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Abstract: Mukerjee and Tang (2012) established the K-aberration criterion for

baseline two-level designs. This paper explores the use of the regular fractions of

two-level designs (2m−p designs) to create baseline designs. Results are presented

that establish relationships between the sequence of K-values for a baseline design

and the word length pattern of the corresponding 2m−p design. Based on these

results, methodology for creating baseline designs that have good K-aberration

characteristics is developed and demonstrated.
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1. Introduction

The analysis of data from two-level factorial and fractional factorial designs

is usually based on the definitions of effects (main effects and interactions) given

by Box and Hunter (1961), where an effect measures the impact on the response

of changes to the levels of one or more factors averaged over all possible combi-

nations of levels for the remaining factors. As these definitions of effects produce

an orthogonal set of contrasts for a 2m design, we refer to them as the orthogonal

parameterization of the linear model.

A much less common (but in some cases more appropriate) alternative is ‘the

baseline parameterization of the linear model. In this case, a baseline level (the

default or preferred level) is designated for each factor. Consider an experiment

that explores avenues for improving an established process. The practitioner does

not want to make extensive changes to the process but rather wishes to identify

one or two high-impact factors. It would be natural to designate the current level

of each factor included in the experiment as its baseline level. Under the baseline

parameterization, an effect measures the impact on the response of changes to

the levels of one or more factors given that the remaining factors are set to their

baseline levels. Given the practitioner’s desire to keep most of the factors at

their current levels, these definitions are more appropriate than the orthogonal

parameterization definitions.

http://dx.doi.org/10.5705/ss.202014.0099
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Mukerjee and Tang (2012) developed theory related to the optimality of base-

line designs. They focused on main effects designs and showed that orthogonal

arrays of strength two are universally optimal for estimating main effects. They

also developed the K-aberration criterion to quantify how well a design guards

against bias in the estimation of main effects caused by active interactions. This

entails finding the sequence K2, K3, . . . where Kj measures the total amount

of aliasing between all jth order interactions and main effects. Details of the

derivation of this sequence can be found in Mukerjee and Tang (2012) and also

in Li, Miller, and Tang (2014). The objective is to identify a design that sequen-

tially minimizes K2, K3, . . . . This approach is justified by the effect hierarchy

principle which states that interactions of the same order are equally likely to be

active and that lower order interactions are more likely to be active than higher

order ones – see Wu and Hamada (2009).

Definition 1. Consider two baseline designs D1 and D2 that are of the same size,

each corresponding to an orthogonal array of strength 2. Let j̄ be the smallest

integer j for which the values of Kj differ for D1 and D2. If the value of Kj̄ for

D1 is less than that for D2 , then D1 has less K-aberration than D2. A minimum

K-aberration design is one such that no other design with less K-aberration

exists.

Mukerjee and Tang (2012) developed an efficient complete search algorithm

which they used to identify all of the minimum K-aberration designs for N = 8,

12, or 16 runs. Li, Miller, and Tang (2014) used the same algorithm to identify

the minimum K-aberration designs for N = 20 runs and m ≤ 13 factors. For

m > 13 factors, they found that the complete search algorithm was not feasible

and developed an efficient incomplete search algorithm to find nearly optimal

designs.

In this paper, we develop a theory for creating baseline designs that have

good K-aberration characteristics using the regular fractions of the 2m factorial

designs. This approach is very efficient in that it is possible to use the word

length pattern of the 2m−p designs to identify those which will generate the best

baseline designs – often it is possible to identify a single regular fraction in this

regard. Although we cannot guarantee that a design generated in this manner is

a minimum K-aberration design, we present evidence that suggests that this is

often the case. We also show that for N ≤ 64, it can be guaranteed that these

designs will have a K-sequence that matches at least the leading value of the

minimum K-aberration designs. Section 2 introduces notation and background

that are needed for the main results of this paper. The main results are presented

in Section 3. Section 4 demonstrates how our results can be applied to produce
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Table 1. The model matrix for a 23 design for the orthogonal parameteriza-
tion and for the baseline parameterization.

