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Abstract: In many medical studies some markers, such as the medical costs incurred

during each hospitalisation, are only measured when an event, such as a hospitalisa-

tion, occurs. In addition, there may exist an informative terminal event that stops

the follow-up. In this article, we propose an additive-multiplicative mean model for

marker data contingent on recurrent event with an informative terminal event via

latent variables. Estimation procedures are developed for parameter estimation,

and asymptotic properties of the proposed estimators are derived. In addition,

some numerical procedures are provided for model checking. The finite sample

properties of the proposed estimators are examined through simulation studies.

An application to a medical cost study of chronic heart failure patients from the

University of Virginia Health System is illustrated.
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1. Introduction

In longitudinal medical studies, patients may experience a particular event

repeatedly over time, such as tumor recurrences, repeated hospital visits, and

multiple infection episodes. Although interest often focuses on assessing the ef-

fects of covariates on certain features of the recurrent event process, the outcomes

associated with each event are also of interest. Examples include medical cost

incurred at each hospitalization, and symptoms of each infection, among oth-

ers. Such outcomes are referred to as markers contingent on recurrent events.

In many applications, investigators are interested in both the recurrent event

process and the associated marker process (e.g., Cai, Zeng, and Pan (2010)).

A number of authors have studied marker data contingent on a recurrent

event, and most of the methods are based on joint modelling approaches or

marginal models (Wu and Bailey (1989); Tsiatis, Degruttola, and Wulfsohn

(1995); Xu and Zeger (2001); Lin and Ying (2001); Hu, Sun, and Wei (2003);
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Ratcliffe, Guo, and Ten Have (2004); Herring and Yang (2007); Liu and Ying

(2007); Sun, Sun, and Liu (2007); Liang, Lu, and Ying (2009); Zhou, Zhao, and

Sun (2013)). For example, Xu and Zeger (2001) proposed a latent variable model

for the joint distribution of repeated outcomes and a time-to-event process. Lin

and Ying (2001) suggested a marginal model for repeated outcomes. Sun, Sun,

and Liu (2007) and Liang, Lu, and Ying (2009) considered some joint models for

repeated outcomes and recurrent events via latent variables.

The aforementioned joint models or marginal models assume that the mark-

ers and the recurrent event times are independent conditional on covariates

and/or latent variables. This implies that the markers have the same distri-

bution at both the time of event occurrence and the time of no event occurrence.

In reality, however, this assumption is not true when the markers are actually ze-

ros at the time of no event. Thus, these methods are not suitable for the analysis

of some marker data, such as the medical cost data.

Recently, Cai, Zeng, and Pan (2010) proposed a semiparametric proportional

mean model for the marker at each event in the absence of a terminal event. In

practice, however, there may exist a terminal event such as death that stops the

follow-up, and the terminal event is often strongly correlated with the marker

process and the recurrent event process. A motivating example is a medical

cost study of heart failure patients treated at the University of Virginia Health

System. For these data, Liu, Huang, and O’Quigley (2008) and Sun et al. (2012)

used joint model approaches to demonstrate that the medical costs could be

correlated with both hospital visits and death, and that ignoring the dependent

terminal event would lead to biased estimates in modeling the medical costs and

the hospital visits. There is a clear need for analyzing marker data contingent

on recurrent event that takes an informative terminal event into account. Other

related work includes He, Tong, and Sun (2009) and Han et al. (2014).

Most existing models assume that the covariates have additive or multiplica-

tive effects on the mean function of the marker process, and the additive and

multiplicative mean models postulate two rather different relationships between

the covariates and the mean function. To enhance the modelling capability in

many applications, it seems natural to consider models that allow some covariate

effects to be multiplicative while allowing others to be additive. We propose a

new joint modeling for the analysis of marker data contingent on recurrent event

with an informative terminal event via two latent variables, wherein latent vari-

ables are introduced in modelling markers and recurrent events to account for

within-subject variation. Specifically, conditional on the terminal event not oc-

curring, an additive-multiplicative mean model is specified for the marker process

at each event, and a proportional rates model is used for the recurrent event pro-

cess. The proportional hazards model is used to model the terminal event. The
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proposed joint model is comprehensive and flexible in that the distributions of

the latent variables and the dependence structure between two latent variables

is left unspecified. Our proposed joint model generalizes the approach of Cai,

Zeng, and Pan (2010) by taking the terminal event into account. Moreover, the

proposed additive-multiplicative mean model allows some covariate effects to be

multiplicative and others to be additive, and thus includes both the additive and

multiplicative mean models as special cases.

The remainder of the article is organized as follows. In Section 2, we de-

scribe the proposed joint model. Section 3 presents an estimating procedure for

regression parameters of interest, and the asymptotic properties of the proposed

estimators are established. In Section 4, we develop a technique for checking

the adequacy of the proposed model. Section 5 reports some results from sim-

ulation studies conducted for evaluating the proposed methods. An application

to the medical cost data for chronic heart failure patients from the clinical data

repository at the University of Virginia Health System is provided in Section 6,

and some concluding remarks are given in Section 7. Proofs are relegated to the

Supplementary Material.

2. Model Specifications

Let N(t) denote the counting process associated with recurrent events, and

m(t) be the marker measured at time t. Let X and W be the p × 1 and q × 1

vectors of covariates, and Z = (X ′,W ′)′. Let D be the terminal event time (e.g.,

death), and C be the censoring time. Write T = C ∧ D, and δ = I(D ≤ C),

where a ∧ b = min(a, b) and I(·) is the indicator function. Let v1 and v2 be

two latent variables that are independent of Z and may be associated with m(t),

N(t), and D. It is assumed that given Z, the censoring time C is independent

of {v1, v2, D,N(·),m(·)}.
Since it is of interest in many studies to make inference on the marker and

recurrent event processes for subjects among survivors at a given time, and m(t)

only exists when N(t) has a jump at time t (Ye, Kalbfleisch, and Schaubel

(2007); Cai, Zeng, and Pan (2010)), we assume that m(t) follows the additive-

multiplicative mean model

E{m(t)|N(t)−N(t−) = 1, D ≥ t, Z, v1, v2} = α0(t; v1)gβ(β
′
0X)+gζ(ζ

′
0W ), (2.1)

where α0(t; v1) is an unknown subject-specific function of t and v1, β0 and ζ0 are

p × 1 and q × 1 vectors of unknown regression parameters, and gβ and gζ are

known link functions. Hence, the parameters β0 and ζ0 can be interpreted as the

multiplicative and additive effects of covariates on the conditional mean function

of m(t) at each event given survival.
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For the recurrent event process, it is assumed that N(t) follows the marginal
model

E{dN(t)|D ≥ t, Z, v1, v2} = gγ(γ
′
0Z)dµ0(t; v2), (2.2)

where gγ is a known positive link function such as the exponential function, γ0
is a (p + q) × 1 vector of unknown regression parameters, and µ0(t; v2) is an
unknown subject-specific baseline mean function with µ0(0; v2) = 0.

