, Gousseau, and Morel (2011); Haralick (1979)), etc. In this work, we deal

with rough textures that appear on irregular images (this irregularity will be given

http://dx.doi.org/10.5705/ss.202014.0077


1280 FRÉDÉRIC J. P. RICHARD
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(b.1) (b.2) (b.3)

Figure 1. Isotropy and anisotropy of textures of images with trends. (a.1)
Realization Xa of a (isotropic) fractional Brownian field with constant Hurst
function β ≡ 0.22, (b.1) realization Xb of a anisotropic fractional Brownian
field with a Hurst function ranging in (0.13, 0.76), (a.2) Xa + P1, where P1

is an isotropic polynomial of degree 2, (b.2) Xb + P1, (a.3) Xa + P2, where
P2 is an anisotropic polynomial of degree 2, (b.3) Xb + P2.

a Holderian meaning in Section 2.2). From this viewpoint, textures are associated

to high frequency components of images, and not related to their possible trends

and other low frequency components. This is illustrated in Figure 1 where some

images having textures of interest are shown with and without trend.

In these examples, we can further distinguish two types of textures: the

isotropic and anisotropic ones. Isotropic textures (first row) are uniform in all

directions whereas the anisotropic ones (second row) are oriented. Anisotropy is

one of the main features for the analysis of textures. It was early recognized as

an important feature for pre-attentive and attentive vision (Julesz and Bergen

(1983); Rao and Lohse (1993)). It is also relevant for the characterization of

material properties in Material Science (Germain et al. (2003)), the diagnostic

or prognostic of diseases in Medicine (Biermé, Benhamou, and Richard (2009);

Biermé and Richard (2011); Brunet-Imbault et al. (2005); Lemineur et al. (2004);

Richard (2015); Richard and Biermé (2010)), the fingerprint authentication in

Biometry (Jain, Hong, and Bolle (1997); Jiang (2005)), the analysis of chemical

movements through aquifers in Hydro-Geology (Benson et al. (2006)), etc.
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In this paper, our goal is to construct statistical tests to decide whether the

texture of an irregular image is isotropic or not. The tests are focused on the

texture of the image, and do not concern its trend. In particular, images of the

first row of Figure 1 should all be considered as isotropic, even though the third

one has an anisotropic trend.

Richard and Biermé (2010) addressed the issue of testing the texture isotropy

in the framework of anisotropic fractional Brownian fields (AFBF). Introduced

by Bonami and Estrade (2003), AFBF are some Gaussian random fields that are

spatial extensions on Rd (d > 1) of the fractional Brownian motion (Mandelbrot

and Van Ness (1968)). Having zero-mean and stationary increments, they are

characterized by a semi-variogram vZ whose harmonizable representation

∀ x, y ∈ Rd, vZ(x) =
1

2
E((Z(x+ y)− Z(y))2) =

∫
Rd

|ei⟨w,x⟩ − 1|2f(w)dw (1.1)

is specified by a spectral density f of the form

f(w) = τ

(
w

|w|

)
|w|−2β(w/|w|)−d. (1.2)

In this expression, the so-called topothesy function τ and Hurst function β are two

even, positive, and bounded functions defined on the unit sphere Sd−1 = {w ∈
Rd, |w| = 1} of Rd. They are two directional functions that make the model

anisotropic. In particular cases when these functions are constant, the model

becomes isotropic. The Hurst function is further assumed to range in an interval

(H,H) ⊂ (0, 1) for almost points of Sd−1. An AFBF has irregular realizations

(see Section 2.2 for details). Hence, due to its properties, AFBF are well-suited

to model anisotropic textures of irregular images. Some realizations of AFBF

(in isotropic and anisotropic cases) are shown in Figure 1. Richard and Biermé

(2010) built an isotropy test upon the statistical validation of an hypothesis of the

form β(s1) = β(s2) = H for a couple (s1, s2) of directions. This hypothesis only

gives a necessary condition for the field isotropy, and is focused on two chosen

directions. Hence, the test is likely to fail detecting a texture anisotropy which

checks this condition. Moreover, the test does not cover anisotropies induced by

the topothesy function.

Besides, the AFBF model relies upon some stationarity assumptions which

restrict their application to images without any trend. To overcome this limita-

tion, we propose to work in a general framework of Gaussian intrinsic random

fields (IRF), which is already very popular in Spatial Statistic (see Chilès and

Delfiner (2012); Cressie (1993); Matheron (1973)). These fields generalize fields

with stationary increments. They are characterized by a so-called generalized co-

variance which can be represented in an harmonizable form extending the one in
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Equation (1.1) (see Gelfand and Vilenkin (1964); Matheron (1973) and Section
2.1 for details). Using this representation, we focus on IRF having a spectral
density f which satisfies

|w| > A ⇒ f(w)− τ

(
w

|w|

)
|w|−2β(w/|w|)−d ≤ C|w|−2H−d−γ , (1.3)

for some positive constants A,C and γ, and some topothesy and Hurst functions
τ and β. Such a condition implies that the field texture is similar to the one of an
AFBF. However, this condition only constrains high frequencies of the field. At
low frequency, the spectral density only fulfills general requirements of an IRF
density, allowing the field to have a polynomial trend of an arbitrary order. In
this work, images are considered as realizations of Gaussian IRF satisfying (1.3).
The texture of such an image is then called isotropic whenever

τ(s) = τ0 ∈ R+, β(s) = H ∈ (0, 1) (1.4)

holds almost everywhere on Sd−1. We construct statistical tests to validate the
hypothesis that a given image is the realization of an isotropic IRF satisfying
(1.4). As opposed to the one of Richard and Biermé (2010), these tests are
designed to detect texture anisotropies whatever their direction and type.

