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Abstract: Orthogonal array based Latin hypercube sampling (LHS) is popularly

adopted for computer experiments. Because of its stratification on multivariate

margins in addition to univariate uniformity, the associated samples may provide

better estimators for the gross mean of a complex function on a domain. In this

paper, for some LHS methods based on an orthogonal array of strength t, a unified

expression of the variance of the sample mean is developed by introducing a new

discrete function. An approximate estimator for the variance of the sample mean is

also established that is helpful in obtaining the confidence interval of the gross mean.

We extend these statistical properties to three types of LHS: strong orthogonal

array-based LHS, nested orthogonal array-based LHS, and correlation-controlled

orthogonal array-based LHS. Some simulations are given to verify our results.

Key words and phrases: Functional decomposition, Latin hypercube sampling, or-

thogonal array, statistical property.

1. Introduction

Let f(x) be a real function defined on the unit cube [0, 1)m. Consider its

gross mean µ =
∫
[0,1)m f(x)dx. After sampling n design points {X1, . . . , Xn} in

[0, 1)m, we can use µ̂ = n−1
∑n

i=1 f(Xi) to estimate µ. For the independent and

identically distributed (iid) sample with each point following a uniform distribu-

tion on [0, 1)m, the variance of µ̂ can be calculated by

var(µ̂) = n−1var(f(X1)) = n−1

∫
[0,1)m

[f(x)− µ]2dx. (1.1)

In order to obtain a better estimator of µ, McKay, Beckman, and Conover

(1979) proposed Latin hypercube sampling (LHS) which can achieve maximum

stratification in univariate margins. Stein (1987) provided an elaborate expres-

sion of var(µ̂) if LHS is adopted, and further showed that the LHS can filter out

the variance components of main effects of the function f(x) and offer a more

precise estimator of µ compared with the iid sampling.
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Later, Tang (1993) independently introduced LHS based on an orthogonal

array (OA), called U -designs hereafter. These U -designs not only preserve uni-

variate uniformity, but also achieve stratifications in multivariate margins. More-

over, Tang (1993) showed that a U -design can filter out one- and two-dimensional

variance components from var(µ̂) if an OA of strength two is applied. Almost

simultaneously, Owen (1994) derived a similar formula for var(µ̂) for randomized

orthogonal arrays (ROAs). It reveals that the variance components of all g-factor

interactions of f(x), g ≤ t, are removed when an OA of strength t is employed.

Tang’s (1993) derivation of var(µ̂) is based on a conditional density function,

whose complexity grows quickly as the strength of the OA increases. Moreover,

the structure of OA-based LHS is more sophisticated than that of the ROAs in

Owen (1994). Thus, both methods cannot be adopted for U -designs based on

OAs of higher strength or other types of OA-based LHS.

In this paper, we extend Tang’s (1993) theoretical result to any U -design

based on an OA of any strength. As in Owen (1994), a unified decomposition of

var(µ̂) is developed. The derivation is based on a new discrete function and is not

a trivial extension of Tang’s (1993) and Owen’s (1994) analysis. Furthermore,

we provide an approximate estimator of var(µ̂) through introducing some consis-

tent estimators of the lower-order interactions. Thus, an approximate confidence

interval for µ can be established if a U -design is applied.

The remainder of this paper is as follows. Section 2 presents some definitions

and preliminaries. In Section 3, by using the technique of functional decomposi-

tion, a unified expression of var(µ̂) is derived for U -designs based on an OA of

any strength; This covers Tang’s (1993) result as a special case. Some consistent

estimators for these lower-order interactions are provided in order to establish an

approximate confidence interval of the gross mean. Section 4 extends these sta-

tistical properties to other types of sampling methods: strong orthogonal array

(SOA) based LHS (He and Tang (2013)), nested orthogonal array (NOA) based

LHS (He and Qian (2011)), and correlation-controlled OA-based LHS (Chen and

Qian (2014)). Some simulations are given to support our results in Section 5.

Section 6 concludes this paper with some discussions. All proofs are given in the

Appendix.

2. Definitions and Preliminaries

An orthogonal array (OA) with n runs, m factors, and strength t (1 ≤ t ≤
m), denoted by OA(n, sm, t), is an n×m matrix in which each column contains

s levels from {1, . . . , s} and all possible level combinations occur equally often as

rows in every n× t submatrix. For convenience, we define λ = n/st. According

to Owen (1994), an OA(n, sm, t) is called free of coincidence defect if no two rows

agree in its any t+ 1 columns.
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Let Zm denote the set {1, . . . ,m} for any positive integer m and U(0, 1]

be the uniform distribution on (0, 1]. For an OA(n, sm, t) A, a U -design D =

{X1, . . . , Xn} based on A can be constructed in the following steps, as described

in Tang (1993).

Step 1. For each column of A, relabel the s levels with a random permutation of

Zs.

Step 2. For j = 1, . . . ,m and e = 1, . . . , s, replace the ns−1 positions of e in

the jth column of A with a random permutation of Zns−1 . Denote by

B = (bij)n×m the resulting array from A after such replacements.

