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Abstract: Consider the problem of estimating normal means from independent ob-

servations with known variances, possibly different from each other. Suppose that

a second-level normal model is specified on the unknown means, with the prior

means depending on a vector of covariates and the prior variances constant. For

this two-level normal model, existing empirical Bayes methods are constructed from

the Bayes rule with the prior parameters selected either by maximum likelihood or

moment equations or by minimizing Stein’s unbiased risk estimate. Such meth-

ods tend to deteriorate, sometimes substantially, when the second-level model is

misspecified. We develop a Steinized empirical Bayes approach for improving the

robustness to misspecification of the second-level model, while preserving the effec-

tiveness in risk reduction when the second-level model is appropriate in capturing

the unknown means. The proposed methods are constructed from a minimax Bayes

estimator or, interpreted by its form, a Steinized Bayes estimator, which is not only

globally minimax but also achieves close to the minimum Bayes risk over a scale

class of normal priors including the specified prior. The prior parameters are then

estimated by standard moment methods. We provide formal results showing that

the proposed methods yield no greater asymptotic risks than existing methods us-

ing the same estimates of prior parameters, but without requiring the second-level

model to be correct. We present both an application for predicting baseball batting

averages and two simulation studies to demonstrate the practical advantage of the

proposed methods.

Key words and phrases: Bayes estimation, empirical Bayes, Fay–Herriot model,

minimax estimation, small-area estimation, Stein’s unbiased risk estimate, subspace

shrinkage, unequal variance.

1. Introduction

Consider the following problem of estimating normal means with heteroscedas-

tic observations. Assume that Y = (Y1, . . . , Yn)
T is a n×1 vector of independent

and normally distributed observations:

Yj |θj ∼ N(θj , dj), j = 1, . . . , n, (1.1)

where the means θ = (θ1, . . . , θn)
T are unknown and the variances (d1, . . . , dn) are

known but possibly different from each other. In matrix notation, the model says
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Y ∼ N(θ,D), where D = diag(d1, . . . , dn). In addition, let X = (x1, . . . , xn)
T,

where xj is a q× 1 vector of covariates, possibly depending on dj but considered

to be non-random. The problem of interest is to estimate the mean vector θ from

the observation vector Y , with the assistance of the covariate matrix X.

We adopt a decision-theoretic framework (e.g., Lehmann and Casella (1998))

for evaluating the performance of an estimator δ = (δ1, . . . , δn)
T for θ, where δj

can depend on all (Y1, . . . , Yn) for each j. The (pointwise) risk of δ is defined as

R(δ, θ) =
n∑

j=1

Eθ{(δj − θj)
2},

where Eθ(·) denotes the expectation with respect to the distribution of Y given

θ. It is desirable to construct an estimator δ such that R(δ, θ) is small in some

overall sense. Two standard optimality criteria are to minimize the maximum

risk over θ ∈ Rn and to minimize the Bayes risk with a prior distribution on θ,

corresponding to, respectively, minimax estimation and Bayes estimation. There

is also a substantial literature, not considered here, on minimax estimation of

normal means restricted to a subset of Rn. For example, the restricted space of

θ can be defined as an ℓp ball, {θ ∈ Rn :
∑n

j=1 |θj |p ≤ Cp}, and this framework is

useful for estimation of θ assumed to be sparse and for nonparametric function

estimation (e.g., Donoho and Johnstone (1994); Johnstone (2013)). See also Ben-

Hain and Eldar (2007) for an estimation approach based on minimax estimators

over a bounded parameter set.

For the present problem, minimaxity over θ ∈ Rn is equivalent to a simple

property: for any θ ∈ Rn, the risk R(δ, θ) is no greater than
∑n

j=1 dj , the risk of

the usual estimator δ0 = Y . For n ≥ 3, minimax estimators different from and

hence dominating δ0 were first discovered by Stein (1956) and James and Stein

(1961) in the homoscedastic case (i.e., d1 = · · · = dn). Minimax estimation has

since been extensively studied (e.g., Lehmann and Casella (1998); Strawderman

(2010)). In the general heteroscedastic case, all existing estimators, except those

in Berger (1982) and Tan (2015), fall into two categories, each with some limita-

tions. Estimators in the first category are minimax over θ ∈ Rn only under some

restrictive conditions on how much (d1, . . . , dn) can differ from each other (e.g.,

Bock (1975); Brown (1975)). Estimators in the second category (e.g., Berger

(1976)) are minimax regardless of differences between (d1, . . . , dn), but the ob-

servations Yj are shrunk inversely in proportion to the variances dj so that the

risk reduction achieved over δ0 is insubstantial unless all the observations have

similar variances.

The Bayes approach requires a prior distribution to be specified on θ, but

leads directly to a Bayes rule that achieves the minimum Bayes risk. Consider a
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class of normal priors πγ,β such that (θ1, . . . , θn) are independent and

θj ∼ N(xT
j β, γ), j = 1, . . . , n, (1.2)

where β and γ are hyper-parameters, with β a vector of regression coefficients and

γ a prior variance. Recall that θj is allowed to depend on dj through xj . In matrix

notation, the prior πγ,β says θ ∼ N(Xβ, γI) with I the identity matrix. For any

fixed (γ, β), the Bayes risk of δ is defined as R(δ, πγ,β) =
∫
R(δ, θ)πγ,β(θ) dθ, and

the Bayes rule is given componentwise by

(δBγ,β)j = Yj −
dj

dj + γ
(Yj − xT

j β).

In contrast with Berger’s (1976) minimax estimation, the greater dj is, the more

Yj is shrunk to xT
j β. Informally speaking, the Bayes rule can achieve a much

smaller pointwise risk than
∑n

j=1 dj , where the true values (θ1, . . . , θn) can be

seen as a typical sample from the prior distribution. But, for any fixed choices

of (γ, β), the Bayes rule is non-minimax and hence can have a pointwise risk

exceeding
∑n

j=1 dj , when the true values (θ1, . . . , θn) are incompatible with the

prior distribution.

To mitigate the difficulty of prior specification, an empirical Bayes approach

based on (1.1) and (1.2) is to estimate (γ, β) as unknown parameters in the

marginal distribution, Yj ∼ N(xT
j β, dj + γ), and then substitute the estimates

of (β, γ) into the Bayes rule for estimating θ (Efron and Morris (1973); Morris

(1983)). This approach is known to be equivalent to empirical best unbiased

linear prediction in a two-level normal model (e.g., Datta and Ghosh (2012);

Morris and Lysy (2012)):

First-level: Yj = θj + εj
Second-level: θj = xT

j β + uj

}
j = 1, . . . , n, (1.3)

where β and γ are unknown parameters, (u1, . . . , un) are independent with

uj ∼ N(0, γ) and, independently, (ε1, . . . , εn) are independent with εj ∼ N(0, dj).

For an important application, model (1.3) is also called Fay and Herriot’s (1979)

model in small-area survey estimation, where Yj represents a direct survey esti-

mate and dj is an estimated variance but treated as the true variance. See, for

example, Rao (2003) and Pfeffermann (2013) for further discussion on small-area

estimation.

The empirical Bayes approach relaxes the Bayes approach in depending on

the appropriateness of a class of priors instead of a single prior. But similarly as

discussed for the Bayes approach, the performance of empirical Bayes estimation

of θ is still affected by how well the true values (θ1, . . . , θn) are captured by any
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prior in the class (1.2) or, equivalently, by the second-level model, θj = xT
j β+uj ,

in (1.3). To address this issue, Jiang, Nguyen, and Rao (2011) and Xie, Kou, and

Brown (2012) proposed two closely related methods for estimating θ, although

Xie, Kou, and Brown (2012) considered only the case where xj ≡ 1 and β is one-

dimensional and then allowed more flexible shrinkage factors than in the form

dj/(dj+γ). With such differences ignored, their estimators are in fact equivalent

to each other, both in the form of the Bayes rule δBγ,β similar to model-based

empirical Bayes estimators, but with (γ, β) selected by minimizing Stein’s (1981)

unbiased risk estimate (SURE) of δBγ,β . The resulting estimator of θ is expected to

be more robust than model-based empirical Bayes estimators to misspecification

of the second-level model (1.2), but the protection is, in general, limited because

the estimator is still constructed from the Bayes rule based on (1.2).

We develop a new approach, called Steinized empirical Bayes estimation, for

using the second-level model (1.2) but without requiring (1.2) to be correctly

specified. As described above, both the model-based and the SURE-based em-

pirical Bayes approaches involve finding the Bayes rule δBγ,β under a prior (1.2)

with fixed (γ, β) and then selecting (γ, β) according to some empirical criterion.

By comparison, there are two corresponding steps in the proposed approach.

The first step is to develop a minimax Bayes estimator that is not only min-

imax over θ ∈ Rn but also achieves close to the minimum Bayes risk under a

prior (1.2) with fixed (γ, β). The James–Stein estimator has these two properties

in the homoscedastic case (i.e., d1 = · · · = dn) by Efron and Morris (1973). In

the general heteroscedastic case, the estimator of Berger (1982) achieves the two

desired properties, but seems complicated and difficult to interpret. Alterna-

tively, Tan (2015) developed a shrinkage estimator, which is not only simple and

easily interpretable, but also is minimax over θ ∈ Rn and achieves close to the

minimum Bayes risk over a scale class of normal priors including the specified

prior. In fact, the estimator of Tan (2015) leads to a shrinkage pattern such that

one group of observations are shrunk in the direction of Berger’s (1976) minimax

estimator and the remaining observations are shrunk in the direction of the Bayes

rule δBγ,β . Moreover, the observations are shrunk in these directions by a scalar

factor similar to that in Stein’s (1981) and Li’s (1985) linear shrinkage estima-

tors. Therefore, the minimax Bayes estimator of Tan (2015) can be interpreted,

by its form, as a Steinized Bayes estimator.

