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Abstract: The paper considers small-area estimation for a heteroscedastic nested
error regression (HNER) model that assumes that the within-area variances are dif-
ferent among areas. Although HNER is useful for analyzing data where the within-
area variation changes from area to area, it is difficult to provide good estimates
for the error variances because of small sample sizes for small-areas. To address
this issue, we suggest a random dispersion HNER model which assumes a prior
distribution for the error variances. The resulting Bayes estimates of small area
means provide stable shrinkage estimates even for areas with small sample sizes.
Next we propose an empirical Bayes approach for estimating the small area means.
For measuring uncertainty of the empirical Bayes estimators, we use the conditional
and unconditional mean squared errors (MSE) and derive second-order correct ap-
proximations. It is interesting to note that the difference between the two MSEs
appears in the first-order terms while the difference appears in the second-order
terms for classical normal linear mixed models. Second-order unbiased estimators
of the two MSEs are given with an application to posted land price data. Also,
some simulation results are provided.
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1. Introduction

Small area estimation (SAE) using linear mixed models has been extensively
studied in the literature from both theoretical and applied points of view. For a
good review and account on this topic, see Ghosh and Rao (1994), Pfeffermann
(2002), Rao (2003), and Datta (2009). Of these, the nested error regression
(NER) model introduced by Battese, Harter and Fuller (1988) has been used
in SAE. Suppose that there are m small areas. For area i, ni individual data
(yi1,xi1), . . . , (y1ni ,xini) are observed, where xij = (xij1, . . . , xijp)

T is a vector
of auxiliary variables with xij1 = 1. Then, the NER model is expressed as the
mixed effects model

yij = xT
ijβ + vi + εij , i = 1, . . . ,m; j = 1, . . . , ni, (1.1)
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where β = (β1, . . . , βp)
T is an unknown vector of regression coefficients, the

vi’s and εij ’s are mutually independent random errors with vi ∼ N (0, σ2v) and

εij ∼ N (0, σ2). However, Jiang and Nguyen (2012) illustrated that the within-

area sample variances change dramatically from small-area to small-area for the

data given in Battese, Harter and Fuller (1988). This motivated us to extend the

NER model to cases with heteroscedastic variances.

As mixed models with heteroscedastic variances, two setups have been

treated in the literature: One setup is the assumption that sampling errors are

heteroscedastic, V ar(εij) = σ2i . In this case, the variance of yij is decomposed

as

V ar(yij) = E[(yij − xT
ijβ)

2] = σ2v + σ2i , (1.2)

for i = 1, . . . ,m. The other setup assumes that the variance of yij is propor-

tional to the heteroscedastic quantity σ20,i, and that the ratio V ar(yij)/σ
2
0,i is ho-

moscedastic and is decomposed as V ar(yij)/σ
2
0,i = κ2v+κ

2
e, where κ

2
v and κ

2
e come

from vi and εij , respectively. Thus, the ratio of yij −xT
i β to the heteroscedastic

quantity σ0,i can be modeled as the homoscedastic nested error structure

yij − xT
ijβ

σ0,i
= v0,i + ε0,ij ,

where v0,i ∼ N (0, κ2v) and ε0,ij ∼ N (0, κ2e). Let σ2i = κ2eσ
2
0,i and λ = κ2v/κ

2
e.

Then, the variance of yij is expressed as

V ar(yij) = E[(yij − xT
ijβ)

2] = (λ+ 1)σ2i . (1.3)

The setups (1.2) and (1.3) were used by Maiti, Ren, and Sinha (2014) and Jiang

and Nguyen (2012), respectively. The sampling errors have the heteroscedastic

variance σ2i in (1.2), while individual observations yij have variances proportional

to σ2i in (1.3). Both models relax the homogeneity assumption of the usual NER

model (1.1).

In mixed models with heteroscedastic variances, it is difficult to provide good

estimates for σ2i because of small samples sizes, ni’s, for small-areas. To fix this

difficulty, Maiti, Ren, and Sinha (2014) suggested that σ2i has an inverse gamma

distribution in the model (1.2). It is interesting to point out that the resulting

empirical Bayes (EB) estimator of ξi = cTi β + vi for a known p-variate vector ci
shrinks both means and variances. Since the EB includes integration with respect

to σ2i , however, the EB and its mean squared error (MSE) cannot be expressed

in closed forms. Thus one needs heavy numerical computations to provide values

of the EB and its MSE.

In this paper, we treat the heteroscedastic nested error regression (HNER)

model with the variance structure (1.3) given in Jiang and Nguyen (2012). As-

suming an inverse gamma distribution for σ2i , we suggest a random dispersion
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HNER (RHNER) model. The resulting Bayes estimator of ξi and the conditional

variance of ξi given data are expressed in closed forms, and the EB estimator of ξi
shrinks both means and variances. Also, the EB estimator of σ2i provides stable

shrinkage estimates even for ni − p = 0.

For measuring uncertainty of the empirical Bayes estimator ξ̂EB
i of ξi, we

use the conditional and unconditional mean squared errors (MSE)

cMSE(ω; ξ̂EB
i |yi) =E[(ξ̂EB

i − ξi)
2|yi],

MSE(ω; ξ̂EB
i ) =E[(ξ̂EB

i − ξi)
2],

where ω is a vector of unknown parameters. When data of the small area of

interest are observed as yi, and one wants to know the prediction error of the EB

estimators based on these data, the conditional mean squared error (cMSE) given

yi is used instead of the conventional unconditional MSE. Booth and Hobert

(1998) showed that the difference between the cMSE and MSE is quite small and

appears in the second-order terms in classical normal linear mixed models. Here,

however, we show that the difference appears in the leading or the first-order

terms in the RHNER model.

The paper is organized as follows: A setup of the RHNER model and its

motivation are given in Section 2. In Section 3, maximum likelihood (ML) esti-

mators are provided for the unknown β, λ, and hyper-parameters of the gamma

distribution. The consistency of the ML estimators is shown and their asymptotic

variances and covariances are derived through calculation of the Fisher informa-

tion. In Section 4, we provide second-order approximations of the conditional

and unconditional MSEs of the EB estimator for ξi; their second-order unbiased

estimators are based on the parametric bootstrap method. In Section 5, we in-

vestigate the performance of the proposed procedures through simulation and

empirical studies. Concluding remarks are given in Section 6 and the technical

proofs are given in the Appendix.

2. HNER Models with Random Dispersions

2.1. Setup of models and predictors

We begin with the model given in (1.1) and (1.3). For stable estimators of

the σ2i ’s, we need a sufficient amount of data from each area. Since the ni’s are

typically small, σ2i cannot usually be estimated with reasonable precision. To

give more stable estimators for σ2i , we assume a prior distribution for σ2i . Let

ηi = 1/σ2i . We assume that η1, . . . , ηm are mutually independent and identically

distributed with common pdf

π(ηi|τ1, τ2) ∼ Ga(τ1
2
,
2

τ2
), (2.1)
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a gamma distribution with mean τ1/τ2 and variance 2τ1/τ
2
2 . Such a parametriza-

tion on τ1 and τ2 give us simple expression for the Bayes estimator (2.5) of σ2i and

simplifies also the subsequent calculations. Since E[σ2i ] = E[η−1
i ] = τ2/(τ1 − 2)

and V ar[σ2i ] = V ar[η−1
i ] = 2τ22 /{(τ1 − 2)2(τ1 − 4)}, the variance of σ2i does

not exist for τ1 ≤ 4. The HNER model given in (1.1) and (1.3) with the ran-

dom dispersion (2.1) is called a Random Heteroscedastic Nested Error Regression

(RHNER) model.

Let y = (yT
1 , . . . ,y

T
m)T , XT

i = (xi,1, . . . ,xi,ni) and X = (XT
1 , . . . ,X

T
m). All

the unknown parameters are denoted by ω = (βT , λ, τ )T for τ = (τ1, τ2). Then,

the RHNER model is given by

yi|vi, ηi ∼Nni(Xiβ + vijni
, η−1

i Ini),

vi|ηi ∼N (0, λη−1
i ),

ηi ∼Ga(τ1
2
,
2

τ2
).

(2.2)

The conditional distribution of vi given yi and ηi is N (v̂i, λη
−1
i /(niλ+1)), where

v̂i = v̂i(β, λ) =
niλ

niλ+ 1
(yi − xT

i β). (2.3)

It is noted that v̂i = E[vi|yi] does not depend on ηi or σ
2
i .