Step 3. For i = 1, . . . , n and j = 1, . . . ,m, let

Xij = s−1(aij − 1) + n−1(bij − εij), (2.1)

where aij is the (i, j)-th entry of A and εij ’s are independent random

variables following U(0, 1].

Thus, a U -design D is constructed by collecting the design points Xi = (Xi1,

. . . , Xim)T for i = 1, . . . , n. By noting that ns−1(aij − 1) + bij is a discrete

random variable that is uniform distribution on Zn, it is known that Xij is

uniformly distributed on [0, 1) and Xi = (Xi1, . . . , Xim) is uniformly on [0, 1)m.

The sample mean µ̂ is unbiased for µ. If we remove Step 2 and replace formula

(2.1) with Xij = s−1(aij − εij) in Step 3, then the above construction procedure

reduces to the procedure for constructing an ROA.

Without loss of clearness, let |u| be the cardinality of u if u is a set. Through-

out, x = (x1, x2, . . . , xm). Let dx−u =
∏

i∈Zm\u dxi for any u ⊆ Zm. Owen (1994)

decomposed the function f(x) as

f(x) =
∑

∅⊆u⊆Zm

fu(x), (2.2)

where f∅(x) = µ and fu(x) is the u-factor interaction defined recursively by

fu(x) =

∫
[0,1)m−|u|

[f(x)−
∑
v⊂u

fv(x)]dx−u. (2.3)

It can be verified that
∫
[0,1)m fu(x)dx = 0 for any nonempty set u ⊆ Zm and∫

[0,1)m fu(x)fv(x)dx = 0 for any u, v ⊆ Zm with u ̸= v.

For convenience, take

σ2
u =

∫
[0,1)m

f2
u(x)dx (2.4)
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for any nonempty u ⊆ Zm. By (1.1) and (2.2), it follows that var(µ̂) = n−1
∑

|u|>0

σ2
u for an iid n-point sample. For a U -design based on an OA(n, sm, 2) with

n = s2, Tang (1993) proved that

var(µ̂) = n−1
∑
|u|>2

σ2
u + o(n−1).

For an ROA based on an OA(n, sm, t) free of coincidence defect, Owen (1994)

showed that

var(µ̂) = n−1
∑
|u|>t

σ2
u + o(n−1).

Throughout we assume that the function f(x) is continuous.

3. A General Theory for U-designs

3.1. Statistical properties for U-designs

Let Ω = [0, 1)m and F be the collection of all Borel sets in [0, 1)m. Let

Q = {[0, s−1), [s−1, 2s−1), . . . , [1− s−1, 1)}. For any u ⊆ Zm, let
∏

j∈uQj be the

subset {x ∈ [0, 1)m : xj ∈ Qj , j ∈ u} of [0, 1)m, where Qj ∈ Q for all j ∈ u. Let

σ(Qu) denote the smallest σ-field containing all elements in {
∏

j∈uQj : Qj ∈ Q}.
It is easily shown that E[f(x)|σ(Qu)] is a discrete function on [0, 1)m which takes

on the value s|u|
∫∏

j∈u Qj
f(z)dz if x ∈

∏
j∈uQj .

Let f̄(x) = E[f(x)|σ(QZm)] for simplification. Since f̄(x) is a constant on

each cell of
∏

j∈Zm
Qj , Owen’s (1994) result about ROAs can be used to analyze

the variance of the sample mean of f̄(x).

Similar to (2.3), let f̄u(x) be the u-factor interaction in f̄(x). We can obtain

a connection between fu(x) and f̄u(x).

Lemma 1. We have (i) f̄u(x) = E[fu(x)|σ(Qu)]; (ii) fu(x) → f̄u(x) as s → ∞.

For any u ⊆ Zm and a given OA(n, sm, t) A = (aij), let ωik(u) = {j ∈ u :

aij = akj} andM(u, r) =
∑n

i,k=1 1{|ωik(u)|=r}, where 1{·} is the indicator function.

Based on Lemma 1, we can obtain the result of Owen (1994) for ROAs.

Theorem 1. For a U -design based on OA(n, sm, t) A with n = λst, as s → ∞
with λ fixed, we have

var(µ̂) = n−2
∑

|u|>t

∑|u|
r=0M(u, r)(1− s)r−|u|σ2

u + o(n−1).

Furthermore, if A is free of coincidence defect, the above formula can be

simplified as

var(µ̂) =n−1
∑
|u|>t

σ2
u + o(n−1). (3.1)
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3.2. Estimation of fu(x)

In this subsection, we estimate the functions fu(x)’s for all u ⊆ Zm with

|u| < t and analyze the related asymptotic property when a U -design is adopted.

Since f(x) =
∑

∅⊆u⊆Zm
fu(x), it is obvious that a better estimation of fu(x)’s for

all u ⊆ Zm with |u| < t will help us to get closer to f(x).

For an OA(n, sm, t) A free of coincidence defect, let D = {X1, . . . , Xn} be

the U -design based on A via the three steps in (2.1). For any u ⊆ Zm, let

gu(x) =

∫
[0,1)m−|u|

f̄(x)dx−u. (3.2)

By Lemma 1, gu(x) is a discrete function closely approximating the component∫
[0,1)m−|u| f(x)dx−u of the function fu(x) in (2.3).