The second step of our approach, following the general idea of empirical

Bayes, is to choose (γ, β) in a data-dependent manner for the minimax Bayes es-

timator of Tan (2015). In principle, both model-based and SURE-based strategies

can be used. On one hand, the SURE of the estimator of Tan (2015) is, in general,

a non-smooth, multi-modal function of (γ, β), which makes it computationally

difficult to find a global minimum of the SURE. From pilot simulation studies,
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we found that the values of (γ, β), even if identified, might appear unnatural in
showing how the second-level model (1.2) could be fitted to the true θ-values.
For these reasons, the SURE-based strategy seems unappealing for empirically
selecting (γ, β) for the estimator of Tan (2015). On the other hand, among sev-
eral model-based estimators for (γ, β) (e.g., Datta, Rao, and Smith (2005)), the
moment method in Fay and Herriot (1979) seems particularly attractive. For
this method, not only the observations and residuals are weighted in a balanced
manner as discussed in Fay and Herriot (1979), but also the estimating function
for γ is always monotonic, which facilitates numerical solution of the estimating
equation and development of asymptotic theory.

We propose two Steinized empirical Bayes methods based on the foregoing
ideas. The first method involves substituting the Fay–Herriot estimates (γ̂, β̂)
for (γ, β) in the minimax Bayes estimator of Tan (2015). The second method,
developed from the perspective of subspace shrinkage (e.g., Sclove, Morris, and
Radhakrishnan (1972); Oman (1982)), involves using a particular estimator β̃ of
β such that the fitted location XTβ̃ and the residual Y −XTβ̃ are uncorrelated,
and then applying to the residual the first Steinized empirical Bayes estimator,
modified for shrinkage toward 0.

The Steinized empirical Bayes methods can be seen as a new approach for
improving the robustness to misspecification of second-level model (1.2), while
preserving the effectiveness in risk reduction when second-level model (1.2) is
appropriate in capturing the unknown means. We provide asymptotic results on
the convergence of the pointwise risks of the proposed estimators to that of the
minimax Bayes estimator of Tan (2015) with (γ, β) replaced by the limit values of
the estimates used, when n → ∞ and q is fixed. Particularly, we show that the
proposed estimators have no greater asymptotic risks than existing estimators
using the same estimates of (γ, β). These results make clear that the model-
based estimates of (γ, β) are mainly used to capture the center and spread of the
true θ-values, so that effective risk reduction can be achieved due to near-Bayes
optimality of the estimator of Tan (2015). We present both an application to the
baseball data in Brown (2008) and two simulation studies to demonstrate the
practical advantage of the proposed methods.

2. Minimax Bayes Estimation

We describe the minimax Bayes method in Tan (2015) for estimating normal
means under heteroscedasticity. This method is developed by combining the two
ideas of minimax and Bayes estimation in a principled manner.

First, a class of shrinkage estimators,δA,λ, is constructed with the jth com-
ponent

(δA,λ)j =

{
1− λc(D,A)

Y TATAY
aj

}
+

Yj ,
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where A = diag(a1, . . . , an) with elements aj ≥ 0 indicating the direction of

shrinkage, λ ≥ 0 is a scalar indicating the magnitude of shrinkage, and c(D,A) =

(
∑n

j=1 djaj) − 2maxj=1,...,n(djaj). Throughout, u+ = max(0, u) for any scalar

u. The estimator δA,λ is invariant to a scale transformation A 7→ uAfor a scalar

u > 0. If c(D,A) ≥ 0, then an upper bound on the risk function of δA,λ is

R(δA,λ, θ) ≤
n∑

j=1

dj − Eθ

{
λ(2− λ)c2(D,A)

Y TATAY

}
. (2.1)

Therefore, δA,λ is minimax over θ ∈ Rn provided c(D,A) ≥ 0 and 0 ≤ λ ≤ 2.

Second, to measure average risk reduction in an elliptical region, consider a

normal prior πΓ, θ ∼ N(0,Γ), where Γ = diag(γ1, . . . , γn) is a diagonal variance

matrix (e.g., Berger (1982)). That is, (θ1, . . . , θn) are independent and

θj ∼ N(0, γj), j = 1, . . . , n.

By (2.1) and Jensen’s inequality, if c(D,A) ≥ 0, then an upper bound on the

Bayes risk of δA,λ is R(δA,λ, πΓ) ≤
∑n

j=1 dj − λ(2 − λ)c2(D,A)/Em(Y TATAY ),

where Em denotes the expectation in the Bayes model, Yj ∼ N(0, dj + γj). The

shrinkage direction A for δA,λ is then chosen to minimize this upper bound on

the Bayes risk subject to c(D,A) ≥ 0 or, equivalently, to minimize
∑n

j=1(dj +

γj)a
2
j with c(D,A) ≥ 0 being fixed at a particular value. This optimization

problem turns out to admit a non-iterative solution, A†, as follows by (Tan

(2015, Thm. 2)).

Assume that n ≥ 3 and the indices are sorted such that d∗1 ≥ d∗2 ≥ · · · ≥ d∗n
with d∗j = d2j/(dj + γj). Then the solution A† = diag(a†1, . . . , a

†
n) is determined,

uniquely up to proportionality, by

a†j =

(
ν∑

k=1

dk + γk
d2k

)−1
ν − 2

dj
(j = 1, . . . , ν), (2.2)

a†j =
dj

dj + γj
(j = ν + 1, . . . , n), (2.3)

where ν is the smallest index k such that 3 ≤ k ≤ n− 1 and (k− 2)/{
∑k

j=1(dj +

γj)/d
2
j} > d2k+1/(dk+1 + γk+1), or ν = n if there exists no such k. By (2.2) and

(2.3), ν is the largest index k such that d1a
†
1 = · · · = dka

†
k > dja

†
j for j ≥ k + 1.

Moreover, C(D,A†) =
∑n

j=1(dj + γj)a
†2
j . The resulting estimator of θ is

(δA†,λ)j =

{
1−

λ
∑n

k=1 a
†2
j (dk + γk)∑n

k=1 a
†2
k Y

2
k

a†j

}
+

Yj ,

and is minimax over θ ∈ Rn provided 0 ≤ λ ≤ 2.
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The estimator δA†,λ has an interesting simple form, related to both the Bayes

rule, δBj = {1− dj/(dj + γj)}Yj , and Berger’s (1976) minimax estimator, δBer
j =

{1 − (n − 2)d−1
j /(Y TD−2Y )}+Yj . By (2.2) and (2.3), there is a dichotomous

segmentation in the shrinkage direction of the observations Yj based on d∗j =

d2j/(dj+γj). This quantity d
∗
j is said to reflect the Bayes “importance” of θj , that

is, the amount of reduction in Bayes risk obtainable in estimating θj in Berger

(1982). The observations Yj with high d∗j are shrunk inversely in proportion to

their variances dj as in Berger’s (1976) estimator δBer, whereas the observations
Yj with low d∗j are shrunk in the direction of the Bayes rule. Therefore, δA†,λ

mimics the Bayes rule to reduce the Bayes risk, except that δA†,λ mimics δBer for

some observations of highest Bayes “importance” in order to achieve minimaxity.

The shrinkage factor, λ
∑n

k=1 a
†2
k (dk + γk)/{

∑n
k=1 a

†2
k Y

2
k }, in δA†,λ is similar

to that in Stein’s (1981) and Li’s (1985) linear shrinkage estimators. Then δA†,λ

can be interpreted as a Steinized Bayes estimator, except for the shrinkage of
some observations Yj of highest “Bayes” importance in the direction proportional

to d−1
j . In fact, if a†j were reset to dj/(dj + γj) for all j = 1, . . . , n, then δA†,λ

would differ from the Bayes rule, (1 − a†j)Yj , only by the Stein-type shrinkage

factor.

In addition to simplicity and minimaxity, the risk properties of δA†,λ=1,

with λ = 1 used, are further studied in Tan (2015). Write δA†(Γ) = δA†,λ=1

to make explicit the dependency of A† on Γ. Let Γα = α(D + Γ) − D and

α0 = maxj=1,...,n{dj/(dj + γj)} (≤ 1). The Bayes risk of δA†(Γ) satisfies, for each

α ≥ α0,

R{δA†(Γ), πΓα} ≤ R(δBΓα
, πΓα) + α−1(d∗1 + d∗2 + d∗3 + d∗4), (2.4)

where R(δBΓα
, πΓα) =

∑n
j=1 dj − α−1

∑n
j=1 d

∗
j , the Bayes risk of the Bayes rule

with the prior N(0,Γα). Therefore, δA†(Γ) achieves close to the minimum Bayes
risk, with the difference no greater than the sum of the four highest Bayes “im-

portance” of the obsevations, simultaneously over a scale class of normal priors,

{N(0,Γα) : α ≥ α0}, including the specified prior N(0,Γ). This extends the

previous result that in the homoscedastic case (d1 = · · · = dn), the James–Stein

estimator achieves the minimum Bayes risk up to the sum of two (equal-valued)

Bayes “importance” over the scale class of homoscedastic normal priors (Efron
and Morris (1973)).

