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Abstract: We propose a new type of design for computer experiments called bi-

directional sliced Latin hypercube design (BSLHD). The proposed design is a spe-

cial Latin hypercube design (LHD) that simultaneously accommodates two slicing

structures. It consists of multiple LHDs of smaller sizes, which can be joined in al-

ternative ways to form two sets of standard sliced LHDs. These new structures are

useful for computer experiments with qualitative factors, experiments running in

batch mode, and ensembles of multiple computer models. Some sampling proper-

ties of the designs in estimating function means are proved and illustrated through

numerical examples.
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1. Introduction

Latin hypercube designs are widely used in computer simulation (Fang, Li,

and Sudjianto (2005); Santner, Williams, and Notz (2003)), stochastic optimiza-

tion, and numerical integration. In many applications, the main goal is to esti-

mate the expected output of a computer model given a distribution of inputs.

McKay, Beckman, and Conover (1979) introduced the first class of Latin hyper-

cube designs (LHDs), referred to as ordinary Latin hypercube designs hereafter.

Qian (2012) developed a new type of design called sliced Latin hypercube designs

(SLHDs). An SLHD is a special LHD that can be partitioned into several slices,

each of which is a smaller LHD. The concept of SLHD is later extended to the

general sliced Latin hypercube designs (GSLHDs) in Xie et al. (2014), where

the slicing structure has multiple layers to facilitate the implementation of more

complex computer experiments.

We propose a new type of design, called bi-directional sliced Latin hypercube

design (BSLHD). This design simultaneously accommodates two slicing struc-

tures. The entire design is a special LHD consisting of elementary LHDs of a

much smaller size. Joined in alternative ways, these elementary LHDs are able

to form two sets of standard SLHDs. These properties of BSLHD provide sig-

nificant advantages for computer experiments with various discrete natures. For
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example, SLHDs are considered to be a superior choice when emulating com-

puter models with qualitative factor(s). Upon cross-validating an emulator for

such computer models, the SLHD needs to be further partitioned into multiple

folds, each of which consists of evenly partitioned design points at any level of

the qualitative factor. It will be advantageous if each fold is itself an SLHD (of

a smaller size), because it not only offers an even partition at each level, but

also provides the slicing structure across all levels for better emulator fitting and

testing during the cross-validation process. To the best of our knowledge, such

a design structure can only be achieved by the BSLHDs proposed in this paper.

Other potential applications of BSLHDs can be found in collective evaluation of

computer models, experiments running in batch mode, etc.

The remainder of this article is organized as follows. Section 2 introduces

a method for constructing BSLHDs. Section 3 derives some of their sampling

properties. Section 4 presents numerical examples to corroborate the derived

properties, and Section 5 concludes with some remarks. All proofs are deferred

to supplementary material.

2. Construction

In this section, we present a method for constructing BSLHDs. For a positive

integer b, let Zb denote the set {1, 2, . . . , b}. Drawing a uniform permutation on

a set of b integers means randomly taking a permutation on the set, with all b!

possible permutations equally probable. For x ∈ R, ⌈x⌉ denotes the smallest

integer no less than x. Similarly define ⌈D⌉ for a real matrix D. For a matrix

M, M(i, :) denotes its ith row, M(:, j) its jth column, and M(i1 : i2, j) a vector

with its entries taken from rows i1 to i2 and column j.

A BSLHD D is associated with four positive integers: m, t, s, q. Let n =

mst, r = ms, h = mt and p = st. Throughout, we only consider designs in q

dimensions and the dimension is dropped unless otherwise noted. The design D

is an LHD of n runs in q dimensions that consists of p element designs with

Dij = D([(i− 1)r + (j − 1)m+ 1] : [(i− 1)r + jm], :),

where i = 1, . . . , t, j = 1, . . . , s. Each element design Dij is itself an LHD with

m runs.

Interestingly, these p element designs can be joined in two ways to form LHDs

of larger sizes, upon either index i or j. TakeDi• =
∪s

j=1Dij andD•j =
∪t

i=1Dij .

A figurative illustration of D’s structure is given in Figure 1, where the relations

among the Dij ’s, Di•’s, D•j ’s, and D are presented. There each Di• is an LHD

with r runs and each D•j is an LHD with h runs. In the notion of standard

SLHDs (Qian (2012)), each Di• or D•j is an SLHD consisting of some Dij ’s as
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D11 D12 · · · D1s D1•

D21 D22 · · · D2s D2•

...
...

...
...

Dt1 Dt2 · · · Dts Dt•

D•1 D•2 · · · D•s D

Figure 1. Structure of a BSLHD (Dij is an LHD with m runs, Di• is an
LHD with r runs, D•j is an LHD with h runs, D is an LHD with n runs).

its slices. In addition, D is a special SLHD containing the slicing structures

D =
∪t

i=1Di• and D =
∪s

j=1D•j (hence the name bi-directional).