Let ⌈a⌉ as the smallest integer not smaller than a. For any x = (x1, . . . , xm)

in [0, 1)m and any u ⊆ Zm with |u| < t, take γ(x, u) = {i : ⌈sXij⌉ = ⌈sxj⌉ for all

j ∈ u}. By (3.2), a naive estimator of gu(x) is

ĝu(x) =
1

ns−|u|

∑
i∈γ(x,u)

f̄(Xi). (3.3)

According to (2.3), (3.2), and (3.3), the estimators of fu(x)’s (|u| < t) can

be given inductively as follows. First, the gross mean f∅(x) is estimated by

f̂∅(x) =
1

n

n∑
i=1

f(Xi).

Then the higher-order interactions fu(x)’s (0 < |u| < t) are estimated recursively

by

f̂u(x) =
1

ns−|u|

∑
i∈γ(x,u)

f(Xi)−
∑
v⊂u

f̂v(x).

We turn to the asymptotic property of the estimator f̂u(x).

Lemma 2. For a U -design based on an OA(n, sm, t) free of coincidence defect

with n = λst, as s → ∞ with λ fixed, we have

n1/2s−|u|/2(ĝu(x)− gu(x)) → N(0, c(f)) (3.4)

for any u ⊆ Zm with |u| < t, where c(f) is a constant depending only on the

function f(·).

Theorem 2. For a U -design based on an OA(n, sm, t) free of coincidence defect

with n = λst, as s → ∞ with λ fixed, we have

n1/2s−|u|/2(f̂u(x)− f̄u(x)) → N(0, c(f)) (3.5)
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for any u ⊆ Zm with |u| < t, where c(f) is a constant depending only on the

function f(·).

3.3. Estimation of var(µ̂)

In this subsection, we provide an estimator of var(µ̂) when a U -design is

adopted and then use it to establish an approximate confidence interval of the

gross mean µ.

Using the estimator f̂u(x) of fu(x) provided in Section 3.2, we propose to

estimate σ2
u by

σ̂2
u = s−|u|

s∑
i1,...,i|u|=1

[f̂u((i1 − 0.5)s−1, . . . , (i|u| − 0.5)s−1)]2

for any u ⊆ Zm with 0 < |u| < t. By Theorem 2, the following result is immedi-

ate.

Theorem 3. For a U -design based on an OA(n, sm, t) free of coincidence defect

with n = λst, as s → ∞ with λ fixed, we have

σ̂2
u =

∫
[0,1)m

f̄ 2
u (x)dx+Op(n

−1/2s|u|/2) = σ2
u + op(1)

for any u ⊆ Zm with 0 < |u| < t.

Let σ2 =
∫
[0,1)m [f(x) − µ]2dx. By (2.2), we have σ2 =

∑
∅⊂u⊆Zm

σ2
u. It

is well known that the sample variance σ̂2 = (n − 1)−1
∑n

i=1[f(Xi) − µ̂]2 is an

unbiased estimator of σ2 for an iid n-point sample. For a U -design based on an

OA(n, sm, t) free of coincidence defect, it follows directly from Lemma 4.2 of He

and Qian (2014) that σ̂2 = σ2+Op(n
−1/2). The ratio Su = σ̂2

u/σ̂
2 can be used in

variable selection because it can be interpreted as a measure of the importance

of the u-factor interaction. By choosing a small constant c, 1% for example, one

can ignore all the u-factor interactions with Su ≤ c. Under this circumstance,

the response surface f(x) is approximated by the estimator
∑

Su>c f̂u(x). By

(3.1), we propose to use

v̂ar(µ̂) = n−1
(
σ̂2 −

∑
|u|<t

σ̂2
u

)
(3.6)

as an approximate estimator of var(µ̂).

From Theorem 4.4 in He and Qian (2014), the interval(
µ̂− zα/2n

−1/2v̂ar(µ̂)1/2, µ̂+ zα/2n
−1/2v̂ar(µ̂)1/2

)
(3.7)
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is an approximate 1 − α confidence interval for the gross mean µ, where zα/2 is

the α/2 percentile of N(0, 1).

Compared with iid samples of the same size, a U -design not only provides

a better estimator of the gross mean, but also yields a dramatically shorter

confidence interval. Example 1 in Section 5 will illustrate this advantage.

It should be mentioned that Owen’s (1992) estimator of σ2
u does not perform

well if the proportion of inner cells is small. For example, on two-dimensional

margins, there are s2 cells of
∏

j∈Z2
Qj in total and (s − 2)2 of them are inner

cells. It can be seen that as dimension increases, the proportion of inner cells

decreases. Meanwhile, Owen’s method may give a negative estimator for var(µ̂),

especially when
∑

|u|>t σ
2
u is small. Thus, Owen’s estimation is deficient when

high-dimensional interactions are involved.