Orthogonal Parameterization Model Matrix Baseline Parameterization Model Matrix
I A B C AB AC BC ABC I A B C AB AC BC ABC

+1 −1 −1 −1 +1 +1 +1 −1 1 0 0 0 0 0 0 0
+1 +1 −1 −1 −1 −1 +1 +1 1 1 0 0 0 0 0 0
+1 −1 +1 −1 −1 +1 −1 +1 1 0 1 0 0 0 0 0
+1 +1 +1 −1 +1 −1 −1 −1 1 1 1 0 1 0 0 0
+1 −1 −1 +1 +1 −1 −1 +1 1 0 0 1 0 0 0 0
+1 +1 −1 +1 −1 +1 −1 −1 1 1 0 1 0 1 0 0
+1 −1 +1 +1 −1 −1 +1 −1 1 0 1 1 0 0 1 0
+1 +1 +1 +1 +1 +1 +1 +1 1 1 1 1 1 1 1 1

baseline designs that are optimal or nearly optimal in terms of K-aberration.

Concluding remarks are given in Section 5.

2. Notation and Background

Consider an N -run baseline design for m factors represented as an N×m (0,

1)-matrix D where 0 denotes the baseline level and 1 denotes the test level. Let

Ωs(D) represent the collection of all N × s submatrices of D – when the design

being referred to is obvious, Ωs is used. Further let α (ω) denote the number of

rows of ω ∈ Ωs that consist entirely of ones.

Mukerjee and Tang (2012) proved the following for s = 2, . . . ,m− 1:

Ks =
4

N2
(sT1 + T2) , (2.1)

where T1 =
∑
ω∈Ωs

(
α (ω)

)2
and T2 =

∑
ω∗∈Ωs+1

∑
ω◦∈Ωs(ω∗)

(
2α (ω∗)− α (ω◦)

)2
.

This paper utilizes (2.1) to establish relationships between the word length pat-

tern of a 2m−p design and the sequence of K-values for a baseline design that is

created from it.

In the literature, 2-level designs are most often represented by (−1, +1)-

arrays as this allows the model matrix (for the orthogonal parameterization) to

be readily generated from the design matrix. A similar advantage is realized for

the baseline parameterization if a baseline design matrix is represented by a (0,

1)-array. Table 1 contains the model matrices under both parameterizations for

a 23 design. In each case, the design matrix is the submatrix formed by the main

effect columns (shaded). For either design matrix, the interaction columns can

be generated by multiplying together main effect columns – e.g. AB = A ⊙ B

where ⊙ denotes component-wise multiplication. Clearly the (0, 1)-design matrix
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Table 2. The (−1, +1)-design matrix and the corresponding (0, 1)-design
matrix for a 25−2 design with defining relation I = ABD = BCE = ACDE.

A B C D E A B C D E

−1 −1 −1 +1 +1 0 0 0 1 1
+1 −1 −1 −1 +1 1 0 0 0 1
−1 +1 −1 −1 −1 0 1 0 0 0
+1 +1 −1 +1 −1 1 1 0 1 0
−1 −1 +1 +1 −1 0 0 1 1 0
+1 −1 +1 −1 −1 1 0 1 0 0
−1 +1 +1 −1 +1 0 1 1 0 1
+1 +1 +1 +1 +1 1 1 1 1 1

can be created from the (−1, +1)-design matrix by replacing −1’s with 0’s.

However, this procedure does not generate the (0, 1)-model matrix from the

(−1, +1)-model matrix as it fails to produce the correct interaction columns.

This causes some minor complications when 2m−p design matrices are converted

to baseline designs by replacing −1’s with 0’s. Consider a 25−2 design with full

defining relation I = ABD = BCE = ACDE: Table 2 gives both forms of

the design matrix. For the (−1, +1)-array, the defining relation indicates that

A⊙ B ⊙D = B ⊙ C ⊙ E = A⊙ C ⊙D ⊙ E = 18 (where 18 is a vector of ones)

which is equivalent to saying that the ABD, BCE and ACDE interactions are

completely aliased with the grand mean. Note that the equivalent statement is

not true for the (0, 1)-array since, for example, A⊙B⊙D = (0, 0, 0, 1, 0, 0, 0, 1)t.

However, an analogous relationship exists for the (0, 1)-array: the sum (mod

2) of any defining word set (a set of columns that corresponds to a word in the

defining relation) is either 1N or 0N . For the example in Table 2, it can be readily

verified that A + B +D = B + C + E = 18 (mod 2) and A + C +D + E = 08
(mod 2).

Our first result applies to all two-level designs (regular or non-regular) that

are orthogonal arrays of strength 2 or greater. It uses the generalized word

length pattern for G2-aberration as defined by Tang and Deng (1999). As their

definition is for (-1, +1)-arrays, we present an equivalent definition for (0, 1)-

arrays. Consider the set Ωk of a (0, 1)-matrix D. For ω ∈ Ωk, let ψ(ω) be the

vector of row sums (mod 2) of ω and let Ψ(ω) be the sum of the elements of

ψ(ω). Then define the J-characteristic of ω as

Jk(ω) =| 2Ψ(ω)−N | .