The construction of our test statistics is based on quadratic variations. These
variations are averages of square increments computed on an observation grid (see
Section 2.1 for a definition of increments). In the literature, they are commonly
used to estimate parameters characterizing a field irregularity, e.g. the Hurst in-
dex of fields related to the fractional Brownian motion (Chan and Wood (2000);
Davies and Hall (1999); Kent and Wood (1997); Zhu and Stein (2002)), or the
local Hurst function of the multifractional Brownian fields and their generaliza-
tions (Ayache, Bertrand, and Lévy-Véhel (2007); Ayache and Lévy-Véhel (2004);
Benassi et al. (2000); Benassi, Cohen, and Istas (1998); Coeurjolly (2005); Istas
and Lang (1997)). Biermé and Richard (2008); Richard and Biermé (2010) also
used such variations in combination with a Radon transform for the estimation
of the Hurst function of an AFBF. Due to a discretization issue of the Radon
transform, their application was limited to the estimation of function values in
vertical and horizontal directions. Variations we use have some original features.
First, they are computed on rotated and rescaled images so as to provide both
direction and scale information. Image rotations and rescalings are carefully cho-
sen to preserve the observation grid and avoid data interpolations. Furthermore,
the order of increments is adapted to the order of the polynomial trend so as to
annihilate its effect on the estimation. We establish a convergence result link-
ing variation and scale logarithms through an asymptotic Gaussian linear model.
This model includes some direction-dependent intercepts that are equal when
the texture isotropic. Hence, we propose to test the texture isotropy using some
Fisher tests that verify the assumption of the equality of these intercepts.
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2. Image and Texture Modeling

In this work, an image is considered as a realization of a random field. Let
d > 1 be the dimension of the image (usually, d = 2 or d = 3), and Z be a
random field defined on Rd, a set of random variables defined on a probability
space (Ω,A,P), and indexed in Rd. For N ∈ N∗, k ∈ Zd and x ∈ Rd, Z(x)
and ZN [k] denote random variables of Z at positions x and k/N , respectively.
An image is defined as a realization of random variables ZN [k] at points k of
the grid GN = [[1, N ]]d. We assume that the field Z is Gaussian, i.e., any uplet
(Z(x1), · · · , Z(xn)) is a Gaussian vector. We also assume that Z is mean square
continuous at any point of Rd.

In what follows, we recall some elements about intrinsic random fields (IRF)
which are required to set our framework for the modeling of random fields (in-
terested readers may refer to Biermé (2005); Chilès and Delfiner (2012); Cressie
(1993); Matheron (1973); Yaglom (1986) for more comprehensive presentations
of IRF).

2.1. Intrinsic random fields

In the sequel, we use some shorthands for manipulating multivariate polyno-
mials: given a multi-index l = (l1, · · · , ld) ∈ Nd, we denote by xl the monomial
xl11 · · ·xldd defined for x = (x1, · · · , xd) ∈ Rd, and by |l| =

∑d
j=1 lj its order.

Definition 1. Let Z be a random field on Rd and M ∈ N. An increment of
order M (or M -increment) of Z is a linear combination Zλ,x of random variables
from Z

Zλ,x =

m∑
i=1

λiZ(xi), (2.1)

defined with a set λ = (λi)
m
i=1 of scalar values and a set x = (xi)

m
i=1 of points in

Rd satisfying the condition
m∑
i=1

λix
l
i = 0, ∀ l ∈ Nd, |l| ≤ M. (2.2)

Due to (2.2), the linear combination defined by λ and x removes from Z any
polynomial trend of order less or equal to M . Random variables Z(xi)− Z(xj),
defined with arbitrary xi ̸= xj , are examples of 0-increments. In Section 3.1, we
construct increments of arbitrary orders on a grid.

Definition 2. Let M ∈ N. A random field Z is an intrinsic random field of order
M (or M -IRF) if, for any sets λ = (λi)

m
i=1 ∈ Rm and x = (xi)

m
i=1 of points in Rd

satisfying (2.2), the random field defined for all y ∈ Rd by

Vλ,x(y) =

m∑
i=1

λiZ(xi + y),
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has zero mean, and is second-order stationary,

E(Vλ,x(y)) = 0,∀ y ∈ Rd,

E(Vλ,x(y)Vλ,x(z)) =Kλ,x(y − z), ∀ y, z ∈ Rd.

Field models previously used by Biermé, Bonami, and León (2011); Chan and

Wood (2000); Richard and Biermé (2010); Zhu and Stein (2002) are continuous 0-

IRF. Since their increments have zero mean, their expectation is only a constant.

Consequently, they cannot be used to describe fields having a polynomial trend

of degree higher than 0. Such a description becomes possible with IRF of higher

orders.

Example 1. Let W be a continuous zero-mean 0-IRF and (αl)l a set of square

integrable random variables, the random field

Z(x) =
∑

l∈Nd,|l|≤M

αlx
l +W (x),

is a continuous M -IRF with a polynomial trend of degree M .

The correlation structure of a continuous M -IRF Z is characterized by a

generalized covariance, defined as a function KZ satisfying

E(Zλ,xZµ,y) =

m∑
i=1

n∑
j=1

λi µjKZ(xi − yj) (2.3)

for any pair of M -increments Zλ,x and Zµ,y of Z. Generalized covariances extend

ordinary covariances of stationary fields, for which (2.3) holds for any linear

combination of Z. Besides, when Z is a 0-IRF with a generalized covariance KZ ,

its semi-variogram vZ(h) = −KZ(h). A generalized covariance plays the same

characterization role for a M -IRF as the semi-variogram for a 0-IRF.

For any continuous M -IRF Z, there exists a continuous generalized covari-

ance KZ , which is unique up to an even polynomial of order 2M (Gelfand

and Vilenkin (1964); Matheron (1973)). This function is symmetric and M -

conditionally positive definite,∑
i,j

λiλjKZ(xi − xj) ≥ 0,

for any sets (λi)i and (xi)i satisfying (2.2). Reciprocally, any continuous, sym-

metric and M -conditionally positive definite is a generalized covariance of a con-

tinuous M -IRF.

Besides, M -conditionally positive definite functions can be characterized us-

ing a spectral theorem established by Gelfand and Vilenkin (1964) for generalized
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random functions, and developed specifically by Matheron (1973) for ordinary

random fields. We recall a corollary of this theorem which gives a sufficient

condition for a function to be a generalized covariance.

Theorem 1. A function K on Rd is a generalized covariance of an M -IRF if it

is of the form

K(h) =
1

(2π)d

∫
Rd

(cos(⟨w, h⟩)− 1B(w)PM (⟨w, h⟩)) f(w)dw +Q(h), (2.4)

where PM (t) = 1−t2/2+· · ·+[(−1)M/(2M)!]t2M , 1B(w) is the indicator function

of an arbitrary neighborhood of 0, Q an arbitrary even polynomial of degree ≤ 2M ,

and f is an even and positive function satisfying the integrability conditions

∀A > 0,

∫
|w|<A

|w|2M+2f(w)dw < ∞ and

∫
|w|>A

f(w)dw < ∞. (2.5)

The function f is called the spectral density of the field. Conditions (2.5)

concern the spectral density at low and high frequencies, respectively. In partic-

ular, the first condition becomes weaker as M increases. This enables inclusion

of densities having a larger power at low frequencies, and to account for fields

having polynomial trends of larger order.