4. Extensions

Apart from U -designs, other types of OA-based Latin hypercubes have been

proposed for computer experiments, such as strong orthogonal array (SOA) based

LHS, nested orthogonal array (NOA) based LHS and correlation controlled OA-

based LHS. In constructing these designs, more sophisticated randomization pro-

cedures are needed. However, the statistical properties for such designs can be

obtained by similar analyse. For this we assume that f(x) is Lipschitz continuous.

4.1. Extension to SOA-based LHS

The formal definition of an SOA was given by He and Tang (2013). An

SOA with n runs, m factors, st levels and strength t (1 ≤ t ≤ m), denoted by

SOA(n,m, st, t), is an n×m matrix in which each column contains st levels from

{1, · · · , st} such that every n×g submatrix can be collapsed into an OA(n, su1 ×
su2 × . . . × sug , g) for any positive integers u1, . . . , ug with u1 + . . . + ug = t

and 1 ≤ g ≤ t, where the collapsing into suj levels is done by ⌈a/st−uj⌉ for

a = 1, . . . , st.

He and Tang (2014) constructed SOA(s3, s+ 1, s3, 3) for any prime power

s. We construct LHS based on such SOAs. Let A be an SOA(n,m, s3, 3) with

n = s3. For a random permutation of Zs, say π, let π(i) be the image of i.

Step 1. For each column of A, replace the entry (i − 1)s2 + (j − 1)s + k with

(π1(i) − 1)s2 + (π2(j) − 1)s + π3(k), where i, j, k ∈ Zs, and π1, π2, π3
are independent random permutations of Zs. Denote by B the resulting

array from A after such replacements.

Step 2. For i = 1, . . . , n and j = 1, . . . ,m, let

Xij = n−1(bij − εij), (4.1)
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where bij is the (i, j)-th entry of B and εij ’s are independent random

variables from U(0, 1].

It can be verified that the level replacements in Step 1 do not destroy

the structure of an SOA and thus the array B is an SOA randomized from

A. An SOA-based LHS is constructed by collecting the design points Xi =

(Xi1, . . . , Xim)T , i = 1, . . . , n. By construction, it is known that each Xi is

uniform on [0, 1)m and thus the sample mean µ̂ is unbiased for µ.

Theorem 4. For the constructed LHS based on SOA(n,m, s3, 3) with n = s3,

as s → ∞, we have

var(µ̂) = n−1
∑
|u|>3

σ2
u + o(n−1).

4.2. Extension to NOA-based LHS

A nested orthogonal array NOA((n1, n), s
m, (t1, t)) is an OA(n, sm, t) in

which the first n1 rows form an OA(n1, s
m, t1). He and Qian (2011) constructed

NOA-based LHS and analyzed their statistical properties when NOAs with t = 2

and t1 = t− 1 are employed. Here we generalize their results to any t ≥ 2.

Let A0 be an OA(n, sm+1, t) free of coincidence defect, with the last col-

umn arranged in ascending order. Drop the last column of A0 to obtain an

OA(n, sm, t) A. Randomly shuffle the levels of A column by column. Then A

is an NOA((n1, n), s
m, (t − 1, t)) with n1 = ns−1. Write A = (AT

1 , A
T
2 )

T , where

A1 consists of the first n1 rows of A. The construction of LHS based on A is

described as follows.

Step 1. For each column of A1 and any q ∈ Zs, replace the ns
−2 positions of entry

q with a random permutation of {(q−1)ns−2+1, . . . , qns−2}⊕(q−1)ns−2.

Denote by B1 = (b
(1)
ij ) the resulting array after such replacements. For

i = 1, . . . , n1 and j = 1, . . . ,m, let

Xij = n−1(b
(1)
ij − εij), (4.2)

where εij ’s are independent U(0, 1] random variables.

Step 2. For each column of A2 and any q ∈ Zs, replace the ns−2(s − 1) posi-

tions of entry q with a random permutation of {(q− 1)n1 +1, . . . , qn1} \
{⌈nX1j⌉, ⌈nX2j⌉, . . . , ⌈nXn1,j⌉}. Denote by B2 = (b

(2)
ij ) the resulting ar-

ray after such replacements. For i = n1 + 1, . . . , n and j = 1, . . . ,m, let

Xij = n−1(b
(2)
i−n1,j

− εij), (4.3)

where εij ’s are independent U(0, 1] random variables.
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The NOA-based LHS is constructed by collecting the design points Xi =

(Xi1, . . . , Xim)T , i = 1, . . . , n. It can be used for computer experiments con-

taining two codes of different accuracies. The first n1 points are used for high-

accuracy code, and n points are used for low-accuracy code.

Denote by h(x) and l(x) the high-accuracy and low-accuracy codes, respec-

tively. Similar to (2.3), define hu(x) and lu(x) as their associated u-factor interac-

tions for any u ⊆ Zm. Let σ2
u(h) =

∫
[0,1)m h2u(x)dx and σ2

u(l) =
∫
[0,1)m l2u(x)dx. By

adopting the NOA-based LHS, we estimate the gross means µh =
∫
[0,1)m h(x)dx

and µl =
∫
[0,1)m l(x)dx by µ̂h = n−1

1

∑n1
i=1 h(Xi) and µ̂l = n−1

∑n
i=1 l(Xi), re-

spectively. By construction, µ̂h and µ̂l are unbiased for µh and µl, respectively.