If ψ(ω) = 0N or 1N then Ψ(ω) = 0 or N and Jk(ω) = N ; if Ψ(ω) = N/2

(ψ(ω) contains half zeros and half ones) then Jk(ω) = 0. These are the only

possibilities for a regular design. In fact for a regular design, if ω corresponds to
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a defining word set, then ψ(ω) = 0N or 1N resulting in its J-characteristic being

N , and it is 0 otherwise. For a non-regular design, 0 ≤ Jk ≤ N and there must

be some (but not necessarily all) Jk such that 0 < Jk < N .

Let the elements of the generalized word length pattern (B3, B4, . . . ) for D
be

Bk (D) =
∑
ω∈Ωk

(
Jk(ω)

N

)2

.

It is clear that if D is a regular design then Bk (D) represents the number of

words of length k in its defining relation and thus its generalized word length

pattern is identical to its word length pattern.

3. Baseline Designs Created from Orthogonal Arrays

In this section we present three theorems that are useful when creating 2-

level baseline designs from 2-level orthogonal arrays of strength ≥ 2. Proofs are

given in the Appendix.

Theorem 1. Consider a (regular or non-regular) design D that is an orthogonal

array of strength t−1 ≥ 2. If this design is used to create a baseline design, then

the (K2, K3, . . . ) sequence satisfies:

(a) for 2 ≤ v ≤ t− 2, Kv = v
(
m
v

)
(1/22v−2);

(b) Kt−1 = (1/22t−4)
[
(t− 1)

(
m
t−1

)
+ tBt

]
.

This is a useful connection between the generalized word length pattern and

the sequence of K-values for baseline designs. For designs D1 and D2 that are

orthogonal arrays of strength ≥ 2, if D1 has more leading zeros in its generalized

word length pattern than does D2, then it has greater strength. Thus Theorem

1(a) indicates a baseline design based on D1 must have less K-aberration than

one based on D2. This is also true if D1 and D2 have the same number of leading

zeros but the first non-zero term is smaller for D1. Further it follows that the

sequence

Kv = v

(
m

v

)
1

22v−2
for v = 2, 3, . . .

provides sequential lower bounds for the K-values of a minimum K-aberration

design.

Now consider using 2m−p designs to generate baseline designs. The runs in

a 2m−p design are uniquely determined by a set of p signed generators. These

generators and their generalized interactions form the set of words that occur in

the defining relation for the design. The aliasing in such a design is captured by

the word length pattern denoted as (A3, A4, . . . ) where Aj represents the number
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of words of length j in the defining relation. There are 2p possible combinations
of signs for the generators and each combination produces a different design
matrix – the different fractions from the same family of designs. Under the
orthogonal parameterization these different fractions are equivalent in terms of
aliasing in that they all have the same word length pattern. Once these fractions
are converted to baseline designs, however, they are not necessarily equivalent in
terms of aliasing under the baseline parameterization. However, the sequences
of K-values are identical up to a certain term and only differ beyond that point.

A 2m−p design of resolution t is an orthogonal array of strength t− 1. Thus
Theorem 1 can be used (At = Bt) to find Kv for v = 2, 3, . . . t − 1. As 2m−p

designs have more structure than non-regular designs we can extend the results
to cover Kt. For a baseline design based on a 2m−p design matrix, ψ(ω) = 1N or
0N for any submatrix ω that is a defining word set. To distinguish these cases,
we let A0

j and A1
j represent the number of j-factor defining word sets for which

ψ(ω) = 0N and ψ(ω) = 1N respectively. Hence A0
j +A1

j = Aj .

Theorem 2. If a 2m−p design of resolution t is used to create a baseline design,
the value of Kt can be calculated as follows. For t odd:

Kt =
1

22t−2

[
t

(
m

t

)
+ (t+ 1)At+1 + t(m− t− 1)A0

t + t(m− t+ 3)A1
t

]
.

For t even:

Kt =
1

22t−2

[
t

(
m

t

)
+ (t+ 1)At+1 + t(m− t+ 3)A0

t + t(m− t− 1)A1
t

]
.