For the terminal event, we specify the proportional hazards model for D as

log Λ0(D) = −η′0Z + ε, (2.3)

where η0 is a (p + q) × 1 vector of unknown regression parameters, Λ0(t) is an
unspecified baseline cumulative hazard function, and ε is a random variable with
the extreme-value distribution. Here, ε is allowed to be correlated with v1 and
v2.

Models (2.1) and (2.2) are conditional given the latent variables and thus the
parameters have a subject-specific interpretation, which also implies the same de-
pendence structure of the marker process and the recurrent process. In addition,
under models (2.1) and (2.2),

E{m(t)|N(t)−N(t−) = 1, D ≥ t, Z}
= E{α0(t; v1)|N(t)−N(t−) = 1, D ≥ t, Z}gβ(β′0X) + gζ(ζ

′
0W ),

E{dN(t)|D ≥ t, Z} = gγ(γ
′
0Z)E{dµ0(t; v2)|D ≥ t, Z}.

Therefore, the parameters at (2.1) and (2.2) can also serve as marginal effects of
covariates given survival.

Models (2.1) and (2.2) are very flexible in that α0(t; v1) and µ0(t; v2) are
nonparametric, and the correlation between v1 and v2 can be arbitrary. Also
the distributions of v1 and v2 are completely unspecified. When gβ(x) ≡ 1, (2.1)
reduces to the additive mean model, and when gζ(x) ≡ 0, (2.1) reduces to the
proportional mean model (Cai, Zeng, and Pan (2010)). Unlike Sun et al. (2012),
we do not need the assumption that m(t) is independent of N(t) conditional on
(v1, v2, Z) and D ≥ t. For a random sample of n subjects, the observed data
consist of {mi(t)dNi(t), Ni(t), Ti, δi, Xi,Wi, 0 ≤ t ≤ Ti, i = 1, . . . , n} with Zi =
(X ′

i,W
′
i )

′. Let θ0 = (β′0, ζ
′
0)

′. Our main interest is to estimate the parameters θ0
and γ0.

Remark 1. At (2.1), if α0(t; v1) = 1 and X and W have some common factors,
then β0 and ζ0 are not identifiable for such link functions as gβ(x) = x and
gζ(x) = x. Thus, for identifiability reasons, we assume that X and W do not
have any common factor throughout the paper; no other conditions are needed
for the identifiability of β0 and ζ0. The intercept could be included into gζ(·) as
well, but it seems not to be straightforward to generalize the proposed approach
to deal with this situation. Further research is needed.
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3. Inference Procedures

Define A0(t; v1, v2) =
∫ t
0 α0(u; v1)dµ0(u; v2), and dH(t, s) =E{dA0(t; v1, v2)|

ε ≥ s}. It follows from the independent censoring assumption and (2.1) and (2.2)

that

E
[
{m(t)− gζ(ζ

′
0W )}dN(t)|T ≥ t, Z

]
= E

[
{m(t)− gζ(ζ

′
0W )}dN(t)|D ≥ t, Z

]
= E

(
E[{m(t)− gζ(ζ

′
0W )}dN(t)|D ≥ t, Z, v1, v2]|D ≥ t, Z

)
= E

[
E{m(t)− gζ(ζ

′
0W )|N(t)−N(t−) = 1, D ≥ t, Z, v1, v2}

E{dN(t)|D ≥ t, Z, v1, v2}|D ≥ t, Z
]

= gβ(β
′
0X)gγ(γ

′
0Z)E{α0(t; v1)dµ0(t; v2)|D ≥ t, Z}

= gβ(β
′
0X)gγ(γ

′
0Z)E{dA0(t; v1, v2)|ε ≥ log Λ0(t) + η′0Z,Z}

= gβ(β
′
0X)gγ(γ

′
0Z)dH(t, log Λ0(t) + η′0Z). (3.1)

By the assumption that (v1, v2, ε) is independent of (Z,C), for any integrable

function h(Z, t, s), we have

dH(t, s) =
E{dA0(t; v1, v2)I(ε ≥ s)}

E{I(ε ≥ s)}

=
E{dA0(t; v1, v2)I(ε ≥ s)I(log Λ0(C) + η′0Z ≥ s)h(Z, t, s)}

E{I(ε ≥ s)I(log Λ0(C) + η′0Z ≥ s)h(Z, t, s)}

=
E{dA0(t; v1, v2)I(log Λ0(T ) + η′0Z ≥ s)h(Z, t, s)}

E{I(log Λ0(T ) + η′0Z ≥ s)h(Z, t, s)}
.

By taking h(Z, t, s) = gβ(β
′
0X)gγ(γ

′
0Z)I(log Λ0(t) + η′0Z ≤ s), we have that

dH(t, s) =
E{gβ(β′0X)gγ(γ

′
0Z)dA0(t; v1, v2)Ψ(T,Z, t, s)}

E{gβ(β′0X)gγ(γ′0Z)Ψ(T,Z, t, s)}
,

where Ψ(T,Z, t, s) = I{log Λ0(T )+η
′
0Z ≥ s ≥ log Λ0(t)+η

′
0Z}. Since Ψ(T,Z, t, s)

= 1 implies T ≥ t, we obtain

E[{m(t)− gζ(ζ
′
0W )}dN(t)Ψ(T,Z, t, s)]

= E
(
E[{m(t)− gζ(ζ

′
0W )}dN(t)Ψ(T,Z, t, s)|Ψ(T,Z, t, s), Z, v1, v2]

)
= E[E{gβ(β′0X)gγ(γ

′
0Z)dA0(t; v1, v2)Ψ(T,Z, t, s)|Ψ(T,Z, t, s), Z, v1, v2}]

= E{gβ(β′0X)gγ(γ
′
0Z)dA0(t; v1, v2)Ψ(T,Z, t, s)}.

Thus,

dH(t, s) =
E[{m(t)− gζ(ζ

′
0W )}dN(t)Ψ(T,Z, t, s)]

E{gβ(β′0X)gγ(γ′0Z)Ψ(T,Z, t, s)}
.
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To estimate dH(t, s), we need to estimate η0 and Λ0(t) of model (2.3). Let

η̂ be the maximum partial likelihood estimator of η0, the solution to

Uη(η) =
n∑

i=1

∫ τ

0
{Zi − Z̄D(t; η)}dND

i (t) = 0,

where τ is a prespecified constant such that P (Ti ≥ τ) > 0, ND
i (t) = I(Ti

≤ t, δi = 1),

Z̄D(t; η) =

∑n
i=1 ZiYi(t) exp(η

′Zi)∑n
i=1 Yi(t) exp(η

′Zi)
,

and Yi(t) = I(Ti ≥ t). Let Λ̂0(t) be the Breslow estimator of Λ0(t), where

Λ̂0(t) =

n∑
i=1

∫ t

0

dND
i (u)∑n

j=1 Yj(u) exp(η̂
′Zj)

.

Thus, for given γ and θ = (β′, ζ ′)′, dH(t, s) can be estimated by

dĤ(t, s; θ, γ)

=

∑n
i=1{mi(t)− gζ(ζ

′Wi)}dNi(t)I{log Λ̂0(Ti) + η̂′Zi ≥ s ≥ log Λ̂0(t) + η̂′Zi}∑n
j=1 gβ(β

′Xj)gγ(γ′Zj)I{log Λ̂0(Tj) + η̂′Zj ≥ s ≥ log Λ̂0(t) + η̂′Zj}
.