Theorem 5. For the constructed LHS based on NOA((n1, n), s
m, (t− 1, t)) with

n1 = ns−1, as s → ∞ for fixed λ = ns−t, we have

(i) var(µ̂h) = n−1
1

∑
|u|>t−1 σ

2
u(h) + o(n−1

1 );

(ii) var(µ̂l) = n−1
∑

|u|>t σ
2
u(l) + o(n−1).

Theorem 4 covers the result of Theorem 1 of He and Qian (2011) as the

special case t = 2.

4.3. Extension to correlation-controlled OA-based LHS

Chen and Qian (2014) constructed correlation-controlled LHS with n points

and m factors based on an OA(n, sm+1, t). Sampling based on such designs can

achieve multi-dimensional stratification and lower the correlation between any

two factors. They investigated the statistical properties of these designs when

λ = ns−2 = 1 and t = 2. Here we consider a correlation-controlled LHS when

an OA(n, sm+1, 2) free of coincidence defect is employed. The sample mean µ̂ of

such LHS is also unbiased for µ by the construction method in Chen and Qian

(2014).

Theorem 6. For a correlation-controlled LHS based on an OA(n, sm+1, 2) free

of coincidence defect, as s → ∞ for fixed λ = ns−2, we have

var(µ̂) = n−1
∑
|u|>2

σ2
u + o(n−1).

Theorem 6 covers the result in Theorem 1 of Chen and Qian (2014) as a

special case when λ = 1.

5. Simulations

We provide several examples to support our results.
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Figure 1. Estimation of f{1}(x) in Example 1 for four values s’s. The real

function f{1}(x) and its estimator f̂{1}(x) are presented by the curve and
the piecewise function, respectively.

Example 1. Consider the function

f(x) = 3 sin(2πx1 − π) + 2(x2 − 0.5)− 5(x3 − 0.5) + 2(x4 − 0.5)

+2(x2 − 0.5) sin(2πx1 − π)− 2(x1 − 0.5)(x3 − 0.5)

+2(x1 − 0.5)(x2 − 0.5)(x4 − 0.5) + 10.

We constructed U -designs based on OA(s2, s3, 2), s = 7, 13, 17, 23. The estimate

of f{1}(x) is shown in Figure 1 with respect to different s. It reveals that on every

[i/s, (i + 1)/s), the estimator is close to the average of f{1}(x) on this interval.

Furthermore, as s → ∞, our estimator tends to f{1}(x).

We also estimated σ2
u for |u| = 1 with s = 7, repeating the process 1,000 times

independently. The average and standard deviation over these 1,000 estimated

σ̂2
u’s are shown in Table 1 by ave(σ̂2

u) and std(σ̂2
u), respectively. We also used

(3.6) to estimate var(µ̂). For comparison, we list the corresponding results via

Owen’s (1992) method, denoted by aveo(σ̂
2
u), stdo(σ̂

2
u). Our method estimates σ2

u

more accurately than Owen’s. In these 1,000 repetitions, there were 372 Owen

negative estimators for var(µ), while our method always gives positive estimators.

We compared the estimated confidence interval given by (3.7) with that

given by iid sampling. Here we took the sample size as s2 = 72, repeating

the process 105 times independently. Table 2 presents the rate at which the

estimated confidence intervals accurately cover the true µ and the average length

of the estimated confidence intervals for U -designs and iid samples, respectively.

Example 2. Consider the high-accuracy function and low-accuracy functionsh(x) = 0.48 sin(x1 − 0.5)π + 0.9(x2 − 0.5)(x3 − 0.5) + 0.8

3∏
i=1

(xi − 0.5),

l(x) = (x1 − 0.5) + (x2 − 0.5)(x3 − 0.5) +
∏3

i=1(xi − 0.5),
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Table 1. Comparison of ave(σ̂2
u) and std(σ̂2

u) for σ̂
2
u’s in Example 1.

u {1} {2} {3} {4}

σ2
u 4.500 0.333 2.083 0.333

ave(σ̂2
u) 4.320 0.332 2.048 0.333

std(σ̂2
u) 0.055 0.037 0.086 0.038

aveo(σ̂
2
u) 4.307 0.030 1.788 0.110

stdo(σ̂
2
u) 0.472 0.043 0.681 0.061

Table 2. Comparison of the estimated confidence intervals for µ in Example 1.

sample coverage rate average length

U -design 0.999 0.151
iid sample 0.997 1.69

Table 3. MSEs for NOA-based LHS in Example 2.

s 3 7 13 23 37

MSE(µ̂h) ×s2 t = 3 3.2× 10−3 9.7× 10−4 5.6× 10−4 4.4× 10−4 3.3× 10−4

t = 2 2.1× 10−2 4.8× 10−2 7.1× 10−2 0.17 0.26

MSE(µ̂l) ×s3 t = 3 2.8× 10−3 3.1× 10−4 1.1× 10−4 3.1× 10−5 1.2× 10−5

t = 2 4.8× 10−3 5.0× 10−3 8.5× 10−3 1.4× 10−2 2.6× 10−2

Table 4. MSEs for correlation-controlled OA-based LHS in Example 3.