Theorem 2 provides information on how to choose the particular fraction
of a given family of 2m−p designs to achieve the least possible K-aberration. If
At is the first non-zero entry in the word length pattern, then the K-aberration
depends on the values of A0

t and A1
t . Thus the selected fraction should maximise

A0
t for t odd and A1

t for t even. For t odd, the fraction that contains a row of
zeros will always have A0

t = At (and consequently A1
t = 0) since it has ψ = 0 for

all defining word sets of size t.
Consider using a resolution III 2m−p design to create a baseline design. The-

orems 1(b) and 2 can be applied to give expressions for K2 and K3. It is also
possible to extend the results to cover the value of K4.

Theorem 3. Consider a 2m−p design of resolution III. If a fraction of this design
that has A0

3 = A3 is used to create a baseline design, then

K4 =
1

64

[
4

(
m

4

)
+5A5+4(m−1)A0

4 + 4(m−5)A1
4 +

(m−3)(3m−20)

2
A3−6A∗

]
,

where A∗ is the number of pairs of 3-column defining word sets that have one
column in common.
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For a resolution III 2m−p design used to create a baseline design, a design

with the smallest possible value of A3 should be used to minimize K2. If more

than one such design exists, then the one that has the smallest value of A4 should

be used and a fraction selected such that A0
3 = A3 as this will minimize K3. If

more than one optimal choice still exists, then Theorem 3 can be used to identify

the option with the smaller value of K4. In this case, it is best to minimize

5A5 − 6A∗ and then select a fraction that has as many 4-column defining word

sets as possible with row sums equal to 1 (mod 2) given that all 3-column defining

word sets have row sums equal to 0 (mod 2).

4. Application

To demonstrate the application of our results, we consider the creation of

a baseline design for 9 factors in 16 runs. Our procedure starts by looking at

tables of non-isomorphic 2m−p designs such as those given in Chen, Sun, and

Wu (1993). They identify the different isomorphism classes and give one 2m−p

design from each class. The term isomorphic when applied to 2m−p designs has

the standard definition: two designs are isomorphic if the design matrix of one

can be obtained from that of the other through a combination of row permuta-

tions, column permutations, and interchanging the levels for one or more factors.

However, Mukerjee and Tang (2012) pointed out that interchanging levels can

affect the properties (including the sequence of K-values) of baseline designs. For

baseline designs a more suitable definition is: two designs are isomorphic if the

design matrix of one can be obtained from that of the other through a combination

of row permutations and column permutations. We use the terms combinatorially

isomorphic (for the standard definition) and baseline isomorphic. If a single 2m−p

design from an isomorphism class is considered, not all of the possible baseline de-

signs in that class are covered. Our approach considers all of the fractions in the

family of designs defined by the set of generators and thus does cover the baseline

isomorphism classes contained in the combinatorial isomorphism class. Consider

two 2m−p designs D1 and D2 that are in the same isomorphism class. Although

D2 is not necessarily baseline isomorphic to D1 it must be baseline isomorphic

to a design that is in the same family as D1. To see this, consider a sequence of

row permutations, column permutations and level interchanges that transforms

D1 to D2. If all of the level interchanges are performed first, then a design that is

in the same family as D1 is created as an intermediate step. Clearly, D2 can be

produced from this intermediate design using just row permutations and column

permutations. For the rest of this section, the term isomorphic applied to 2m−p

designs always has the standard definition and ψ(ABC) is used to denote the

vector of row sums (mod 2) of the ABC defining word set.
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Consider using the minimum aberration 29−5 design to produce a baseline

design. This design can be found in Chen, Sun, and Wu (1993) and has word

length pattern (4, 14, 8, 0, 4, 1, 0). There is no need to consider any other

(non-isomorphic) 29−5 design since all such designs have larger values of A3 and

thus, by Theorem 1(b), produce baseline designs with larger values of K2.

For the minimum aberration 29−5 design A3 = 4 and so applying Theo-

rem 1(b) gives:

K2 =
1

4
m(m− 1) +

3

4
A3 =

1

4
9× 8 +

3

4
4 = 21.

This value ofK2 applies to any baseline design created using one of the 32 possible

fractions for this 29−5 design. The expression for K3 in Theorem 2 depends on

A0
3 and A1

3 which depend on the specific fraction that is chosen. A fraction

that has A0
3 = A3 and A1

3 = 0 should be used – as noted previously at least

one such fraction always exists. For our example, one possible set of generators

is {ABE, ACF , ADG, AHJ , BCDH} and only the two fractions that have

ψ(ABE) = ψ(ACF ) = ψ(ADG) = ψ(AHJ) = 0N have the desired property.

