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Supplementary Material

Here, we give the detailed and complete proof of the main results in the paper.

S1 Proof of Theorem 1.

Based on the closed form estimator of mo(t),
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6il(Yi > t)(Yi —t 6I(Y; >)(Y; —t .
(E YSC>Y ™ )+Z (ng\c)éc )(ScSC(Yi—Ai)))

ﬁlo(t,ﬂ) =

§:1(Yi > t) exp(87 X;) §:1(Yi > t) exp(87 X;)
(% VEai-A) T2 viese

~Se(Y; — Ai))).

~

(Sc(Yi — Ai)

Since the following processes:
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can be written as the product of monotone function in t and 8. And monotone functions have
pseudodimension 1(Pollard (1990), pagel5; Bilias, Gu & Ying (1997), Lemma A.2). Thus by
Pollard (1990), page38 and Bilisa , Gu & Ying (1997), Lemma A.1 the processes (S1.1),(S1.2)
are manageable. Together with the uniformly consistency of S¢(t) to S(t) in t € [0, 7](Flemming
& Harrington (1990)), we can obtain that (¢, 8) converges almost surely and uniformly to
mo(t,B)int € [0,7] and B € B={B:]|8 — Bol| < e}. Here, mg(t) = mo(t, Bo).
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Therefore, in order to prove the existence and uniqueness of B; and fo(t), it suffices to
show that there exist a unique solution to U(5) = 0.

Since mo(t, B) satisfies:

"L 5 I(Y > t)

2 m [(Yi —t) — mo(t, B) exp(8 Xi)] =0,

differentiating it with respect to 8, we derive the following equation:

dio(t,B) iy 8l (Yi > ){ViSe (Vi — A} exp(8T X)X

05 S el > (B — AN} e X T (51:2)
Let A(8) = %‘r’g[jﬂ Making use of (S1.3),
AB) = - Z/ o3 ((}; ~ ’2 X [o(t, B) exp(87 X:) XT + %aoT(?ﬂ) exp(87 X2 dH (1)
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X1, ) = Zim S > ){ViSc(Yi — Ai)} " exp(B7Xi) X

’ 8 I(Ye > ){YiSe (Vi — Ai)} ! exp(BTX:)

which is always nonnegative definite. It follows from the expression and some methods used

aforementioned, X (¢, 3) converges to some nonrandom function Z(¢, 3) uniformly in ¢ € [0, 7].

Together with the uniformly convergence of mo(t, 8) to mo(t,3) in t € [0,7] and 8 € B =

{B: |8 — Bol| < e}, we conclude that A\(ﬂ) converges uniformly to a nonrandom function A(3)

uniformly in 8 € B={f: |8 — fo|| < e}. Denote B = A(fo) and Sz(t|X) is the the survival
function of T, where

I

A@®) = B[ [ 57 (0SHUX)(X = 3(t,8) % mo(t. ) exp(8” X)an(1)].

It can be checked easily that 2U(8o) converges to 0 almost surely. By condition (A4), A
is nonsingular. On the other hand, A\(ﬂ) converges uniformly to a nonrandom function A(3)
uniformly in 8 € B={S:||8—Bo|| < &}, thus there exists a small neighborhood of 8y in which
A\(ﬂ), especially A\(ﬁo) is nonsingular for sufficient large n. Therefore it follows from the inverse
function theorem(Rudin (1976)) that within a small neighborhood of Sy, there exists a unique
solution B to the equation U(8) = 0 when n is large enough. Furthermore by the nonnegative
definiteness of 2( B) in the entire domain of 3, the solution B\ is global uniqueness. Hence, there
exists a unique estimator B and g (t), for ¢ € [0,7]. Following the proof of the estimator’s
uniqueness, we can see that B is actually strong consistent and then mo(t) = mo(t, B) converges
uniformly to mo(t) almost surely in ¢ € [0,7]. O
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S2 Proof of Theorem 2.

(1) By the expression of mo(t, 3), we have

Doy 6 (Y: > H{ViSc(Y; — A}t [(Yi —t) — mo(t) exp(B5 X)] .

ol 5) = moft) = ST (Y, > O{Yi5e (Vi — A1)} exp(5TX,)

Note that M; (t) = 52224~ [(V; — ) — mo(t) exp(B5 Xi)].
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S8 I(Yi>t){YiSc (Yi—Ai)} ! exp(BF Xi) X, k(g L >+
S 6. 1(v:> ) (Y: S (Vi A} L exp (BT X1) and T"(¢) is the limit of X (¢).