The minimax Bayes method can be directly extended to accommodate a

normal prior with a non-zero mean vector. For the normal prior (1.2), applying

δA†,λ with γj = γ and Yj replaced by Yj − xT
j β leads to the following estimator

of θ:

δλ,γ,β = xT
j β +

{
1−

λ
∑n

k=1 a
2
k(γ)(dk + γ)∑n

k=1 a
2
k(γ)(Yk − xT

kβ)
2
aj(γ)

}
+

(Yj − xT
j β),
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where the indices are sorted such that d1 ≥ d2 ≥ . . . ≥ dn and

aj(γ) =

(
ν∑

k=1

dk + γ

d2k

)−1
ν − 2

dj
(j = 1, . . . , ν), (2.5)

aj(γ) =
dj

dj + γ
(j = ν + 1, . . . , n), (2.6)

with ν being the smallest index k such that 3 ≤ k ≤ n−1 and (k−2)/{
∑k

j=1(dj+

γ)/d2j} > d2k+1/(dk+1 + γk+1), or ν = n if there exists no such k. The relative

magnitudes of shrinkage in δλ,γ,β can be bounded as follows.

Lemma 1. For any γ ≥ 0 and 1 ≤ j < k ≤ n (hence dj ≥ dk by the assumption

d1 ≥ d2 ≥ · · · ≥ dn), we have

dk
dj

≤ aj(γ)

ak(γ)
≤ dj
dk
.

By minimaxity of δA†,λ (Tan (2015, Thm. 2)), the estimator δλ,γ,β is min-

imax over θ ∈ Rn for any data-independent choices of 0 ≤ λ ≤ 2, γ ≥ 0,

and β ∈ Rq. Moreover, application of (2.4) with Γα = α(D + γI) − D and

α0 = maxj=1,...,n{dj/(dj + γ)} shows that the Bayes risk of δλ=1,γ,β satisfies, for

each α ≥ α0,

R{δλ=1,γ,β , πΓα} ≤ R(δBα,γ,β, πα,γ,β) + α−1(d∗1 + d∗2 + d∗3 + d∗4), (2.7)

where πα,γ,β denotes the prior θ ∼ N(XTβ,Γα), R(δ
B
α,γ,β , πα,γ,β) is the Bayes risk

of the corresponding Bayes rule, and d∗j = d2j/(dj + γ) for j = 1, . . . , n.

3. Steinized Empirical Bayes Estimation

For any fixed choices 0 ≤ λ ≤ 2, γ ≥ 0, and β ∈ Rq, the estimator δλ,γ,β
is minimax over θ ∈ Rn and δλ=1,γ,β is scale-adaptive in achieving close to the

minimum Bayes risk over a scale class of normal priors (including the specified

prior). Nevertheless, the pointwise risk R(δλ,γ,β , θ) for a particular unknown θ

is still affected by the choices of (λ, γ, β), which can all be regarded as tuning

parameters. To address this issue, we develop two empirical Bayes methods,

extending the minimax Bayes method of Tan (2015). These methods are called

Steinized empirical Bayes estimation, in parallel to the interpretation of δλ,γ,β as

a Steinized Bayes estimator.

The first empirical Bayes method is to directly apply the estimator δλ,γ,δ,

but with (λ, δ, γ) chosen in a data-dependent manner, using a combination of

Stein’s (1981) unbiased risk estimation and Fay and Herriot’s (1979) model-based

estimation. The proposed method consists of the following steps:
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• Estimate (γ, β) as (γ̂, β̂) by applying the method of Fay and Herriot (1979)

for the random-effect model (1.3), represented by (1.1) and (1.2);

• Estimate λ as λ̂ = λ̂(γ̂, β̂) by minimizing Stein’s (1981) unbiased risk estimate

of δλ,γ̂,β̂ but with (γ̂, β̂) treated as non-random;

• Apply the estimator δλ̂,γ̂,β̂.

If shrinkage is desired particularly toward 0, then the corresponding estima-

tor of θ is defined as δλ̂0,γ̂0
= δλ̂0,γ̂0,β=0, where (λ̂0, γ̂0) are obtained similarly as

(λ̂, γ̂, β̂) above but with β = 0 fixed and hence β̂ no longer needed.

The second method is developed by extending the minimax Bayes method

of Tan (2015) to handle shrinkage toward a linear subspace (e.g., Sclove, Morris,

and Radhakrishnan (1972); Oman (1982)). This method consists of the following

steps:

• Estimate β by β̃ = (XTD−1X)−1(XTD−1Y );

• Apply the estimator δλ̂0,γ̂0
after linearly transforming the residual Y − Xβ̃

into a canonical form with a diagonal variance matrix.

The second empirical Bayes method differs from the first one mainly in how

the regression coefficient vector β is estimated to determine the center of shrink-

age and in how the residualY −Xβ̂ or Y −Xβ̃ is shrunk.

3.1. SURE tuning

To empirically choose (λ, γ, β) for δλ,γ,β , a possible strategy is to use Stein’s

(1981) unbiased risk estimate (SURE). Rewrite δλ,γ,β componentwise as

(δλ,γ,β)j = xT
j β + {1− λbj(γ, β)}+(Yj − xT

j β),

where bj(γ, β) = c(γ)aj(γ)/{
∑n

k=1 a
2
k(γ)(Yk − xT

kβ)
2} and c(γ) =

∑n
k=1 a

2
k(γ)(dk

+γ). By the SURE formula, define

SURE(δλ,γ,β) =

n∑
j=1

+
∑

j ̸∈Jλ,γ,β

{(Yj − xT
j β)

2 − 2dj}

+
∑

j∈Jλ,γ,β

{
λ2b2j (γ, β)(Yj − xT

j β)
2 − 2λdjbj(γ, β)

+
4λdjbj(γ, β)a

2
j (γ)(Yj − xT

j β)
2∑n

k=1 a
2
k(γ)(Yk − xT

kβ)
2

}
,

where Jλ,γ,β = {1 ≤ j ≤ n : λbj(γ, β) < 1}. Then SURE(δλ,γ,β) is an unbiased

estimator of the risk of δλ,γ,β , that is, Eθ{SURE(δλ,γ,β)} = R(δλ,γ,β , θ) for any θ ∈
Rn. In principle, (λ, γ, β) can be selected by directly minimizing SURE(δλ,γ,β)
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over 0 ≤ λ ≤ 2, γ ≥ 0, and β ∈ Rq. But there seems to be several difficulties in

this direct approach, as we realized from pilot simulation studies.

First, SURE(δλ,γ,β) is, in general, a non-smooth, multi-modal function of

(λ, γ, β), and β can be multi-dimensional. No reliable algorithm seems available

for global optimization of such a complicated function. Second, even when β

is one-dimensional and SURE(δλ,γ,β) is minimized in a nested manner, for ex-

ample, by solving minγ≥0[minβ∈R {min0≤λ≤2 SURE(δλ,γ,β)}], the computational

challenge remains, because most one-dimensional optimization algorithms are

still designed to find a local, not global, minimizer. Finally, from simulation ex-

amples, we found that the values of (γ, β) minimizing SURE(δλ,γ,β), if identified,

might not reflect how the second-level model (1.2) could be properly fitted to

the true values θj . This phenomenon seems to also occur for other SURE-based

methods (e.g., Jiang, Nguyen, and Rao (2011); Xie, Kou, and Brown (2012))

where SURE is minimized to empirically select both the center and magnitude

of shrinkage. See the Supplementary Material for further discussion.

In view of the foregoing issues, we use a SURE-based strategy only for choos-

ing λ and, to be discussed in Section 3.2, adopt a model-based approach for

choosing (γ, β). For any choices of (γ, β), take

λ̂(γ, β) = argmin
0≤λ≤2

SURE(δλ,γ,β).

The optimization problem can be easily solved in a non-iterative manner as

follows. Sort the values
∑n

k=1 a
2
k(γ)(Yk−xT

kβ)
2/{c(γ)aj(γ)} for j = 1, . . . , n, and

partition the interval [0, 2] at those values. Then SURE(δλ,γ,β) is a quadratic

function of λ in each subinterval. Therefore, we determine λ̂(γ, β) as a minimizer

of SURE(δλ,γ,β) in a subinterval such that the corresponding minimum value is

the smallest among all the minimum values from different subintervals.

3.2. Model-based residual shrinkage

As explained in Section 3.1, we choose (γ, β) for δλ,γ,β using a model-based

approach as in conventional empirical Bayes estimation. Several methods have

been proposed for estimating (γ, β) in the random-effect model (1.3) in the con-

text of small-area estimation, including the maximum likelihood method, the

restricted maximum likelihood method, Fay and Herriot’s (1979) method based

on weighted residuals, and Prasad and Rao’s (1990) method based on unweighted

residuals. For various reasons, we adopt Fay and Herriot’s (1979) estimators of

(γ, β), to be used in δλ,γ,β .