s 5 11 17 23 29

MSE(µ̂) ×2s4 0.582 0.178 0.133 0.101 0.102

respectively. For s = 3, 7, 13, 23, 37 and t = 2, 3, we constructed an NOA((s2, s3),
s3, (t−1, t)) by the method in Section 4.2. For each case, we generated 100 NOA-
based LHS independently and then used them to estimate µh and µl. The mean

square errors (MSEs) of µ̂h and µ̂l are given in Table 3. There the MSE decreases
as s becomes larger for fixed t, and the MSE for t = 3 is smaller than that for
t = 2 in each case.

Example 3. Consider the function f(x) = 12(x2−0.5) sin(x1−0.5)+3(x2−0.5)+
3 sin(x1− 0.5). For s = 5, 11, 17, 23, 29, we randomly generated an OA(2s2, s2, 2)
and constructed 100 correlation-controlled LHS based on it by the method in

Chen and Qian (2014). The MSE of µ̂ for each case is given in Table 4. It shows
that the order of MSE(µ̂) is O(n−1s−2).

A final example compares five types of LHS including ordinary LHS (OLHS),
U -designs based on OAs of strength two (Us), U -designs based on OAs of strength
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Table 5. MSEs for the five types of LHS in Example 4.

OLHS Us HUs MMs CLHS

s = 8 0.19433 0.00843 0.00474 0.05082 0.18235

three (HUs), maximin LHS (MMs in abrreation, proposed by Johnson, Moore,

and Ylvisaker (1990)), and correlation-controlled LHS (CLHS) based on an OA

of strength two.

Example 4. The borehole function used by Morris, Mitchell, and Ylvisaker

(1993) is
20πTu(Hu −Hl)

log(r/ru)[1 + 2LTu/{log(r/rω)r2ωKω}+ Tu/Tl]
,

in which the eight input variables, after appropriate scaling, lie in [0, 1]8. Consider

the five types of LHS with 83 points and eight factors: OLHS, Us, HUs, MMs

and CLHS. Each type of sampling method was repeated 100 times. The MSEs

of µ̂ for them are presented in Table 5. There HUs are the best, because they

have better space-filling properties in high-dimensional margins.

6. Discussions

This paper provides a general analysis of the statistical properties for U -

designs. A unified expression of the variance of the sample mean and its approx-

imate estimator is established. Consequently, we obtain an effective confidence

interval of the gross mean. By similar analysis, we also give the statistical proper-

ties for SOA-based LHS, NOA-based LHS, and correlation-controlled OA-based

LHS.

For computer experiments with both qualitative and quantitative factors,

sliced space-filling designs based on OAs of sliced structure have been proposed

(Qian and Wu (2009) and Ai, Jiang, and Li (2014)). For a sliced space-filling

designs, the whole design and any slice constitute NOA-based LHS. Therefore,

by the similar analysis of NOA-based LHS, it can be shown that the variance

components of lower-order interactions are filtered out for each slice and the

whole design.

The formula of var(µ̂) for U -designs based on an OA of strength t implies

that the stability of the sample mean depends only on {M(u, r) : |u| > t}. So

it is natural to use M(u, r)’s to compare different OAs. Since the lower-order

interactions are considered to be more significant, we can define the sequence( ∑
|u|=t+1

M(u, t+ 1),
∑

|u|=t+2

M(u, t+ 2),
∑

|u|=t+3

M(u, t+ 3), . . .

)
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as a criterion to distinguish OAs of the same strength t. A promising direction is
to find the best OAs which minimize this sequence; we can investigate the lower
bounds for this sequence theoretically.

Appendix

Proof of Lemma 1. Let P = {[0, n−1), [n−1, 2n−1), . . . , [1 − n−1, 1)} and S =
{
∏m

j=1 Pj : Pj ∈ P, j = 1, . . . ,m}. Recall that Q = {[0, s−1), [s−1, 2s−1), . . . , [1−
s−1, 1)}. Let L = {

∏m
j=1Qj : Qj ∈ Q, j = 1, . . . ,m}. Hereafter, we refer to

members of S and L as small cells and large cells, respectively. Similarly, for
any u ⊆ Zm, take

∏
j∈u Pj as the subset of [0, 1)m that consists of all points

(x1, . . . , xm)’s with xj ∈ Pj for j ∈ u and xj ∈ [0, 1) for j ̸∈ u, provided Pj ∈ P
for all j ∈ u. For convenience, write

∏
j∈uQj and

∏
j∈u Pj as Qu and P u,

respectively.
The proof of part (i) is given inductively. It is trivial for u = ∅. Assume that

part (i) holds for any u ⊆ Zm with |u| < k. Consider the case of |u| = k. For
any set v ⊂ u, we have∫