In this paper, we consider the problem of predicting the mixed quantity

ξi = cTi β + vi, i = 1, . . . ,m,

where ci is a known p-variate vector. A typical example of ci is the population

mean of the covariates in the i-th area. The conditional expectation of ξi given

yi and ηi is

ξ̂Bi (β, λ) = E[ξi|yi, σ
2
i ] = cTi β + v̂i(β, λ).

This is interpreted as the Bayes estimator of ξi under squared error loss. Since

it does not depend on ηi, the estimator ξ̂Bi (β, λ) continues to be the conditional

expectation of ξi given yi after integrating out the ηi, that is the Bayes estimator

of ξi is the same in the two situations. However, the empirical Bayes estimators,

which substitute estimators of β and λ into ξ̂Bi (β, λ), are different between the

HNER and RHNER models.

In the HNER model, we need to estimate (m + p + 1) parameters β, λ,

and σ21, . . . , σ
2
m. As the number of parameters increases as m increases and the

ni’s are bounded in small-area estimation, we are faced with the problem of

inconsistency and instability of the estimators of σ2i . In this situation, Jiang

and Nguyen (2012) established the surprising result that the MLEs of β and

λ are consistent, which lead to the consistency of the EB estimator ξ̂Bi (β̂, λ̂).
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However, there are no consistent estimators of the σ2i . This problem can be fixed

if instead the RHNER model is used. In fact, the parameters we need to estimate

in the RHNER model are β, λ, τ1, and τ2, and we can provide their consistent

estimators.

2.2. A motivation from estimation of dispersions

We give more detailed motivation for considering random dispersions in the

HNER model. We first treat the simple case that β = 0 and n1 = · · · = nm = n

in (1.1). Let σ2 = (σ21, . . . , σ
2
m)T and γ = 1/(1+nλ). It follows from the equation

(4) of Jiang and Nguyen (2012) that the log-likelihood is then

LH(γ,σ2) =
1

2

m∑
i=1

[
−n log σ2i + log γ −

{
∑n

j=1(yij − yi)
2 + nγy2i }

σ2i

]
+K,

where K is a generic constant. Differentiating LH(γ,σ2) with respect to γ and

the σ2i ’s, we see that the maximum likelihood (ML) estimators, γ̂H and σ̂2(H)i, of

γ and the σ2i ’s are solutions of the equations

γ̂H =
m∑m

i=1 ny
2
i /σ̂

2
(H)i

,

σ̂2(H)i =
1

n

{ n∑
j=1

(yij − yi)
2 + nγ̂Hy2i

}
.

(2.4)

Here σ̂2(H)i is not consistent when m→ ∞, but n is bounded. Thus, we need

to modify σ̂2(H)i when n is small. For example, we look at the empirical Bayes

estimator of ξi. In the simple case we treat here, we have ξi = vi, and the EB

estimator of ξi is

ξ̂Hi = (1− γ̂H)yi =
{
1− m∑m

i=1 ny
2
i /σ̂

2
(H)i

}
yi,

from (2.4). This is a natural shrinkage estimator, and it is reasonable for large m

since γ̂H is consistent. When m is not large, however, there is a concern about

the precision of the estimator σ̂2(H)i. Since
∑n

j=1(yij − yi)
2 ≤ nσ̂2(H)i ≤

∑n
j=1 y

2
ij ,

it is seen that
y2i∑n

j=1 y
2
ij/n

≤ y2i
σ̂2(H)i

≤ y2i
Ti/n

,

for Ti =
∑n

j=1(yij − yi)2. When n is small, clearly y2i /σ̂
2
(H)i has a large variation,

which leads to the instability of the empirical Bayes estimator ξ̂Hi . Although

the simple case of equal replications n is considered here, in the survey data we
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need to handle involve small sample sizes ni’s for some small-areas, and resulting

estimators of σ̂2(H)i’s lack stability owing to small degrees of freedom.

To overcome this drawback, we need to stabilize σ̂2(H)i via shrinkage. The

random dispersion model is helpful for this purpose. Since Tiηi = Ti/σ
2
i ∼ χ2

n−1,

from the joint distribution of (Ti, ηi), the posterior mean of σ2i given Ti is

E[σ2i |Ti] =
Ti + τ2

n− 1 + τ1
. (2.5)

When τ̂1 and τ̂2 are estimators of τ1 and τ2 based on the statistics T1, . . . , Tm, it

is reasonable to estimate σ2i by

σ̂2(RH)i =
Ti + τ̂2

n− 1 + τ̂1
.

Clearly, σ̂2(RH)i is more stable than the unbiased estimator Ti/(n− 1) when n is

small. Replacing σ̂2(H)i in ξ̂
H
i with a shrinkage estimator like σ̂2(RH)i, one can get

the more stabilized empirical Bayes estimator

ξ̂RH
i =

{
1− m∑m

i=1 ny
2
i /σ̂

2
(RH)i

}
yi.

Another need for a consistent estimator of σ2i appears in evaluation of un-

certainty of the empirical Bayes estimator ξ̂Hi . When the mean squared error is

used for measuring the uncertainty, the MSE of ξ̂Hi , denoted by E[(ξ̂Hi − ξi)
2]

converges to

E[Var(vi|yi)] =
σ2i λ

(1 + nλ)
=
σ2i (1− γ)

n

for large m. In order to estimate the uncertainty of ξ̂Hi , we want to estimate the

leading term of the MSE consistently. Since σ̂2(H)i is not consistent, however, we

cannot provide any consistent estimator of the leading term in the MSE of ξ̂Hi in

the HNER model. This drawback is overcome in the RHNER model.

3. Predictors and Asymptotic Properties of MSE

3.1. MLE of parameters and the empirical Bayes estimator

Consider the RHNER model given in (2.2). When λ and β are known, the

best predictor or the Bayes estimator of ξi = cTi β + vi is given by

ξ̂Bi = ξ̂Bi (β, λ) = E[ξi|yi]

= cTi β + (1− γi)(yi − xT
i β),

(3.1)
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where γi = γi(λ) = 1/(niλ+1). In our case since λ and β are unknown, we need

to estimate them from the marginal distributions of the yi. We provide maximum

likelihood (ML) estimators for unknown parameters ω = (βT , λ, τ1, τ2)
T .

The marginal likelihood of y = (y1, . . . ,ym)T and η = (η1, . . . , ηm)T after

integrating out the full joint likelihood with respect to vi’s can be expressed as

f(y,η|ω) =
m∏
i=1

{
η
ni/2
i

(2π)ni/2
√
niλ+ 1

exp
[
−ηi

2

{ ni∑
j=1

(yij − xT
ijβ)

2

− n2iλ

niλ+ 1
(yi − xT

i β)
2
}]
π(ηi|τ1, τ2)

}
=

m∏
i=1

{τ τ1/22 η
(ni+τ1)/2−1
i 2−(ni+τ1)/2

πni/2Γ(τ1/2)
√
niλ+ 1

exp
[
−ηi

2
{Qi(yi,β, λ) + τ2}

]}
, (3.2)

where

Qi =Qi(yi,β, λ) =

ni∑
j=1

(yij − xT
ijβ)

2 − n2iλ

niλ+ 1
(yi − xT

i β)
2

=

ni∑
j=1

{(yij − yi)− (xij − xi)
Tβ}2 + niγi(λ)(yi − xT

i β)
2, (3.3)

where γi = γi(λ) = 1/(niλ + 1). Integrating out the joint density f(y,η|ω) in

(3.2) with respect to η yields the marginal likelihood of y given by

f(y|ω) =
m∏
i=1

{ τ
τ1/2
2 Γ((ni + τ1)/2)

πni/2
√
niλ+ 1Γ(τ1/2)

{Qi(yi,β, λ) + τ2}−(ni+τ1)/2
}
. (3.4)

Let L = L(β, λ, τ1, τ2) = log f(y|ω). Then,

2L =−
m∑
i=1

ni log π +mτ1 log τ2 + 2

m∑
i=1

log{Γ(ni + τ1
2

)} − 2m log{Γ(τ1
2
)}

−
m∑
i=1

log(niλ+ 1)−
m∑
i=1

(ni + τ1) log(Qi + τ2).

Let Lβ, Lλ, Lτ1 and Lτ2 be the derivatives of L with respect to β, λ, τ1, and τ2.