One of these has ψ(BCDH) = 0N and the other one has ψ(BCDH) = 1N . For

both A0
3 = 4 and A1

3 = 0 and, from Theorem 2,

K3 =
1

16

[
3

(
m

3

)
+ 4A4 + 3(m− 4)A0

3 + 3mA1
3

]
= 23.

The choice has been narrowed to two specific fractions. Values of A5, A∗, A
0
4 and

A1
4 are needed to apply Theorem 3. Clearly A5 = 8 for both fractions. As the

generalized interaction of any pair of the 3-column generators gives a 4-column

effect, it follows that A∗ = 6 for both fractions. The values of A0
4 and A1

4 differ

for the two fractions. If the fraction with ψ(BCDH) = 0N is used, then all

generalized interactions between the generators must have row sums equal to 0

(mod 2) and thus A0
4 = 14 and A1

4 = 0. If the ψ(BCDH) = 1N fraction is used,

then A0
4 = 6 and A1

4 = 8. Applying Theorem 3 reveals that this second fraction

has the smaller value of K4:

K4 =
1

64

[
4

(
m

4

)
+ 5A5 + 4(m− 1)A0

4 + 4(m− 5)A1
4

+
(m− 3)(3m− 20)

2
A3 − 6A∗

]
= 14.25.

For the ψ(BCDH) = 0N fraction K4 = 16.25.

Thus the best (smallest K-aberration) baseline design is obtained by setting

the generators for the minimum aberration 29−5 design as

ψ(ABE) = ψ(ACF ) = ψ(ADG) = ψ(AHJ) = 0N , ψ(BCDH) = 1N .
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Table 3. For N -run m-factor designs, the baseline design created using the
minimum aberration regular design has a K-sequence that is identical to
that for the minimum K-aberration design, up to and including term Kr−1.

N = 32 runs N = 64 runs
m Kt−1 m Kr−1

6 K5 7 K6

7-16 K3 8 K4

17-29 K2 9-32 K3

33-61 K2

The full sequence of K-values for this design is 21, 23, 14.25, 4.5, 0.5625, 0, 0, 0.

5. Concluding Remarks

The question arises of how the designs produced using our results compare

to the minimum K-aberration design over all possible baseline designs. Mukerjee

and Tang (2012) identified minimumK-aberration designs for all 16-runm-factor

scenarios. The minimum K-aberration design that they found for 9 factors is

isomorphic to the design generated in the previous section. Thus our approach

found an optimal 9-factor 16-run baseline design – there are other non-isomorphic

9-factor 16-run designs that can be created using non-regular designs that are also

minimum K-aberration designs. All the other minimum K-aberration m-factor

16-run designs reported in Mukerjee and Tang (2012) can also be created from

2m−p designs using our approach. Thus we conclude that, for 16-run designs, the

proposed method always finds a minimum K-aberration design.

For larger run sizes, we cannot guarantee that this is necessarily the case. To

our knowledge for N = 32, no non-regular designs have yet been identified that

have either more leading 0’s, or the same number of leading 0’s and a smaller

first non-zero term in their generalized word length patterns than that for the

minimum aberration regular designs. A similar statement is true for N = 64 with

the exception of the 13-factor and the 14-factor cases (see below). Under these

circumstances Theorem 1 guarantees that if the minimum aberration regular

design is of resolution t, then its K-sequence is identical to that for the minimum

K-aberration design up to and including term Kt−1. Table 3 contains the values

of Kt−1 for 32 and 64 run designs.

It is always the case that K2 is optimal and, for m ≤ N/2, both K2 and K3

are always optimal (except for the 13-factor and the 14-factor 64-run designs).

For m = N −1 and m = N −2 Mukerjee and Tang (2012) described a method of

producing minimumK-aberration designs starting with any saturated orthogonal

array of strength 2 (including saturated regular designs).

For the 13-factor and the 14-factor 64-run case Xu and Wong (2007) report

nonregular designs that have less G2-aberration than the minimum aberration
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regular designs. For the 13-factor case the generalized word length pattern for the

nonregular design is (0, 10, 36, . . . ), whereas that for the minimum aberration

regular design is (0, 14, 28, . . . ). Using Theorem 1, a baseline design created

from the nonregular design has K2 = 39 and K3 = 56.125 compared to K2 = 39

and K3 = 57.125 for one created from the regular design. For the 14-factor

case the generalized word length pattern is (0, 14, 56, . . . ) for the nonregular

design and (0, 22, 40, . . . ) for the minimum aberration regular design. As a

result K2 = 45.5 and K3 = 71.75 for the nonregular design, and K2 = 45.5 and

K3 = 73.75 for the regular design.