Qv

f̄v(x)dx =

∫
Qv

E[fv(x)|σ(Qv)]dx =

∫
Qv

fv(x)dx (A.1)

for any Qv. By the definition of f̄(x), we have∫
Qu

f̄(x)dx =

∫
Qu

f(x)dx (A.2)

for any Qu. By the (A.1) and (A.2), it can be verified that∫
Qu

f̄u(x)dx =

∫
Qu

∫
[0,1)m−|u|

[f̄(x)−
∑
v⊂u

f̄v(x)]dx−udx

=

∫
Qu

∫
[0,1)m−|u|

[f(x)−
∑
v⊂u

fv(x)]dx−udx

=

∫
Qu

fu(x)dx. (A.3)

Thus, f̄u(x) = E[fu(x)|σ(Qu)] and part (i) is obtained. Since |f(x1)−f(x2)| → 0
for any x1, x2 ∈ QZm , as s → ∞, part (ii) follows directly.

Proof of Theorem 1. Consider a U -design D = {X1, . . . , Xn} based on an
OA(n, sm, t) constructed in (2.1). By Lemma 1, we know E[f(Xi) − f̄(Xi)]

2 =
o(1). Decompose var(µ̂) as

var(µ̂) = var
(
n−1

∑
Xi∈D

f̄(Xi)
)
+ n−2

n∑
i,j=1

E[(f(Xi)− f̄(Xi))(f̄(Xj)− µ)]

+n−2
∑
i̸=j

E[(f(Xi)− f̄(Xi))(f(Xj)− f̄(Xj))] + o(n−1). (A.4)
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By Theorem 1 in Owen (1994), we have

var
(
n−1

∑
Xi∈D

f̄(Xi)
)
= n−2

∑
|u|>t

|u|∑
r=0

M(u, r)(1− s)r−|u|σ2
u + o(n−1). (A.5)

Next, we are ready to prove

n−2
n∑

i,j=1

E[(f(Xi)− f̄(Xi))f̄(Xj)] = o(n−1), (A.6)

n−2
∑
i̸=j

E[(f(Xi)− f̄(Xi))(f(Xj)− f̄(Xj))] = o(n−1). (A.7)

For i = 1, . . . , n, let QZm
i and PZm

i be the large and small cell in whichXi lies,

respectively. Since E[(f(Xi)− f̄(Xi))f̄(Xj)] = E{E[(f(Xi)− f̄(Xi))f̄(Xj)|Xi ∈
QZm

i , Xj ∈ QZm
j ]} = 0, (A.6) follows.

For i ̸= j, write PZm
i =

∏m
k=1 Pk and QZm

j =
∏m

k=1Qk. Let ∆a ⊂ QZm
j

be the area that Xj cannot lie in and ∆b = QZm
j \ ∆a. Take Va and Vb as the

volumes of ∆a and ∆b, respectively.

Case 1. Va = 0. We have E[f(Xj) − f̄(Xj)|Xj ∈ ∆b, Va = 0] = 0. Thus

E[(f(Xi)− f̄(Xi))(f(Xj)− f̄(Xj))] = E{(f(Xi)− f̄(Xi))E[f(Xj)− f̄(Xj)|Xj ∈
∆b, Va = 0]} = 0.

Case 2. Va ̸= 0. Here Xjk ̸∈ Pk for k ∈ Zm. We have Va = O(n−1s1−m) and

Vb = O(s−m). Since E[f(x)− f̄(x)|x ∈ QZm
j ] = 0, we obtain

VaE[f(x)− f̄(x)|x ∈ ∆a] + VbE[f(x)− f̄(x)|x ∈ ∆b] = 0. (A.8)

By (A.8), it can be shown that E[f(Xj)−f̄(Xj)|Xj ∈ ∆b, Va ̸= 0] = o(s/n). Thus

E[(f(Xi) − f̄(Xi))(f(Xj) − f̄(Xj))] = E{(f(Xi) − f̄(Xi))E[f(Xj) − f̄(Xj)|Xj

∈ ∆b, Va = 0]} = o(s/n).

One has Va ̸= 0 if and only if Pk ⊂ Qk for some k, which means the ith row

and jth row of the OA(n, sm, t) agree in some positions. Thus the number of

(i, j)’s such that Va ̸= 0 is O(n2s−1). A direct calculation shows that the (A.7)

holds. In view of (A.4), (A.5), (A.6), and (A.7), the first expression of var(µ̂)

follows. If the OA is free of coincidence defect, then
∑|u|

r=0M(u, r)(1− s)r−|u| =

n+ o(n) for any |u| > t. The proof of Theorem 1 concludes.

Proof of Lemma 2. For the U -designD = {X1, . . . , Xn} based on an OA(n, sm,

t) free of coincidence defect constructed in (2.1), we further define D(−u) =

{X1(−u), . . . , Xn(−u)} for u ⊂ Zm, where Xi(−u) is obtained by dropping all the

components of Xi in u for i = 1, . . . , n. For a given x ∈ [0, 1)m, let D(−u)(x) =
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{Xi(−u) : i ∈ r(x, u)}, the subdesign of D(−u) consisting of all points labeled in

r(x, u). It is known that D(−u)(x) is a design based on an OA(ns−|u|, sm−|u|, t−
|u|) free of coincidence defect. Note that gu(x) is an discrete function. Thus,

the consistency for the estimator ĝu(x) with |u| < t can be easily obtained by

Theorem 4.4 of He and Qian (2014).

