Bi-directional Sliced Latin Hypercube Designs

Qiang Zhou¹, Tian Jin², Peter Z.G. Qian³, Shiyu Zhou³

¹ City University of Hong Kong, ² Shanghai University of Finance and Economics, ³ University of Wisconsin – Madison

Supplementary Material

This supplementary material includes the detailed proofs of Lemma 1~4 and Theorem 1~2.

Proof of Lemma 1

To prove (1), first note the exchangeability in the construction of BSPV. By symmetry, given any l = 1, ..., n, $Pr\{\pi(l) = u\}$ takes the same value for all u = 1, 2, ..., n. Hence $Pr\{\pi(l) = u\} = 1/n$ and (1) holds.

To prove (2), we calculate the joint probability mass function based on the conditional distribution of $\pi(l_2) = v$ given $\pi(l_1) = u$. Here, $u \neq v$ and $l_1 \neq l_2$. The joint probability mass function depends on the relationships between u and v, and also those between $\pi(l_1)$ and $\pi(l_2)$. For convenience, the following proof is carried out based on the relationship between u and v, instead of $\pi(l_1)$ and $\pi(l_2)$ given in the Lemma 1.

Given $\pi(l_1) = u$, assume $\pi(l_1) \in \mathbf{S}_{i_1 j_1}$ and $\pi(l_2) \in \mathbf{S}_{i_2 j_2}$, $i_1, i_2 = 1, ..., t$ and $j_1, j_2 = 1, ..., s$. The following cases are discussed for the conditional probability of $\pi(l_2) = v$.

(a) If $\gamma_s(u,v) = 1$, then $i_1 \neq i_2$ and $j_1 \neq j_2$ must hold (otherwise $Pr\{\pi(l_2) = v \mid \pi(l_1) = u\} = 0$). By exchangeability, $Pr\{\pi(l_2) = v \mid \pi(l_1) = u\}$ takes the same value for any position $\pi(l_2)$ satisfying $i_1 \neq i_2$ and $j_1 \neq j_2$. As there are m(s-1)(t-1) such locations,

$$Pr\{\pi(l_2) = v \mid \pi(l_1) = u\} = \frac{1}{m(s-1)(t-1)}.$$
(A.1)

(b) If $\gamma_s(u,v) = 0$ and $\gamma_t(u,v) = 1$, then $i_1 \neq i_2$ must hold (otherwise $Pr\{\pi(l_2) = v \mid \pi(l_1) = u\} = 0$). By exchangeability, $Pr\{\pi(l_2) = v \mid \pi(l_1) = u\}$ takes the same value for any position $\pi(l_2)$ satisfying $i_1 \neq i_2$. As there are ms(t-1) such locations,

$$Pr\{\pi(l_2) = v \mid \pi(l_1) = u\} = \frac{1}{ms(t-1)}$$
 (A.2)

(c) If $\gamma_p(u,v) = 0$, then u and v are generated from different $\overline{\mathbf{Q}}_l$ matrices during the Step 2 construction of BSPV. Since $\overline{\mathbf{Q}}_l$ matrices are independently generated, the probability that u and v are at the same location of two $\overline{\mathbf{Q}}_l$ matrices is 1/p. Thus,

(i) if $i_1 = i_2$ and $j_1 = j_2$,

$$Pr\{\pi(l_2) = v \mid \pi(l_1) = u\} = \frac{1/p}{m-1} = \frac{1}{n-p},$$
 (A.3)

(ii) otherwise,

$$Pr\{\pi(l_2) = v \mid \pi(l_1) = u\} = \frac{1/p}{m} = \frac{1}{n}.$$
 (A.4)

- (d) If $\gamma_t(u,v) = 0$ and $\gamma_p(u,v) = 1$, there are p-t possible choices of v, and the conditional probability of $\pi(l_2) = v$ can be derived by the exchangeability and the regularity of probability. Specifically, we have,
- (i) if $i_1 = i_2$ and $j_1 \neq j_2$,

$$Pr\{\pi(l_2) = v \mid \pi(l_1) = u\} = \frac{1 - \frac{n-p}{n}}{p-t} = \frac{s}{n(s-1)};$$
(A.5)

(ii) if $i_1 \neq i_2$ and $j_1 = j_2$,

$$Pr\{\pi(l_2) = v \mid \pi(l_1) = u\} = \frac{1 - \frac{n-p}{n} - \frac{t-s}{ms(t-1)}}{p-t} = \frac{t}{n(t-1)};$$
(A.6)

(iii) if $i_1 \neq i_2$ and $j_1 \neq j_2$,

$$Pr\{\pi(l_2) = v \mid \pi(l_1) = u\} = \frac{1 - \frac{n-p}{n} - \frac{t-s}{ms(t-1)} - \frac{s-1}{m(s-1)(t-1)}}{p-t} = \frac{st - t - s}{n(t-1)(s-1)}.$$
 (A.7)

Using the γ function defined in (3.3), the proof can be completed by re-classification of the above cases based on the relationships between $\pi(l_1)$ and $\pi(l_2)$, and then multiplying the conditional probability by $Pr\{\pi(l_1) = u\} = 1/n$.