In general Theorem 1 indicates that in searching for good baseline designs,

it is advisable to start with designs that are optimal (or nearly optimal) in terms

of G2-aberration. The minimum aberration regular designs usually fall into this

category especially for moderate run sizes (N ≤ 64). As run size increases, there

may be more of an advantage to using a nonregular design. For many cases, the

optimal G2-aberration design is not known so it makes sense to use the “current

best known design.” For example, for designs with N = 128 or 256 runs Xu and

Wong (2007) report a number of cases where non-regular designs exist that have

less G2-aberration than the minimum aberration regular design.
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Appendix

Preliminary Results

The following results are essential for the proofs that follow. Their proofs

are omitted as straight forward.

PR1 Consider any two-level design and let ω be a submatrix formed by c of its

columns. If ω is an OA (orthogonal array) of strength c then α(ω) = N/2c.

PR2 When applying (2.1), if a design forms an OA of strength c and s ≤ c,

then T1 =
(
m
s

)
(N2/22s).

PR3 In the calculation of T2 it is only necessary to consider those ω∗ in Ωs+1

that are not OA’s of strength s+1. Further if the design being considered

is an OA of strength s+ 1 then T2 = 0.

Proof of Theorem 1(a). Consider (2.1), Kv = (4/N2) (vT1 + T2). Since

Bj = 0 for all j < t, D must be an OA of strength t − 1. Thus for v ≤ t − 2

we have T1 =
(
m
v

)
N2/22v from PR2 and T2 = 0 from PR3. Substituting these

expressions into the equation gives the result.
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Proof of Theorem 1(b). Since the design is an OA of strength t − 1, for

equation (2.1) we have T1 =
(

m
t−1

)
N2/22t−2 by PR2.

To find T2, PR3 indicates that we need only consider those ω∗ ∈ Ωt that are

not OA’s of strength t. Since the design is an OA of strength t−1, Proposition 2

from Deng and Tang (1999) applies – this proposition is a refinement of a result

in Cheng (1995). The first part of this proposition establishes that ω∗ is an OA

of strength t if and only if Jt(ω
∗) = 0 (and thus any such ω∗ does not contribute

to T2). The second part of the proposition indicates that if Jt(ω
∗) ̸= 0 then the

rows of ω∗ must consist of (N − Jt(ω
∗))/2t copies of the complete 2t factorial

plus Jt(ω
∗)/2t−1 copies of a (resolution t) half replicate of the 2t factorial. For

those ω∗ with Jt(ω
∗) ̸= 0 divide the rows into two parts with ω∗

1 being the rows

that consist of the copies of the complete 2t factorial and ω∗
2 being the rows that

consist of the copies of the half replicate. As ω∗
1 is an OA of strength t, the

net contribution of these rows to T2 is zero. For the rows in ω∗
2 there are four

possible cases created by ψ(ω∗
2) = 0N or ψ(ω∗

2) = 1N and t being odd or even.

Consider the case where ψ(ω∗
2) = 0N and t is odd. As there are no rows that

contain all ones α (ω∗
2) = 0. Further, each row that contains one zero and t − 1

ones occurs Jt(ω
∗)/2t−1 times which means that α (ω◦) = Jt(ω

∗)/2t−1 for each

ω◦ ∈ Ωt−1(ω∗
2). Thus 2α (ω∗) − α (ω◦) = −Jt(ω∗)/2t−1. The other three cases

can be similarly dealt giving the following results:

Case α (ω∗) α (ω◦) 2α (ω∗)− α (ω◦)

ψ(ω∗
2) = 0N for t odd 0 Jt(ω

∗)/2t−1 −Jt(ω∗)/2t−1

ψ(ω∗
2) = 0N for t even Jt(ω

∗)/2t−1 Jt(ω
∗)/2t−1 Jt(ω

∗)/2t−1

ψ(ω∗
2) = 1N for t odd Jt(ω

∗)/2t−1 Jt(ω
∗)/2t−1 Jt(ω

∗)/2t−1

ψ(ω∗
2) = 1N for t even 0 Jt(ω

∗)/2t−1 −Jt(ω∗)/2t−1

All four cases end up making the same contribution to T2 and thus we get:

T2 =
∑

ω∗∈Ωt

∑
ω◦∈Ωt−1(ω∗)

(
2α (ω∗)− α (ω◦)

)2

=
∑

ω∗∈Ωt

t
(Jt(ω∗)

2t−1

)2

= t
( N2

22t−2

) ∑
ω∗∈Ωt

(Jt(ω∗)

N

)2
.