Define

Ψ̂j(t;Z) = I{log Λ̂0(Tj) + η̂′Zj ≥ log Λ̂0(t) + η̂′Z ≥ log Λ̂0(t) + η̂′Zj}.

Based on (3.1), for a given γ, using the generalized estimating equation approach

(Liang and Zeger (1986)) and replacing dH(t, s) by dĤ(t, s; θ, γ), we propose an

estimating function for θ0:

Uθ(θ; γ) =

n∑
i=1

∫ τ

0
W (t){Zi − Z̄i(t;β, γ)}Yi(t)

[
{mi(t)− gζ(ζ

′Wi)}dNi(t)

−gβ(β′Xi)gγ(γ
′Zi){dm̄i(t;β, γ)− dḡi(t; θ, γ)}

]
, (3.2)

where W (t) is a possibly data-dependent weight function,

Z̄i(t;β, γ) =

∑n
j=1 Zjgβ(β

′Xj)gγ(γ
′Zj)Ψ̂j(t;Zi)∑n

j=1 gβ(β
′Xj)gγ(γ′Zj)Ψ̂j(t;Zi)

,

dm̄i(t;β, γ) =

∑n
j=1mj(t)dNj(t)Ψ̂j(t;Zi)∑n

j=1 gβ(β
′Xj)gγ(γ′Zj)Ψ̂j(t;Zi)

,

dḡi(t; θ, γ) =

∑n
j=1 gζ(ζ

′Wj)dNj(t)Ψ̂j(t;Zi)∑n
j=1 gβ(β

′Xj)gγ(γ′Zj)Ψ̂j(t;Zi)
.
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Since γ0 is unknown, we need to estimate γ0. Following the approach of Zeng

and Cai (2010), we specify an estimating function for γ0:

Uγ(γ) =

n∑
i=1

∫ τ

0
Q(t){Zi − Z̄N

i (t; γ)}Yi(t)
[
dNi(t)− gγ(γ

′Zi)dN̄i(t; γ)
]
, (3.3)

where Q(t) is a possibly data-dependent weight function,

Z̄N
i (t; γ) =

∑n
j=1 Zjgγ(γ

′Zj)Ψ̂j(t;Zi)∑n
j=1 gγ(γ

′Zj)Ψ̂j(t;Zi)
,

dN̄i(t; γ) =

∑n
j=1 dNj(t)Ψ̂j(t;Zi)∑n

j=1 gγ(γ
′Zj)Ψ̂j(t;Zi)

.

Let γ̂ denote the solution to the equation Uγ(γ) = 0 and θ̂ denote the solution

to Uθ(θ; γ̂) = 0. By the Law of Large Numbers and the consistency of η̂ and Λ̂0(t),

it can be shown that θ̂ and γ̂ are consistent. The asymptotic normality of θ̂ and

γ̂ is as follows.

Theorem 1. Under the regularity conditions (C1)−(C6) stated in the Supple-

mentary Material, n1/2(θ̂−θ0) and n1/2(γ̂−γ0) have asymptotically a joint normal

distribution with mean zero and covariance matrix A−1Σ(A′)−1, where A and Σ

are defined in the Supplementary Material.

To estimate the asymptotic covariance of θ̂ and γ̂, we need to estimate A

and Σ. Let ġl(t) = dgl(t)/dt for l = γ, β and ζ. Define

X̄i(t;β, γ) =

∑n
j=1Xj ġβ(β

′Xj)gγ(γ
′Zj)Ψ̂j(t;Zi)∑n

j=1 gβ(β
′Xj)gγ(γ′Zj)Ψ̂j(t;Zi)

,

W̄i(t; θ, γ) =

∑n
j=1Wj ġζ(ζ

′Wj)dNj(t)Ψ̂j(t;Zi)∑n
j=1 gβ(β

′Xj)gγ(γ′Zj)Ψ̂j(t;Zi)
,

Z̄†
i (t;β, γ) =

∑n
j=1 Zjgβ(β

′Xj)ġγ(γ
′Zj)Ψ̂j(t;Zi)∑n

j=1 gβ(β
′Xj)gγ(γ′Zj)Ψ̂j(t;Zi)

,

Z̄∗
i (t; γ) =

∑n
j=1 Zj ġγ(γ

′Zj)Ψ̂j(t;Zi)∑n
j=1 gγ(γ

′Zj)Ψ̂j(t;Zi)
.

It is easy to see that A can be consistently estimated by Â, where

Â =

(
Â11(θ̂, γ̂) Â12(θ̂, γ̂)

0 Â22(γ̂)

)
,

Â11(θ, γ) = n−1
n∑

i=1

∫ τ

0
W (t){Zi−Z̄i(t;β, γ)}Yi(t)
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·

({
Xiġβ(β

′Xi)gγ(γ
′Zi)−gβ(β′Xi)gγ(γ

′Zi)X̄i(t;β, γ)
}
{dm̄i(t;β, γ)−dḡi(t; θ, γ)}

Wiġζ(ζ
′Wi)dNi(t)− gβ(β

′Xi)gγ(γ
′Zi)W̄i(t; θ, γ)

)′

,

Â12(θ, γ) = n−1
n∑

i=1

∫ τ

0
W (t){Zi − Z̄i(t;β, γ)}Yi(t)

×
{
Zigβ(β

′Xi)ġγ(γ
′Zi)− gβ(β

′Xi)gγ(γ
′Zi)Z̄

†
i (t;β, γ)

}′

{dm̄i(t;β, γ)− dḡi(t; θ, γ)},

Â22(γ) = n−1
n∑

i=1

∫ τ

0
Q(t){Zi−Z̄N

i (t; γ)}Yi(t)
{
Ziġγ(γ

′Zi)−Z̄∗
i (t; γ)gγ(γ

′Zi)
}′

dN̄i(t; γ).

However, since Σ involves some Hadamard derivatives and is complicated, it

is difficult to estimate Σ directly. To overcome this difficulty, we propose a

resampling approach (e.g., Lin, Fleming, and Wei (1994)). Let

S(0)(t; η) = n−1
n∑

i=1

Yi(t) exp(η
′Zi),

M̂D
i (t) =ND

i (t)−
∫ t

0
Yi(u) exp(η̂

′Zi)dΛ̂0(u),

Ω̂ = n−1
n∑

i=1

∫ τ

0
{Zi − Z̄D(t; η̂)}⊗2dND

i (t),

where for a vector a, a⊗2 = aa′. Set

η̂∗ = η̂ + Ω̂−1n−1
n∑

i=1

Gi

∫ τ

0
{Zi − Z̄D(t; η̂)}dM̂D

i (t),

Λ̂∗
0(t) = Λ̂0(t) + n−1

n∑
i=1

Gi

∫ t

0

dM̂D
i (u)

