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S1 Proof of the main theorem.

In the proofs, C denotes a generic positive constant. We first note that EX∗ [(f̂(X∗)−f(X∗))2] =

‖Σ1/2(f̂ − f)‖2H. From (2.3), Σ1/2f̂ satisfies the eigenvalue equation

Σ1/2(Σn + sI)−1ΓnΣ−1/2(Σ1/2f̂) = λΣ1/2f̂ .

Similarly, Σ1/2f satisfies the eigenvalue equation

Σ1/2Σ−1ΓΣ−1/2(Σ1/2f) = λΣ1/2f.

Using the perturbation theory for operators, for example as in Chapter 4 of Kato (1995), we only

need to show that ‖Σ1/2(Σn + sI)−1ΓnΣ−1/2 − Σ1/2Σ−1ΓΣ−1/2‖2 = Op(cnn
−d/(d+1)), where

‖A‖ denotes the operator norm for an operator A defined on HK .

We write

‖Σ1/2(Σn + sI)−1ΓnΣ−1/2 − Σ1/2Σ−1ΓΣ−1/2‖

= ‖Σ1/2((Σn + sI)−1Γn − (Σ + sI)−1Γ + (Σ + sI)−1Γ− Σ−1Γ)Σ−1/2‖

= ‖Σ1/2((Σ + sI)−1(Γn − Γ) + (Σ + sI)−1(Σ− Σn)(Σn + sI)−1Γn

+(Σ + sI)−1Γ− Σ−1Γ)Σ−1/2‖

≤ ‖Σ1/2(Σ + sI)−1(Γn − Γ)Σ−1/2‖+ ‖Σ1/2(Σ + sI)−1(Σ− Σn)(Σn + sI)−1ΓnΣ−1/2‖

+‖Σ1/2((Σ + sI)−1Γ− Σ−1Γ)Σ−1/2‖

=: (I) + (II) + (III). (S1.1)

To simplify the proofs and notations a little bit, we assume K(., X) = 0 in the following, since

using ‖K(., X)‖H = Op(n
−1/2), such terms does not lead to extra difficulties in the proof. By

the same reason, we also replace p̂h by ph = P (Y = yh) in the following expression of Γn.

Obviously we can rewrite Γn and Γ as

Γn =

H∑
h=1

1

ph

(
1

n

n∑
i=1

K(., Xi)I{Yi = yh}

)
⊗

(
1

n

n∑
i=1

K(., Xi)I{Yi = yh}

)
,

Γ =

H∑
h=1

1

ph
E[(K(., X)I{Y = yh})]⊗ E[K(., X)I{Y = yh}]. (S1.2)
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The term (III) is easy to deal with as follows. Using

‖Σ1/2((Σ + sI)−1 − Σ−1)(E[K(., X)I{Y = yh}]⊗ E[K(., X)I{Y = yh}])Σ−1/2‖2

= ‖sΣ1/2(Σ + sI)−1(Σ−1E[K(., X)I{Y = yh}])⊗ (Σ−1/2E[K(., X)I{Y = yh}])‖2

= O(‖sΣ1/2(Σ + sI)−1‖2)

= O(s),

we have (III)2 = O(s).

For the term (II), writing Σ(x) = K(., x)⊗K(., x) and using that

E‖Σ1/2(Σ + sI)−1Σ(x)‖2HS
= Etr(Σ(x)2(Σ + sI)−1Σ(Σ + sI)−1)

≤ CEtr(Σ(x)(Σ + sI)−1Σ(Σ + sI)−1)

= Ctr(Σ(Σ + sI)−1Σ(Σ + sI)−1)

= C
∑
j

λ2
j

(λj + s)2
,

where ‖.‖HS is the Hilbert-Schmidt norm. In the inequality above we used that ‖Σ(x)f‖H =

‖K(., x)f(x)‖H =
√
f2(x)K(x, x) ≤ C‖f‖∞ ≤ C‖f‖H and thus ‖Σ(x)‖ ≤ C, and the inequality

tr(AB) ≤ ‖A‖tr(B).

Thus using the Markov inequality, we have

(II)2

≤ ‖Σ1/2(Σ + sI)−1(Σ− Σn)‖2 · ‖(Σn + sI)−1ΓnΣ−1/2‖2

= Op

(∑
j

λ2
j

n(λj + s)2

)
‖(Σn + sI)−1ΓnΣ−1/2‖2.

We will argue later that actually ‖(Σn + sI)−1ΓnΣ−1/2‖2 = Op(1).

The term (I) is more complicated. Let Γnh and Γh be the terms on the right hand side

of the sums in (S1.2) such that Γn =
∑
h p
−1
h Γnh,Γ =

∑
h p
−1
h Γh. To bridge Γnh and Γh, we

further define

Γ′nh =

(
1

n

n∑
i=1

K(., Xi)I{Yi = yh}

)
⊗ E[K(., X)I{Y = yh}].
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Since

E‖Σ1/2(Σ + sI)−1(K(., X)I{Y = yh} − E[K(., X)I{Y = yh}])

⊗(Σ−1/2E[K(., X)I{Y = yh}])‖2HS
≤ CE‖Σ1/2(Σ + sI)−1(K(., X)I{Y = yh} − E[K(., X)I{Y = yh}])‖2H
≤ CE‖Σ1/2(Σ + sI)−1K(., X)I{Y = yh}‖2H
= CE

[
I{Y = yj}〈Σ(Σ + sI)−2K(., X),K(., X)〉2H

]
= CE

[
I{Y = yj}tr(Σ(Σ + sI)−2Σ(X))

]
= CE

[
tr(Σ(Σ + sI)−2Σ(X))E[I{Y = yj}|X]

]
≤ Ctr(Σ2(Σ + sI)−2)

= C
∑
j

λ2
j

(λj + s)2
,

by Markov inequality,

‖Σ1/2(Σ + sI)−1(Γ′nh − Γh)Σ−1/2‖2 = Op

(∑
j

λ2
j

n(λj + s)2

)
.

Similarly one can show

‖Σ1/2(Σ + sI)−1(Γn − Γ′nh)Σ−1/2‖2 = Op

(∑
j

λ2
j

n(λj + s)2

)
.

These imply that

(II)2 = Op

(∑
j

λ2
j

n(λj + s)2

)
.

Once we have shown ‖(Σn+sI)−1ΓnΣ−1/2‖ = Op(1), the bounds given above will combine

to obtain that (S1.1) is bounded by Op

(
s+

∑
j

λ2
j

n(λj+s)2

)
and direct calculations by plugging

in λj � j−d and s = cnn
−d/(d+1) shows that this is Op(cnn

−d/(d+1)).

What is left is to show ‖(Σn + sI)−1ΓnΣ−1/2‖ = Op(1), which is equivalent to showing

‖(Σn + sI)−1ΓnΣ−1/2 −Σ−1ΓΣ−1/2‖ = Op(1). Note this equation is actually similar to (S1.1).

Following similar lines that are used to upper bound the terms (I)-(III) in (S1.1), we will get

‖(Σn + sI)−1ΓnΣ−1/2 − Σ−1ΓΣ−1/2‖2

= Op

(∑
j

λj
n(λj + s)2

)
‖(Σn + sI)−1ΓnΣ−1/2‖2 +Op(1 +

∑
j

λj
n(λj + s)2

).

When s = cnn
−d/(d+1) with cn → ∞, by direct calculations we have

∑
j

λj

n(λj+s)2
= o(1) and

thus the above displayed equation implies ‖(Σn + sI)−1ΓnΣ−1/2‖ = Op(1). �
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