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Supplementary Material

This supplementary material includes the detailed proofs of Lemma 1~4 and Theorem 1~2.

Proof of Lemma 1

To prove (1), first note the exchangeability in the construction of BSPV. By symmetry, given
any /=1, ..., n, Pr{n(l) = u} takes the same value for all u =1, 2,..., n. Hence Pr{n(l)=u} = 1/n
and (1) holds.

To prove (2), we calculate the joint probability mass function based on the conditional
distribution of n(/;) = v given n(/;) = u. Here, u # v and [; # ,. The joint probability mass
function depends on the relationships between u and v, and also those between z(/,) and 7(/,).
For convenience, the following proof is carried out based on the relationship between u and v,
instead of 7(/;) and n(/,) given in the Lemma 1.

Given n(/)) = u, assume 7(/;) € S, and n(h) € S,

o i 2= I,...,tand ji, j» = 1,..., s. The
following cases are discussed for the conditional probability of z(l,) = v.

(a) If 7. (u,v)=1, then i, # i» and j; #j, must hold (otherwise Pr{x(l») =v | n(l}) = u} = 0). By
exchangeability, Pr{n(/,) = v | n(/,) = u} takes the same value for any position n(/,) satisfying i
# ipand j| #j». As there are m(s—1)(#-1) such locations,

1
m(s—1)(t-1)
(b) If 7,(u,v)=0 and y,(u,v) =1, then i; # i» must hold (otherwise Pr{n(L) =v | a(l,) = u} =

0). By exchangeability, Pr{z(l,) = v | n(l;) = u} takes the same value for any position 7(/>)
satisfying i; # i,. As there are ms(#—1) such locations,

Priz(L)=v|z(l)=u}= (A.1)
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1
Prin(l)=v|z(l)=u}=——. (A.2)
ms(t—1)
(c) If 7,(u,v)=0, then u and v are generated from different Q, matrices during the Step 2
construction of BSPV. Since Q, matrices are independently generated, the probability that u and

v are at the same location of two Q, matrices is 1/p. Thus,

(1) ifi] = i2 andj1 :jz,

Pr{ﬁ(lz)=v|7z(ll)=u}=1/—p= L (A.3)
m—1 n-p
(i1) otherwise,
Prin(l,) = v|7r(ll)=u}=1/7p=%. (A.4)

(d) If 7,(u,v)=0 and y,(u,v)=1, there are p — ¢ possible choices of v, and the conditional

probability of z(/2) = v can be derived by the exchangeability and the regularity of probability.
Specifically, we have,

(1) lfll = iz al’ldjl ?éjZ,

1—"=r
Pr{][(lz):vlﬂ(ll):u}: n_ = S ; (A.S)
p—t n(s—1

(i) if i; # i and j; = j,,
Prx(L) = v 2(l) = = (A.6)
rr(l)=v|x(l)=u;= = ’ :

2 ! —t n(t—1)
(11) if iy # i and j; # 2,
-2 s sl st—t—s

Prizn(l)=v|z(l)=ut= n__ ms(tD)  m(sTDED . AT
Pl =12 =1) pur wve-n A

Using the y function defined in (3.3), the proof can be completed by re-classification of the
above cases based on the relationships between n(/;) and 7n(/»), and then multiplying the
conditional probability by Pr{z(l;) = u} = 1/n.

Proof of Lemma 2

(1) Without loss of generality, we focus on Dy;. By the construction of D, write the entries in Dy

as 7,()=(af =Dp+ ', 1=1,.,m k=1,.., g, where {&, -+, &} is a uniform permutation
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on Z,, [ ’s are i.i.d and follow a discrete uniform distribution on Z,, and o ’s are independent

with ,Blk ’s. Then for /= 1,..., m, we can rewrite (2.1) as

_ k o~
d]k — (a[k l)i;;ﬂl u, _ d/(mulk ’ (A8)

where i, =(p— " +u,)/ p follows a uniform distribution on (0,1].
(i)  We prove this by showing the equivalence between our construction and that of Qian
(2012) for D.. In our method, note D;. is constructed based on the first columns of (_)1 s eee (_)m ,
or equivalently W(:,1). Divide Z, into » groups of ¢ consecutive numbers, where the ith group is
gi={a€Z,|la/t]=i},i=1,..., r. For easier interpretation, we replace any number in g; with
the symbol g; in our construction. For example, in our numerical example immediately following
the construction steps, we can write