Example 2. The anisotropic fractional Brownian fields, whose spectral density

has the form (1.2), are examples of 0-IRF. Such fields can be easily extended to

arbitrary IRF by letting

H = ess sup{β(s), s ∈ Sd−1, τ(s) ̸= 0} (2.6)

vary in (0,+∞) instead of (0, 1). The obtained IRF is then of order M ≥ H − 1.

2.2. Hölder irregularity

Images we consider in this work are irregular. We define this irregularity in

a Hölder sense (Adler (1981); Biermé (2005)).

Definition 3. A field Z satisfies a uniform stochastic Hölder condition of order

α ∈ (0, 1) if, for any compact set C ⊂ Rd, there exists an almost surely finite,

positive random variable AC such that the Hölder condition

|Z(x)− Z(y)| ≤ AC |x− y|α, (2.7)

holds for any x, y ∈ C, with probability one.

If there exists H ∈ (0, 1) for which (2.7) holds for any α < H but not for

α > H, then we say that Z admits H as critical Hölder exponent, or that Z is

H-Hölder.
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The critical Hölder exponent H of a field Z quantifies its irregularity. It is

close to 0 for the most irregular fields and to 1 for the least ones. Visually, field

textures look rougher and rougher as H decreases to 0.

The Hölder irregularity of a Gaussian M -IRF with spectral density can be

characterized from the asymptotic behavior of its spectral density at high fre-

quency (as |w| → +∞). To be more specific, we state a proposition borrowed

from Biermé (2005, Propositions 2.1.6 and 2.1.7).

Proposition 1. Let Z be a continuous Gaussian IRF of an arbitrary order with

a spectral density f , and H ∈ (0, 1). Z is H-Hölder if and only if, for any

0 < α < H < β < 1, there exist positive constants A, B1, B2, and a positive

measure subset E of the unit sphere Sd−1 of Rd such that for almost all w ∈ Rd

|w| ≥ A ⇒ f(w) ≤ B2|w|−2α−d, (2.8)

|w| ≥ A and
w

|w|
∈ E ⇒ f(w) ≥ B1|w|−2β−d. (2.9)

Condition (2.8) (resp. (2.9)) ensures that the critical Hölder exponent of a

Gaussian IRF is above (resp. below) H.

Example 3. In the particular case of an anisotropic fractional Brownian field of

density (1.2), Conditions (2.8) and (2.9) are fulfilled for

H = ess inf{β(s), s ∈ Sd−1, τ(s) ̸= 0}. (2.10)

It is the same for an IRF whose spectral density satifies (1.3). Hence, both fields

are H-Hölder.

3. Test Construction

3.1. Quadratic variations

First, we describe increments (see Definition 1) that compose quadratic vari-

ations. These increments are computed by application to the discrete field ZN

of a linear filter

∀m ∈ Zd, V N [m] =
∑

k∈[[0,L]]d
v[k]ZN [m− k], (3.1)

determined by a convolution kernel v of a finite support [[0, L]]d with L ∈ Nd. Let

Qv be the characteristic polynomial associated to v

∀ z ∈ Rd, Qv(z) =
∑

k∈[[0,L]]d
v[k]zk. (3.2)

We now state a necessary and sufficient condition on partial derivatives of Q
for the random variable V N [m] to be a K-increment of Z for any m ∈ Zd (see

Section S2 of Supplementary Material for a proof).
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Proposition 2. Let K ∈ N. For all m ∈ Zd, random variables V N [m] are

K-increments of Z if and only if

∀ l ∈ [[0,K]]d, |l| ≤ K,
∂|l|Qv

∂zl11 · · · ∂zldd
(1, · · · , 1) = 0. (3.3)

Example 4. Let L ∈ Nd, |L| > 0, and v be the kernel associated to the char-

acteristic polynomial Qv(z) = (z1 − 1)L1 · · · (zd − 1)Ld . From Proposition 2, it

follows that v induces increments of order K = |L| − 1. Its terms are

v[l] = (−1)|l|
(
L1

l1

)
· · ·

(
Ld

ld

)
, if l ∈ [[0, L]]d, v[l] = 0 otherwise, (3.4)

where
(
n
k

)
stands for the binomial coefficient. For 0 < |L| ≤ 2 and d = 2, such

kernels yield the main increments used by Biermé, Bonami, and León (2011);

Chan and Wood (2000); Zhu and Stein (2002) for the estimation of Hölder irreg-

ularity.

Our statistical test involves computing increments at different scales and

orientations. To do so, the observation field ZN is transformed into discrete

fields ZN
T by applying combinations T of rescaling and rotation that map Zd into

itself:

∀ k ∈ Zd, ZN
T [k] = Z

(
Tk

N

)
= ZN [Tk] . (3.5)

When d = 2, such transforms have the form

Tu =

(
u1 −u2
u2 u1

)
= |u|

(
cos(arg(u)) − sin(arg(u))

sin(arg(u)) cos(arg(u))

)
, for u ∈ Z2\{(0, 0)},

corresponding to a rescaling of factor |u| and a rotation of angle arg(u). When

d = 3, examples of transforms are

Tu =

u1 −u2 0

u2 u1 0

0 0 |u|

 ,

u1 0 −u2
0 |u| 0

u2 0 u1

 ,

 |u| 0 0

0 u1 −u2
0 u2 u1

 .

Transforms can be identified by a single vector u in R2 or R3, respectively. The

application of a filter v to a transform field ZN
T leads to random variables

∀m ∈ Zd, V N
T [m] =

∑
k

v[k]Z

(
m− Tk

N

)
=

∑
k

v[k]ZN [m− Tk]. (3.6)

Proposition 3. Random variables V N
T [m] are K-increments of Z if and only if

the characteristic polynomial of v satisfies (3.3).
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A proof is given in Section S2 of Supplementary Material.

Next, we select a set of transforms. We use a multi-index a = (i, j) to classify

transforms according to their rotation angle: the transform Ta is identified by

a vector ua. It corresponds to a jth transform among those that have a same

rotation angle arg ui1. The rescaling factor of this transform is |ua|. The index

a varies in the set

F = {i ∈ [[1, nb]], j ∈ [[1, Pi]]},

where nb is the number of different rotation angles and Pi ∈ N∗ depends on i.