For any fixed γ ≥ 0, the generalized least squares estimator of β under (1.3)

is

β̂(γ) = (XTD−1
γ X)−1(XTD−1

γ Y ), (3.1)
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where Dγ = D + γI. Then Fay and Herriot’s (1979) estimators of γ and β are

respectively γ̂FH and β̂FH = β̂(γ̂FH), where the moment equation for γ̂FH is

n∑
j=1

{Yj − xT
j β̂(γ)}2

dj + γ
= n− q. (3.2)

As noted by Datta and Ghosh (2012), the left-hand side of (3.2) is minβ∈Rq

{
∑n

j=1(Yj − xT
j β)

2/(dj + γ)} and hence non-increasing in γ ≥ 0. If the left-hand

side at γ = 0 is smaller than n− q, then there is no solution to (3.2) and γ̂FH is

defined as 0. Otherwise, γ̂FH is a unique solution to (3.2) and can be computed

without ambiguity by a root-finding algorithm such as uniroot() in R (R Core

Team (2012)). In addition to computational simplicity, the monotonicity associ-

ated with (3.2) is also technically useful to asymptotic theory for the resulting

estimator of θ.

By comparison, the maximum likelihood estimators of γ and β under (1.3)

are, respectively, γ̂ML and β̂ML = β̂(γ̂ML), where the score equation for γ̂ML is

n∑
j=1

{Yj − xT
j β̂(γ)}2

(dj + γ)2
=

n∑
j=1

1

dj + γ
. (3.3)

In contrast with equation (3.2), the difference and the ratio of the two sides of

(3.3) may not be monotonic in γ ≥ 0. Moreover, it is possible that the left-

hand side of (3.3) is strictly less than the right-hand side at γ = 0, but there

exist multiple solutions to (3.3). See the Supplementary Material for a numerical

example.

Fay and Herriot (1979) provided a thoughtful discussion, modified in our

notation as follows, on the comparison between (3.2) and (3.3). Equations (3.2)

and (3.3) weight the significance of the deviations Yj − xT
j β̂(γ) differently: (3.3)

places relatively more importance on the observations with small dj than does

(3.2). The maximum likelihood method improves the efficiency of the estimation

of γ in the random-effect model (1.3). But it was preferred to balance out the

estimation of γ over all observations rather than of just those with small dj . From

this discussion, the choice of (3.2) over (3.3) for estimating γ would be even more

justified in our approach than in Fay and Herriot’s, because we explicitly allow

the second-level model (1.2) to be misspecified and substitute the estimators of

(γ, β) in δλ,γ,β instead of the Bayes rule δBγ,β based on (1.2). For our approach,

(γ̂FH, β̂FH) are used to approximately capture the center and spread of the true

values (θ1, . . . , θn), so that effective risk reduction can be achieved by the minimax

Bayes estimator δλ,γ,β .



1230 ZHIQIANG TAN

By substituting (γ̂FH, β̂FH) for (γ, β) and setting λ̂FH = λ̂(γ̂FH, β̂FH) for λ in

δλ,γ,β , we define a model-based residual shrinkage estimator of θ as

δRes = δλ̂FH,γ̂FH,β̂FH
.

Effectively, δRes is obtained by taking (γ̂FH, β̂FH) from Fay and Herriot’s (1979)

estimation of random-effect model (1.3) and then feeding the residual Yj−xT
j β̂FH

to Tan’s (2015) shrinkage estimator toward 0 with the prior variance γj ≡ γ̂FH.

By comparison, Fay and Herriot’s (1979) empirical Bayes estimator of θ is

δFH = δB
γ̂FH,β̂FH

,

defined by substituting (γ̂FH, β̂FH) for (γ, β) in the Bayes rule δBλ,β. As discussed

in Section 1, δFH is fully based on random-effect model (1.3), and its performance

may substantially deteriorate when second-level model (1.3) is misspecified.

It is helpful to compare both δFH and δRes with the following estimator of θ

in Jiang, Nguyen, and Rao (2011) and Xie, Kou, and Brown (2012):

δJX = δB
γ̂JX,β̂JX

,

where (γ̂JX, β̂JX) = argminγ≥0,β∈RqSURE(δBγ,β) and SURE(δBγ,β) is Stein’s unbi-

ased risk estimate of δBγ,β defined by

SURE(δBγ,β) =

n∑
j=1

{d2j (Yj − xT
j β)

2

(dj + γ)2
+

2γdj
dj + γ

− dj

}
.

Setting the gradient to 0 shows that β̂JX = β̄(γ̂JX) with

β̄(γ) =
{ n∑

j=1

d2jxjx
T
j

(dj + γ)2

}−1{ n∑
j=1

d2jxjYj

(dj + γ)2

}
, (3.4)

and γ̂JX, if nonzero, satisfies

n∑
j=1

d2j{Yj − xT
j β̂(γ)}2

(dj + γ)3
=

n∑
j=1

d2j
(dj + γ)2

. (3.5)

In contrast with (3.2), there is, in general, no monotonicity associated with equa-

tion (3.5). In fact, there may exist multiple solutions to (3.5), corresponding to a

local minimizer or a local maximizer of SURE(δBγ,β). In our numerical work, γ̂JX
is computed as a local, perhaps non-global, minimizer to SURE{δB

γ,β̄(γ)
} by the

one-dimensional optimization algorithm optimize() in R (R Core Team (2012)).

See the Supplementary Material for numerical examples and further discussion.
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In retrospect, β̄(γ) in (3.4) can be seen as a weighted least squares estimator

of β for a fixed γ ≥ 0, and equation (3.5) can be verified as a moment equation,

based on the marginal distribution Yj ∼ N(xT
j β, dj + γ). However, the obser-

vations and residuals are weighted directly in proportion to the variances dj in

(3.4) and (3.5), and are weighted inversely in proportion to the variances dj in

previous equations (3.1), (3.2) and (3.3). Moreover, the observations are shrunk

by magnitudes proportional to the variances dj toward the regression line xT
j β̂JX

in the estimator δJX. Therefore, δJX may be overly influenced by the observations

with large variances. Essentially, these patterns of weighting and shrinkage in

δJX are tied to the fact that δJX is constructed in the form of the Bayes rule δBγ,β
based on (1.2). The performance of δJX may still deteriorate when second-level

model (1.2) is misspecified.

3.3. Subspace shrinkage

The estimator δRes is constructed to shrink the observation vector Y toward a

data-dependent location Xγ̂FH, so that substantial risk reduction can be achieved

whenever the true mean vector θ lies near the linear subspace

S = {θ ∈ Rn : θ = Xβ for β ∈ R2}.

In this section, we develop an alternative method from the perspective of subspace

shrinkage (e.g., Sclove, Morris, and Radhakrishnan (1972); Oman (1982)). This

method involves the same idea of shrinking Y toward a data-dependent location

Xβ̃, but deals with the data-dependency of β̃ explicitly in two ways. First, β̃ is

defined such that Xβ̃ and Y −Xβ̃ are uncorrelated. Second, the residual Y −Xβ̃
is shrunk toward 0 by taking account of the variance matrix of Y −Xβ̃, which is

no longer D or even a diagonal matrix. In contrast, β̂FH is derived together with

γ̂FH from the random-effect model (1.3), and then Y − Xβ̂FH is shrunk toward

0 in δRes as if β̂FH were data-independent and the variance matrix of Y −Xβ̂FH

were still D.

Shrinkage toward a linear subspace has been of interest since the early re-

search on shrinkage estimation (e.g., Lindley (1962)). In the homoscedastic case

(D = σ2I), a known extension of the James–Stein estimator is

δJS,Sub = HY +

{
1− (n− q − 2)σ2

Y T(I −H)Y

}
+

(I −H)Y,

where H = X(XTX)−1XT. The estimator δJS,Sub is minimax if n ≥ q + 3

(Sclove, Morris, and Radhakrishnan (1972)). Taking X = (1, . . . , 1)T leads to

the shrinkage estimator toward the mean Ȳ = n−1
∑n

j=1 Yj (Efron and Morris

(1973)). However, there seems to be limited results on shrinkage estimation
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toward a subspace in the general heteroscedastic case. See Oman (1982) on an

extension of Bock’s (1975) estimator and Judge and Mittelhammer (2004) on a

shrinkage estimator that combines two competing estimators θ̂ and ψ̂, which can

be viewed as shrinkage toward the subspace {(θ, ψ) : θ = ψ}. These estimators

are only shown to be minimax under some restrictive conditions.

We extend the minimax Bayes method of Tan (2015) to handle shrinkage

toward a linear subspace. By generalized least squares, let β̃ = (XTD−1X)−1

(XTD−1Y ). Then Xβ̃ and Y − Xβ̃ are uncorrelated, and the variance matrix

of Y − Xβ̃ is D − X(XTD−1X)−1XT, with rank n − q, under the basic model

(1.1). The estimate β̃ is formally identical to β̂(0) with γ = 0 by (3.1). But, in

contrast with the method in Section 3.2, we apply shrinkage estimation to the

residual Y −Xβ̃ by taking account of the variability of β̃ under model (1.1) for

achieving minimaxity.