Proof of Theorem 2. In view of formulas (3.3), (3.4), and (3.5), it’s sufficient

to verify that

n−1/2s|u|/2
∑

i∈γ(x,u)

[f̄(Xi)− f(Xi)] = op(1). (A.9)

By using arguments as in (A.8), it can be shown that

E[(f(Xi)− f̄(Xi))(f(Xj)− f̄(Xj))] = o(s/n) (A.10)

for any i, j ∈ r(x, u) with i ̸= j. By (A.10), we have

n−1s|u|var
( ∑
i∈γ(x,u)

[f(Xi)− f̄(Xi)]
)
= o(1),

which indicates (A.9) by Chebyshev’s inequality.

Proof of Theorem 4. Consider the design D = {X1, . . . , Xn} based on an

SOA(n, sm, t) constructed in (4.1). Similar to the proof of Theorem 1, we only

need to verify the equation (A.7). Denote the SOA(s3,m, s, 3) as A = (aik). For

any i, j ∈ Zn with i ̸= j, consider two cases.

Case 1. For all k ∈ Zm, ⌈aiks−2⌉ ̸= ⌈ajks−2⌉. Then E[f(Xj) − f̄(Xj)|Xi] = 0.

So E[(f(Xi)− f̄(Xi))(f(Xj)− f̄(Xj))] = 0.

Case 2. There exists k0 ∈ Zm such that ⌈aik0s−2⌉ = ⌈ajk0s−2⌉ and ⌈aiks−1⌉ ̸=
⌈ajks−1⌉ for any k ∈ Zm. We use the arguments and notation as in the proof

of Theorem 1. Then Va = O(s−m−1) and Vb = O(s−m). By (A.8), we have

E[f(Xj)−f̄(Xj)|Xi] = O(s−2). So E[(f(Xi)−f̄(Xi))(f(Xj)−f̄(Xj))] = O(s−3).

By the structure of A, the number of (i, j)’s that satisfy Case 1 is O(n2),

which for Case 2 is O(n2s−1). For (i, j)’s beyond these two cases, the number is

O(n2s−2) and E[(f(Xi)−f̄(Xi))(f(Xj)−f̄(Xj))] = O(s−2) since f(x) is Lipschitz

continuous. By straightforward calculations, (A.7) follows.

Proof of Theorem 5. Consider the design D = {X1, . . . , Xn} based on the

NOA((n1, n), s
m, (t− 1, t)) A with n1 = ns−1 constructed in (4.2) and (4.3). As

in the proof of Theorem 1, part (i) is straightforward. For part (ii), we only need

to verify (A.7) where f(·) is replaced with l(·). For any i, j ∈ Zn with i ̸= j,

consider two cases.
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Case 1. i, j ≤ n1. By the structure of A, we know that Va = O(n−1s2−m) and

Vb = O(s−m) when ∆a ̸= ∅. Using (A.8), we have

E[l(Xj)− l̄(Xj)|Xi, Q
Zm
j ] = O(n−1s).

Thus E[(l(Xi)− l̄(Xi))(l(Xj)− l̄(Xj))] = O(n−1s−1). When ∆a = ∅, it is obvious
that E[l(Xj)− l̄(Xj)|Xi, Q

Zm
j ] = 0.

Case 2. i > n1 or j > n1. When ∆a ̸= ∅, we have Va = O(n−1s1−m). Similarly,

E[l(Xj) − l̄(Xj)|Xi, Q
Zm
j ] = O(n−1), which leads to E[(l(Xi) − l̄(Xi))(l(Xj) −

l̄(Xj))] = O(n−1s−2). When ∆a = ∅, we have E[l(Xj)− l̄(Xj)|Xi, Q
Zm
j ] = 0.

For ∆a ̸= ∅, the number of (i, j)’s satisfying Case 1 is O(n2
1s

−1) and that for

Case 2 is O(n2s−1). Then (A.7) follows by direct calculations.

Proof of Theorem 6. Consider the correlation-controlled LHS D = {X1, . . .,

Xn} based on an OA(n, sm+1, 2) A = (aik) free of coincidence defect. As in the

proof of Theorem 1, we only need to verify (A.7).

For any i, j ∈ Zm with i ̸= j, if ai,m+1 ̸= aj,m+1, then Va = O(s−m−1). By

(A.8), we have E[(f(Xi)− f̄(Xi))(f(Xj)− f̄(Xj))] = O(s−3). If ai,m+1 = aj,m+1,

we obtain E[(f(Xi) − f̄(Xi))(f(Xj) − f̄(Xj))] = O(s−2) since f(x) is Lipschitz

continuous. The number of (i, j)’s for ai,m+1 ̸= aj,m+1 is O(n2) and that for

ai,m+1 = aj,m+1 is O(ns). Then (A.7) follows by direct calculation.
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