Then,

2Lβ = −
m∑
i=1

ni + τ1
Qi + τ2

∂Qi

∂β
,

2Lλ = −
m∑
i=1

ni + τ1
Qi + τ2

∂Qi

∂λ
−

m∑
i=1

niγi,

(3.5)

2Lτ1 =

m∑
i=1

log
( τ2
Qi + τ2

)
+

m∑
i=1

{
ψ(
ni + τ1

2
)− ψ(

τ1
2
)
}
,
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2Lτ2 =m
τ1
τ2

−
m∑
i=1

ni + τ1
Qi + τ2

,

where ψ(a) is the digamma function defined by ψ(a) = Γ′(a)/Γ(a), ∂Qi/∂λ =

−n2i γ2i (yi − xT
i β)

2 for ∂γi/∂λ = −niγ2i , and
∂Qi

∂β
= −2

ni∑
j=1

{(yij − yi)− (xij − xi)
Tβ}(xij − xi)− 2niγi(yi − xT

i β)xi. (3.6)

The MLEs of β, λ, τ1, and τ2 are solutions of the simultaneous equations

Lβ = 0, Lλ = 0, Lτ1 = 0 and Lτ2 = 0. The MLEs are denoted by β̂, λ̂, τ̂1, and

τ̂2. The empirical Bayes estimator of ξi = cTi β + vi is provided by

ξ̂EB
i = ξ̂Bi (β̂, λ̂) = cTi β̂ + (1− γ̂i)(yi − xT

i β̂), (3.7)

where γ̂i = γi(λ̂) = 1/(niλ̂+ 1).

3.2. Asymptotic properties of MLE

To evaluate the mean squared errors of the empirical Bayes estimator ξ̂EB
i

asymptotically, we need to derive asymptotic variances and covariances of the

MLE when m tends to infinity. To derive asymptotic properties of the MLE, we

assume the following.

(A1) The sample sizes ni’s are bounded below and above as n ≤ ni ≤ n for

constants n and n. The elements of X are uniformly bounded, XTX is positive

definite, and XTX/m converges to a positive definite matrix.

Since asymptotic variances and covariances of MLE’s of β, λ, τ1, and τ2 are

derived from the Fisher information matrix, we begin with the derivation of Iβ,θ,

the Fisher information matrix of β and θ = (λ, τ1, τ2)
T . The Fisher information

matrix and the inverse of θ = (λ, τ1, τ2)
T are denoted by

Iθθ =

 Iλλ Iλτ1 Iλτ2
Iλτ1 Iτ1τ1 Iτ1τ2
Iλτ2 Iτ1τ2 Iτ2τ2

 and I−1
θθ =

 Iλλ Iλτ1 Iλτ2

Iλτ1 Iτ1τ1 Iτ1τ2

Iλτ2 Iτ1τ2 Iτ2τ2

 .

Then, exact expression of the Fisher information matrix is given in the following

theorem. The proof is deferred to the Appendix.

Theorem 1. The Fisher information of β is given by

Iββ =
τ1
τ2

m∑
i=1

ni + τ1
ni + τ1 + 2

{ ni∑
j=1

(xij − xi)(xij − xi)
T + niγixix

T
i

}
.

Also, Iβλ = 0, Iβτ1 = 0, and Iβτ2 = 0. The elements of 2Iθθ are
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2Iλλ =

m∑
i=1

(ni + τ1 − 1)n2i γ
2
i

ni + τ1 + 2
, 2Iλτ1 = −

m∑
i=1

niγi
ni + τ1

,

2Iλτ2 =
τ1
τ2

m∑
i=1

niγi
ni + τ1 + 2

, 2Iτ1τ1 =
1

2

m∑
i=1

{ψ′(
τ1
2
)− ψ′(

ni + τ1
2

)},

2Iτ1τ2 =− 1

τ2

m∑
i=1

ni
ni + τ1

, 2Iτ2τ2 =
τ1
τ22

m∑
i=1

ni
ni + τ1 + 2

.

It follows from Theorem 1 and assumption (A1) that m−1Iββ = O(1) and

m−1Iθθ = O(1), and the limiting values of these quantities are away from zero.

The proof of the following is given in the Appendix.

Theorem 2. Assume (A1). Then, for θ̂ = (λ̂, τ̂1, τ̂2)
T ,

E[(β̂ − β)(β̂ − β)T |yi] =(Iββ)
−1 +Op(m

−3/2),

E[(θ̂ − θ)(θ̂ − θ)T |yi] =(Iθθ)
−1 +Op(m

−3/2),

E[(β̂ − β)(θ̂ − θ)T |yi] =Op(m
−3/2).

(3.8)

Thus β̂ − β|yi = Op(m
−1/2) and θ̂ − θ|yi = Op(m

−1/2). The conditional biases

satisfy E[β̂ − β|yi] = O(m−1) and E[θ̂ − θ|yi] = O(m−1).

4. Measures of Uncertainty of the Empirical Bayes Estimator

4.1. Second-order approximations of the conditional and unconditional

MSEs

We derive a second-order approximation of the MSE of the empirical Bayes

(EB) estimator and its second-order unbiased estimator. We want to predict ξi =

cTi β + vi with EB ξ̂EB
i = ξ̂Bi (β̂, λ̂) = cTi β̂ + v̂i(β̂, λ̂). For measuring uncertainty

of EB, we use the conditional and unconditional mean squared errors (MSE)

defined by

cMSE(ω; ξ̂EB
i |yi) =E[(ξ̂EB

i − ξi)
2|yi],

MSE(ω; ξ̂EB
i ) =E[(ξ̂EB

i − ξi)
2].

The conditional and unconditional MSEs can be decomposed as

cMSE(ω; ξ̂EB
i |yi) =E[{ξi − ξ̂Bi (β, λ)}2|yi] + E[{ξ̂Bi (β̂, λ̂)− ξ̂Bi (β, λ)}2|yi]

=gc1(ω|yi) + gc2(ω|yi), (say) (4.1)

MSE(ω; ξ̂EB
i ) =E[{ξi − ξ̂Bi (β, λ)}2] + E[{ξ̂Bi (β̂, λ̂)− ξ̂Bi (β, λ)}2]

=g1(ω) + g2(ω). (say) (4.2)
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The first term gc1(ω|yi) is the posterior variance of ξi given yi,

gc1(ω|yi) = V ar(ξi|yi) =
λ

niλ+ 1
E[η−1

i |yi] =
λ

niλ+ 1

Qi + τ2
ni + τ1 − 2

, (4.3)

where Qi is given in (3.3). Similarly, g1(ω) is given by

g1(ω) = E[V ar(ξi|yi)] =
λ

niλ+ 1
E[η−1

i ] =
λ

niλ+ 1

τ2
τ1 − 2

. (4.4)

Noting that gc1(ω|yi) = Op(1), g
c
2(ω|yi) = Op(m

−1), g1(ω) = O(1), and g2(ω) =

O(m−1), we can see that the difference between the cMSE and MSE appears

in the leading or the first-order terms. This is an interesting fact, because the

difference is small and appears in the second-order terms in the classical normal

theory mixed models, as demonstrated by Booth and Hobert (1998). They also

showed that the difference is significant and appears in the first-order terms for

distributions far from normality. This is consistent in that the random dispersion

model (2.2) is not a normal distribution, but close to a t-distribution.

In the case of the HNER model, V ar(ξi|yi) is identical to E[V ar(ξi|yi)] since

yi has a normal distribution, and is given by σ2i λ/(niλ + 1). Thus, we cannot

estimate the first-order term σ2i λ/(niλ + 1) consistently in the HNER model,

since ni is bounded. However, we can estimate gc1(ω|yi) and g1(ω) consistently

in the RHNER model (2.2) since λ, τ1 and τ2 are estimated consistently.

Theorem 3. Under (A1), the conditional MSE of ξ̂EB
i is approximated as

cMSE(λ, τ ; ξ̂EB
i |yi) =

1− γi
ni

Qi + τ2
ni + τ1 − 2

+ γ2i c
T
i

(
Iββ

)−1
ci

+ n2i γ
4
i (yi − xT

i β)
2Iλλ +Op(m

−3/2), (4.5)

for γi = 1/(niλ+ 1), and the unconditional MSE is approximated as

MSE(λ, τ ; ξ̂EB
i ) =

1− γi
ni

τ2
τ1 − 2

+ γ2i c
T
i

(
Iββ

)−1
ci

+ niγ
3
i

τ2
τ1 − 2

Iλλ +O(m−3/2). (4.6)

4.2. Second-order unbiased estimators of the conditional and uncon-

ditional MSEs

We derive second-order unbiased estimators of the unconditional and con-

ditional MSEs. Since it is hard to derive second-order biases of the MLEs of

β, λ, τ1, and τ2, we cannot provide analytical second-order unbiased estima-

tors of the MSEs. Instead, we use parametric bootstrap methods, which provide

second-order unbiased MSE estimators.
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We begin by treating the unconditional case. The parametric bootstrap
sample in this case is denoted as

y∗ij = xT
ijβ̂ + v∗i + ε∗ij , i = 1, . . . ,m; j = 1, . . . , ni, (4.7)

where v∗i ’s and ε
∗
ij ’s are conditionally mutually independent given η∗i ’s and

v∗i |η∗i ∼N (0,
λ̂

η∗i
),

ε∗ij |η∗i ∼N (0,
1

η∗i
),

η∗i ∼ ∼ Ga( τ̂1
2
,
2

τ̂2
).