We denote by nf the cardinality of F .

Applying a chosen filter v to transformed fields Ta, we obtain a set of in-

crements denoted by V N
a [m], for m ∈ Zd. We define the vector-valued random

field V N = ((V N
a [m])a∈F ,m ∈ Zd), and state some of its properties under the

assumption that Z is an IRF (see Section S2 of Supplementary Materials for a

proof).

Proposition 4. For some M ∈ N, let Z be a continuous M -IRF with a spectral

density f . Assume that the vector-valued field V N is constructed using increments

of order K ≥ M . Then, V N is stationary with zero mean. Moreover, for any

a, b ∈ F and m,n ∈ Zd,

E(V N
a [m]V N

b [n]) =
1

(2π)d

∫
[0,2π]d

fN
a,b(w)e

i⟨m−n,w⟩dw, (3.7)

where fN
a,b, the multivariate spectral density of V N , is a function of L1([0, 2π]d)

given by
fN
a,b(w) = Ndv̂(T ′

aw)v̂(T
′
bw)

∑
k∈Zd

f(N(w + 2kπ)), (3.8)

with T ′ the transpose of T , v̂(w) =
∑

k∈Zd v[k]e−i⟨k,w⟩ the discrete Fourier trans-

form of v, and v̂ its conjugate.

We now consider the set EN of cardinality Ne including all points m of Zd

for which all increments V N
a [m] can be computed using exclusively observations

on the grid GN . We define the quadratic variations on EN as

∀ a ∈ F , WN
a =

1

Ne

∑
m∈EN

(V N
a [m])2. (3.9)

These variations account for those of Biermé, Bonami, and León (2011); Chan

and Wood (2000), which can be obtained for d = 2 with u ∝ (1, 0) (i.e., without

any field rotation). They also contains variations defined by Zhu and Stein

(2002) using some field rotations. However, they are more generic as they include

variations obtained with arbitrary grid-preserving rotations and K-order filters.
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For a ∈ F , we also define log-variations Y N
a and log-scales xa as

Y N
a = log(WN

a ) and xa = log(|ua|2), respectively. (3.10)

3.2. Gaussian linear model

The construction of the statistical test is based on asymptotic properties of

the random vector Y N = (Y N
a )a∈F .

Theorem 2. Assume that Z is a continuous Gaussian M -IRF with a spectral

density f satisfying (1.3). Let

H = ess inf{β(s), s ∈ Sd−1, τ(s) ̸= 0}. (3.11)

Assume that H ∈ (0, 1), and the set E0 = {s ∈ Sd−1, β(s) = H, τ(s) ̸= 0} is

of positive measure on Sd−1. If a log-variation vector Y N is constructed using

increments of orders K ≥ M + 1, and K ≥ M/2 + d/4 if d > 4, then

N
d
2 (Y N − ζN )

d−→
N→+∞

N (0,Σ), (3.12)

for some vectors ζN ∈ Rnf and a nf×nf -covariance matrix Σ. Here, for a, b ∈ F ,

terms of the matrix Σ are given by

Σa,b =
2(2π)d

∫
[0,2π]d |fa,b(w)|

2dw∫
[0,2π]d fa,a(w)dw

∫
[0,2π]d fb,b(w)dw

, (3.13)

where fa,b is a function defined for almost w ∈ [0, 2π]d by

fa,b(w) = v̂(T ′
aw)v̂(T

′
bw)

∑
k∈Zd

δ

(
w + 2kπ

|w + 2kπ|

)
|w + 2kπ|−2H−d (3.14)

with δ defined, for almost s ∈ Sd−1, by δ(s) = lim
ρ→+∞

f(sρ)ρ2H+d. Terms ζN are

of the form

∀ a = (i, j) ∈ F , ζNij = xijH + βN
i , (3.15)

with

βN
i = log(CH(arg(ui1), v))− 2H log(N)− d log(2π), (3.16)

where

CH(arg(ua), v) =
1

(2π)d

∫
Rd

∣∣∣∣v̂( T ′
a

|ua|
w

)∣∣∣∣2 δ( w

|w|

)
|w|−2H−ddw. (3.17)

Moreover, when Z has an isotropic texture, βN
i = β̃N for all i, j.
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This theorem is proved in Section S1 of Supplementary Material. It brings

out a linear asymptotic dependency between variations and parameters related

to field irregularity and anisotropy. This dependency can be formalized in terms

of a Gaussian linear model

∀ (i, j) ∈ F , Y N
ij = xijH + βN

i + ϵNij , (3.18)

where ϵNij are correlated Gaussian variables. It can be interpreted as a generalized

model of analysis of covariance, in which the xij are regression variables, and the

rotation angle (index j) used to form Y N
ij is a qualitative factor. As mentioned in

Theorem 2, parameters βi vary according to the rotation index, and are constant

when the texture is isotropic. Hence, for testing the texture isotropy, we propose

to check statistically the null hypothesis

H0 : ∀ i ∈ [[1, nb]], βi = β̃, (isotropy) (3.19)

against its alternative hypothesis H1 : ∃ i, j, βi ̸= βj (anisotropy).

3.3. Parameter estimation

Model (3.18) can also be formulated in a matricial form. Let Y N and ϵN be

random vectors of size nf formed by terms Y N
a and ϵNa , respectively. Define a

parameter vector θ of size nb + 1. Set a design matrix X, of size nf × (nb + 1),

having terms Xij,0 = xij on the (i, j)th row and the first column and, Xij,m =

δi=m on (i, j)th row of the mth column. Then, (3.18) is equivalent to

Y N = Xθ + ϵN , ϵN ∼ N (0,Σ). (3.20)

Using a generalized least square criterion, parameters θ of this model can be

estimated by

θ̃N = P (Σ)Y N with P (Σ) = (X ′Σ−1X)−1X ′Σ−1. (3.21)

In particular, the field irregularity H is estimated by

H̃N = θ̂N0 = P0(Σ)Y
N , (3.22)

P0(Σ) being the first row of the matrix P (Σ). Similarly, for i ∈ [[1, nb]], parameters

βN
i are estimated by θ̃Ni .