On the other hand,

where X" (t) =

Se(t) - Selt o
\/57 - / —dM )+o
R o
where MZ(t) = I(Y; — A; < t,6; = 0) fg (Y; — A; > s)dAc(s) is the martingale for the
censoring variable, Ac(t) is the cumulatlve hazard function, and 7(t) = P(Y — A > t), so we

is
) =

can obtain sup,¢(o - %’ = Op(n~?) and 37| Mi(t) = Op(n'/?). Therefore, it is

easy to show that

| 2 /OT Mit) (% — D{X"(t) -7 (t)}dH (t)

MWK (1) 7 OH()]| = 0p(n'?),
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and

n

’Z/OT Mz(t)%{Xz — T ()}d(H(t) — h(t)| = op(nl/Q)_

Hence,

(52.4) Z/ M;(t){X: — z* (t)}dh(t) + Z/ M;( SC(Yi —S?E)YZ—;SZZ(? —A;)
{Xi — 7" (t)}dh(t) + op(n*/?).

Based on the martingale representation of Sc (t),

DD R T A OII0

= > (oo [ o)
B ~Jo ’ ’ S nr(s
o [few . e 1/2
- Z/o (1) dM; (t) + op(n''7),
i=1
where Q(t) = =37 | [ Mi(s){Xi — T*(s)}dh(s)I(Y; — A; > t) and Q(t) converges to some
nonrandom process q(t).
So by Lemma 1 in Lin et al.(2000), we obtain
7U /BO & +o 7
f f Z P
where & = [ M;(t){Xi; — T*}dh(t) fT q(t) dMC (t). It follows from the multivariate central

limit theorem that n~'/2U (Bo) is asymptotlcally normal with mean 0 and covariance matrix
¥ = E[¢2?]. By the Taylor expansion of U(f) at S0, we have

n'?(B—Bo) = B 'n V?U(Bo) +0p(1)
— B lp /2 Z& + 0p(1)

i=1

Therefore, \/E(B — Bo) is asymptotically zero-mean normal with covariance matrix B “yB~1,
which can be consistently estimated by B~'S B!, where

,\71 n T (51-[(Yi>t) ®2A Aex AT 3.
B=0 3 [ o (56~ D)ot B exo 7 X)ar o),

s

3

and
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(2) We begin by showing the weak convergence of (). Note that

Vi(io(t) —mo(t)) = Vn(mo(t, B) —mo(t))
= Vn(mo(t, B) — Mmo(t, fo)) + vn(io(t, Bo) — mo(t)).
(52.5)

Denote:

B(0) = L3600 > 01Se(vi - A0} explal X0,

i=1

and
ZM I(Y; — Ay > ).

The first part in (S2.5) can be written as follows:
Vi (t, B) = mo(t, fo) = 7 (ymo(t)v/n(B ~ fo) + 0p(1),
. I e
= - (t)m0(t)% ;B "6+ op(1)

and the second part in (S2.5) can be written as follows:

Viio(t, fo) = mo(t) T ) + M > _gfz;___sjgf —2)

n

11 TI(n<Yi—A;)
= o7 E S 0+ 0 [ (uiszc (1]

nr(u)
“+op(1)
= o7 D w + [T ] + o)
where ¢(t) and r(t, ) is the corresponding nonrandom limit of ®(¢) and R(¢, u).
Therefore,
Va(io(t) - sz o1
where

Belt) = 38 [Mi(t) + / ’ ’;ﬁ’;—;f;)de (1)] — (. fo)mo(t) B~ €.

Since the terms in last equation are independent zero-mean random variables for every fixed
t, the multivariate central limit theorem implies that the finite dimensional distribution of the
process /n{mo(t) — mo(t)}(0 < ¢ < 7) converges to a zero-mean Gaussian process. In order
to prove the weak convergence, it suffices to show the tightness. It reduces to the tightness
of n™Y23°"  M;(t). By Assumption (A1), mo(t) is of bounded variation. Since M;(t) can
be written as the sum or product of monotone functions of t and is thus manageable (Pollard
(1990), page 38; Bilisa, Gu and Ying (1997), Lemmas A.1-A.2 ), it follows from the functional
central limit theorem(Pollard (1990), page 53; Lin et al.(2000), page 726) that n= /237" M;(t)
is tight. Therefore n'/2{o(t) —mo(t)}(0 < t < 7) is tight and converges weakly to a zero-mean
Gaussian process with the covariance function I'(s,t) = E{v;(s)¢i(t)} at (s,t), which can be
consistently estimated by f(s7 t). O

S5
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S3 Proof of Theorem 3.

By the maximum partial likelihood theory in Flemming & Harrington (1991), we can obtain
the uniform consistency of @ and Ag(t) in [0, 7]. Then similar arguments as that in the proof of
Theorem 1 can be used to obtain the conclusion of Theorem 3. Here, we omit the details. [

S4 Proof of Theorem 4.