15 8 1 & & & &

Q=Q'=|4 123 7|=|g & & &

6 2 9 10] [g & & &
where g; can be viewed as the group index. Based on Step 1 of the construction for a BSPV, it is
easy to see that Q,(:,1) is a uniform permutation on the set {g¢1ys+1,--., g5} and the permutations

are independent across /, / = 1,..., m. This step produces equivalent outcome to that of Step 1 in
Qian (2012).

For the next step in our construction of D., first columns of each Q,are put together, then
randomly permuted within each group of m numbers W(((j — 1)m + 1) : jm, 1) to form W(:,1), as

in Step 3. This procedure is equivalent to carry out independent permutations on each row of the
following matrix

[Q,(:D).Q,(:.1)....Q, (D]
whose /th column is the 1 column of Q, . This step produces equivalent outcome to that of Step
2 in Qian (2012).

Further, from Step 1 in our construction, it is clear that g; is a uniform random number from g;.
Hence the /th entry in W(:,1) can be written as 7(/)=(a, -t + B, [=1,..., r, where {¢, -+, & }
is a uniform permutation on Z, and f,’s are i.i.d uniformly distributed on Z,. Following the
similar idea as that in the proof of part (i) and noting that the ¢ BSPVs are independently
generated, it is straightforward that D;. is equivalent to an SLHD with s slices, each of which

contains m runs.
(ii1))  The proof follows the similar idea as that in part (ii).
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Proof of Lemma 3

For any xlk e(0,1],1=1,...,n,k=1,...,9,by (2.1) and Lemma 1,
p(x,k)dx,k = Pr(xlk < Xlk < x,k +dx,k)

= Prinx; <m (I)—u, <n(x; +dx})}

=Prirn, (])= (nx,k —‘}Pr((nx,k—‘ —nx} —ndx} <u, < [nx,k—‘ —nx}) (A.9)
= lndxlk =dx;].
n

So the density of x; satisfies p(x/)=1 for all x; € (0,1]. Asx] ’s are independent across &, p(x;)

=1 for all x, e (0,1]7.

Proof of Lemma 4

Similar to the proof in Lemma 3, the joint density can be derived in the same way:
k _k k k k k k k _k k k k
p(x,x; )dx, dx; = Pr(x, <X, <x; +dx;,x; <X, <x, +dx,)

(A.10)
= Prim, (1)) =| nx} |, m,(1,) = nx] [n*dxfdx

Then p(x,,x,) =[]} {n*Pr(m, (1) = (nx,’f—l,nk(lz) = [nxi —’)} , and the lemma follows directly

from the results in Lemma 1.

Proof of Theorem 1

(1) follows directly from Lemma 2 (i), Lemma 2 in Xiong, Xie, Qian and Wu (2014), Lemma 2
in Qian (2012), and the theorem in McKay, Beckman, and Conover (1979). (ii) follows directly
from case (ii) and case (iii) of Lemma 2, Lemma 2 in Xiong, Xie, Qian and Wu (2014), and
Theorem 1 in Qian (2012).

Proof of Theorem 2

For (i), by Lemma 2, each D is statistically equivalent to an ordinary LHD with m runs. Then,
by Theorem 1 in Stein (1987) or Theorem 1 in Loh (1996), the result in (i) holds.
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For (ii), by Lemma 2, each D,. is statistically equivalent to an SLHD with s slices each of m
runs, and each D.; is statistically equivalent to a SLHD with ¢ slices each of m runs. Then, the
result follows directly from Theorem 2 in Qian (2012).