= t
( N2

22t−2

)
Bt.

Plugging in the derived expressions for T1 and T2 into the expression for Kt−1

gives the result.
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Proof of Theorem 2. First consider the calculation of T1 in (2.1). Any set of

c columns from a 2m−p design forms an OA of strength c if and only if it does

not contain a defining word set – see Cheng (2014, pp. 147-151). As At is the

first non-zero term in the word length pattern there are three possible cases for

ω ∈ Ωt: (i) the columns of ω are not a defining word set and thus ω is an OA

of strength t, (ii) the columns of ω are a defining word set and ψ = 0N and (iii)

the columns of ω are a defining word set and ψ = 1N . There is a total of
(
m
t

)
elements in Ωt of which A0

t fall under (ii), A1
t fall under (iii), and the rest under

(i). For (i), PR1 gives α (ω) = N/2t. For cases (ii) and (iii), ω is a half fraction

of a 2t design and thus α (ω) = 0 or N/2t−1 depending on whether or not ω

contains a row of ones. The following table summarizes the results.

α (ω) for t odd α (ω) for t even number

(i) N/2t N/2t
(
m
t

)
−A0

t −A1
t

(ii) 0 N/2t−1 A0
t

(iii) N/2t−1 0 A1
t

Thus we get

For t odd T1 =
N2

22t

((
m

t

)
−A0

t + 3A1
t

)
,

For t even T1 =
N2

22t

((
m

t

)
+ 3A0

t −A1
t

)
.

Consider T2. Applying PR3, we only need consider those ω∗ ∈ Ωt+1 that are

not OA’s of strength t+1. These ω∗ are those whose columns contain a defining

word set. For ω∗ ∈ Ωt+1 it is possible that ω∗ could either be a defining word

set of size t + 1 or contain a defining word set of size t. Since Aj = 0 for all

j < t, ω∗ cannot contain more than one defining word set. For the columns of

ω∗ that are in the defining word set ψ is either 0N or 1N . There are four cases

to consider: (i) ω∗ is a defining word set of size t + 1 with ψ(ω∗) = 0N , (ii) ω∗

is a defining word set of size t+ 1 with ψ(ω∗) = 1N , (iii) ω∗ contains a defining

word set of size t with ψ = 0N for the defining word set, and (iv) ω∗ contains a

defining word set of size t with ψ = 1N for the defining word set. The number

of ω∗ ∈ Ωt+1 that correspond to these cases is (i) A0
t+1, (ii) A

1
t+1, (iii) (m− t)A0

t

and (iv) (m − t)A1
t . Again, different values of α (ω∗) and α (ω◦) can occur for t

odd and t even.

Consider t odd. The following table contains examples of ω∗ ∈ Ωt+1 for each

of the four cases when t = 3 and N = 8. For cases (iii) and (iv) it is the first

three columns of ω∗ that form the defining word set.
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case (i) case (ii) case (iii) case (iv)

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

1 0 0 1 1 0 0 0 0 0 0 1 0 0 1 1

0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0

1 1 0 0 1 1 0 1 1 0 1 1 1 0 0 1

0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 0

1 0 1 0 1 0 1 1 0 1 1 1 0 1 0 1

0 1 1 0 0 1 1 1 1 1 0 0 1 1 1 0

1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1

The values of α (ω∗), α (ω◦), and 2α (ω∗)−α (ω◦) needed to find T2 for t = 3
and N = 8 can be readily deduced from these tables and it is straight forward
to extend these to general odd t and N . For cases (iii) and (iv) the value of
α (ω◦) for ω◦ ∈ Ωt(ω∗) depends on whether ω◦ is the defining word set or not.
In the following table we summarize the results for odd t and give the number of
ω◦ ∈ Ωt(ω∗) that result in each value in brackets.

case α (ω∗) α (ω◦) 2α (ω∗)− α (ω◦)

(i) N/2t N/2t [×t+ 1] N/2t [×(t+ 1)]

(ii) 0 N/2t [×t+ 1] −N/2t [×(t+ 1)]

(iii) 0 0 [×1] or N/2t [×t] 0 [×1] or −N/2t [×t]
(iv) N/2t N/2t−1 [×1] or N/2t [×t] 0 [×1] or N/2t [×t]

Similarly, for t even we get:

case α (ω∗) α (ω◦) 2α (ω∗)− α (ω◦)

(i) 0 N/2t [×(t+ 1)] −N/2t [×(t+ 1)]

(ii) N/2t N/2t [×(t+ 1)] N/2t [×(t+ 1)]

(iii) N/2t N/2t−1 [×1] or N/2t [×t] 0 [×1] or N/2t [×t]
(iv) 0 0 [×1] or N/2t [×t] 0 [×1] or −N/2t [×t]

For both t odd and t even, the expression for T2 is

T2 =
N2

22t

(
(t+ 1)A0

t+1 + (t+ 1)A1
t+1 + t(m− t)A0

t + t(m− t)A1
t

)
=
N2

22t

(
(t+ 1)At+1 + t(m− t)A0

t + t(m− t)A1
t

)
.