S(0)(u; η̂)
−
∫ t

0
Z̄D(u; η̂)′dΛ̂0(u)(η̂

∗ − η̂),

where (G1, . . . , Gn) are independent standard normal variables independent of

the observed data. Define

Φ∗
1 =

n∑
i=1

Gi

∫ τ

0
W (t){Zi − Z̄i(t; β̂, γ̂)}Yi(t)

×
[
{mi(t)−gζ(ζ̂ ′Wi)}dNi(t)−gβ(β̂′Xi)gγ(γ̂

′Zi){dm̄i(t; β̂, γ̂)−dḡi(t; θ̂, γ̂)}
]
,

Φ∗
2 =

n∑
i=1

∫ τ

0
W (t){Zi − Z̄i(t; β̂, γ̂)}Yi(t)gβ(β̂′Xi)gγ(γ̂

′Zi)
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×
[
−
∑n

j=1Gj{mj(t)− gζ(ζ̂
′Wj)}dNj(t)Ψ̂j(t;Zi)∑n

j=1 gβ(β̂
′Xj)gγ(γ̂′Zj)Ψ̂j(t;Zi)

+

∑n
j=1{mj(t)−gζ(ζ̂ ′Wj)}dNj(t)Ψ̂j(t;Zi)

[
∑n

j=1 gβ(β̂
′Xj)gγ(γ̂′Zj)Ψ̂j(t;Zi)]2

n∑
j=1

Gjgβ(β̂
′Xj)gγ(γ̂

′Zj)Ψ̂j(t;Zi)

]
,

Φ∗
3 =

n∑
i=1

∫ τ

0
W (t){Zi − Z̄i(t; β̂, γ̂)}Yi(t)gβ(β̂′Xi)gγ(γ̂

′Zi)

×
[
dm̄i(t; β̂, γ̂)− dḡi(t; θ̂, γ̂)− {dm̄∗

i (t; β̂, γ̂)− dḡ∗i (t; θ̂, γ̂)}
]
,

Φ∗
4 =

n∑
i=1

Gi

∫ τ

0
Q(t){Zi − Z̄N

i (t; γ̂)}Yi(t)[dNi(t)− gγ(γ̂
′
0Zi)dN̄i(t; γ̂)],

Φ∗
5 =

n∑
i=1

∫ τ

0
Q(t){Zi − Z̄N

i (t; γ̂)}Yi(t)gγ(γ̂′Zi)

[
−
∑n

j=1GjdNj(t)Ψ̂j(t;Zi)∑n
j=1 gγ(γ̂

′Zj)Ψ̂j(t;Zi)

+

∑n
j=1 dNj(t)Ψ̂j(t;Zi)

[
∑n

j=1 gγ(γ̂
′Zj)Ψ̂j(t;Zi)]2

n∑
j=1

Gjgγ(γ̂
′Zj)Ψ̂j(t;Zi)

]
,

Φ∗
6 =

n∑
i=1

∫ τ

0
Q(t){Zi − ZN

i (t; γ̂)}Yi(t)gγ(γ̂′Zi)[dN̄i(t; γ̂)− dN̄∗
i (t; γ̂)],

where m̄∗
i (t;β, γ), ḡ

∗
i (t; θ, γ) and N̄

∗
i (t; γ) are defined the same way as m̄i(t;β, γ),

ḡi(t; θ, γ) and N̄i(t; γ) except that (η̂, Λ̂0) is replaced with (η̂∗, Λ̂∗
0). Let EG denote

the conditional expectation with respect to (G1, . . . , Gn) given the observed data,

and Û = (Û ′
1, Û

′
2)

′, where Û1 = n−1/2(Φ∗
1+Φ∗

2+Φ∗
3) and Û2 = n−1/2(Φ∗

4+Φ∗
5+Φ∗

6).

To estimate Σ, we produce a large number of realizations of Û by repeatedly

generating the random samples (G1, . . . , Gn), while fixing the observation data.

Then Σ can be approximated by the empirical covariance matrix of Û .

Theorem 2. Under the conditions of Theorem 1, EG[Û
⊗2] converges in proba-

bility to Σ.

4. Model Checking

In this section, we propose some numerical procedures for assessing the ade-

quacy of the proposed joint model. To check the adequacy of model (2.2), we can

use a graphical procedure of Zeng and Cai (2010) for recurrent event data with

an informative terminal event. To check model (2.3), we can use some goodness-

of-fit methods for the proportional hazards model with right-censored data (e.g.,

Schoenfeld (1982); Therneau, Grambsch, and Fleming (1990); Lin, Wei, and Ying
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(1993)). Next, we propose some numerical procedures for assessing the adequacy

of model (2.1). Let

dM̂∗
i (t) = Yi(t)

[
{mi(t)− gζ(ζ̂

′Wi)}dNi(t)− gβ(β̂
′Xi)gγ(γ̂

′Zi){dm̄i(t; β̂, γ̂)

−dḡi(t; θ̂, γ̂)}
]
.

Following Lin, Wei, and Ying (1993) and Pan and Lin (2005), we consider the

cumulative sums of residual

F(z, t) = n−1/2
n∑

i=1

∫ t

0
I(Zi ≤ z)dM̂∗

i (u),

where the event I(Zi ≤ z) means that each of the components of Zi is no larger

than the corresponding component of z. Define

Φ∗
7(z, t) =

n∑
i=1

Gi

∫ t

0
I(Zi ≤ z)Yi(u)

[
{mi(u)− gζ(ζ̂

′Wi)}dNi(u)

−gβ(β̂′Xi)gγ(γ̂
′Zi){dm̄i(u; β̂, γ̂)− dḡi(u; θ̂, γ̂)}

]
,

Φ∗
8(z, t) =

n∑
i=1

∫ t

0
I(Zi ≤ z)Yi(u)gβ(β̂

′Xi)gγ(γ̂
′Zi)

×
[
−
∑n

j=1Gj{mj(u)− gζ(ζ̂
′Wj)}dNj(u)Ψ̂j(u;Zi)∑n

j=1 gβ(β̂
′Xj)gγ(γ̂′Zj)Ψ̂j(u;Zi)

+

∑n
j=1{mj(u)− gζ(ζ̂

′Wj)}dNj(u)Ψ̂j(u;Zi)

[
∑n

j=1 gβ(β̂
′Xj)gγ(γ̂′Zj)Ψ̂j(u;Zi)]2

×
n∑

j=1

Gjgβ(β̂
′Xj)gγ(γ̂

′Zj)Ψ̂j(u;Zi)

]
,

Φ∗
9(z, t) =

n∑
i=1

∫ t

0
I(Zi ≤ z)Yi(u)gβ(β̂

′Xi)gγ(γ̂
′Zi)

[
dm̄i(u; β̂, γ̂)− dḡi(u; θ̂, γ̂)

−{dm̄∗
i (u; β̂, γ̂)− dḡ∗i (u; θ̂, γ̂)}

]
,

Γ̂1(z, t) = n−1
n∑

i=1

∫ t

0
I(Zi ≤ z)Yi(u)

×

(
{Xiġβ(β̂

′Xi)gγ(γ̂
′Zi)− gβ(β̂

′Xi)gγ(γ̂
′Zi)X̄i(u; β̂, γ̂)}{dm̄i(u; β̂, γ̂)

−dḡi(u; θ̂, γ̂)}Wiġζ(ζ̂
′Wi)dNi(u)− gβ(β̂

′Xi)gγ(γ̂
′Zi)W̄i(u; θ̂, γ̂)

)
,
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Γ̂2(z, t) = n−1
n∑

i=1

∫ t

0
I(Zi ≤ z)Yi(u)

{
Zigβ(β̂

′Xi)ġγ(γ̂
′Zi)

−gβ(β̂′Xi)gγ(γ̂
′Zi)Z̄

†
i (u; β̂, γ̂)

}
{dm̄i(u; β̂, γ̂)− dḡi(u; θ̂, γ̂)},

and Γ̂(z, t) = (Γ̂1(z, t)
′, Γ̂2(z, t)

′)′. Let the null hypothesis H0 denote the correct

specification of model (2.1). The null distribution of F(z, t) is established as

follows.