(4.8)

The estimator of the unconditional MSE, MSE(λ, τ ; ξ̂EB
i ), is given by

mse∗(ξ̂EB
i ) = ĝ∗1 + ĝ∗2,

where
ĝ∗1 = 2g1(λ̂, τ̂ )− E∗[g1(λ̂

∗, τ̂ ∗)],

ĝ∗2 = γ̂2i E
∗[{cTi (β̂

∗
− β̂)}2] + niγ̂

3
i

τ̂2
τ̂1 − 2

E∗[(λ̂∗ − λ̂)2].

Then, we can show that mse∗(ξ̂EB
i ) is a second-order unbiased estimator of

MSE(λ, τ ; ξ̂EB
i ). The proof is given in the Appendix.

Proposition 1. If (A1) holds, then E[mse∗(ξ̂EB
i )]=MSE(λ, τ ; ξ̂EB

i )+O(m−3/2).

We next consider the conditional case. Keeping yi = (yi1, . . . , yini)
T fixed,

a bootstrap sample y∗
k = (y∗k1, . . . , y

∗
knk

)T is generated from (4.7) for k ̸= i. As

yi is fixed, we construct the estimators β̂
∗
(i), λ̂

∗
(i), τ̂

∗
1(i), and τ̂

∗
2(i) from yi and the

bootstrap sample
y∗
1, . . . ,y

∗
i−1,yi,y

∗
i+1, . . . ,y

∗
m (4.9)

with the same technique as used to obtain the estimators β̂, λ̂, τ̂1, and τ̂2. Let
E∗ [·|yi] be the expectation with regard to the bootstrap sample (4.9). The
conditional MSE is given by cMSE(ω; ξ̂EB

i |yi) = gc1(ω|yi) + gc2(ω|yi), where
gc1(ω|yi) = E[{ξi − ξ̂Bi (β, λ)}2|yi] and gc2(ω|yi) = E[{ξ̂Bi (β̂, λ̂) − ξ̂Bi (β, λ)}2|yi]
from (4.1). Since gc1(ω|yi) = n−1

i (1− γi(λ))(Qi(yi,β, λ) + τ2)/(ni + τ1 − 2) from
(4.3), a second-order unbiased estimator of gc1(ω|yi) is given by

ĝc∗1 = 2gc1(β̂, λ̂, τ̂ |yi)− E∗

[
gc1(β̂

∗
(i), λ̂

∗
(i), τ̂

∗
(i)|yi)|yi

]
.

Then, it can be verified that E[ĝc∗1 |yi] = gc1(ω|yi) +Op(m
−3/2). Also, gc2(ω|yi) is

estimated via parametric bootstrap as

ĝc∗2 = E∗[{ξ̂B∗
i (β̂

∗
(i), λ̂

∗
(i))− ξ̂B∗

i (β̂, λ̂)}2
∣∣yi

]
,
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for ξ̂B∗
i (β, λ) = xT

i β + (1− γi)(y
∗
i − xT

i β). Thus,

cmse∗(ξ̂EB
i |yi) = ĝc∗1 + ĝc∗2 , (4.10)

which is a second-order unbiased estimator of cMSE(ω; ξ̂EB
i |yi). The proof is

given in the Appendix.

Theorem 4. If (A1) holds, then E[cmse∗(ξ̂EB
i |yi)|yi] = cMSE(ω; ξ̂EB

i |yi) +

Op(m
−3/2).

5. Simulation and Data Analysis

In this section, we investigate performances of the procedures suggested in

the previous sections through simulation and data analysis.

5.1. Simulation study

Here we investigate finite sample performances of the ML estimators in the

RHNER model and the second-order unbiased estimators for the conditional and

unconditional MSEs by Monte Carlo simulation.

The ML estimators β̂ and λ̂ as given in (3.5) based on the RHNER model,

as well as the estimators given by Jiang and Nguyen (2012) in HNER, are con-

sistent for large m. As discussed in Section 2.2, however, it is expected that

the estimators (3.5) still perform well for smaller m. Thus, for m = 10, 20 and

30, we examined finite sample performances of the estimators (3.5) in RHNER

and compared them with the estimators in HNER in light of the mean squared

errors (MSE). To this end, we conducted simulation experiments via the sim-

ple regression model given by yij = β0 + β1xij + vi + εij for j = 1, 2, 3 and

i = 1, . . . ,m, where the xij ’s were generated from N (0, 1), and these values were

fixed throughout the simulation runs. In this simulation, the true values of β

and λ were β0 = β1 = λ = 1. For (τ1, τ2), we treated two cases: (Case I)

(τ1, τ2) = (8, 4) and (Case II) (τ1, τ2) = (3, 1/4). The values of (mean, variance)

of ηi were (2, 1) for Case I and (12, 96) for Case II. The variance of σ2i does not

exist for Case II from the note below (2.1). Thus, generated values of ηi or σ
2
i in

Case II are more variable than those in Case I.

We numerically computed values of MSE of the estimators for (β0, β1, λ)

with

MSE =
1

K

K∑
i=1

(estimate− true parameter)2

for K = 1, 000. The square roots of the MSEs of the ML estimator in RHNER

are reported in Table 1, where percentages of improvement over the estimators

given by Jiang and Nguyen (2012) in HNER are given in the parentheses. It is
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Table 1. Square roots of mean squared errors for the ML estimators of
(β0, β1, λ, τ1, τ2) in the RHNER model for (Case I) (τ1, τ2) = (8, 4) and (Case
II) (τ1, τ2) = (3, 1/4). (Values for β0 and β1 are multiplied by 100. Values
in the parentheses denote percentages of improvement over the estimators
in the HNER model.)

Case Size β0 β1 λ τ1 τ2
m = 10 29.7 (50.1) 14.8 (57.6) 9.3 (18.8) 69.0 43.0

I m = 20 21.0 (59.5) 13.0 (61.7) 6.4 (21.9) 55.3 33.9
m = 30 16.2 (63.6) 9.3 (63.6) 5.0 (18.8) 45.2 27.0
m = 10 12.4 (48.3) 8.3 (40.4) 10.0 (10.1) 49.5 7.0

II m = 20 8.8 (56.4) 5.3 (57.0) 6.6 (18.9) 22.1 2.8
m = 30 7.2 (54.8) 5.0 (56.8) 5.3 (21.4) 13.0 1.7

observed from Table 1 that the square roots of the MSEs decrease as m increases.

This is coincident with the consistency of the estimators in (3.5). Also, the values

given in the parentheses illustrate that the estimators in RHNER improve on the

estimators in HNER; This seems to be due to the property that the estimates

of the variances σ2i are more stable in RHNER than in HNER. Concerning the

difference between Cases I and II, the estimates of τ1 and τ2 affect the estimates

of β0 and β1, but do not affect the estimate for λ very much. The MSEs of τ1
and τ2 seem very large, but the estimators of both conditional and unconditional

MSEs give stable estimates as shown in the subsequent simulation studies.

We next investigated finite sample performance for the estimators of condi-

tional and unconditional MSEs as suggested in Section 4.2. For simplicity, we

treated the model without covariates given as yij = µ + vi + εij , j = 1, . . . , ni,

i = 1, . . . ,m, for m = 20 and 50, where the true values of the unknown pa-

rameters were µ = 0, λ = 1, τ1 = 8, and τ2 = 4; the true values of (τ1, τ2)

correspond to Case I in the previous simulation. For the design of ni, we took

n1+m(k−1)/5, . . . , nmk/5 = k, k = 1, . . . , 5, which means that m areas are divided

into five groups and that areas in each group have the same sample size ni.