Proof of Lemma 2

(i) Without loss of generality, we focus on \mathbf{D}_{11} . By the construction of \mathbf{D} , write the entries in \mathbf{D}_{11} as $\pi_k(l) = (\alpha_l^k - 1)p + \beta_l^k$, l = 1, ..., m, k = 1, ..., q, where $\{\alpha_1^k, \dots, \alpha_m^k\}$ is a uniform permutation

on \mathbf{Z}_m , β_l^k 's are i.i.d and follow a discrete uniform distribution on \mathbf{Z}_p , and α_l^k 's are independent with β_l^k 's. Then for l = 1, ..., m, we can rewrite (2.1) as

$$d_{lk} = \frac{(\alpha_l^k - 1)p + \beta_l^k - u_{lk}}{pm} = \frac{\alpha_l^k - \tilde{u}_{lk}}{m},$$
(A.8)

where $\tilde{u}_{lk} = (p - \beta_l^k + u_{lk}) / p$ follows a uniform distribution on (0,1].

(ii) We prove this by showing the equivalence between our construction and that of Qian (2012) for \mathbf{D}_1 . In our method, note \mathbf{D}_1 is constructed based on the first columns of $\overline{\mathbf{Q}}_1$, ..., $\overline{\mathbf{Q}}_m$, or equivalently $\mathbf{W}(:,1)$. Divide \mathbf{Z}_n into r groups of t consecutive numbers, where the tth group is $\mathbf{g}_i = \{a \in \mathbf{Z}_n \mid [a/t] = i\}, i = 1,..., r$. For easier interpretation, we replace any number in \mathbf{g}_i with the symbol \mathbf{g}_i in our construction. For example, in our numerical example immediately following the construction steps, we can write

$$\overline{\mathbf{Q}}_{1} = \mathbf{Q}_{1}' = \begin{bmatrix} 11 & 5 & 8 & 1 \\ 4 & 12 & 3 & 7 \\ 6 & 2 & 9 & 10 \end{bmatrix} = \begin{bmatrix} g_{3} & g_{2} & g_{2} & g_{1} \\ g_{1} & g_{3} & g_{1} & g_{2} \\ g_{2} & g_{1} & g_{3} & g_{3} \end{bmatrix},$$

where g_i can be viewed as the group index. Based on Step 1 of the construction for a BSPV, it is easy to see that $\overline{\mathbf{Q}}_l(:,1)$ is a uniform permutation on the set $\{g_{(l-1)s+1},...,g_{ls}\}$ and the permutations are independent across l, l = 1,...,m. This step produces equivalent outcome to that of Step 1 in Qian (2012).

For the next step in our construction of \mathbf{D}_{1} , first columns of each $\overline{\mathbf{Q}}_{l}$ are put together, then randomly permuted within each group of m numbers $\mathbf{W}(((j-1)m+1):jm,1)$ to form $\mathbf{W}(:,1)$, as in Step 3. This procedure is equivalent to carry out independent permutations on each row of the following matrix

$$\left[\overline{\mathbf{Q}}_{1}(:,1),\overline{\mathbf{Q}}_{2}(:,1),...,\overline{\mathbf{Q}}_{m}(:,1)\right],$$

whose *l*th column is the 1st column of $\overline{\mathbf{Q}}_l$. This step produces equivalent outcome to that of Step 2 in Qian (2012).

Further, from Step 1 in our construction, it is clear that g_i is a uniform random number from \mathbf{g}_i . Hence the *l*th entry in $\mathbf{W}(:,1)$ can be written as $\pi(l) = (\alpha_l - 1)t + \beta_l$, l = 1,...,r, where $\{\alpha_1, \dots, \alpha_r\}$ is a uniform permutation on \mathbf{Z}_r and β_l 's are i.i.d uniformly distributed on \mathbf{Z}_t . Following the similar idea as that in the proof of part (i) and noting that the q BSPVs are independently generated, it is straightforward that \mathbf{D}_1 is equivalent to an SLHD with s slices, each of which contains m runs.