Theorem 3. Under the null hypothesis H0 and the conditions of Theorem 1,

the null distribution of F(z, t) can be approximated by the zero-mean Gaussian

process F̂(z, t), where

F̂(z, t) = n−1/2
[
Φ∗
7(z, t) + Φ∗

8(z, t) + Φ∗
9(z, t)

]
− Γ̂(z, t)′Â−1Û . (4.1)

Thus we can first obtain a large number of realizations of F̂(z, t) by repeat-

edly generating the standard normal random sample (G1, . . . , Gn) while fixing

the observed data, and then plot F(z, t) along with a few realizations of F̂(z, t).

An unusual pattern of F(z, t) compared to the realizations of F̂(z, t) would in-

dicate a lack-of-fit of model (2.1). More formally, we can apply the supremum

test statistic supz,t |F(z, t)|, whose p-value can be obtained by comparing the

observed value of F(z, t) with a large number of realizations from F̂(z, t).

5. Simulation Studies

We conducted simulation studies to examine the finite sample properties

of the proposed estimators. In the study, we generated two covariates with

X from a Bernoulli distribution with success probability 0.5, and W from a

uniform distribution on (0, 1). The terminal event time D was generated from

log Λ0(D) = −η1X − η2W + ε, with Λ0(t) = t/4, η1 = −0.5 and η2 = 1, where

ε is the extreme-value distribution. The censoring time C was taken as C∗ ∧ τ ,
where C∗ was uniform on (2, 10) and τ = 6.

Let v1 = ϕ1ε/4 and v2 = µ exp(−ϕ2ε/4) for ϕ1 = 0, 1 or −1, and ϕ2 = 0,

1 or −1, where µ is uniform on (0.5, 1.5). Given X, W , v2, and T = C ∧ D,

the recurrent event process N(t) was generated from a Poisson process with the

intensity function

λ(t) = v2gγ(γ1X + γ2W )I(T ≥ t),

where gγ(t) = exp(t), γ1 = −1, and γ2 = 0.5.

At each occurred event, the marker process m(t) was generated as

m(t) = (0.5t+ v1)gβ(β0X) + gζ(ζ0W ) + ϵ(t),
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Table 1. Simulation results for the estimation of γ1, γ2, β0, and ζ0 with
n = 100.

(ϕ1, ϕ2)

(0, 0) (1, 0) (-1, 0) (0, 1) (1, 1) (-1, 1) (0, -1) (1, -1) (-1, -1)

γ1 Bias -0.0072 -0.0039 -0.0098 -0.0031 -0.0064 -0.0010 -0.0073 -0.0000 -0.0013
SE 0.1886 0.1929 0.1866 0.1878 0.1993 0.1981 0.1960 0.1939 0.2007
SEE 0.1909 0.1917 0.1906 0.1964 0.1997 0.1961 0.1936 0.1948 0.1932
CP 0.9540 0.9460 0.9470 0.9570 0.9430 0.9480 0.9440 0.9500 0.9330

γ2 Bias 0.0016 0.0091 0.0013 -0.0095 -0.0020 0.0049 -0.0079 0.0084 -0.0091
SE 0.3191 0.3183 0.3244 0.3270 0.3302 0.3226 0.3352 0.3233 0.3347
SEE 0.3131 0.3123 0.3120 0.3286 0.3289 0.3269 0.3150 0.3133 0.3158
CP 0.9510 0.9390 0.9370 0.9510 0.9430 0.9410 0.9270 0.9360 0.9280

β0 Bias 0.0192 0.0273 -0.0052 0.0123 0.0104 0.0115 0.0241 0.0335 0.0169
SE 0.2686 0.3409 0.3155 0.2860 0.3555 0.2876 0.2700 0.2890 0.3065
SEE 0.2676 0.3180 0.3144 0.2869 0.3640 0.2765 0.2572 0.2698 0.2932
CP 0.9510 0.9540 0.9590 0.9580 0.9540 0.9540 0.9490 0.9440 0.9560

ζ0 Bias -0.0064 -0.0038 -0.0216 0.0002 -0.0048 -0.0181 -0.0209 -0.0025 0.0005
SE 0.3469 0.3822 0.3449 0.3360 0.3801 0.3524 0.3605 0.3773 0.3560
SEE 0.3362 0.3685 0.3472 0.3316 0.3743 0.3391 0.3445 0.3717 0.3540
CP 0.9280 0.9340 0.9360 0.9430 0.9440 0.9290 0.9280 0.9370 0.9450

Note: Bias is the sample mean of the estimate minus the true value, SE is the sampling standard

error, SEE is the sample mean of the standard error estimate, and CP is the 95% empirical

coverage probability.

where gβ(t) = exp(t) , gζ(t) = t, β0 = 0.5 , ζ0 = 1 , ϵ(t) normal with mean ψ

and variance 0.25 for all t, and ψ normal with mean 0 and variance 0.25. For

each simulation study, we set the weight functions W (t) = Q(t) = 1. The results

presented below are based on 1,000 replications with sample sizes n = 100, 200

and 400. The asymptotic variance was estimated using the resampling method

with 100 realizations, which were found to be adequate. All simulations were

conducted in MATLAB (the simulation code is available upon request).

Tables 1, 2, and 3 present the simulation results on the estimates of γ1, γ2,

β0 and ζ0 with n = 100, 200, and 400, respectively. In these tables, Bias is the

sample mean of the estimate minus the true value, SE is the sampling standard

error of the estimate, SEE is the sample mean of the standard error estimate, and

CP is the 95% empirical coverage probability based on the normal approximation.

It can be seen from the tables that the proposed estimators are nearly unbiased,

there is a good agreement between the estimated and the empirical standard

errors, and the 95% empirical coverage probabilities are reasonable. The results

are better when the sample size increases from 100 to 400.
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Table 2. Simulation results for the estimation of γ1, γ2, β0, and ζ0 with
n = 200.