3.4. Fisher test

To test hypothesis H0 against H1, we construct a Fisher test. Under H0,

(3.18) reduces to the model

Y N = X̃α+ ϵN , ϵN ∼ N (0,Σ), (3.23)
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where α is a parameter vector of size 2, and X̃ = (xa)a∈F is the design matrix

of size nf × 2 having terms X̃ij,0 = xij on the (i, j)th row and the first column

and, 1 on rows of the second column. The GLS estimator of parameters of this

model is

α̂N = P̃ (Σ)Y N with P̃ (Σ) = (X̃ ′Σ−1X̃)−1X̃ ′Σ−1. (3.24)

Then, we define the test statistic

FN (Σ) =
nf − nb − 1

nb − 1

|Σ−1/2(Xβ̂N − X̃α̂N )|2

|Σ−1/2(Y −Xβ̂N )|2
. (3.25)

Under H0, F
N (Σ) has a Fisher distribution with (nb − 1, nf − nb − 1) as degrees

of freedom. Let α ∈ (0, 1), and set sα to be the quantile of order 1 − α of

a (nb − 1, nf − nb − 1)-Fisher distribution. Then, the rejection interval Rα =

{FN > sα} defines an isotropy test with a confidence level α.

The expression of the covariance matrix Σ depends on the spectral density of

Z, which is unknown. Hence, to implement the test, we compute FN (Σ̃N ) instead

of FN (Σ̃) using an estimate Σ̃N of the covariance matrix of the log-variations

(see Section S3 of Supplementary Material for more details).

4. Numerical Results

We conducted some experiments on AFBF (see (1.2)) simulated using the

turning-band method developed by Biermé, Moisan, and Richard (2015). This

method was applied with approximately 500 bands to simulate field realizations

on a grid of size 100×100. We simulated fields by triplets consisting of an isotropic

fractional Brownian field (an AFBF with constant Hurst and topothesy func-

tions), an AFBF with a non-constant Hurst function and a constant topothesy

(a Hurst-induced anisotropy), and an AFBF with a constant Hurst function

and a non-constant topothesy function (a topothesy-induced anisotropy). For

anisotropic fields, the Hurst and topothesy functions were specified using a func-

tion ga1,a2,δ1,δ2,φ depending on a few parameters a1 > 0 , a2 > 0, 0 < δ1 ≤ π/2,

0 < δ2 < π/2− δ1, φ ∈ (0, π). This function was defined as the π-periodic and C2

function equal to a1 on a set of intervals ∪k∈Z(φ− δ1+kπ, φ+ δ1+kπ), a2 in an-

other disjoint set ∪k∈Z(φ+π/2−δ2+kπ, φ+π/2+δ2+kπ), and polynomial of order

2 outside those two sets. Such a function leads to a field whose the anisotropy

is oriented in a privileged direction φ (see Examples in Figure 2). For each

field triplet, we set parameters δ1, δ2, φ by sampling from uniform distributions

on (0, π/2), (0, π/2 − δ1), and (0, π), respectively. We also sampled parameters

H1 ∼ U(0, 1), H2 ∼ U(H1, 1), C2 ∼ |N (0, 1)|, and C1 ∼ C2 + |N (0, 1)|. Fields of
a same triplet were then defined as an AFBF with β ≡ H1, τ ≡ 1, an AFBF with

τ ≡ 1 and β = gH1,H2,δ1,δ2,φ, and an AFBF with τ = gC1,C2,δ1,δ2,φ and β ≡ H1. In
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β ≡ 0.41, τ ≡ 1, β ≡ 0.12, τ ≡ 1, β ≡ 0.6, τ ≡ 1,

p = 0.95. p = 0.5. p = 0.1.

β(s) ∈ [0.18, 0.21], β(s) ∈ [0.12; 0.58], β(s) ∈ [0.33; 0.55],

τ ≡ 1, p = 10−2. τ ≡ 1, p = 10−8. τ ≡ 1, p = 10−10.

τ(s) ∈ [1.24, 1.52], τ(s) ∈ [0.3, 1.51], τ(s) ∈ [0.22, 0.87],

β ≡ 0.83, p = 10−2. β ≡ 0.32, p = 10−8. β ≡ 0.22, p = 10−10.

Figure 2. Examples of simulated fields. On the first, second, and third
rows, fields are (isotropic) fractional Brownian fields, AFBF with a constant
topothesy function, and AFBF with a constant Hurst function, respectively.
P-values of the isotropy test (filter (0,2)) applied to each realizations are
indicated by p below each image.

this way, fields of a same triplet had the same order H1 of Hölder irregularity, and

anisotropic fields had a same privileged direction φ. We simulated 2,000 triplets

(6,000 fields), covering largely the range of the irregularity and orientation pair

(H1, φ).

For testing isotropy, we used quadratic variations obtained with different



TESTS OF ISOTROPY FOR ROUGH TEXTURES OF TRENDED IMAGES 1293

increment filters of Example 4. We took two filters of order 1 specified ((L1, L2)

in {(0, 2), (1, 1)}), two of order 2 ((L1, L2) in {(0, 3), (1, 2)}), three of order 3

((L1, L2) ∈ {(0, 4), (1, 3), (2, 2)}). According to Theorem 2, filters of order 1, 2

and 3 are adapted to 0-IRF, 1-IRF, and 2-IRF, respectively. We did not consider

filters (L1, L2) with L1 > L2 since they are symmetric to filters (L2, L1) and

lead to the same quadratic variations. For filters with L1 ̸= L2, we computed

quadratic variations on images transformed by composition of rotations of angles

0 (i.e., for u ∝ (1, 0)), π/4 (u ∝ (1, 1)), π/2 (u ∝ (0, 1)), or 3π/4 (u ∝ (1,−1)),

and rescalings of factors |u|2 with 1 ≤ |u| ≤ 6. Hence, we had six quadratic

variations in vertical or horizontal directions (u ∝ (1, 0) or u ∝ (0, 1)), and

four in each diagonal direction (u ∝ (1, 1) or u ∝ (1,−1)). For the filter (1, 1),

we only used rotations of angles 0 and π/4. Indeed, due to the symmetry of

filters for which L1 = L2, quadratic variations are the same up to a rotation

of angle π/2. For each filter, we computed the Fisher statistic FN defined in

(3.25). Given a threshold sα, a realization could then be considered as isotropic

whenever FN ≤ sα, and anisotropic in the opposite case. Following Theorem

2, under the null assumption H0, Fisher statistics are theoretically distributed

according to a Fisher law of degree (3, 15) if (L1 ̸= L2) and (1, 7) if L1 = L2.