Combining these expressions with those obtained for T1 gives the result.

Proof of Theorem 3. Considering T1 in (2.1), there are four cases for ω ∈ Ω4:
(i) four independent columns, (ii) a 4-column defining word set with ψ = 0N , (iii)
a 4-column defining word set with ψ = 1N and (iv) contains a 3-column defining
word set with ψ = 0N . The following results can be deduced:
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α (ω) number

(i) N/16
(
m
4

)
−A0

4 −A1
4 − (m− 3)A3

(ii) N/8 A0
4

(iii) 0 A1
4

(iv) 0 (m− 3)A3

Thus we have

T1 =
(N
16

)2
((

m

4

)
−A0

4 −A1
4 − (m− 3)A3

)
+

(N
8

)2
A0

4

=
(N
16

)2
((

m

4

)
+ 3A0

4 −A1
4 − (m− 3)A3

)
.

Now consider T2. Again using PR3, we only need consider those ω∗ ∈ Ω5

that have linearly dependent columns. There are six such possible cases: (i) ω∗ is

a 5-column defining word set with ψ = 0N , (ii) ω∗ is a 5-column defining word set

with ψ = 1N , (iii) ω∗ contains a 4-column defining word set with ψ = 0N , (iv) ω∗

contains a 4-column defining word set with ψ = 1N , (v) ω∗ contains a 3-column

defining word set with ψ = 0N and (vi) ω∗ contains two 3-column defining word

sets and one 4-column defining word set. Note that (vi) occurs if and only if

there are two 3-column defining word sets which have one column in common.

For example if 123 and 345 are words in the defining relation then 1245 is also in

the defining relation and the set of columns {1, 2, 3, 4, 5} form a ω∗ that satisfies

case (vi). Further for (vi), since the two 3-column defining word sets both have

ψ = 0N , the 4-column defining word set must also have ψ = 0N .

The values of α (ω∗), α (ω◦), and 2α (ω∗)−α (ω◦) for each of these cases are

as follows.

α (ω∗) α (ω◦) 2α (ω∗)− α (ω◦)

(i) 0 N/16 [×5] −N/16 [×5]

(ii) N/16 N/16 [×5] N/16 [×5]

(iii) N/16 N/8 [×1] or N/16 [×4] 0 [×1] or N/16 [×4]

(iv) 0 0 [×1] or N/16 [×4] 0 [×1] or −N/16 [×4]

(v) 0 0 [×2] or N/16 [×3] 0 [×2] or −N/16 [×3]

(vi) 0 0 [×4] or N/8 [×1] 0 [×4] or −N/8 [×1]

Now consider the number of times each of (i) through (vi) occurs for ω∗ ∈ Ω5.

Let A∗ represent the number of times (vi) occurs. Then the results are: (i) A0
5,

(ii) A1
5, (iii) (m − 4)A0

4 − A∗, (iv) (m − 4)A1
4, (v)

(
m−3
2

)
A3 − 2A∗ and (vi) A∗.

The results for (i), (ii) and (iv) are obvious. For (iii) consider that any 4-column

defining word set occurs in m − 4 elements of Ω5 and that, if a particular 4-

column defining word set is the product of two 3-column defining word sets, then
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exactly one of these corresponds to (vi). For (v) consider that any 3-column
defining word set occurs in

(
m−3
2

)
elements of Ω5. If two of these have a column

in common then at least one of them occurs in a total of
(
m−3
2

)
− 1 elements of

Ω5, and of these one corresponds to (vi).
Thus we have

T2 =

(
N

16

)2(
5A5 + 4 [(m− 4)A4 −A∗] + 3

[(
m− 3

2

)
A3 − 2A∗

])
+

(
N

8

)2

A∗

=

(
N

16

)2(
5A5 + 4(m− 4)A4 + 3

(
m− 3

2

)
A3 − 6A∗

)
.

Plugging the expressions for T1 and T2 into that for K4 and simplifying gives the
result.
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