(ϕ1, ϕ2)

(0, 0) (1, 0) (-1, 0) (0, 1) (1, 1) (-1, 1) (0, -1) (1, -1) (-1, -1)

γ1 Bias -0.0038 -0.0047 -0.0122 0.0002 0.0024 0.0044 0.0011 -0.0014 -0.0006
SE 0.1308 0.1303 0.1337 0.1359 0.1286 0.1323 0.1327 0.1324 0.1371
SEE 0.1318 0.1322 0.1326 0.1361 0.1359 0.1364 0.1342 0.1337 0.1345
CP 0.9560 0.9500 0.9420 0.9380 0.9600 0.9590 0.9480 0.9560 0.9550

γ2 Bias -0.0049 -0.0003 0.0006 -0.0026 0.0063 0.0030 -0.0085 0.0090 0.0093
SE 0.2195 0.2212 0.2170 0.2261 0.2314 0.2217 0.2241 0.2252 0.2341
SEE 0.2165 0.2184 0.2182 0.2276 0.2288 0.2286 0.2230 0.2228 0.2213
CP 0.9430 0.9410 0.9550 0.9540 0.9440 0.9520 0.9490 0.9360 0.9280

β0 Bias 0.0045 0.0063 -0.0019 0.0039 -0.0001 -0.0015 0.0023 0.0055 0.0012
SE 0.1764 0.1832 0.1878 0.1866 0.2108 0.1781 0.1687 0.1637 0.1983
SEE 0.1690 0.1796 0.1815 0.1774 0.2071 0.1785 0.1608 0.1611 0.1858
CP 0.9460 0.9540 0.9510 0.9550 0.9490 0.9490 0.9500 0.9490 0.9510

ζ0 Bias 0.0121 0.0020 -0.0063 -0.0128 -0.0113 -0.0066 0.0034 -0.0124 0.0073
SE 0.2483 0.2674 0.2425 0.2335 0.2588 0.2469 0.2471 0.2680 0.2535
SEE 0.2380 0.2611 0.2459 0.2322 0.2612 0.2399 0.2460 0.2640 0.2519
CP 0.9350 0.9380 0.9500 0.9410 0.9460 0.9330 0.9400 0.9330 0.9400

Note: Bias is the sample mean of the estimate minus the true value, SE is the sampling standard

error, SEE is the sample mean of the standard error estimate, and CP is the 95% empirical

coverage probability.

For comparison, we considered the method of Cai, Zeng, and Pan (2010)

(denoted by CZP) by treating the terminal event as noninformative. We used

the same setup as in Table 3, but with m(t) = (0.5t + v1)gβ(β0X + ζ0W ) +

ϵ(t). The comparison results are presented in Table 4. As expected, when the

terminal event is noninformative (i.e., (ϕ1, ϕ2) = (0, 0)), the CZP estimators

are unbiased. Under such a situation, both methods provide reasonable and

comparable estimates, and the variances of our method are only slightly larger

than those of the CZP method. This is because the latter utilizes the assumption

of an independent terminal event in estimation. However, when the terminal

event is informative, the CZP estimators can have large bias. We also considered

other setups and obtained similar results.

To investigate the performance of the model-checking method, we also con-

ducted some simulations to assess the size and power of the supremum test statis-

tic supz,t |F (z, t)|, using the same setup as in Table 3 except that the marker

process m(t) was

m(t) = (0.5t+ v1)gβ(β0X) + gζ(ζ0W ) + 1.5kXW + ϵ(t),
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Table 3. Simulation results for the estimation of γ1, γ2, β0, and ζ0 with
n = 400.

(ϕ1, ϕ2)

(0, 0) (1, 0) (-1, 0) (0, 1) (1, 1) (-1, 1) (0, -1) (1, -1) (-1, -1)

γ1 Bias 0.0027 -0.0015 -0.0009 0.0001 0.0051 0.0012 0.0002 0.0017 -0.0041
SE 0.0898 0.0941 0.0928 0.0967 0.0918 0.0922 0.0921 0.0966 0.0917
SEE 0.0917 0.0921 0.0918 0.0959 0.0952 0.0955 0.0936 0.0939 0.0937
CP 0.9570 0.9390 0.9430 0.9420 0.9540 0.9500 0.9510 0.9400 0.9520

γ2 Bias -0.0003 -0.0007 0.0068 -0.0106 0.0020 -0.0007 0.0070 -0.0023 0.0078
SE 0.1569 0.1564 0.1502 0.1589 0.1640 0.1612 0.1596 0.1608 0.1557
SEE 0.1535 0.1532 0.1533 0.1603 0.1601 0.1608 0.1574 0.1580 0.1579
CP 0.9430 0.9460 0.9500 0.9570 0.9350 0.9410 0.9460 0.9440 0.9570

β0 Bias 0.0036 0.0036 -0.0031 -0.0051 0.0054 -0.0045 0.0022 0.0023 0.0069
SE 0.1177 0.1241 0.1214 0.1252 0.1369 0.1205 0.1085 0.1142 0.1177
SEE 0.1142 0.1205 0.1206 0.1216 0.1383 0.1214 0.1098 0.1106 0.1204
CP 0.9460 0.9420 0.9500 0.9370 0.9540 0.9470 0.9550 0.9450 0.9570

ζ0 Bias 0.0053 -0.0032 -0.0028 0.0029 -0.0000 0.0002 0.0040 0.0139 -0.0072
SE 0.1733 0.1887 0.1816 0.1655 0.1866 0.1704 0.1736 0.1910 0.1773
SEE 0.1712 0.1875 0.1751 0.1671 0.1858 0.1712 0.1738 0.1844 0.1777
CP 0.9420 0.9460 0.9370 0.9560 0.9410 0.9460 0.9470 0.9410 0.9440

Note: Bias is the sample mean of the estimate minus the true value, SE is the sampling standard

error, SEE is the sample mean of the standard error estimate, and CP is the 95% empirical

coverage probability.

with k = 0, 1, 2, 3 and 4. We considered the null hypothesis H0 as k = 0. Table

5 presents the empirical sizes and powers of the proposed test at the significance

level of 0.05. The results suggest that the empirical sizes are close to the nominal

size, and the test has a reasonable power to detect deviations from the null

hypothesis. As expected, the power increases as the value of k increases.

6. An Application

We illustrate our method using the medical cost data of chronic heart failure

patients treated at the University of Virginia Health System (Liu, Huang, and

O’Quigley (2008); Sun et al. (2012)). In the study, there were 1,475 patients

aged 60-89 years who were first diagnosed with heart failure and treated in 2004.

For each patient, the observed information includes the clinical visit times (in

months) and the medical cost for each hospital visit. In addition, three baseline

covariates were measured: gender, race, and age. The follow-up ended with each

patient’s last hospital admission up to July 31, 2006, or death date. For our

analysis, we focus on the effects of gender, race, and age on the medical cost with

an informative terminal event (death).
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Table 4. Comparison results on estimation of (γ1, γ2, β0, ζ0) with n = 400.