Decompose the observation vector Y and mean vector θ as Y = Xβ̃ +

(Y − Xβ̃) = HDY + (I − HD)Y and θ = HDθ + (I − HD)θ, where HD =

X(XTD−1X)−1XTD−1 and hence HDθ ∈ S. If θ lies near the subspace S, then

HDθ ≈ θ and (I − HD)θ ≈ 0. To achieve risk reduction, we estimate HDθ

directly by Xβ̃ = HDY , and then shrink the residual Y −Xβ̃ toward 0 for esti-

mating (I −HD)θ as follows. We linearly transform the residual Y −Xβ̃ into a

canonical form, LT
2 (Y −Xβ̃), with a diagonal variance matrix V2, by the spectral

decomposition:

D −X(XTD−1X)−1XT = (L1, L2)

(
0 0

0 V2

)(
LT
1

LT
2

)
= L2V2L

T
2 ,

where V2 is a positive definite, diagonal (n− q)× (n− q) matrix and (L1, L2) is

an orthogonal n×n matrix with L2 an n× (n− q) matrix. Applying the method

of Tan (2015) leads to the following estimator of θ:

δSλ,γ = Xβ̃ + L2δλ,γ,β=0{LT
2 (Y −Xβ̃)},

where δλ,γ,β=0(η2) denotes δλ,γ,β=0 from Section 2 applied with Y replaced by

η2 = LT
2 (Y − Xβ̃) and D replaced by V2 for estimating ψ2 = LT

2 (I − HD)θ, of

dimension n − q. If D = σ2I, then D − X(XTD−1X)−1XT is an idempotent

matrix, I − X(XTX)−1XT, multiplied by σ2 and hence V2 is proportional to

the (n− q)× (n− q) identity matrix. In this special case, δSλ=1,γ reduces to the

subspace shrinkage estimator δJX,Sub, because, as noted in Tan (2015), δλ=1,λ,β=0

with any γ ≥ 0 reduces to the James–Stein positive-part estimator, {1 − (n −
2)σ2/

∑n
k=1 Y

2
k }+Yj , in the homoscedastic case. The following result is proved

in the Supplementary Material.
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Theorem 1. The pointwise risk of δSλ,γ for estimating θ is related to that of

δλ,γ,β=0(η2) for estimating ψ2 as follows:

R(δSλ,γ , θ) = tr{X(XTD−1X)−1XT}+R{δλ,γ,β=0(η2), ψ2},

where η2 = LT
2 (Y − Xβ̃), ψ2 = LT

2 (I − HD)θ), and tr(·) denotes the trace of a

matrix. For n ≥ q + 3, the estimator δSλ,γ is minimax over θ ∈ Rn for any fixed

0 ≤ λ ≤ 2 and γ ≥ 0. Moreover, a similar result to (2.7) holds for the Bayes risk

of δSλ=1,γ.

The estimator δSλ,γ incorporates a data-dependent choice, Xβ̃, for the center

of shrinkage. But there remain two tuning parameters, λ and γ, inherited from

δλ,γ,β=0 for the shrinkage of the residual, Y −Xβ̃. To empirically choose (λ, γ) for

δλ,γ,β=0, we adopt the following strategy in parallel to that of selecting (λ, γ, β)

for δλ,γ,β in Sections 3.1 and 3.2, except with β = 0 fixed. We define an empirical

Bayes extension of δλ,γ,β=0 for shrinkage toward 0 with the observation vector Y

as δλ̂0,γ̂0
= δλ̂0,γ̂0,β=0 where λ̂0 = λ̂(γ̂0) with λ̂(γ) = argmin0≤λ≤2SURE(δλ,γ,β=0)

and γ̂0 is a solution to
n∑

j=1

Y 2
j

(dj + γ)
= n, (3.6)

if
∑n

j=1 Y
2
j /dj ≥ n and γ̂0 = 0 otherwise. The estimator γ̂0 is directly modiifed

from Fay and Herriot’s estimator γ̂FH to handle a fixed β = 0. Then we define a

subspace shrinkage estimator of θ as

δSub = Xβ̃ + L2δλ̂0,γ̂0
{LT

2 (Y −Xβ̃)},

where δλ̂0,γ̂0
(η2) denotes δλ̂0,γ̂0

applied with Y replaced by η2 = LT
2 (Y − Xβ̃)

and D replaced by V2 for estimating ψ2 = LT
2 (I − HD)θ. Effectively, δSub is

obtained by feeding the linearly transformed residual, LT
2 (Y − Xβ̃), to Tan’s

(2015) shrinkage estimator δλ,γ,β=0 toward 0, with data-dependent choices of γ

and λ by, respectively, Fay and Herriot’s (1979) method and a SURE strategy.

The estimators (λ̂0, γ̂0) depend on Y only through the residual Y −Xβ̃ and

hence are independent of Xβ̃. Then the proof of Theorem 1 also shows that

R(δSub, θ) = tr{X(XTD−1X)−1XT}+R{δλ̂0,γ̂0
(η2), ψ2}. (3.7)

Therefore, the risk difference between δSub and Y for estimating θ is the same as

that between δλ̂0,γ̂0
(η2) and η2 for estimating ψ2.

4. Asymptotic Theory

In this section, we study pointwise risk properties of the proposed estimators

in an asymptotic framework where n→ ∞ and q is fixed, under the basic model
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(1.1), without requiring the second-level model (1.2) to be correct. The results ob-

tained are distinct from existing ones where random-effect model (1.3) (i.e., both

(1.1) and (1.2)) is assumed to be correct (e.g., Prasad and Rao (1990)). Moreover,

our asymptotic analysis allows that the maximum ratio between (d1, . . . , dn) be

unbounded as n→ ∞.

For the model-based residual shrinkage estimator δRes in Section 3.2, we will

show that uniformly in θ over any bounded subset of Rn,

n−1R(δλ̂,γ̂,β̂, θ) ≤ inf
0≤λ≤2

n−1R(δλ,γ∗,β∗ , θ) + o(1), (4.1)

where (λ̂, γ̂, β̂) = (λ̂FH, γ̂FH, β̂FH) and (γ∗, β∗) are the probability limits of (γ̂, β̂)

as n → ∞, unless otherwise stated. That is, the normalized risk of δRes is

asymptotically no greater than δλ,γ∗,β∗ for any fixed choice 0 ≤ λ ≤ 2 and

for the limit values (γ∗, β∗) of Fay and Herriot’s (1979) estimators. Therefore,

asymptotic optimality is achieved over possible choices of 0 ≤ λ ≤ 2, but not

over (γ, β). This difference is caused by the fact that a SURE-based strategy is

used to define λ̂, but a model-based strategy is used to construct (γ̂, β̂), due to

various difficulties that would arise were a SURE-based strategy used for selecting

(γ̂, β̂), as discussed in Section 3.1. Moreover, the lack of theoretical optimality

over (γ, β) should be of limited concern for the following reasons. For any fixed

choices of 0 ≤ λ ≤ 2, γ ≥ 0, and β ∈ Rq, the estimator δλ,γ,β is already shown to

be minimax over θ ∈ Rn and, if λ = 1, achieves close to the minimum Bayes risk

over a scale class of normal priors, depending on (γ, β). The choices of (γ̂, β̂) are

mainly used to determine a particular prior (1.2) capturing the center and spread

of the true values (θ1, . . . , θn), so that effective risk reduction can be achieved

due to near-Bayes optimality of δλ,γ,β under the prior (1.2).

As a consequence of (4.1), Theorem 2 provides a definite comparison of

asymptotic risks between δλ̂,γ̂,β̂ and δFH. Up to negligible terms, the asymptotic

risk of δλ̂,γ̂,β̂ is no greater than
∑n

j=1 dj , the risk of δ0 = Y , and than that of δFH.

Theorem 2. Assume (maxj dj)/(minj dj) = o(n1/2). For any sequence of θ ∈ Rn

such that (4.1) holds and n−1R(δFH, θ) ≤ n−1R(δBγ∗,β∗ , θ) + o(1) as n → ∞, we

have

n−1R(δλ̂,γ̂,β̂, θ) ≤ n−1R(δFH, θ)−
(S1 − S2)

2

nS2
+
(
1 + n−1

n∑
j=1

dj

)
o(1),

where S1 =
∑n

j=1 dja
∗
j , S2 =

∑n
j=1{dj +(θj −xT

j β
∗)2}a∗2j , and a∗j = dj/(dj + γ∗)

for j = 1, . . . , n.
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Comparison of asymptotic risks between δλ̂,γ̂,β̂ and δJX seems complicated,

mainly because (γ, β) are estimated differently by (γ̂FH, β̂FH) and (γ̂JX, β̂JX). Nev-

ertheless, if (γ̂JX, β̂JX) are used as (γ̂, β̂) in δλ̂,γ̂,β̂, then, by the proof of Theorem 2,

it can also be shown that n−1R(δλ̂,γ̂,β̂, θ) ≤ n−1R(δJX, θ)+o(1)(1+n
−1
∑n

j=1 dj).

The subspace shrinkage estimator δSub in Section 3.3 involves the use of

δλ̂0,γ̂0
= δλ̂0,γ̂0,β=0 for shrinkage toward 0. To assess pointwise risk properties of

δSub, it suffices, by the relationship (3.7), to study those of δλ̂0,γ̂0
in the general

setup with the observation vector Y . In parallel to the result (4.1), it is of interest

to show that uniformly in θ over any bounded subset of Rn,

n−1R(δλ̂0,γ̂0
, θ) ≤ inf

0≤λ≤2
n−1R(δλ,δ∗0 ,β=0, θ) + o(1), (4.2)

where γ∗0 is the probability limit of γ̂0 as n → ∞. The implications of (4.2) can

be seen similarly as in the preceding discussion on (4.1).