Concerning the unconditional MSEs, their true values were calculated via

simulation with R = 5, 000 replications as

MSEi =
λ

niλ+ 1

τ2
τ1 − 2

+
1

R

R∑
r=1

(
ξ̂
EB(r)
i − ξ̂

(B)
i

)2
,

where ξ̂
EB(r)
i and ξ̂

B(r)
i are the EB and Bayes estimators of ξi in the r-th repli-

cation for r = 1, . . . , R. Then, the mean values of the estimator for the MSE

and their Percentage Relative Bias (RB) were calculated based on T = 1, 000

simulation runs with each 100 bootstrap samples, where RB is defined as

RBi = 100
T−1

∑T
t=1 M̂SE

(t)

i −MSEi

MSEi
,
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Table 2. Mean and relative bias of the estimators for the unconditional MSE.

m = 20 m = 50

ni MSE E[M̂SE] RB(%) MSE E[M̂SE] RB(%)
1 0.377 0.346 -8.12 0.350 0.337 -3.71
2 0.249 0.228 -8.73 0.231 0.224 -3.27
3 0.183 0.169 -7.82 0.173 0.167 -3.04
4 0.145 0.134 -7.07 0.137 0.133 -2.86
5 0.119 0.111 -6.33 0.114 0.111 -2.74

for the MSE estimate M̂SEt in the t-th replication for t = 1, . . . , T . For the five

groups, Table 2 reports the average values over each group for the MSE estimates

and their relative biases. It is observed that the MSE estimates M̂SE are close to

the true values of MSE, and that their relative biases are small for both m = 20

and 50. Although Table 3 (p.599) in Jiang and Nguyen (2012) indicates that the

MSE estimates in HNER are not so accurate when m = 20, the MSE estimates

in RHNER seem appropriate even for m = 20. It seems that this comes from

stability of estimators of the variances for each small area in RHNER.

Concerning the conditional MSE, we used the same setup as in the sim-

ulation of the unconditional MSE except that we took ni = 3 for each small

area. Without any loss of generality, it is assumed that values of y1j ’s in the

area 1 are given. As conditioning values for y1j ’s, we used α-quantile points of

the marginal distribution of y1j , denoted by y1j(α), and select the five quantiles

for α = 0.05, 0.25, 0.5, 0.75 and 0.95. In the r-th iteration, from the sample

{y11(α), y12(α), y13(α), y21, y22, y23, . . . , ym1, ym2, ym3}, we calculated the values of

ξ̂
EB(r)
1 and ξ̂

B(r)
1 . Then, the true values of the conditional MSE of ξ̂

EB(r)
1 were

numerically calculated as

cMSE1 =
λ

niλ+ 1

Qi + τ2
ni + τ1 − 2

+
1

R

R∑
r=1

(
ξ̂
EB(r)
1 − ξ̂

(B)
1

)2
.

In the same manner as above, we calculated conditional MSE estimates and

their relative biases based on 1, 000 simulation runs with each 100 bootstrap

samples. The results from the simulations are reported in Table 3, which shows

that values of the conditional MSE are small when the conditioning values are

near the median and large when the conditioning values are near the upper or

lower quantiles. Also, it is observed that the proposed estimator of the conditional

MSE gives appropriate estimates for both m = 20 and 50.

Finally, we compared the three models, RHNER, HNER, and NER models

in terms of bias and MSE. We considered the data generating process.

yij = β0 + β1xij + vi + εij , j = 1, . . . , 5, i = 1, . . . , 30,
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Table 3. Mean and relative bias of the estimators for the conditional MSE.

Areas α y1j(α) cMSE1 E[ĉMSE1] RB(%)
0.05 -2.30 0.269 0.244 -9.4
0.25 -0.72 0.129 0.121 -6.3

m = 20 0.50 0.00 0.112 0.098 -12.5
0.75 0.72 0.122 0.123 0.7
0.95 2.30 0.243 0.239 -1.69
0.05 -2.30 0.236 0.223 -5.4
0.25 -0.72 0.131 0.121 -7.3

m = 50 0.50 0.00 0.112 0.107 -3.8
0.75 0.72 0.124 0.123 -0.2
0.95 2.30 0.224 0.228 2.1

where vi ∼ N (0, λσ2i ) and εij ∼ N (0, σ2i ). We set β0 = β1 = 1, λ = 1, generated

the xij from N (0, 1) and fixed them in the simulation runs. For the setups of σ2i ,

we considered three patterns, where the second case (2) treats the case that the

prior distribution of σ2i is misspecified.

(1) σ−2
i ∼ Ga(τ1/2, τ2/2) with τ1 = 8 and τ2 = 4.

(2) σ2i ∼ U(0, 2).
(3) σ2i = 1 corresponding the case of homogeneous variances.

Based on R = 5, 000 replications in Monte Calro simulation, we calculated

the bias and the MSE of EB estimators for each model as

biasmodel
i =

1

R

R∑
r=1

(ξ̂
model−EB(r)
i −ξ(r)i ), MSEmodel

i =
1

R

R∑
r=1

(ξ̂
model−EB(r)
i −ξ(r)i )2,

where model ∈ {RHNER,HNER,NER} and ξ
(r)
i is the true values of ξi in the

r-th iteration. Then we calculated the ratio of absolute bias and MSE given by

RBRH
i =

|biasRHNER
i |

|biasNER
i |

, RBH
i =

|biasHNER
i |

|biasNER
i |

,

RMSERH
i =

MSERHNER
i

MSENER
i

, RMSEH
i =

MSEHNER
i

MSENER
i

.

The results for the three designs of σ2i are given in Figure 1. From Figure 1,

the RHNER performs better than NER in the heteroscedastic variance cases (1)

and (2) and as good as NER in the case (3) of homoscedastic variance. This

means that the RHNER provides more efficient prediction than the NER in the

heteroscedastic case and the predictor of the RHNER in the homogeneous case

is as efficient as the predictor obtained from NER. Comparing RHNER with
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Figure 1. Ratio of the MSE and the Absolute Bias of RHNER (triangle) and
HNER (circle) for Three Cases (1), (2) and (3) of σ2

i from Left to Right. (The
upper and lower correspond to the MSE and absolute bias, respectively.)

HNER, we see that the RHNER provides better prediction than the HNER in

three cases. It may be due to the fact that the RHNER can provide more stable

estimates of (β0, β1, λ) as evident from Table 1.

5.2. Example

This example, primarily for illustration, uses the RHNER model (2.2)

and data from the posted land price data along the Keikyu train line in 2001.

This train line connects the suburbs in the Kanagawa prefecture to the Tokyo

metropolitan area. Those who live in the suburbs in the Kanagawa prefecture

take this line to work or study in Tokyo everyday. Thus, it is expected that the

land price depends on the distance from Tokyo. The posted land price data are

available for 52 stations on the Keikyu train line, and we consider each station as

a small area, so m = 52. For the i-th station, data of ni land spots are available,

where ni varies around 4 and some areas have only one observation.

To investigate variability within each area, the boxplots are drawn for all ar-

eas. For nine selected areas among areas with more than 4 observations, we draw

the boxplots in Figure 2, which clearly indicate that the posted land price has the
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Figure 2. Boxplots of the Posted Land Price Data for Selected Areas (left)
and the Estimated Density Function of σ2

i = 1/ηi (right).

large within-area variation and the conventional NER model (which assumes ho-

mogeneity of variances) does not seem to be appropriate. Moreover, we apply the

Bartlett test for the homogeneity on the variances, namely H0 : σ21 = · · · = σ2m.

Since the Bartlett test need enough sample sizes ni’s, we here investigate the

hypothesis H0 for areas with ni ≥ 6. The number of areas with ni ≥ 6 is twelve.

Then, the p-value is 0.011, and the hypothesis H0 is significant for significance

level α = 0.05. Thus the heterogeneity assumption seems appropriate in this

example.

For j = 1, . . . , ni, let yij denote the log-transformed value of the posted land

price (Yen/10,000) for the unit meter squares of the j-th spot, Ti is the time to

take from the nearby station i to the Tokyo station around 8:30 in the morning,

Dij is the value of geographical distance from the spot j to the station i, and

FARij denotes the floor-area ratio, or ratio of building volume to lot area of the

spot j. The values of Ti, Dij , and FARij are transformed by logarithm. Since

these data have within-area variability as indicated in Figure 1 (left), we use the

RHNER model

yij = β0 + FARijβ1 + Tiβ2 +Dijβ3 + vi + εij , (5.1)

where vi and εij are mutually independent and distributed as N (0, λσ2i ) and

N (0, σ2i ), and ηi(= 1/σ2i ) is independently distributed as Ga(τ1/2, 2/τ2).
The estimates of the parameters (β0, β1, β2, β3, λ, τ1, τ2) are

β̂0 = 5.69, β̂1 = 0.11, β̂2 = −0.63, β̂3 = −0.08, λ̂ = 0.22, τ̂1 = 2.93, τ̂2 = 0.04.
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It is interesting to point out that the estimated regression function is a decreasing

function of Ti and Dij , which means that the land price yij tends to decrease as

the time from Tokyo or distance from nearest station increases. Since τ̂1 = 2.93

and τ̂2 = 0.04, the distribution of ηi has a large mean about 73 and a heavy

tail. Since the estimated value of τ1 is smaller than 4, from the note below (2.1),

the variance of σ2i does not exist, which corresponds to the observation that

the posted land price data have great variability as indicated by the boxplots

in Figure 2. Figure 2 (right) draws the estimated density function of σ2i = 1/ηi
where ηi has Γ(τ̂1/2, 2/τ̂2), so that the distribution of σ2i has a small mean, but

a heavy tail.