For (iii), by (3.1),

Var(4) =Var(}, > 4, 4,)
i
= z z Z z COV(ﬂJl‘ljl ‘[ziljl, ﬂiz./z 'al'zjz) (Al 1)

W b b

= z z ﬂl}zvar(’all) + zz Z Z([l,_jl V£ (i, s )ﬂiljl ﬂ«l-szCOV(,[liljl, ’aizjz)
i

Define the first summation term and second summation term in (A.11) as /; and I, respectively.
Since ¢ and s are fixed integers, and m has the same order with n, we have, by part (i),

1 1 Lo _

L=—3 3 k0,2 Y YA U @ dxr o), (A12)
i J i Jj k

Next we will show that 7, =o(n”"). Since I, is the summation of p*> — p different terms with p

being a fixed number, it suffices to show that when (i, j,) # (i,, j,),
Cov(d, 1) =o(n™). (A.13)
As [1; defined in (3.1), we have

Coviy, . f

b

>:# S Covif,, (X, S, (X)) (A.14)

X EDfl/l Xiy Esz/’z

Now we will show that when (7, j,) # (i,, /),

COV{ﬁljl(le)’ﬁzjz(Xzz)}:0(”_1)- (A.15)
To prove this, we first introduce the following lemma.
Lemma Al. Let f(-) and g(-) be two integrable functions defined on (0, 1], n is a positive

integer, and 9, (x, ) is defined in (3.4). Then we have, when n — oo,

Jo 1L Fe80)8, (i x v, == [ F()g () +o(n™) (A.16)
Proof. Let J, =(£L,L],i=1, ..., n, we have
é‘n(xl,xz):il{xleJl.}]{xzeJl.}, (A.17)

i=1

where /(+) is the indicator function. Therefore, when n — oo,
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J: J.o1 f(x)g(x,)0,(x,, x,)dx,dx,

- iJol.[ol S (x)g(x,)I{x, € J;}{x, € J; jdxdx,
: (A.18)

=3, S gods

— [ F)g(dr+o(n™),

Now we go back to prove (A.15). The condition (i, ji) # (i2, j2) contains the three following
cases, each corresponds to one case in Lemma 4.
(1) If iy =i, =iandj, # >, it corresponds to the case (ii) in Lemma 4. Thus,

Cov {‘f;jl (Xll )’ f;jz (Xlz )}

= U5 00 = a3 5,000 = 4, 1p(x, 3, ), dx,

1 )
T =11, )= 30, = o], o)
k=1
1 & . : :
= — zIﬁjlk(xl’f)f%k(xl’;)5m(x,1f,xf2 )a’xl]fdxlk2 (A.19)
=

S

q
Z J.fl.j;k (x,’l‘)flj;k(x,i )é‘r(xf, xllz )dx,’l‘dxi +o(m™)
k=1

s—=1%

1 1 S <) —k —k -1
_:(;_;); [ £5Go £ (oyde+o(m™)
=o(n™").

(i1) If iy # i, and j; = j, =, it corresponds to the case (iii) in Lemma 4. By the same
argument in part (ii), we have

Covi{f, (x,), f, (x,)} = o(n™). (A.20)

(1i1) If iy # i, and j; #ja, it corresponds to the case (iv) in Lemma 4. Thus,
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COV{f;ljl (X[l )9 ﬁz/z (X[2 )}
= [ )=t U (%) =t (3, ),
- I {ﬁljl (Xll ) - 'Lliljl } {]pizfz (Xlz ) - ’uizjz }
{1 +(s=-D7"'¢-1)" i[—é‘m (xl’f, x,]; )+ sé',,(xllf, x,]z )+10, (x,f, xli )— sz(xz]f, x;i )]}dledxlz +o(n™)
=1

q
=(s=1)"(t=1)" Zj FEGO [
k=1
[-5, (x,’f, x,’i )+ Sé;(x,'f, xZ )+19, (x,’l‘, x,]: )— pé‘n(x,'f, xZ )]dx,’l‘dx,’: +o(n™)
_ _ 1 s t p= _ _ _
=(s=1)"(z-1) 1(—;+;+Z—;);jﬁljf(x)ﬁzj’2‘(x)dx+0(n h

=o(n™").
(A.21)

This proves (A.15) and completes the proof of Theorem 2.