4.1. Convergence results

We divide the results into three parts, dealing with three distinct situations:

shrinkage estimation with a data-independent prior, shrinkage estimation toward

0 (or a data-independent location) with a data-dependent prior variance, and

shrinkage estimation with a data-dependent prior mean and variance. Moreover,

we remove the normality assumption in (1.1), i.e., only assume that Eθj (Yj) = θj
for j = 1, . . . , n, in all our asymptotic results throughout this section.

First, we examine the situation where λ is estimated by a SURE-based

strategy, but for the estimator δA,λ with a general, data-independent choice of

A = diag(a1, . . . , an). For the choice (a†1, . . . , a
†
n) in (2.2) and (2.3), the prior

variances (γ1, . . . , γn) need not be a constant γ as in the estimator δλ,γ,β . More

generally, (a1, . . . , an) are allowed to differ from the particular choice (a†1, . . . , a
†
n).

The following theorem shows that the SURE of δA,λ is, uniformly over 0 ≤ λ ≤ 2,

close to the actual loss in probability and in mean, uniformly in θ ∈ Rn. See

Li (1985), Donoho and Johnstone (1995), and Cai and Zhou (2009) for related

results of this nature. By comparison, Xie, Kou, and Brown (2012) showed that

SURE(δBγ,β=0) is, uniformly over γ ≥ 0, close to the actual loss of δBγ,β=0, pro-

vided that both n−1
∑n

j=1 d
2
j and n−1

∑n
j=1 djθ

2
j are bounded for all n ≥ 1. Such

a convergence is not uniform in θ ∈ Rn.

Theorem 3. Assume that there exist some constants K1, K2, K3, K4, and

0 ≤ η ≤ 1/4, such that for all n ≥ 1,

(A1) E(ε4j ) ≤ K1d
2
j , with εj = Yj − θj, for j = 1, . . . , n,

(A2) n−1
∑n

j=1 dj ≤ K2,
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(A3) (maxj dj)/(minj dj) ≤ K3n
η, and

(A4) (maxj aj)/(minj aj) ≤ K4(maxj dj)/(minj dj).

Let ζn(λ) = n−1{SURE(δA,λ) − L(δA,λ, θ)}, where SURE(δA,λ) is defined as

SURE(δλ,γ,β) with β = 0 and aj(γ) replaced by aj. Then the following results

hold.

(i) sup0≤λ≤2 |ζn(λ)| = Op{n−(1−4η)/2}, uniformly in θ ∈ Rn. That is, for any

τ1 > 0, supθ∈Rn P{sup0≤λ≤2 |ζn(λ)| ≥ τ2n
−(1−4η)/2} ≤ τ1 for all sufficiently

large τ2 and n.

(ii) If further 0 ≤ η < 1/5, then supθ∈Rn E{sup0≤λ≤2 |ζn(λ)|} = O{n−(1−5η)/2}.

Assumption (A1) requires fourth moments to be bounded for all εj , which

are directly satisfied when the disturbances εj are normal. Assumptions (A2) and

(A3) place restrictions on both the absolute and relative magnitudes of the vari-

ances (d1, . . . , dn), which are needed mainly to ensure the uniform convergence

in 0 ≤ λ ≤ 2. To understand the implication of (A2) and (A3), suppose, for the

moment, that (d1, . . . , dn) are independent realizations from a certain distribu-

tion with density φ(·) such that φ(d) = O{d−(1+k1)} as d→ ∞ and O{d−(1−k0)}
as d → 0 for k1 > 0 and k0 > 0. By extreme value theory (e.g., Ferguson

(1996)), it is easy to show that maxj dj = Op(n
1/k1) and minj dj = Op(n

−1/k0)

as n → ∞. If 1/k1 + 1/k0 < 1/4, then Assumptions (A2) and (A3) would be

satisfied in probability as n → ∞. For example, when (d1, . . . , dn) are inverse

chi-squared distributed with degrees of freedom k, then k1 can be set to k/2 but

k0 can be made arbitrarily large. Therefore, if k > 8, then Assumptions (A2) and

(A3) would hold with probability tending to 1. Finally, Assumption (A4) places

an upper bound on the relative magnitudes of shrinkage, aj/ak, in terms of the

maximum variance ratio (maxj dj)/(minj dj). If (a1, . . . , an) are defined by (2.5)

and (2.6) with a homoscedastic prior variance Γ = γI as in the estimator δλ,γ,β ,

then Assumption (A4) is satisfied with K4 = 1 for any γ ≥ 0 by Lemma 1.

Second, we deal with the shrinkage estimator toward 0, δλ̂0,γ̂0
= δλ̂0,λ̂0,β=0,

that is, δλ,γ,β=0 with a Fay–Herriot type estimator γ̂0 for γ, leading to data-

dependent aj(γ̂0), and a SURE-based choice λ̂0 for λ. By moment equation (3.6)

for γ̂0, let γ
∗
0 ≥ 0 be a solution to n =

∑n
j=1(dj+θ

2
j )/(dj+γ). Such a solution γ∗0

always exists and is unique. The following proposition shows that γ̂0 converges

to γ∗0 in probability and in mean as n → ∞. The regularity conditions involved

are simple, due to the monotonicity of the estimating function in γ, i.e., the

right-hand side of (3.6).

Proposition 1. Let Θn = {θ ∈ Rn : n−1
∑

j θ
2
j/dj ≤ M} for a constant M free

of n. Under Assumptions (A1) and (A3) with 0 ≤ η < 1/2, the following results

hold.
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(i) γ̂0 − γ∗0 = Op{n−(1−2η)/2} uniformly in θ ∈ Θn. That is, for any τ1 > 0,

supθ∈Θn
P{|γ̂0 − γ∗0 | ≥ τ2n

−(1−2η)/2} ≤ τ1 for all sufficiently large n and τ2.

(ii) supθ∈Θn
E{|γ̂0 − γ∗0 |2} = O{n−(1−2η)/2}.

We then study the accuracy of the plug-in risk estimator, SURE(δλ,γ̂0,β=0),

defined as SURE(δλ,γ,β=0) with γ replaced by γ̂0. Although SURE(δλ,γ,β)

is an unbiased estimator of the risk of δλ,γ,β for fixed (λ, γ, β), the estimator

SURE(δλ,γ̂0,β=0) is no longer unbiased for the risk of δλ,γ̂0,β=0 because of the

data-dependency of γ̂0. Nevertheless, we show that SURE(δλ,γ̂0,β=0) is, uniformly

over 0 ≤ λ ≤ 2, close to the actual loss of δλ,γ̂0,β=0 in probability and in mean

as n→ ∞. The rates of convergence are the same as in Theorem 3, but uniform

only in θ ∈ Θn, with Θn defined in Proposition 1 to obtain uniform convergence

of γ̂0 to γ∗0 .

Theorem 4. Let ζn(λ, γ) = n−1{SURE(δλ,γ,β=0) − L(δλ,γ,β=0, θ)}. Under As-

sumptions (A1)−(A3) with 0 ≤ η < 1/4, the following results hold.

(i) sup0≤λ≤2 |ζn(λ, γ̂0)| = Op{n−(1−4η)/2}, uniformly in θ ∈ Θn. That is, for

any τ1 > 0, supθ∈Θn
P{sup0≤λ≤2 |ζn(λ, γ̂0)| ≥ τ2n

−(1−4η)/2} ≤ τ1 for all

sufficiently large τ2 and n.

(ii) If further 0≤η<1/5, then supθ∈Θn
E{sup0≤λ≤2 |ζn(λ, γ̂0)|}=O{n−(1−5η)/2}.

As a consequence of Theorem 4, we see that, uniformly in θ ∈ Θn,

L(δλ̂0,γ̂0
, θ) ≤ inf

0≤λ≤2
L(δλ,γ̂0,β=0, θ) +Op{n−(1−4η)/2}, (4.3)

R(δλ̂0,γ̂0
, θ) ≤ inf

0≤λ≤2
R(δλ,γ̂0,β=0, θ) +O{n−(1−5η)/2}. (4.4)

Of course, (4.3) and (4.4) are then valid pointwise for any θ ∈ Rn. Similarly

as discussed in Xie, Kou, and Brown (2012), the actual loss of δλ̂0,γ̂0
is, by

(4.3), asymptotically as small as that of the oracle loss estimator δλ,γ̂0,β=0 with

0 ≤ λ ≤ 2 selected to minimize L(δλ,γ̂0,β=0, θ). Moreover, the risk (i.e., expected

loss) of δλ̂0,γ̂0
, by (4.3), is asymptotically no greater than that of δλ,γ̂0,β=0 for any

fixed choice 0 ≤ λ ≤ 2.

To obtain the earlier statement (4.2), the risk of δλ̂0,γ̂0
can be directly related

to that of δλ,γ∗
0 ,β=0 which is not only minimax over θ ∈ Rn but also, if λ = 1,

near-Bayes optimal under a class of normal priors including N(0, γ∗0I).