Hence, the threshold sα could be set to ensure a theoretical level of significance

PH0(F
N > sα) ≤ α, for α ∈ (0, 1).

To assess the performance of a test, we estimated the probability distribution

PH1(F
N ≤ sα) of errors of type II. For that, we computed the ratio between the

number of misclassified anisotropic cases and the total number of anisotropic

case, for different significance levels α. This was done for the two anisotropy

types separately and jointly. We also computed the empirical distribution of

errors of type I (PH0(F
N > sα)) to check its adequacy to the theoretical one.

Evaluation results are shown in Figure 3.

We observe that empirical distributions of type I errors (black lines) are

slightly above the significance level. This means that values of the Fisher statis-

tics tend to be higher than expected on isotropic realizations. However, as can

be seen in Table 1, this inflation is below 2.3 % for the most commonly employed

levels of confidence. For each filter, we tested the adequacy of the empirical dis-

tribution of FN (under H0) to its theoretical one using a one-way Kolmogorov-

Smirnov test. Adequacy assumptions were validated with p-values 0.03, 0.08,

0.3, 0.15, 0.22, 0.28, and 0.48 for filters (0, 2), (1, 1), (0, 3), (1, 2), (0, 4), (1, 3)

and (2, 2), respectively.

Filters had different performances in terms of type II errors (red lines). The

symmetric filter (1, 1) had the worst results. This filter mixes increments in

two orthogonal directions, which leads to a loss of directional information. The

filter (2, 2) had comparable poor performances, which are not presented in the
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Figure 3. Evaluation of the isotropy tests on 6,000 simulated fields.

figure. The filter (0, 3) (resp. (0, 4)) outperformed the filter (1, 2) (resp. (1, 3))

suggesting that the most directional filters of the form (0, L2) are preferable to

the other ones. Choosing those filters led to fairly good results. For a significance

level of 0.01, we detected 78.3%, 76.6%, and 73.3% percent of anisotropic cases
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Table 1. Empirical errors of type I (in %) obtained for common levels of
significance.

Level of sig. (%) 1 2.5 5 10
Filter (0,2) 1 2.8 5.95 12.3
Filter (1,1) 0.7 2.2 4.65 9.75
Filter (0,3) 0.7 3.1 6.1 12.1
Filter (1,2) 1.1 3.4 5.9 11.7
Filter (0,4) 1.15 2.65 5.45 11.25
Filter (1,3) 0.7 2.35 5.45 11.25

Table 2. Effect of the anisotropy orientation on the detection.

Range Total Analysis in four directions Analysis in two directions
of φ case Detected cases Detected cases

number H. anisot. T. anisot. H. anisot. T. anisot.
[-1.57,-1.37] 137 125 (91%) 114 (83%) 131 (96%) 122 (89%)
[-1.37,-0.98] 261 231 (89%) 204 (78%) 227 (87%) 196 (75%)
[-0.98,-0.59] 233 211 (91%) 184 (79%) 140 (60%) 88 (38%)
[-0.59,-0.20] 240 214 (89%) 177 (74%) 214 (89%) 167 (70%)
[-0.20, 0.20] 246 220 (89%) 194 (79%) 225 (91%) 202 (82%)
[0.20 , 0.59] 222 205 (92%) 175 (79%) 202 (91%) 164 (74%)
[0.59 , 0.98] 289 255 (88%) 228 (79%) 165 (57%) 113 (39%)
[0.98 , 1.37] 238 213 (89%) 195 (82%) 213 (89%) 190 (80%)
[1.37 , 1.57] 134 120 (90%) 108 (81%) 121 (90%) 116 (87%)

for (0, 2), (0, 3) and (0, 4), respectively. The performance of these filters decreased

as the filter order increased. This was probably due to the fact that the number

of points (ne) used for computing quadratic variations decreases as the order

increases. Nevertheless, the detection score obtained with the filter (0, 4) of

higher order was still close to the filter (0, 2). Hence, we conclude that anisotropic

cases can be well-detected using filters of the form (0, L2) even when a polynomial

trend is present in images.

We notice that percents of detected cases were significantly lower for cases

with a topothesy anisotropy (red dot lines) than with the topothesy one (red

dash lines). This performance difference will be explained below.

We further investigated effects of simulation and analysis parameters on

the isotropic test. For that, we classified simulations of anisotropic fields into

isotropic and anisotropic by applying the test of filter (0, 2) with a level of sig-

nificance α = 0.05. We then computed numbers and percentages of detected

anisotropic cases by range of parameter values.

We first focus on the effect of the anisotropy direction φ. In Table 2, we

report results obtained with two isotropy tests. The first one corresponds to the

test described initially (“analysis in four directions”), whereas the second one
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Table 3. Evaluation of isotropy tests of Richard and Biermé (2010).

Range Total Test 1 of Test 2 of
of φ case Richard and Biermé (2010) Richard and Biermé (2010)

number Detected cases Detected cases
H. anisot. T. anisot. H. anisot. T. anisot.

[-1.57,-1.37] 137 21 (15%) 8 (6%) 30 (22%) 9 (7%)
[-1.37,-0.98] 261 37 (14%) 8 (3%) 45 (17%) 12 (5%)
[-0.98,-0.59] 233 41 (18%) 12 (5%) 20 ( 9%) 4 (2%)
[-0.59,-0.20] 240 41 (17%) 8 (3%) 29 (12%) 21 (9%)
[-0.20, 0.20] 246 47 (19%) 13 (5%) 37 (15%) 22 (9%)
[0.20 , 0.59] 222 52 (23%) 14 (6%) 34 (15%) 21 (9%)
[0.59 , 0.98] 289 50 (17%) 16 (6%) 17 ( 6%) 18 (6%)
[0.98 , 1.37] 238 33 (14%) 11 (5%) 40 (17%) 15 (6%)
[1.37 , 1.57] 134 19 (14%) 5 (4%) 31 (23%) 4 (3%)

(“analysis in two directions”) is based on variations computed in the horizontal

and vertical directions only. Concerning the first test, we observe that, for both

anisotropy types, the number of detected cases were quite uniform with respect

to the direction. This suggests that the detection is independent of this factor.

This independence was confirmed by a χ2-test with a large p-value of 0.56. This

clearly differed from the second test. Without the diagonal directions, the test

performances were much lower when the anisotropy orientation φ was away from

the vertical and horizontal directions (especially when φ ∈ (−0.98,−0.59) or

φ ∈ (0.59, 0.98)).