We here estimate the land price of a spot with floor-area ratio 100% and

distance 1,000m from the station i, namely

ξi = β0 + FAR0β1 + Tiβ2 +D0β3 + vi,

for FAR0 = log(100) and D0 = log(1, 000). The predicted values of ξi and

their conditional and unconditional MSE estimates, based on 1,000 bootstrap

samples, are given in Table 4. It is revealed from Table 4 that the estimates

of the unconditional MSE get smaller as ni gets larger. On the other hands,

the estimates of the conditional MSE do not have a similar property because

the conditional MSE is affected by not only ni, but also the observed values as

indicated in Table 3. It is interesting that, in Area 48, the estimated conditional

MSE is 1.99, while the estimated unconditional MSE is 0.14. This gives us a

warning message on the value 2.98 of the EB based on the data from Area 48.

Noting that this area has great variability as shown in Figure 2, it seems that

the conditional MSE can capture the variability of areas. Thus, both estimates

of the unconditional and conditional MSE are worth reporting. For comparison

of RHNER, HNER, and NER, we also report the estimates of MSEs of HNER

and NER in Table 4; The estimates of HNER are not credible values because of

the inconsistency of σ̂2i . It is observed from Table 4 that the MSEs of RHNER

are smaller than that of HNER and NER, which motivate us to utilize RHNER

in the case of heteroscedastic variances.

6. Concluding Remarks

In the context of small-area estimation, homogeneous linear mixed models

like the nested error regression (NER) model have been studied. Jiang and

Nguyen (2012) found that the data given in Battese, Harter and Fuller (1988)

have heterogeneity, and first suggested the heteroscedastic nested error regression

(HNER) model that assumes that the within-area variances are different among

areas. Motivated by the inconsistency of the MLE of the dispersion σ2i , we

propose the random dispersion heteroscedastic nested error regression (RHNER)
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Table 4. Values of EB and Estimates of Unconditional and Conditional MSEs
for Selected fifteen Areas of RHNER and Estimates of MSEs of HNER and
NER. (Estimates of MSE and cMSE are multiplied by 100).

RHNER HNER NER

Area ni EB ĉMSE M̂SE M̂SE M̂SE
1 1 3.92 0.63 0.35 28.2 1.03
5 2 3.75 1.90 0.17 20.2 0.92
7 5 3.61 0.37 0.26 0.62 0.86
8 3 3.62 0.26 0.22 2.42 0.76
13 5 3.49 0.12 0.16 0.86 0.68
14 3 3.45 0.19 0.21 1.27 0.72
17 7 3.36 0.15 0.13 3.96 1.06
25 7 3.28 0.10 0.12 2.01 0.64
26 4 3.31 0.31 0.18 4.16 0.63
32 6 3.12 0.30 0.14 1.67 0.71
33 8 3.08 0.07 0.11 1.79 0.71
34 11 3.14 0.17 0.08 3.30 1.97
35 7 2.92 0.36 0.12 30.7 1.10
48 6 2.98 1.99 0.14 27.6 1.97
49 10 2.80 0.09 0.09 28.2 0.64

model. The consistency of the MLE of the parameters has been shown and

their asymptotic variances and covariances have been derived. For measuring

uncertainty of the EB estimator, the conditional and unconditional MSE’s are

approximated up to the second-order, and their second-order unbiased estimators

are provided based on the parametric bootstrap method. Although the difference

between the cMSE and MSE is quite small and appears in the second-order terms

in classical normal linear mixed models, the difference appears in the leading or

the first-order terms for the RHNER model.

As for a possible future study, it is interesting to construct a confidence

interval of ξi = cTi β + vi. In the RHNER model with random dispersions, it

may be computationally harder to get corresponding confidence intervals. To

this end, it is noted that

vi|(yi, ηi) ∼N
(
v̂i(yi,β, λ),

1− γi
niηi

)
,

ηi|yi ∼Ga
(ni + τ1

2
,

2

Qi(yi,β, λ) + τ2

)
,

(6.1)

where v̂i(yi,β, λ) = (1−γi)(yi−xT
i β) for γi = 1/(niλ+1) and Qi(yi,β, λ) given

in (3.3). Let

Zi =

√
ni√

1− γi
√
Qi + τ2

(vi − v̂i).
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Then the conditional pdf of Zi given yi, denoted by fi(zi|τ1), is given as

fi(z|τ1) =
Γ((ni + τ1 + 1)/2)√
πΓ((ni + τ1)/2)

(1 + z2)−(ni+τ1+1)/2. (6.2)

Define zi,α(τ1) as the solution of the equation∫ ∞

zi,α(τ1)
fi(z|τ1)dz = α.

Hence, P [ξi > Ui(yi,β, λ, τ )] = α, where

Ui(yi,β, λ, τ ) = cTi β + v̂i(yi,β, λ) +

√
1− γi(λ)

√
Qi(yi,β, λ) + τ2√
ni

zi,α(τ1).

Based on these equalities, we need to show that P [ξi > Ui(yi, β̂, λ̂, τ̂ )] = α +

m−1h(β, λ, τ )+O(m−3/2). Since zi,α(τ1) depends on unknown τ1, it is computa-

tionally hard to construct a confidence interval with second-order accuracy. This

issue will be addressed in the future.
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Appendix

We begin with two lemmas that are used for calculating the Fisher informa-

tion in Theorem 1.

Lemma A.1. Conditional on ηi, Qi defined in (3.2) is distributed independently

of (
∑ni

j=1{(yij − yi)− (xij − xi)
Tβ}2/Qi, (yi − xT

i β)
2/Qi).

Proof. Assume that β and λ are fixed. Given the joint pdf in (3.2), conditional

on ηi, Qi is complete sufficient, while (
∑ni

j=1{(yij −yi)− (xij −xi)
Tβ}2/Qi, (yi−

xT
i β)

2/Qi) is ancillary. We apply Basu’s theorem to get Lemma A.1.

Lemma A.2. Let Ri = Qi/(Qi + τ2). After integrating out ηi, Ri ∼ Beta(ni/2,

τ1/2).
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Proof. Here Qi|ηi ∼ η−1
i χ2

ni
and ηi ∼ Ga(τ1/2, 2/τ2). Integrating out ηi, the

marginal pdf of Qi is

f(Qi) =
Q

ni/2−1
i τ

τ1/2
2

(Qi + τ2)(ni+τ1)/2

Γ((ni + τ1)/2)

Γ(ni/2)Γ(τ1/2)

=
( Qi

Qi + τ2

)ni/2−1( τ2
Qi + τ2

)τ1/2−1 τ2
(Qi + τ2)2

1

B(ni/2, τ1/2)
.

Then, Ri has pdf f(Ri) = R
ni/2−1
i (1 − Ri)

τ1/2−1/B(ni/2, τ1/2), which proves

Lemma A.2.

Proof of Theorem 1. It follows as a consequence of Lemma A.2 that

E
[ 1

Qi + τ2

]
=τ−1

2 E[1−Ri] =
τ1
τ2

1

ni + τ1
, (A.1)

E
[ Qi

(Qi + τ2)2

]
=τ−1

2 E[Ri(1−Ri)] =
τ1
τ2

ni
(ni + τ1)(ni + τ1 + 2)

, (A.2)

E
[ Q2

i

(Qi + τ2)2

]
=E[R2

i ] =
ni(ni + 2)

(ni + τ1)(ni + τ1 + 2)
. (A.3)

We use (A.1), (A.2) and (A.3) repeatedly in the following calculations.