(1) Since C follows cox proprotional hazards model, from Flemming & Harrington (1991), we
can obtain:

a—Oéo

@' L5 [z a0 + o n ),

Ry = dof) = =3 [ = [ sy ddou)(@— ) + oy n7),

(S4.6)
where MZ(t) = NF(t fo Yexp(ad Zi)dAo(u), s (t;a) = lim,eo ST (), sO(t) =
S(O)(t;ao) zZ(t; ) = hmyHoo ( ) (t) =Z(t; ), @ =lim, 00 Q.

Similar to the proof of (S2.4), we obtain
. LIS DX e
Ua(Bo) 2 Z / T [0 0 mo(0 exp(8] X0) — exp(55 X,
(mw(t,ﬁO) —mo(t))]dH (1)
SN RUCIEELOIOES oY IO EEABID
So(Yi= AlZ) = Se(Yi= AdZ0) |, 7z (54.7)

Sc(Yi — Ai|Z:)

where M; (t) = 52l [(Vi = t) — mo(t) exp(B5 Xi)], Za(t) = limasee Xa(t), Xa(t) =

SO I(Yi>){YiSo (Vi—AilZi)} ! exp(B] Xi)Xs AR T
ST (S A2y el Xy 1 S(U1Z0) = exp(—exp(@” Z)Ro(1).

Using functional delta method in Van der Vaart & Wellner (1996) and(S4.6), (S4.7) be-

comes:

i/TMm)(Xi—xd 0+ { [ Faamto
Dd—/ Qa(t)z" (t)dAo(t))Q~ 1/0T(Zi—E(t))del(t)}—i—op(nl/z),
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where

n

Qat) = = Z/OT M () (X; — T (t))dh(t) exp(ag Z:)I(Yi — A; > t),

i=1

-}
<
I
\

> [ M ()X = OO A(Y: — 4 explaf 2) 2]

i=1

n

Followed by the uniform strong law of large numbers, we know that Q4(t) and Dg converges
almost surely to nonrandom function g4(t) and D} in [0, 7].

Therefore,
,B 67, - O
f 0 \/* E p

where

T ,* T qa(t) ., d
| e —mionane + [ an

D5 - / qu(t)=" (t)dho(t)] Q" /(]T<Zi—z<t>>de<t>.

It then follows from the multivariate central limit theorem that ﬁUd(ﬁo) is asymptotically

normal with mean 0 and covaraite matrix ¥q = E[¢/®?].

Let Ba(Bo) = =137, 8%;;6) |s=p, and Bq4(Bo) converges to a nonrandom matrix Bg by

the law of large number.

By the Taylor expansion of Ug4(8) at Bo, we have
Vn(Ba—Bo) = Bi'n '*Ua(Bo) + 0p(1),
I o ix
= —=B;') & +o(1)
Vin i=1

Hence, \/E(B\d — fBo) is asymptotically zero-mean normal with covariance matrix B, 'YXqB;",
which can be consistently estimated by B;lEngl, where

B = I3 [T IO (X0 B) it s B0,
a o /M (X — Xa(t, Ba) }AH (1) /5(0> 7M@) + [Da

/ Gu()Z" (t;@)dRo(1)] / (Zi — Z(1;3))dM(2),

0

and
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(2) We begin to show the weak convergence of moq(t). Since

Vi(oa(t) — mo(t) = v(oa(t, B) — Moalt, fo)) + Vii(@oalt, o) — mo(t)),
— & (Omo (t)% S BL €+ Valoalt, o) = ma(t)) + op(1).

Let
Bult) = L3RIV > OSe(Y - A1Z)) exp(B X,
=1
Ra(t,u) = fZM Yexp(agZi)I(Y; — Ai > u),
Ri(t) = fZM YAo(Yi — Ai) exp(ag Zi) Z,.

Using similar methods as that in (S4.7), we obtain:

Sc(Yi — AilZ:)
;in

Vin(ioalt, fo) = mo()) = %(t)*% 2 [0+ MO0 - 5 717,

_ i[ Rd(t,u)dMid / Ra(t, w)z" (u)dAo(u)],

50 (u)

o / <)} +oy(1),
—1%; [M;(t)+ /0 . ’;féf(;‘)) AM{ (u) + [ (t) — /O ’ ra(t, u)z” (w)dAo(u)],

0! [ (Z— =) 0] +op(0).

Here, ¢q(t), ra(t,u) and r1(t) are the limits of ®4(t), R4(t,u) and Ri(t) and all are nonrandom

functions.

Therefore,

Vn(oa(t) — Z P (t) + op(1
where

vy = ex'{pr+ [T+ o - [ ru s @daew],

0! /0 T(zi - z(t))dM;i(t)} — T ()mo(t) By €L

Then using similar arguments as that in the proof of Theorem 2, we complete the proof.

Here, we omit the details. O
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