Corollary 1. If Assumptions (A1)−(A3) hold with 0 ≤ η < 1/5, then, uniformly

in θ ∈ Θn,

R(δλ̂0,γ̂0
, θ) ≤ inf

0≤λ≤2
R(δλ,γ∗

0 ,β=0, θ) +O(n−(1−5η)/2}.
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Third, we study risk properties of δλ̂,γ̂,β̂, that is, δλ,γ,β with the data-depend-

ent choices (λ̂, γ̂, β̂) = (λ̂FH, γ̂FH, β̂FH) for (λ, γ, β). By estimating equations (3.1)

and (3.2) for (γ̂FH, β̂FH), we define, for any γ ≥ 0,

β∗(γ) = (XTD−1
γ X)−1(XTD−1

γ θ),

and define β∗ = β∗(γ∗) and γ∗ as a solution to the equation

n∑
j=1

dj + {θj − xT
j β

∗(γ)}2

dj + γ
= n− q

if the right-hand side of the equation at γ = 0 is at least n − q or let γ∗ = 0

otherwise. The following proposition, similar to Proposition 1, concerns the con-

vergence of γ̂ to γ∗ in probability and in mean as n→ ∞. In the special case of

η = 0, Assumption (A3) reduces to saying that (d1, . . . , dn) are bounded from be-

low and above by some positive constants, and Assumption (A5) reduces to saying

that maxj{xT
j (
∑

k x
T
kxk)

−1xj} is bounded from above. These simple conditions

are commonly assumed in existing asymptotic theory for small-area estimation

using the Fay–Herriot model (1.3) (e.g., Prasad and Rao (1990, Thm. A2)).

Proposition 2. Assume that (A1) and (A3) hold with 0 ≤ η < 1/2, and there

exists a constant K5 such that for all n ≥ 1,

(A5) maxj{xT
j d

−1/2
j (

∑
k x

T
kxk/dk)

−1d
−1/2
j xj} ≤ K5n

−(1−2η).

Then the following results hold.

(i) γ̂ − γ∗ = Op{n−(1−2η)/2} uniformly in θ ∈ Θn. That is, for any τ1 > 0,

supθ∈Θn
P{|γ̂ − γ∗| ≥ τ2n

−(1−2η)/2} ≤ τ1 for all sufficiently large n and τ2.

(ii) supθ∈Θn
E|γ̂ − γ∗| = O{n−(1−2η)/2}.

(iii) If, in addition, 0 ≤ η < 1/4, then supθ∈Θn
E{|γ̂ − γ∗|2} = O{n−(1−4η)/2}.

We then have the following theorem on the SURE approximation of the loss

of δλ,γ̂,βγ̂
. The rate of convergence in probability is the same as in Theorem 3,

but the rate of convergence in mean is slower than that in Theorem 3.

Theorem 5. Let ζn(λ, γ, β) = n−1{SURE(δλ,γ,β)−L(δλ,γ,β , θ)}. Under Assump-

tions (A1)−(A3) and (A5) with 0 ≤ η < 1/4, the following results hold.

(i) sup0≤λ≤2 |ζn(λ, γ̂, β̂)| = Op{n−(1−4η)/2}, uniformly in θ ∈ Θn. That is, for

any τ1 > 0, supθ∈Θn
P{sup0≤λ≤2 |ζn(λ, γ̂, β̂)| ≥ τ2n

−(1−4η)/2} ≤ τ1 for all

sufficiently large τ2 and n.

(ii) If further 0≤η<1/6, then supθ∈Θn
E{sup0≤λ≤2 |ζn(λ, γ̂, β̂)|}=O{n−(1−6η)/2}.
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In parallel to (4.3) and (4.4), Theorem 5 implies that, uniformly in θ ∈ Θn,

L(δλ̂,γ̂,β̂, θ) ≤ inf
0≤λ≤2

L(δλ,γ̂,β̂, θ) +Op{n−(1−4η)/2}, (4.5)

R(δλ̂,γ̂,β̂, θ) ≤ inf
0≤λ≤2

R(δλ,γ̂,β̂, θ) +O{n−(1−6η)/2}. (4.6)

These results, (4.5) and (4.6), are then valid pointwise for θ ∈ Rn. Moreover,

the risk of δλ̂,γ̂,β̂ can be directly related to that of δλ,γ∗,β∗ as follows, thereby

justifying the previous statement (4.1) with a specific rate of convergence.

Corollary 2. If Assumptions (A1)−(A3) and (A5) hold with 0 ≤ η < 1/6, then,

uniformly in θ ∈ Θn,

R(δλ̂,γ̂,β̂, θ) ≤ inf
0≤λ≤2

R(δλ,γ∗,β∗ , θ) +O(n−(1−6η)/2}.

5. Application to Baseball Data

For the Major League Baseball season of 2005, Brown (2008) studied the

problem of using the batting data from all the players with at least 11 at-bats

in the first half season to estimate their latent batting probabilities or, as a

validation, to predict their batting averages in the second half season. This

problem has since been used to test and compare various shrinkage estimators in,

for example, Jiang and Zhang (2010), Xie, Kou, and Brown (2012), and Koenker

and Mizera (2014). We adopt the same setup to evaluate the performance of the

proposed estimators.

For the jth player, let Nji and Hji be the number of at-bats and num-

ber of hits in the first (i = 1) or second (i = 2) half season. Assume that

Hji ∼ Binomial(Nji, pj), where pj is the batting probability of the jth player

for both half seasons. Brown (2008) suggested the following variance-stabilizing

transformation

yji = arcsin

√
Hji + 1/4

Nji + 1/2
,

such that yji is approximately distributed as N{θj , (4Nji)
−1} with θj=arcsin

√
pj .

The problem of interest is then using {yj1 : j ∈ S1} to estimate {θj : j ∈ S1∩S2}
or to predict {yj2 : j ∈ S1 ∩ S2}, where Si = {j : Sji ≥ 11} (i = 1, 2).

As noted in Brown (2008), the estimation and prediction problems are di-

rectly related to each other. For an estimator δ = {δj : j ∈ S1} of θ = {θj : j ∈
S1}, define the sum of squared estimation error as SSEE =

∑
j∈S1∩S2

(δj − θj)
2,

and the sum of squared prediction error as SSPE =
∑

j∈S1∩S2
(yj2 − δj)

2. By the

independence of the half seasons, Eθ(SSPE) = Eθ(SSEE) +
∑

j∈S1∩S2
(4Nj2)

−1.
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Figure 1. Scatterplot of transformed batting averages yj1 versus numbers of
at-bats Nj1 for nonpitchers (◦) and pitchers (+), with the unweighted least

squares regression line. Two horizontal lines are placed at the estimates β̂FH
and β̂JX with 1 as the only covariate.

An unbiased estimator of Eθ(SSEE), called total squared error (TSE) in Brown

(2008), is

T̂SE(δ) =
∑

j∈S1∩S2

(yj2 − δj)
2 −

∑
j∈S1∩S2

1

4N2j
.

This error measure will be used in the subsequent comparison of estimators.

Figure 1 shows the batting data on |S1| = 567 player from the first half

season. There are considerable differences in the numbers of at-bats, ranging

from 11 to 338, in contrast with the previous data used in Efron and Morris

(1975) where all the players were selected to have the same number of at-bats

by a certain date. Moreover, as observed in Brown (2008), the batting averages

appear to be dispersed about different means for the two groups of pitchers and

nonpitchers, and are positively correlated with the numbers of at-bats, especially

within the nonpitchers.

Table 1 summarizes the performance of various estimators, depending on

what covariates are used, for predicting the batting averages of |S1 ∩ S2| =

499 players in the second half season. As known from Brown (2008), the naive

estimator δ0 = Y performs very poorly, even compared with the grand mean

estimator, which ignores differences between individual players. The proposed

estimators, δRes and δSub, yield estimation errors comparable to or smaller than

those of the competing estimators δFH and δJX, in all situations except when

1 is used as the only covariate, i.e., all observations are shrunk to a constant

location. There are a number of other competing estimators studied for this

problem by Brown (2008), Jiang and Zhang (2010), Xie, Kou, and Brown (2012),
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Table 1. Relative values of T̂SE.

Covariates Naive Grand mean FH JX Residual Subspace
1 1.000 0.853 0.702 0.421 0.524 0.551
1 + AB 1.000 0.853 0.444 0.398 0.359 0.418
1 + pitcher 1.000 0.853 0.249 0.213 0.241 0.250
1 + AB + pitcher 1.000 0.853 0.193 0.215 0.180 0.184
1 + AB ∗ pitcher 1.000 0.853 0.180 0.215 0.169 0.169

Note: The relative values shown are T̂SE of all estimators divided by those of the naive estimator

δ0 = Y ; the grand mean is defined as n−1 ∑n
j=1 Yj ; AB = the number of at-bats in the first half

season; AB ∗ pitchers = AB + pitcher + interaction.

and Koenker and Mizera (2014). Examination of their results still shows that

the performance of δRes and δSub compares favorably with the best of these other

estimators, in all situations except with 1 as the only covariate.

For the situation where 1 is used as the only covariate, δRes and δSub yield

estimation errors smaller than that of δFH, but greater than that of δJX. By con-

struction, δFH and δRes involve using the same estimates (γ̂FH, β̂FH). Therefore,

the outperformance of δRes over δFH demonstrates the benefit of Steinization in

δRes, inherited from the minimax Bayes estimator δλ,γ,β . On the other hand,

there are substantial differences between the estimates of (γ, β) used in δRes and

δJX, (γ̂FH, β̂FH) = (0.00188, 0.533) and (γ̂JX, β̂JX) = (0.00540, 0.456). As shown

in Figure 1, the estimate β̂FH seems to represent the center of the true θ-values

better than β̂JX, which is much smaller than β̂FH. To compensate for underesti-

mation in β̂JX, the estimate γ̂JX is noticeably higher than γ̂FH for capturing the

spread of the true θ-values. Therefore, δJX performs better than δFH and δRes,

but has a nonintuitive shrinkage pattern determined by (γ̂JX, β̂JX). However, the

comparison between δJX and δRes is situation-dependent, even when the second-

level model (1.3) is misspecified. In fact, δRes performs better than δJX when the

covariates used are 1 + AB, with the pitcher effect ignored. See Section 6 and

Supplementary Material for simulation results and further discussion, where δRes

performs similarly to or better than δJX even when using only the covariate 1.