Begin with the second derivative Lββ, which can be written from (3.5) as

2Lββ = −
m∑
i=1

ni + τ1
Qi + τ2

∂2Qi

∂β∂βT
+

m∑
i=1

ni + τ1
(Qi + τ2)2

∂Qi

∂β

∂Qi

∂βT
. (A.4)

But,

∂2Qi

∂β∂βT
= 2

ni∑
j=1

(xij − xi)(xij − xi)
T + 2niγixix

T
i , (A.5)

for γi = 1/(niλ+ 1). Now

∂Qi

∂β
=− 2

ni∑
j=1

{(yij − yi)− (xij − xi)
Tβ}(xij − xi)− 2niγi(yi − xT

i β)xi

=− 2

ni∑
j=1

(eij − ei)(xij − xi)− 2niγi(vi + ei)xi,

where eij = yij−xT
ijβ and ei = n−1

i

∑ni
j=1 eij . One can also writeQi =

∑ni
j=1(eij−

ei)
2 + niγi(vi + ei)

2. Once again, conditional on ηi, Q
−1
i (∂Qi/∂β)(∂Qi/∂β

T ) is

ancillary and is thus independent of Qi. This leads to

E
[
(Qi + τ2)

−2∂Qi

∂β

∂Qi

∂βT

∣∣∣ηi] =E[ Qi

(Qi + τ2)2
Q−1

i

∂Qi

∂β

∂Qi

∂βT

∣∣∣ηi]
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=E
[ Qi

(Qi + τ2)2

∣∣∣ηi]E[
Q−1

i

∂Qi

∂β

∂Qi

∂βT

∣∣∣ηi].
Similarly,

E
[∂Qi

∂β

∂Qi

∂βT

∣∣∣ηi] = E[Qi|ηi]E
[
Q−1

i

∂Qi

∂β

∂Qi

∂βT

∣∣∣ηi],
so that

E
[
Q−1

i

∂Qi

∂β

∂Qi

∂βT

∣∣∣ηi] = E
[∂Qi

∂β

∂Qi

∂βT

∣∣∣ηi]/E[Qi|ηi]. (A.6)

But, using the fact that (ei1, . . . , eini , vi) and −(ei1, . . . , eini , vi) have the same

distribution and (ei1 − ei, . . . , eini − ei) is distributed independently of (vi, ei)

conditional on ηi, it follows that

E
[∂Qi

∂β

∂Qi

∂βT

∣∣∣ηi] =4E
[ ni∑
j=1

e2ij(xij − xi)(xij − xi)
T + n2i γ

2
i (vi + ei)

2xix
T
i

]
=4n−1

i

[ ni∑
j=1

(xij − xi)(xij − xi)
T + niγixix

T
i

]
. (A.7)

Combining (A.1), (A.2), and (A.4)−(A.7), one gets

Iββ = E[−Lββ] =
τ1
τ2

m∑
i=1

ni + τ1
ni + τ1 + 2

{ ni∑
j=1

(xij − xi)(xij − xi)
T + niγixix

T
i

}
.

Next, observe that

2Lβλ =−
m∑
i=1

ni + τ1
Qi + τ2

∂2Qi

∂β∂λ
+

m∑
i=1

ni + τ1
(Qi + τ2)2

∂Qi

∂β

∂Qi

∂λ

=− 2

m∑
i=1

n2i γ
2
i

ni + τ1
Qi + τ2

(yi − xT
i β)xi

+ 2
m∑
i=1

n2i γ
2
i

ni + τ1
(Qi + τ2)2

{ ni∑
j=1

[
yij − yi − (xij − xi)

Tβ
]
(xij − xi)

+ niγi(yi − xT
i β)xi

}
(yi − xT

i β)
2

=− 2

m∑
i=1

n2i γ
2
i

ni + τ1
Qi + τ2

(vi + ei)xi

+ 2
m∑
i=1

n2i γ
2
i

ni + τ1
(Qi + τ2)2

{ ni∑
j=1

(eij − ei)(xij − xi)

+ niγi(vi + ei)xi

}
(vi + ei)

2.
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Arguing as before, (ei1, . . . , eini , vi) and−(ei1, . . . , eini , vi) have the same distribu-

tion and (ei1−ei, . . . , eini −ei) is distributed independently of (vi, ei) conditional

on ηi, so Iβλ = −E[Lβλ] = 0. Similarly,

2Lβτ1 =−
m∑
i=1

(Qi + τ2)
−1∂Qi

∂β

=2

m∑
i=1

1

Qi + τ2

{ ni∑
j=1

[
yij−yi−(xij−xi)

Tβ
]
(xij−xi) + niγi(yi−xT

i β)xi

}
,

so that Iβτ1 = −E[Lβτ1 ] = 0. Moreover,

2Lβτ2 =

m∑
i=1

(ni + τ1)(Qi + τ2)
−2∂Qi

∂β

=2

m∑
i=1

ni+τ1
(Qi+τ2)2

{ ni∑
j=1

[
yij−yi−(xij−xi)

Tβ
]
(xij−xi)+niγi(yi−xT

i β)xi

}
,

so that Iβτ2 = −E[Lβτ2 ] = 0.

Finally, we evaluate the second derivatives in Lθθ for θ = (λ, τ1, τ2)
T . First,

we compute

2Lλλ =−
m∑
i=1

ni + τ1
Qi + τ2

∂2Qi

∂λ2
+

m∑
i=1

ni + τ1
(Qi + τ2)2

(∂Qi

∂λ

)2
+

m∑
i=1

n2i γ
2
i

=− 2
m∑
i=1

(ni + τ1)Qi

Qi + τ2
n3i γ

3
i

(yi − xT
i β)

2

Qi

+

m∑
i=1

(ni + τ1)Q
2
i

(Qi + τ2)2
n4i γ

4
i

(yi − xT
i β)

4

Q2
i

+

m∑
i=1

n2i γ
2
i . (A.8)

Observing that (yi − xT
i β)

2niγi/Qi ∼ Beta(1/2, ni/2) and is distributed inde-

pendently of Qi, one gets

E
[
niγi

(yi − xT
i β)

2

Qi

]
=

1

ni
, (A.9)

E
[
(niγi)

2 (yi − xT
i β)

4

Q2
i

]
=

3

ni(ni + 2)
. (A.10)

Hence, from (A.1), (A.3), and (A.8)−(A.10),

Iλλ = E[−Lλλ]

=

m∑
i=1

E
[(ni + τ1)Qi

Qi + τ2

]
n2i γ

2
i n

−1
i − 1

2

m∑
i=1

E
[(ni + τ1)Q

2
i

(Qi + τ2)2

]
n2i γ

2
i

3

ni(ni + 2)
−

m∑
i=1

n2i γ
2
i
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=
1

2

[ m∑
i=1

n2i γ
2
i − 3

m∑
i=1

n2i γ
2
i

ni + τ1 + 2

]
=
1

2

m∑
i=1

ni + τ1 − 1

ni + τ1 + 2
n2i γ

2
i .

Next, 2Lλτ1 = −
∑m

i=1(Qi + τ2)
−1∂Qi/∂λ =

∑m
i=1{Qi/(Qi + τ2)}niγi{niγi(y −

xT
i β)

2/Qi}, which yields

Iλτ1 = E[−Lλτ1 ] = −1

2

m∑
i=1

{ ni
ni + τ1

}niγin−1
i = −1

2

m∑
i=1

niγi
(ni + τ1)

.

Since 2Lλτ2 =
∑m

i=1(ni + τ1)(Qi + τ2)
−2∂Qi/∂λ = −

∑m
i=1{(ni + τ1)Qi/(Qi +

τ2)
2}niγi{niγi(y − xT

i β)
2/Qi}, one gets

Iλτ2 = E[−Lλτ2 ] =
1

2

τ1
τ2

m∑
i=1

niγi
ni + τ1 + 2

.

We observe that 2Lτ1τ1 = (1/2)
∑m

i=1{ψ′((ni+τ1)/2)−ψ′(τ1/2)}, 2Lτ1τ2 = m/τ2−∑m
i=1(Qi + τ2)

−1 and 2Lτ2τ2 = −mτ1/τ22 +
∑m

i=1(ni + τ1)(Qi + τ2)
−2. Then,

Iτ1τ1 = E[−Lτ1τ1 ] =
1

4

m∑
i=1

{
ψ′(

τ1
2
)− ψ′(

ni + τ1
2

)
}
.

Using Lemma A.2, one gets Iτ1τ2 = E[−Lτ1τ2 ] = −(2τ2)
−1

∑m
i=1 ni/(ni + τ1) and

Iτ2τ2 = E[−Lτ2τ2] = τ1(2τ
2
2 )

−1
∑m

i=1 ni/(ni + τ1 + 2).

Proof of Theorem 2. Let ω = (ω1, . . . , ωp+3)
T = (βT , λ, τT )T . The log

likelihood of (y1, . . . ,ym), denoted by ℓ(ω), is given by ℓ(ω) =
∑m

j=1 ℓ(ω;yj),

where ℓ(ω;yj) = log f(yj |ω) is the log likelihood function of yj . Let ℓω(ω) =

(∂/∂ω)ℓ(ω) and ℓωω(ω) = (∂2/∂ω∂ωT )ℓ(ω). The (a, b)-element of ℓωω(ω) is

written as
(
ℓωω(ω)

)
ab
=
∑m

j=1 ℓab(ω;yj), where ℓab(ω;yj)=(∂2/∂ωa∂ωb)ℓ(ω;yj).