(iii) The proof follows the similar idea as that in part (ii).

Proof of Lemma 3

For any $x_{l}^{k} \in (0,1]$, l = 1,..., n, k = 1,..., q, by (2.1) and Lemma 1, $p(x_{l}^{k})dx_{l}^{k} = Pr(x_{l}^{k} < X_{l}^{k} < x_{l}^{k} + dx_{l}^{k})$ $= Pr\{nx_{l}^{k} < \pi_{k}(l) - u_{lk} < n(x_{l}^{k} + dx_{l}^{k})\}$ $= Pr\{\pi_{k}(l) = \lceil nx_{l}^{k} \rceil\} Pr(\lceil nx_{l}^{k} \rceil - nx_{l}^{k} - ndx_{l}^{k} < u_{lk} < \lceil nx_{l}^{k} \rceil - nx_{l}^{k})$ $= \frac{1}{n}ndx_{l}^{k} = dx_{l}^{k}.$ (A.9)

So the density of x_l^k satisfies $p(x_l^k) = 1$ for all $x_l^k \in (0,1]$. As x_l^k 's are independent across k, $p(\mathbf{x}_l) = 1$ for all $\mathbf{x}_l \in (0,1]^q$.

Proof of Lemma 4

Similar to the proof in Lemma 3, the joint density can be derived in the same way:

$$p(x_{l_{1}}^{k}, x_{l_{2}}^{k})dx_{l_{1}}^{k}dx_{l_{2}}^{k} = Pr(x_{l_{1}}^{k} < X_{l_{1}}^{k} < x_{l_{1}}^{k} + dx_{l_{1}}^{k}, x_{l_{2}}^{k} < X_{l_{2}}^{k} < x_{l_{2}}^{k} + dx_{l_{2}}^{k})$$

$$= Pr\{\pi_{k}(l_{1}) = \lceil nx_{l_{1}}^{k} \rceil, \pi_{k}(l_{2}) = \lceil nx_{l_{2}}^{k} \rceil\} n^{2}dx_{l_{1}}^{k}dx_{l_{2}}^{k}$$
(A.10)

Then $p(\mathbf{x}_{l_1}, \mathbf{x}_{l_2}) = \prod_{k=1}^{q} \{ n^2 Pr(\pi_k(l_1) = \lceil nx_{l_1}^k \rceil, \pi_k(l_2) = \lceil nx_{l_2}^k \rceil) \}$, and the lemma follows directly from the results in Lemma 1.

Proof of Theorem 1

(i) follows directly from Lemma 2 (i), Lemma 2 in Xiong, Xie, Qian and Wu (2014), Lemma 2 in Qian (2012), and the theorem in McKay, Beckman, and Conover (1979). (ii) follows directly from case (ii) and case (iii) of Lemma 2, Lemma 2 in Xiong, Xie, Qian and Wu (2014), and Theorem 1 in Qian (2012).

Proof of Theorem 2

For (i), by Lemma 2, each \mathbf{D}_{ij} is statistically equivalent to an ordinary LHD with m runs. Then, by Theorem 1 in Stein (1987) or Theorem 1 in Loh (1996), the result in (i) holds.

For (ii), by Lemma 2, each $\mathbf{D}_{i\cdot}$ is statistically equivalent to an SLHD with s slices each of m runs, and each $\mathbf{D}_{\cdot j}$ is statistically equivalent to a SLHD with t slices each of m runs. Then, the result follows directly from Theorem 2 in Qian (2012).

For (iii), by (3.1),

$$Var(\hat{\mu}) = Var(\sum_{i} \sum_{j} \lambda_{ij} \hat{\mu}_{ij})$$

$$= \sum_{i_{1}} \sum_{j_{1}} \sum_{i_{2}} \sum_{j_{2}} Cov(\lambda_{i_{1}j_{1}} \hat{\mu}_{i_{1}j_{1}}, \lambda_{i_{2}j_{2}} \hat{\mu}_{i_{2}j_{2}})$$

$$= \sum_{i} \sum_{j} \lambda_{ij}^{2} Var(\hat{\mu}_{ij}) + \sum_{j} \sum_{i_{1}} \sum_{j_{2}} \sum_{(i_{1},j_{1})\neq(i_{2},j_{2})} \lambda_{i_{1}j_{1}} \lambda_{i_{2}j_{2}} Cov(\hat{\mu}_{i_{1}j_{1}}, \hat{\mu}_{i_{2}j_{2}})$$
(A.11)