(ϕ1, ϕ2)
(0, 0) (1, 0) (-1, 0) (0, 1) (1, 1) (-1, 1) (0, -1) (1, -1) (-1, -1)

Ours

γ1 Bias 0.0038 0.0023 0.0032 0.0049 0.0038 -0.0021 -0.0049 0.0029 -0.0016
SE 0.0912 0.0935 0.0882 0.0947 0.0992 0.0965 0.0930 0.0875 0.0975

γ2 Bias 0.0004 -0.0003 -0.0014 -0.0046 0.0013 0.0027 0.0073 0.0017 -0.0027
SE 0.1471 0.1538 0.1499 0.1649 0.1576 0.1634 0.1638 0.1623 0.1586

β0 Bias -0.0019 -0.0058 -0.0026 0.0015 0.0017 -0.0018 -0.0000 -0.0067 -0.0033
SE 0.0886 0.1053 0.1015 0.0946 0.1134 0.0963 0.0831 0.0952 0.1011

ζ0 Bias -0.0017 -0.0004 -0.0014 -0.0043 0.0000 0.0047 0.0068 -0.0031 0.0055
SE 0.1741 0.1932 0.1928 0.1876 0.2296 0.1986 0.1671 0.1740 0.2148

CZP

γ1 Bias 0.0029 0.0018 0.0041 0.0596 0.0563 0.0507 -0.0562 -0.0494 -0.0503
SE 0.0864 0.0880 0.0838 0.0859 0.0897 0.0885 0.0869 0.0832 0.0889

γ2 Bias 0.0003 0.0008 -0.0015 -0.1125 -0.1047 -0.1042 0.1106 0.1072 0.0971
SE 0.1399 0.1420 0.1389 0.1499 0.1420 0.1493 0.1477 0.1475 0.1458

β0 Bias -0.0010 -0.0651 0.0650 0.0186 -0.0534 0.0880 -0.0153 -0.0700 0.0477
SE 0.0780 0.0843 0.0832 0.0833 0.0942 0.0772 0.0715 0.0800 0.0799

ζ0 Bias -0.0042 0.1152 -0.1308 -0.0378 0.1112 -0.1716 0.0377 0.1267 -0.0851
SE 0.1579 0.1684 0.1507 0.1549 0.1867 0.1587 0.1490 0.1510 0.1667

Note: Bias is the sample mean of the estimate minus the true value, and SE is the sampling

standard error. CZP stands for the method of Cai, Zeng, and Pan (2010).

Table 5. The empirical sizes and powers of the model test with n = 400.

(ϕ1, ϕ2)

(0, 0) (1, 0) (-1, 0) (0, 1) (1, 1) (-1, 1) (0, -1) (1, -1) (-1, -1)

k = 0 0.046 0.044 0.041 0.045 0.048 0.052 0.044 0.050 0.042
k = 1 0.372 0.319 0.366 0.393 0.396 0.365 0.346 0.329 0.378
k = 2 0.801 0.749 0.805 0.791 0.812 0.794 0.741 0.697 0.819
k = 3 0.949 0.926 0.956 0.958 0.945 0.947 0.919 0.894 0.948
k = 4 0.980 0.982 0.982 0.978 0.979 0.977 0.973 0.960 0.978

Following Sun et al. (2012), we take m(t) as the log-transformed cost. For

covariates, let Z1 be a binary indicator of gender (male=1, female=0), Z2 be a

binary indicator of race (white=1, nonwhite=0), and Z3 denote the age group,

taking values 0, 1, and 2 for 60-69, 70-79, and 80-89 years, respectively. Let τ be

the longest follow-up time. For illustration, we assumed that the hospital visit

process and the death time can be described by model (2.2) with gγ(x) = exp(x)

and model (2.3), respectively. For model (2.1) with three covariates, we examined

all the possible combinations of covariate effects in terms of being additive or
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multiplicative. Thus, we considered eight models for m(t) with gβ(x) = exp(x)

and gζ(x) = x.

The additive-effects-only model (denoted by AM):

E{m(t)|N(t)−N(t−) = 1, D ≥ t, Z, v1, v2} = α0(t; v1)+ gζ(ζ1Z1+ ζ2Z2+ ζ3Z3).

The multiplicative-effects-only model (denoted by MM):

E{m(t)|N(t)−N(t−) = 1, D ≥ t, Z, v1, v2} = α0(t; v1)gβ(β1Z1 + β2Z2 + β3Z3).

The additive gender effect and multiplicative race and age effects model (denoted

by AMM1):

E{m(t)|N(t)−N(t−) = 1, D ≥ t, Z, v1, v2} = α0(t; v1)gβ(β2Z2+β3Z3)+gζ(ζ1Z1).

The additive race effect and multiplicative gender and age effects model (denoted

by AMM2):

E{m(t)|N(t)−N(t−) = 1, D ≥ t, Z, v1, v2} = α0(t; v1)gβ(β1Z1+β3Z3)+gζ(ζ2Z2).

The additive age effect and multiplicative gender and race effects model (denoted

by AMM3):

E{m(t)|N(t)−N(t−) = 1, D ≥ t, Z, v1, v2} = α0(t; v1)gβ(β1Z1+β2Z2)+gζ(ζ3Z3).

The additive race and age effects and multiplicative gender effect model (denoted

by AMM4):

E{m(t)|N(t)−N(t−) = 1, D ≥ t, Z, v1, v2} = α0(t; v1)gβ(β1Z1)+gζ(ζ2Z2+ζ3Z3).

The additive gender and age effects and multiplicative race effect model (denoted

by AMM5):

E{m(t)|N(t)−N(t−) = 1, D ≥ t, Z, v1, v2} = α0(t; v1)gβ(β2Z2)+gζ(ζ1Z1+ζ3Z3).

The additive gender and race effects and multiplicative age effect model (denoted

by AMM6):

E{m(t)|N(t)−N(t−) = 1, D ≥ t, Z, v1, v2} = α0(t; v1)gβ(β3Z3)+gζ(ζ1Z1+ζ2Z2).

We took W (t) = Q(t) = 1, and used 500 Monte Carlo samples to estimate the

asymptotic variance. The analysis results are summarized in Table 6. These

results suggest that both race and age had significant effects on the medical cost

and the hospital visits, but gender did not seem to have significant effect on

the medical cost and the hospital visits regardless of which model is used. In
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Table 6. Joint analysis of the medical cost data for heart failure patients.

Male White Age

Est. SE p-value Est. SE p-value Est. SE p-value

η 0.2502 0.1182 0.0343 -0.2597 0.1282 0.0427 0.4707 0.0732 0.0000
γ -0.0046 0.0319 0.8847 -0.1275 0.0374 0.0007 0.1309 0.0211 0.0000
AM 0.0698 0.0827 0.3986 -0.3618 0.1001 0.0003 -0.1212 0.0487 0.0128
MM 0.0125 0.0135 0.3543 -0.0608 0.0182 0.0008 -0.0209 0.0078 0.0073
AMM1 0.0742 0.0839 0.3767 -0.0607 0.0164 0.0002 -0.0212 0.0082 0.0093
AMM2 0.0107 0.0135 0.4268 -0.3708 0.1009 0.0002 -0.0189 0.0077 0.0146
AMM3 0.0128 0.0138 0.3550 -0.0586 0.0159 0.0002 -0.1267 0.0495 0.0105
AMM4 0.0111 0.0132 0.4005 -0.3644 0.1003 0.0003 -0.1197 0.0489 0.0145
AMM5 0.0777 0.0834 0.3519 -0.0585 0.0160 0.0003 -0.1283 0.0493 0.0092
AMM6 0.0662 0.0831 0.4255 -0.3684 0.1007 0.0003 -0.0192 0.0077 0.0126

Note: Est. is the estimate of the parameter, and SE is the standard error estimate.