Since y1, . . . ,ym are mutually independent, the law of large numbers im-

plies that −m−1
∑m

j=1 ℓab(ω;yj) given yi converges to the limit of m−1
∑m

j=1

E[−ℓab(ω;yj)|yi]. Let Iab(ω) = m−1
∑m

j=1E[−ℓab(ω;yj)]. Now

Iab(ω)−m−1
m∑
j=1

E[−ℓab(ω;yj)|yi] =
1

m

{
E[−ℓab(ω;yi)] + ℓab(ω;yi)

}
,

is of order Op(m
−1). This shows that given yi, −m−1ℓωω(ω)|yi = m−1Iωω(ω)+

Op(m
−1/2), where Iωω(ω) = −E[ℓωω(ω)]. Unconditionally, −m−1ℓωω(ω) =

m−1Iωω(ω) + Op(m
−1/2). Since limm→∞m−1Iωω(ω) is positive definite, it
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follows from Mardia and Marshall (1984) or Sweeting (1980) that ω̂ − ω =

Op(m
−1/2) for the MLE ω̂ of ω.

Using a Taylor series expansion and the above approximation, we can see

that

0 = ℓω(ω̂) =ℓω(ω) + ℓωω(ω)(ω̂ − ω) +Op(1),

=ℓω(ω)− Iωω(ω)(ω̂ − ω) +Op(1).

This implies that

√
m(ω̂ − ω) =

{
m−1Iωω(ω)

}−1
m−1/2ℓω(ω) +Op(m

−1/2). (A.11)

Hence, it follows that

E[(ω̂ − ω)(ω̂ − ω)T |yi]

=
{
m−1Iωω(ω)

}−1 1

m2
E[ℓω(ω)

{
ℓω(ω)

}T |yi]
{
m−1Iωω(ω)

}−1
+Op(m

−3/2).

Since E[ℓω(ω;yj)] = 0 and ℓω(ω) =
∑m

j=1 ℓω(ω;yj), it is seen that

1

m2
E[ℓω(ω)

{
ℓω(ω)

}T |yi]

=
1

m2

m∑
j=1,j ̸=i

E[
{
ℓω(ω;yj)

}{
ℓω(ω;yj)

}T |yi] +
1

m

{
ℓω(ω;yi)

}{
ℓω(ω;yi)

}T

=
1

m2

m∑
j=1

E[
{
ℓω(ω;yj)

}{
ℓω(ω;yj)

}T
]

+
1

m2

{{
ℓω(ω;yi)

}{
ℓω(ω;yi)

}T − E[
{
ℓω(ω;yi)

}{
ℓω(ω;yi)

}T
]
}
,

which implies that

1

m2
E[ℓω(ω)

{
ℓω(ω)

}T |yi] =
1

m2
Iωω(ω) +Op(m

−2).

Thus, one gets E[(ω̂ − ω)(ω̂ − ω)T |yi] = Iωω(ω)−1 + Op(m
−1/2), which proves

(3.8) in Theorem 2. This implies that conditionally, ω̂ − ω|yi = Op(m
−1/2).

Concerning the bias of the MLE ω̂, from (A.11), it follows that

E[ω̂ − ω|yi] =
{
m−1Iωω(ω)

}−1
m−1E[ℓω(ω)|yi] +Op(m

−1).

It is here noted that E[ℓω(ω)|yi] =
∑m

j=1E[ℓω(ω;yj)|yi] =
∑m

j=1E[ℓω(ω;yj)]+

{ℓω(ω;yi) − E[ℓω(ω;yi)]} = 0 + Op(1), so that E[ω̂ − ω|yi] = Op(m
−1). This

proves the second part of Theorem 2, and now the proof of Theorem 2 is complete.
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Proof of Theorem 3. We evaluate the second terms gc2(ω|yi) and g2(ω). Since

ξ̂EB
i − ξ̂Bi is decomposed as

ξ̂Bi (β̂, λ̂)− ξ̂Bi (β, λ) =
1

niλ̂+ 1
cTi (β̂ − β) +

( niλ̂

niλ̂+ 1
− niλ

niλ+ 1

)
(yi − xT

i β)

=
1

niλ̂+ 1
cTi (β̂ − β) +

ni(λ̂− λ)

(niλ+ 1)(niλ̂+ 1)
(yi − xT

i β),

gc2(ω|yi) can be expressed as

gc2(ω|yi) =E
[ 1

(niλ̂+ 1)2
{cTi (β̂ − β)}2

∣∣∣yi

]
+

( ni
niλ+ 1

)2
E
[( λ̂− λ

niλ̂+ 1

)2
(yi − xT

i β)
2
∣∣∣yi

]
+ 2

ni
niλ+ 1

E
[ λ̂− λ

(niλ̂+ 1)2
cTi (β̂ − β)(yi − xT

i β)
∣∣∣yi

]
=

1

(niλ+ 1)2
E[{cTi (β̂ − β)}2|yi] +

n2i
(niλ+ 1)4

E[(λ̂− λ)2|yi](yi − xT
i β)

2

+ 2
ni

(niλ+ 1)3
E[(λ̂− λ)cTi (β̂ − β)|yi](yi − xT

i β) +Op(m
−3/2).

It follows from Theorem 2 that E[{cTi (β̂−β)}2|yi]=E[{cTi (β̂−β)}2]+Op(m
−3/2)

= cTi (Iββ)
−1ci+Op(m

−3/2), E[(λ̂ − λ)2|yi] =E[(λ̂ − λ)2]+Op(m
−3/2) = Iλλ +

Op(m
−3/2), and E[(λ̂− λ)cTi (β̂ − β)|yi] = E[(λ̂− λ)cTi (β̂ − β)] + Op(m

−3/2) =

Op(m
−3/2). Thus, one gets

gc2(ω|yi) = γ2i c
T
i

(
Iββ

)−1
ci + n2i γ

4
i (yi − xT

i β)
2Iλλ +Op(m

−3/2). (A.12)

Combining (4.3) and (A.12) yields the approximation (4.5). Since

E[(yi − xT
i β)

2] =
niλ+ 1

ni
E[η−1

i ] =
niλ+ 1

ni

τ2
τ1 − 2

,

one gets

g2(ω) = γ2i c
T
i

(
Iββ

)−1
ci + niγ

3
i

τ2
τ1 − 2

Iλλ +O(m−3/2). (A.13)

Combining (4.4) and (A.13) gives the expression (4.6). Now the proof of Theorem

3 is complete.

Proof of Proposition 1. It follows from (4.4) and the proof of Theorem 3

that MSE(ω; ξ̂EB
i ) = g1(ω) + g2(ω) + O(m−3/2), where g2(ω) = γ2i E[{cTi (β̂ −
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β)}2] + niγ
3
i E[(λ̂ − λ)2]. It is seen from Butar and Lahiri (2003) that E[ĝ∗1] =

g1(ω) + O(m−3/2). Also, it can be shown that E[ĝ∗2] = g2(ω) + O(m−3/2). This

proves Proposition 1.

Proof of Theorem 4. It follows from (4.1) and (4.3) that cMSE(ω; ξ̂EB
i |yi) =

gc1(ω|yi) + gc2(ω|yi) +Op(m
−3/2), where

gc1(ω|yi) =
λ

niλ+ 1

Qi + τ2
ni + τ1 − 2

,

gc2(ω|yi) =E[{ξ̂Bi (β̂, λ̂)− ξ̂Bi (β, λ)}2|yi].

First, note that gc1(ω̂|yi) is expanded as gc1(ω̂|yi) = gc1(ω|yi) + G1(ω|yi)

+Op(m
−3/2), where

G1(ω̂, ω|yi) = (ω̂ − ω)T
∂gc1(ω̂|yi)

∂ω
+

1

2
(ω̂ − ω)T

∂2gc1(ω̂|yi)

∂ω∂ωT
(ω̂ − ω).

Since E[ω̂− ω|yi] = Op(m
−1), from Theorem 2, it is seen that E[G1(ω̂, ω|yi)|yi]

= Op(m
−1). Hence, E[gc1(ω̂|yi)|yi] = gc1(ω|yi) + E[G1(ω̂, ω|yi)|yi] +Op(m

−3/2).

Using the same atguments as in Butar and Lahiri (2003), we can see that

E[ĝc∗1 |yi] = gc1(ω|yi) + O(m−3/2). Also, from Theorem 2, it can be shown that

E[ĝ∗c2 |yi] = gc2(ω|yi) +Op(m
−3/2). This completes the proof of Theorem 4.
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