Define the first summation term and second summation term in (A.11) as I_1 and I_2 , respectively. Since t and s are fixed integers, and m has the same order with n, we have, by part (i),

$$I_{1} = \frac{1}{m} \sum_{i} \sum_{j} \lambda_{ij}^{2} \sigma_{ij}^{2} - \frac{1}{m} \sum_{i} \sum_{j} \sum_{k} \lambda_{ij}^{2} \int_{0}^{1} \{f_{ij}^{-k}(x)\}^{2} dx + o(n^{-1}).$$
 (A.12)

Next we will show that $I_2 = o(n^{-1})$. Since I_2 is the summation of $p^2 - p$ different terms with p being a fixed number, it suffices to show that when $(i_1, j_1) \neq (i_2, j_2)$,

$$Cov(\hat{\mu}_{i,j}, \hat{\mu}_{i,j}) = o(n^{-1}).$$
 (A.13)

As $\hat{\mu}_{ii}$ defined in (3.1), we have

$$Cov(\hat{\mu}_{i_1 j_1}, \hat{\mu}_{i_2 j_2}) = \frac{1}{m^2} \sum_{\mathbf{x}_h \in \mathbf{D}_{0,h}, \mathbf{x}_h \in \mathbf{D}_{D,h}} Cov\{f_{i_1 j_1}(\mathbf{x}_{l_1}), f_{i_2 j_2}(\mathbf{x}_{l_2})\}.$$
(A.14)

Now we will show that when $(i_1, j_1) \neq (i_2, j_2)$,

$$Cov\{f_{i,j}(\mathbf{x}_{l_i}), f_{i,j}(\mathbf{x}_{l_i})\} = o(n^{-1}).$$
(A.15)

To prove this, we first introduce the following lemma.

Lemma A1. Let $f(\cdot)$ and $g(\cdot)$ be two integrable functions defined on (0, 1], n is a positive integer, and $\delta_n(x, y)$ is defined in (3.4). Then we have, when $n \to \infty$,

$$\int_0^1 \int_0^1 f(x_1)g(x_2) \delta_n(x_1, x_2) dx_1 dx_2 = \frac{1}{n} \int_0^1 f(x)g(x) dx + o(n^{-1}).$$
 (A.16)

Proof. Let $J_i = (\frac{i-1}{n}, \frac{i}{n}], i = 1, ..., n$, we have

$$\delta_n(x_1, x_2) = \sum_{i=1}^n I\{x_1 \in J_i\} I\{x_2 \in J_i\}, \qquad (A.17)$$

where $I(\cdot)$ is the indicator function. Therefore, when $n \to \infty$,

$$\int_{0}^{1} \int_{0}^{1} f(x_{1})g(x_{2}) \delta_{n}(x_{1}, x_{2}) dx_{1} dx_{2}$$

$$= \sum_{i=1}^{n} \int_{0}^{1} \int_{0}^{1} f(x_{1})g(x_{2}) I\{x_{1} \in J_{i}\} I\{x_{2} \in J_{i}\} dx_{1} dx_{2}$$

$$= \sum_{i=1}^{n} \int_{J_{i}} f(x) dx \int_{J_{i}} g(x) dx$$

$$= \frac{1}{n} \int_{0}^{1} f(x)g(x) dx + o(n^{-1}).$$
(A.18)

Now we go back to prove (A.15). The condition $(i_1, j_1) \neq (i_2, j_2)$ contains the three following cases, each corresponds to one case in Lemma 4.

(i) If $i_1 = i_2 = i$ and $j_1 \neq j_2$, it corresponds to the case (ii) in Lemma 4. Thus,