On the same data, we also evaluated the two isotropy tests proposed by

Richard and Biermé (2010) (see Table 3). Both of these tests had much lower

detection scores than the new ones. Their performances were particularly low

when the anisotropy was induced by the topothesy or oriented away from the

vertical and horizontal directions.

In Table 4, we deal with the order of Hölder irregularity H1. We notice that

the detection was worse for fields with a very low regularity (0 < H1 ≤ 0.2) than

for the more regular one. But, for a regularity above 0.2, detection performances

seem quite uniform with respect to H1. We applied a χ2-test on all anisotropic

cases for whichH1 > 0.2. This test confirmed the independence of the irregularity

and the detection with a p-value of 0.36. In other words, the irregularity effect

was limited to the lowest values of H1.

Notice however that the detection was low (61%) for fields with a Hurst

anisotropy when H1 > 0.9. This was not directly due to the field irregularity,

but rather to the low amplitude δβ = H2 − H1 of the Hurst function, which is

necessarily below 0.1 when H > 0.9.

The effect of this amplitude is analyzed in more detail in Table 5. We

clearly see that the detection depended on this factor up to a bound, which
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Table 4. Effect of the irregularity on the anisotropy detection.

Range Detected cases
of H1 H. anisotropy T. anisotropy

[0 , 0.1]175/206 (85%) 95/206 (46%)
[0.1, 0.2]197/203 (97%) 152/203 (75%)
[0.2, 0.3]194/202 (96%) 160/202 (79%)
[0.3, 0.4]186/194 (96%) 152/194 (78%)
[0.4, 0.5]207/212 (98%) 176/212 (83%)
[0.5, 0.6]186/203 (92%) 179/203 (88%)
[0.6, 0.7]178/188 (95%) 161/188 (86%)
[0.7, 0.8]164/181 (91%) 157/181 (87%)
[0.8, 0.9]176/197 (89%) 163/197 (83%)
[0.9, 1 ]131/214 (61%) 184/214 (86%)

Table 5. Effect of the anisotropy amplitude on the detection.

H. anisotropy T. anisotropy
δβ Detected cases δτ Detected cases

[0 ,0.01] 19/128 (15%) [1 , 1.1] 9/140 ( 6%)
[0.01,0.02] 17/91 (19%) [1.1, 1.2] 39/129 (30%)
[0.02,0.03] 41/66 (62%) [1.2, 1.3] 67/119 (56%)
[0.03,0.04] 70/81 (86%) [1.3, 1.4] 87/120 (72%)
[0.04,0.07] 152/168 (90%) [1.4, 1.8] 323/385 (84%)
[0.07, 1 ]1427/1466 (97%) [1.8,+∞] 1054/1107 (95%)

was about 0.07. When the amplitude was above this bound, the detection was

almost perfect (97% of detected cases). The same phenomenon occurred for the

detection of cases with a topothesy anisotropy. For these cases, we defined the

amplitude as δτ = C2/C1. The anisotropic cases were almost perfectly detected

when the amplitude was above 1.8. Hence, results obtained for these cases could

have been better if we had chosen to simulate fields with higher amplitudes.

5. An Application to Microscopic Images

In this section, we present an application of our methodology in the context

of a collaboration with the biology team of Dr. Franck Debarbieux (Institut

des Neurosciences de la Timone & Centre Européen de Recherche en Imagerie

Médicale, Aix-Marseille Université, France). People of this team deal with the

study of inflammatory process after spinal cord injury (Fenrich et al. (2012,

2013)). For their study, they have set a protocol for imaging in vivo spinal cords of

fluorescent transgenic mice through implanted glass windows with a two-photon

microscope. Images acquired with this protocol enable one to observe some

marked cells involved in inflammation at a subcellular resolution of 0.85 × 0.85

µm2 and at depths varying from 5 µm to 40 µm. Figure 4 presents some image
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Figure 4. Segmentation of a microscopic image. Rows 1 to 4 concern image
slices at depths 5, 15, 30, and 40 µm, respectively. Columns 1 to 3 of
each row show the original slice, regions with and without detected axons,
respectively. Image are courtesy of Franck Debarbieux (INT, CERIMED,
AMU, 2015).

slices at different depths of a same mouse. These slices show both inflammatory

cells (in a circular form) and axons (in an elongated form). The analysis of these

two structures and their interactions are critical for the understanding of the

inflammatory process after injury (Fenrich et al. (2012, 2013)).

So as to assist biologists in their analysis, we seek to develop automated

techniques that would locate structures and characterize their interactions. The

work presented here only concerns the localization part. We design a method

to locate axon areas in image slices. In future work, this method is intended to

serve as an initialization step for tracking axons in slices.
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As illustrated in Figure 4, axons produce some anisotropic image textures

whereas other structures such as cells are associated to isotropic ones. Hence,

we propose to distinguish axon areas from the rest of the image by applying

locally isotropy tests. More precisely, for each pixel m of an image, we apply

an isotropy test within all square neighborhoods of size 60 × 60 containing m.

We then compute the median of p-values of tests in all neighborhoods of m.

If this median value is below 0.01, we consider that an axon is present in the

neighborhood of m and label this pixel with 1. If not, the pixel is labeled with 0,

meaning absence of axons. In this way, we obtain a binary segmentation of the

image into axon and non-axon regions. The isotropy test is implemented with a

first order-increment filter defined in Example 4 with L = (0, 2) and quadratic

variations computed from scales
√
2 to 10 pixels (i.e., from 1.2 to 8.5 µm) in four

directions (horizontal, vertical, and diagonals).

Some results are shown on Figure 4. To get images of the second (resp.

third) column, we set to zero gray-level values of the image of the first column

at pixels labeled with 0 (resp. 1). We can see that major parts of axons are well

separated from inflammatory cells. Misclassified axons are mainly concentrated

at boundaries of axon areas. In the third and fourth slices, some cells are also

misclassified due to the anisotropic aspect of their texture. We can notice that

the segmentation detection is robust to intensity variations. It is also invariant

to both the change of axon orientations, and the inhomogeneity of inflammatory

cell textures.

6. Discussion

We have proposed a statistical methodology to test whether the texture of

an irregular image is isotropic or not. Statistics of our isotropy tests were built

upon quadratic variations. Specific to our approach, these variations were de-

fined with increments computed in different orientations and at different scales.