Figure 1. Plot of the standardized score process versus follow-up time for
gender in the Cox model. Bold line: observed process; dotted lines: 50
simulated process.

particular, white patients were likely to be at lower risk for hospitalization and

had lower medical costs compared with nonwhite patients. Older patients tended

to be at higher risk for hospitalization and had less medical costs. In addition,

white patients had lower mortality rate, while male and older patients tended to

have higher mortality rates. These findings are consistent with those obtained
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Figure 2. The residual plot of the hospital process versus age of the subjects
in the male and white group.

by Liu, Huang, and O’Quigley (2008) and Sun et al. (2012).

For model checking, we first applied the standardized score process (e.g., Lin,

Wei, and Ying (1993)) to check the adequacy of model (2.3). Figure 1 presents the

observed score process for gender along with 50 simulated processes. The plots

for race and age are similar and thus ignored. These plots indicate that model

(2.3) fit the data well. To assess the goodness-of-fit of model (2.2), as discussed

in Zeng and Cai (2010), we examined the residuals for each subject,
∫ Ti

0 [dNi(t)−
gγ(γ̂

′Zi)dN̄i(t; γ̂)]. When model (2.2) is correct, these statistics should have an

approximate mean zero and be independent of Zi. Thus, a graphical way to

assess the adequacy of model (2.2) is to plot the residuals against the covariate

Zi. Figure 2 displays the residuals for each subject versus age within the male and

white group. Other residual plots are similar and thus ignored. The results show

that the residuals fluctuate around zero and appear to be random, indicating no

evidence against model (2.2). Finally, we used the model-checking techniques

introduced in Section 3 to evaluate the performances of the eight models. The

p-values of the supremum test statistics for these models are presented in Table

7, based on 500 realizations of the statistic supz,t |F̂(z, t)|. These results suggest

that there is little evidence against the eight assumed models.

In order to examine which model fit the data better, we used the Akaike

information criterion (AIC) and the Bayesian information criterion (BIC), where
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Table 7. Model checking for the medical cost data of heart failure patients.

AM MM AMM1 AMM2 AMM3 AMM4 AMM5 AMM6

supz,t |F(z, t)| 22.0984 21.2676 21.2313 21.6541 21.9006 22.1285 21.8783 21.6134
p-value 0.3960 0.4360 0.3620 0.4020 0.3820 0.4000 0.4180 0.3920
AIC 7.3323 7.2519 7.2416 7.3199 7.2770 7.3418 7.2667 7.3105
BIC 7.3431 7.2626 7.2524 7.3307 7.2878 7.3526 7.2775 7.3213

AIC = 2(p + q)/n + log(RSS/n), BIC = (p + q) log(n)/n + log(RSS/n), and

RSS =
∑n

i=1 M̂
∗
i (τ)

2 with M̂∗
i (t) defined in Section 3. The results are presented

in Table 7; they indicate that under AIC and BIC, model AMM1 is among the

best and should be recommended. In addition, the performance of model AMM1

is close to that of model MM, without a significant improvement of fit. Thus,

the simple multiplicative model MM is also recommended. In spite of the similar

results produced by AMM1 and MM in the present application, these two models

reveal different insights in general. AMM1 incorporates both additive and multi-

plicative forms of covaraites, and is therefore capable of identifying multiplicative

and additive covariate effects simultaneously. Instead, MM accommodates all co-

variates in a multiplicative form, thereby interpreting each of the covariates in a

similar manner.

7. Concluding Remarks

In this article, we have proposed a joint model for analyzing marker data

contingent on recurrent event via latent variables when there exists an infor-

mative terminal event. The proposed joint model is flexible and robust in that

the association among the marker process, the recurrent event process, and the

terminal event is modeled nonparametrically. The additive-multiplicative mean

model allows for both additive and multiplicative covariate effects. An estimating

procedure was proposed to yield consistent and asymptotically normal estima-

tors. Simulation results indicated that the proposed methods perform well, and

an application to a medical cost study was illustrated.

The proposed joint model assumed that the covariates are time-independent

but, following Zeng and Cai (2010), the proposed method can be extended in a

straightforward manner to deal with time-dependent covariates. In particular,

let Z(t) = (X(t)′,W (t)′)′, Z(t) = {Z(s), 0 ≤ s ≤ t}. Then models (2.1), (2.2),

and (2.3) are

E{m(t)|N(t)−N(t−)=1, D≥ t,Z(t), v1, v2} = α0(t; v1)gβ(β
′
0X(t))+gζ(ζ

′
0W (t)),

E{dN(t)|D ≥ t,Z(t), v1, v2} = gγ(γ
′
0Z(t))dµ0(t; v2),

log

∫ D

0
exp{η′0Z(s)}Λ0(s) = ε,
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respectively, where ε is independent of Z(·) with the extreme-value distribution.
Furthermore, here the proportional hazards model was used for the terminal
event. Other competing models, such as the additive hazards model, the ac-
celerated failure time model, and a general transformation model can be also
used.

One limitation of the proposed approach is that all covariate effects are as-
sumed to be linear. This assumption may be too restrictive. It would be desirable
to provide a more general joint model that could accommodate both linear and
nonlinear covariate effects. The proposed method involves two weight functions
W (t) and Q(t), and it turns out to be very difficult to derive optimal weights
without specification of the covariance function of the marker and recurrent event
processes (Sun et al. (2012)). Further research is needed to develop a simple and
more efficient inference procedure.

In model (2.1), there is a problem with the choice of X andW . In practice, if
the investigator is interested in studying the mean ratio of some covariates, then
those covariates should be included in the multiplicative part. If the investigator
is interested in studying the mean difference of some other covariates, then such
covariates should be included in the additive part. Based on biological and possi-
bly empirical grounds, the covariates anticipated to have a large impact in mean
ratios should be taken as X, and those which could have a large impact in mean
differences should be taken as W . If the covariates are of small dimension as in
the data application, we can identify multiplicative and additive covariate effects
by fitting different models, and use AIC and BIC as model selection criterion.
When the biological process is not clear, it would be desirable to develop some
data-driven methods for the classification of covariates.

We have assumed that X and W do not have any common factor for iden-
tifiability reasons. In the application, we considered eight models by classifying
the covariates into either additive or multiplicative components and then com-
pared the models by AIC/BIC. Our proposed estimation procedure cannot be
extended in a straightforward manner to deal with the situation where X and W
have some common factors. There a different estimating procedure is needed for
parameter estimation. Then, as suggested by one referee, an alternative method
could put each of the covariates into both components and estimate a general
model, then test whether the additive/multiplicative effect is significant or test at
least one of additive/multiplciative effects is significant. This results in a p-value
for the effect of the covariate relevant in practice. For future research, it would
be interesting to see how it compares to the current approach.

Supplementary Materials

Supplementary material available at Statistica Sinica online includes the reg-
ularity conditions (C1)−(C6) and the proofs of Theorems 1−3.
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