To illustrate the advantage of δRes, Figure 2 shows how the observations are

shrunk under δRes, δFH, and δJX when the covariates used are 1 + AB + pitcher.

For all three estimators, the observations from pitchers are approximately linearly

shrunk, because their numbers of at-bats fall in a narrow range and hence their

variances are relatively homogeneous. For the nonpitchers, the observations with

large variances are also approximately linearly shrunk, whereas those with small

variances are shrunk less substantially, by varying magnitudes, than those with

large variances. The associated range of magnitudes of shrinkage for δRes appears

to be narrower than for δFH and δJX. Overall, the shrinkage pattern in δRes seems

to be better aligned than δFH and δJX with the linear predictor that would be
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Figure 2. Scatterplots of estimates δj versus observations yj1 for three esti-
mators using the covariates 1+AB+pitcher, and the scatterplot (lower right)
of validation data yj2 from the second half season versus training data yj1
from the first half season. All circles, empty (nonpitcher) and filled (pitcher),
have areas proportional to the variances dj . Two regression lines are drawn
by unweighted least squares for yj2 versus yj1 in nonpitchers and pitchers
respectively, in the lower-right plot and superimposed in all other plots.

obtained within pitchers and, separately, nonpitchers if validation data were used.

Although none of the estimators δRes, δFH, and δJX are strictly linear predictors

within the pitchers or the nonpitchers, the closer alignment of δRes with the oracle

linear predictor serves to explain the outperformance of δRes over δFH and δJX in

the present situation.

6. Simulation Study

Simulation studies were conducted to further compare the three estimators

δFH, δJX, and δRes. We present in the Supplementary Material a simulation study

where the variances dj were randomly generated as in Xie, Kou, and Brown
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Figure 3. Scatterplots of simulated observations versus numbers of at-bats
for nonpitchers (◦) and pitchers (+), based on the homoscedastic prior (1.2)
with

√
γ = 0.02 (left) and the heteroscedastic prior (6.1) with

√
α = 0.2

(right).

(2012) and report here a simulation study mimicking the setting of baseball data

in Brown (2008). The observations Yj were simulated from the basic model (1.1),
with θj generated from the prior (1.2), θj ∼ N(xT

j β, γ), or alternatively from

θj ∼ N{xT
j β, α(ABj − 10)−1}, j = 1, . . . , n, (6.1)

where dj = (4ABj)
−1 and xj = (1,ABj , pitcherj)

T, with ABj the number of
at-bats in the first half season and pitcherj the group indicator for pitchers as
in Brown’s (2008) baseball data. Then the mean θj depends on dj through

xj . These priors are referred to as the homoscedastic and heteroscedastic data-
generating priors. Nevertheless, for all the estimators δFH, δJX, and δRes, the
second-level model (1.2) was used but perhaps misspecified, in the mean or the

variance or both, as compared with the data-generating prior. There is a mean
misspecification in (1.2) when the data-generating prior is homoscedastic but
some of the required covariates are dropped. There is a variance misspecification

in (1.2) when the data-generating prior is heteroscedastic.
The Fay–Herriot estimates from the real data were β̂FH = (0.50, 0.00023,

−0.11)T and γ̂FH = (0.018)2. To mimic these estimates, the true value of β was

set such that xT
j β = 0.5 + 0.0002(ABj) − 0.1(pitcherj). The possible values of√

γ were 0.01, 0.02, 0.04, and 0.08, and those of
√
α were 0.1, 0.2, 0.4, and 0.8.

For
√
γ = 0.02 and

√
α = 0.2, Figure 3 shows two sets of simulated observations

based on the homoscedastic and heteroscedastic priors. The data configuration
in each plot is superficially similar to that in Figure 1, but a careful examination

of the lower extremes of the observations suggests that the simulated data based
on the heteroscedastic prior might mimic the real data more closely than when
based on the homoscedastic prior.
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Figure 4. Relative Bayes risks of three estimators δFH (◦), δJX (△), and δRes

(�) using the covariates 1+AB+pitcher (first column), 1+pitcher (second
column), 1+AB (third column), and 1 (fourth column), based on simulated
observations from the homoscedastic prior (1.2) as γ varies (first row) and
the heteroscedastic prior (6.1) as α varies (second row).

Figure 4 shows the relative Bayes risks of δFH, δJX, and δRes versus that of the

naive estimator, obtained from 104 repeated simulations. Similarly as in Section

5, the proposed estimator δRes yields Bayes risks at least as small as those of

δFH in all situations, and as δJX in all situations except when 1 is used as the

only covariate. In fact, if the data-generating prior is homoscedastic and hence

the prior variance in (1.2) is correctly specified, the three estimators perform

similarly to each other when the prior mean in (1.2) is either correctly specified

or misspecified with only pitcher or AB included as a non-constant covariate. If

the data-generating prior is heteroscedastic and hence the prior variance in (1.2)

is misspecified, then δRes performs similarly to or noticeably better than both

δFH and δJX, regardless of how the prior mean in (1.2) is specified. In this case,

δFH performs poorly, with Bayes risks rising quickly above even the constant risk

of the naive estimator as the scale parameter α increases in the heteroscedastic

data-generating prior.

For the situation where the data-generating prior is homoscedastic but the

prior mean in (1.2) is specified with 1 as the only covariate, δRes yields Bayes

risks smaller than those of δFH, but larger than those of δJX. However, as seen
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from the results in all other situations, such an outperformance of δJX over δRes

depends on the particular data configuration and model misspecification. The

presence of both a negative pitcher effect and a positive AB effect seems to

lead to substantially different estimates (γ̂JX, β̂JX) from (γ̂FH, β̂FH), such that δJX
achieves smaller Bayes risks than δRes. To support this explanation, we replicated

the simulations in the same setup, except with a negative AB effect, i.e., the true

value of β was set such that xT
j β = 0.5−0.0002(ABj)−0.1(pitcherj). As shown in

Figure S5 in the Supplementary Material, the three estimators δFH, δJX, and δRes

perform similarly to each other when the data-generating prior is homoscedastic,

regardless of how the prior mean in (1.2) is specified. But δRes still outperforms

δFH and δJX, sometimes more substantially than in Figure 4, when the data-

generating prior is heteroscedastic.

7. Conclusion

To estimate normal means with heteroscedastic observations from the basic

model (1.1), conventional empirical Bayes methods (Efron and Morris (1973);

Fay and Herriot (1979)) based on the second-level model (1.2) involves employ-

ing the Bayes rule under a fixed prior (1.2) with (γ, β) selected by maximum

likelihood or moment equations. However, the performance of such methods

tends to substantially deteriorate when the second-level model (1.2) is misspec-

ified. To address this issue, Jiang, Nguyen, and Rao (2011) and Xie, Kou, and

Brown (2012) independently proposed a SURE-based empirical Bayes method,

which retains the Bayes rule under a fixed prior (1.2), but with (γ, β) selected

by minimizing the SURE of the Bayes rule. The SURE-based method is often

more robust than the model-based methods, but still susceptible to unsatisfac-

tory performance when the second-level model (1.2) is misspecified, particularly

in the variance, which directly determines the magnitude of shrinkage.

There is a crucial difference in how the existing and proposed estimators

are constructed using the second-level model (1.2). For a fixed prior (1.2), all

the existing empirical Bayes estimators would reduce to the Bayes rule, which

is sensitive to possible misspecification of (1.2). In contrast, the proposed esti-

mators would reduce to the minimax Bayes estimator of Tan (2015), which, due

to Steinization, is not only globally minimax but also achieves close to the mini-

mum Bayes risk over a scale class of normal priors including the fixed prior. This

difference helps to explain why the Steinized empirical Bayes methods, even us-

ing model-based estimates of (γ, β), could perform better than existing empirical

Bayes methods, using either model-based estimates or the SURE-based estimates

of (γ, β).

The development in this article can be extended when a more complicated

second-level model than a homoscedastic prior (1.2) is considered. For example,
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Fay and Herriot (1979) mentioned a second-level model, θj ∼ N(xT
j β, γd

α
j ), with

(γ, β, α) as unknown parameters, but suggested that the resulting method would

not be preferable unless n is large. Alternatively, following the idea of block

shrinkage in the homoscedastic case (e.g., Cai and Zhou (2009)), it is possible to

divide the coordinates into blocks and consider a block-homoscedastic prior (i.e.,

the prior variances are equal within each block) even for heteroscedastic data.

Our approach can be extended in this direction and compared with existing block

shrinkage methods.

Supplementary Materials

Supplementary materials available at the journal website include (i) addi-

tional discussion mentioned in Section 3.1−3.2 and additional simulation results

mentioned in Section 6, and (ii) the proofs of theorems.
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