Hence, variations could bring useful directional information. We developed the

asymptotic theory of tests in a general context of intrinsic random fields that

allows us to take into account the presence of arbitrary polynomial trends in

images. We established an asymptotic Gaussian linear relationship between vari-

ation and scale logarithms which involves direction-dependent intercepts. We

then designed isotropy tests using Fisher statistics which check the equality of

these intercepts.

The asymptotic result was obtained by applying a multivariate version of

Breuer-Major (see Theorem 2). Proved by Biermé, Bonami, and León (2011),

this Breuer-Major theorem was already applied for a variation-based estimation

of the Hölder irregularity in the case when the field is Gaussian with stationary

increments and has a spectral density satisfying (1.3) with a constant Hurst
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function. We thus extended its application to a more general framework of IRF

satisfying (1.3) with non-constant Hurst functions, and the analysis of multi-

oriented variations.

Our test methodology is semi-parametric. It is theoretically established for

a large class of Gaussian random fields whose spectral densities satisfy two weak

conditions. The first is a generic non-parametric integrability condition at low

frequency, the second is a condition at high frequency constraining densities to

be close to that of an AFBF. This condition involves some functional parameters

(topothesy and Hurst functions). However, the test procedure does not involve

any estimation of these parameters.

Some isotropy tests developed by Cabana (1987); Guan, Sherman, and Calvin

(2004); Maity and Sherman (2012) for spatial data could be applied to images.

These tests enable one to check if a stationary field is geometrically isotropic.

However, such isotropy concerns all field frequencies whereas ours focuses on the

asymptotic of the highest ones. Hence, applied to images, tests of Cabana (1987);

Guan, Sherman, and Calvin (2004); Maity and Sherman (2012) would probably

detect anisotropic features that are not necessarily related to textures we deal

with. Moreover, they are not suitable for IRF of arbitrary orders.

We have presented an application of our statistical methodology to two-

photon microscopic images. In this application, isotropic tests were used lo-

cally to segment a specific structure (axon) producing anisotropic textures. In

other applications, such tests could serve as a means to detect local isotropic or

anisotropic abnormalities within images (e.g., tissue pathologies, material defects,

etc.). They could also be applied globally to images to classify their textures as

isotropic and anisotropic.

In Image Processing, the analysis of the texture anisotropy is often associated

to a detection of a priveleged anisotropy direction (see Ameida (1997); Germain

et al. (2003); Gorkani and Picard (1994); Lefebvre, Corpetti, and Moy (2011);

Molina and Feito (2002); Rao and Schunck (1991); Kass and Witkin (1987)).

This topic is beyond the scope of the work presented here, we plan to extend our

methodology to include confidence intervals and tests for anisotropy directions.

Supplementary Material

In Section S1 of the supplementary material, the interested reader can find

a proof of Theorem 2. In Section S2, propositions stated in Section 3 are also

proved. Eventually, Section S3 presents the method used to estimate the covari-

ance of quadratic variations.
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1302 FRÉDÉRIC J. P. RICHARD

Brunet-Imbault, B., Lemineur, G., Chappard, C., et al. (2005). A new anisotropy index on

trabecular bone radiographic images using the fast Fourier transform. BMC Med. Imaging

5, 4-15.

Cabana, E. (1987). Affine processes, a test of isotropy based on level set. SIAM J. Appl. Math.

47, 886-891.

Chan, G. and Wood, T. (2000). Increment-based estimators of fractal dimension for two-

dimensional surface data. Statist. Sinica 10, 343-376.

Chilès, J. and Delfiner, P. (2012). Geostatistics, Modeling Spatial Uncertainty. Wiley.

Coeurjolly, J. (2005). Identification of multifractional Brownian motion. Bernoulli 11, 987-1008.

Cressie, N. (1993). Statistics for Spatial Data. J. Wiley, New York.

Cross, G. and Jain, A. (1983). Markov random field texture models. IEEE Trans. Pattern Anal.

Mach. Intell. 5, 25-39.

Davies, E. (2008). Handbook of Texture Analysis, chapter Introduction to Texture Analysis.

World Scientific.

Davies, S. and Hall, P. (1999). Fractal analysis of surface roughness by using spatial data. J.

Roy. Statist. Soc. Ser. B 61, 3-37.

Demanet, L. and Ying, L. (2007). Wave atoms and sparsity of oscillatory patterns. Appl. Com-

put. Harmon. Anal. 23, 368-387.

Desolneux, A., Moisan, L. and Ronsin, R. (2012). A compact representation of random phase

and Gaussian textures. In Proc. ICASSP, 1381-1384.

Efros, A. and Leung, T. (1999). Texture synthesis by non-parametric sampling. In Proc. ICCV,

1033-1038, Kerkyra, Greece.

Fenrich, K., Weber, P., Rougon, G. and Debarbieux, F. (2012). Long-term in vivo imaging of

normal and pathological mouse spinal cord with subscellular resolution using implanted

glass windows. J. Physiol. 590, 3665-3675.

Fenrich, K., Weber, P., Rougon, G. and Debarbieux, F. (2013). Long- and short-term intravital

imaging reveals differential spatiotemporal recruitment and function of myelomonocytic

cells after spinal cord injury. J. Physiol. 591, 4985-4902.

Galerne, B., Gousseau, Y. and Morel, J. (2011). Random phase textures, theory and synthesis.

IEEE Trans. Image Process. 20, 257-267.

Gelfand, I. and Vilenkin, N. Y. (1964). Generalized Functions, volume 4, Applications to Har-

monic Analysis. Academic Press.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the bayesian

restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721-741.

Germain, C., Da Costa, J. P., Lavialle, O. and Baylou, P. (2003). Multiscale estimation of vector

field anisotropy application to texture characterization. Signal Process. 83, 1487-1503.

Gorkani, M. and Picard, R. (1994). Texture orientation for sorting photos “at a glance”. In

TR-292, M.I.T., Media Labortory, Perceptual Computing Section, 459-464.

Guan, Y., Sherman, M. and Calvin, J. (2004). A nonparametric test for spatial isotropy using

subsampling. J. Am. Stat. Assoc. 99, 810-821.

Haralick, R. (1979). Statistical and structural approaches to texture. Proc. IEEE 67, 786-804.

Istas, J. and Lang, G. (1997). Quadratic variations and estimation of the local Holder index of

a Gaussian process. Ann. Inst. Henri Poincaré, Prob. Stat. 33, 407-436.
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