$$\begin{aligned}
&\text{Cov}\{f_{ij_{1}}(\mathbf{x}_{l_{1}}), f_{ij_{2}}(\mathbf{x}_{l_{2}})\} \\
&= \int \{f_{ij_{1}}(\mathbf{x}_{l_{1}}) - \mu_{ij_{1}}\} \{f_{ij_{2}}(\mathbf{x}_{l_{2}}) - \mu_{ij_{2}}\} p(\mathbf{x}_{l_{1}}, \mathbf{x}_{l_{2}}) d\mathbf{x}_{l_{1}} d\mathbf{x}_{l_{2}} \\
&= \int \{f_{ij_{1}}(\mathbf{x}_{l_{1}}) - \mu_{ij_{1}}\} \{f_{ij_{2}}(\mathbf{x}_{l_{2}}) - \mu_{ij_{2}}\} \left\{1 + \frac{1}{s-1} \sum_{k=1}^{q} \left[\delta_{m}(x_{l_{1}}^{k}, x_{l_{2}}^{k}) - s\delta_{r}(x_{l_{1}}^{k}, x_{l_{2}}^{k})\right] \right\} d\mathbf{x}_{l_{1}} d\mathbf{x}_{l_{2}} + o(m^{-1}) \\
&= \frac{1}{s-1} \sum_{k=1}^{q} \int f_{ij_{1}}^{-k}(x_{l_{1}}^{k}) f_{ij_{2}}^{-k}(x_{l_{2}}^{k}) \delta_{m}(x_{l_{1}}^{k}, x_{l_{2}}^{k}) dx_{l_{1}}^{k} dx_{l_{2}}^{k} \\
&- \frac{s}{s-1} \sum_{k=1}^{q} \int f_{ij_{1}}^{-k}(x_{l_{1}}^{k}) f_{ij_{2}}^{-k}(x_{l_{2}}^{k}) \delta_{r}(x_{l_{1}}^{k}, x_{l_{2}}^{k}) dx_{l_{1}}^{k} dx_{l_{2}}^{k} + o(m^{-1}) \\
&= \frac{1}{s-1} (\frac{1}{m} - \frac{s}{r}) \sum_{k=1}^{q} \int f_{ij_{1}}^{-k}(x) f_{ij_{2}}^{-k}(x) dx + o(m^{-1}) \\
&= o(n^{-1}).
\end{aligned}$$

(ii) If $i_1 \neq i_2$ and $j_1 = j_2 = j$, it corresponds to the case (iii) in Lemma 4. By the same argument in part (ii), we have

$$Cov\{f_{i,j}(\mathbf{x}_{l_1}), f_{i,j}(\mathbf{x}_{l_2})\} = o(n^{-1}).$$
(A.20)

(iii) If $i_1 \neq i_2$ and $j_1 \neq j_2$, it corresponds to the case (iv) in Lemma 4. Thus,

$$\begin{aligned} &\operatorname{Cov}\{f_{i,j_{1}}(\mathbf{x}_{l_{1}}), f_{i_{2}j_{2}}(\mathbf{x}_{l_{2}})\} \\ &= \int \{f_{i_{1}j_{1}}(\mathbf{x}_{l_{1}}) - \mu_{i_{1}j_{1}}\} \{f_{i_{2}j_{2}}(\mathbf{x}_{l_{2}}) - \mu_{i_{2}j_{2}}\} p(\mathbf{x}_{l_{1}}, \mathbf{x}_{l_{2}}) d\mathbf{x}_{l_{1}} d\mathbf{x}_{l_{2}} \\ &= \int \{f_{i_{1}j_{1}}(\mathbf{x}_{l_{1}}) - \mu_{i_{1}j_{1}}\} \{f_{i_{2}j_{2}}(\mathbf{x}_{l_{2}}) - \mu_{i_{2}j_{2}}\} \\ &= \left\{1 + (s-1)^{-1}(t-1)^{-1} \sum_{k=1}^{q} \left[-\delta_{m}(x_{l_{1}}^{k}, x_{l_{2}}^{k}) + s\delta_{r}(x_{l_{1}}^{k}, x_{l_{2}}^{k}) + t\delta_{h}(x_{l_{1}}^{k}, x_{l_{2}}^{k}) - p\delta_{n}(x_{l_{1}}^{k}, x_{l_{2}}^{k}) \right] \right\} d\mathbf{x}_{l_{1}} d\mathbf{x}_{l_{2}} + o(n^{-1}) \\ &= (s-1)^{-1}(t-1)^{-1} \sum_{k=1}^{q} \int f_{i_{1}j_{1}}^{-k}(x_{l_{1}}^{k}) f_{i_{2}j_{2}}^{-k}(x_{l_{2}}^{k}) \\ &\left[-\delta_{m}(x_{l_{1}}^{k}, x_{l_{2}}^{k}) + s\delta_{r}(x_{l_{1}}^{k}, x_{l_{2}}^{k}) + t\delta_{h}(x_{l_{1}}^{k}, x_{l_{2}}^{k}) - p\delta_{n}(x_{l_{1}}^{k}, x_{l_{2}}^{k}) \right] dx_{l_{1}}^{k} dx_{l_{2}}^{k} + o(n^{-1}) \\ &= (s-1)^{-1}(t-1)^{-1}(-\frac{1}{m} + \frac{s}{r} + \frac{t}{h} - \frac{p}{n}) \sum_{k=1}^{q} \int f_{i_{1}j_{1}}^{-k}(x) f_{i_{2}j_{2}}^{-k}(x) dx + o(n^{-1}) \\ &= o(n^{-1}). \end{aligned} \tag{A.21}$$

This proves (A.15) and completes the proof of Theorem 2.