Based on Figure 1, we shall call the two slicing structures row slicing and

column slicing for easy reference and, correspondingly, call Di• a row-slice and

D•j a column-slice. The roles of row-slices and column-slices, as well as t and s,

are symmetric. Therefore, without loss of generality, assume t ≥ s hereinafter.

Figure 2 presents a BSLHD with m = 3, t = 3, s = 2, and q = 2 where (1)

the design denoted by all the symbols has n = 18 total runs in a q = 2 dimension

space; (2) there are p = 6 element designs each with m = 3 runs denoted by

a distinct symbol; (3) there are t = 3 row-slices each with r = 6 runs; and (4)

there are s = 2 column-slices each with h = 9 runs. Due to the random nature,

Figure 2 shows only one possible realization of the BSLHD for illustration. In

practice, additional optimality rules for regular LHDs (e.g., maximin) may also

be applied here to select a design with the best space-fillingness from a pool of

randomly generated candidates.

To facilitate the construction of the BSLHD, we define a bi-directional sliced

permutation vector (BSPV) π(m, t, s) on Zn, which is the building block for

BSLHD. A BSLHD can be constructed based on q independently generated

BSPVs, each of which corresponds to one dimension of the design. Let S be a

BSPV with lth element π(l), l = 1, . . . , n. Then (1) S consists of p element blocks

each with m numbers: Sij = {π((i− 1)r + (j − 1)m+ 1), . . . , π((i− 1)r + jm)},
i = 1, . . . , t, j = 1, . . . , s, where ⌈Sij/p⌉ is a permutation on Zm; (2) with

Si• =
∪s

j=1 Sij as a row-block, and S•j =
∪t

i=1 Sij as a column-block, i = 1, . . . , t,

j = 1, . . . , s, then ⌈Si•/t⌉ is a permutation on Zr and ⌈S•j/s⌉ is a permutation

on Zh.

We now introduce a special table, called nested permutation table (NPT),

for storing numbers, which is essential to our construction algorithm. The NPT,

T, has t × t cells, each of which contains s × 1 subcells, making it a table with

p × t subcells. We call the rows formed by cells rows, and call the rows formed

by subcells subrows, so there are t rows / p subrows in an NPT. Numbers from

Zp are assigned to selected subcells of the T table. Table 1 shows an example of

an NPT table with t = 3 and s = 2, filled with numbers from Z6. For the NPT,
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(a) three 6-run row-slices (D1•, D2•, D3•) (b) two 9-run column-slices (D•1, D•2)

Figure 2. An example of BSLHD (3, 3, 2, 2) viewed as (a) row-slices and (b)
column-slices (D11 – �; D12 – �; D21 – N; D22 – △; D31 – •; D32 – ◦;
D =

∪
i,j Dij is an 18-run LHD, each Di• =

∪s
j=1 Dij is a 6-run LHD; each

D•j =
∪t

i=1 Dij is a 9-run LHD; each Dij is a 3-run LHD).

Table 1. An example of NPT with t = 3 and s = 2.

1
2

3
4

5
6

we use ti,j to denote the subcell at the ith subrow and jth column, i = 1, . . . , p,

j = 1, . . . , t. For example, we have t4,2 = 4 and t6,1 = 6 in Table 1.

Divide Zp into s blocks each with t consecutive numbers, with the jth block

being {(j − 1)t+1, . . . , jt}, j = 1, . . . , s. We describe the algorithm to construct

a BSPV π(m, t, s).

Step 1. For j = 1, . . . , s, fill the empty NPT T with t(j−1)t+i,π(i) = (j − 1)t+ i,

i = 1, . . . , t, where {π(1), . . . , π(t)} is a uniform permutation on Zt,

with the permutations carried out independently for each j. Based on

T, fill an s × t empty matrix Q with the p numbers from Zp, such

that, for any j = 1, . . . , s, ⌈Q(j, :)/s⌉ is a permutation on Zt, and for

any i = 1, . . . , t, ⌈Q(:, i)/t⌉ is a permutation on Zs. (See Appendix

for details of finding such Q). Randomly permute the rows and then

columns of Q to obtain Q′.
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Table 2. An NPT with t = 4 and s = 3.

1
2

3
4

5
6

7
8
9

10
11

12

Step 2. Repeat Step 1 independently m times to obtain m matrices Q′
1, . . . ,Q

′
m.

For Ql, let Q̄l = Q′
l + p(l − 1), l = 1, . . . ,m.

Step 3. For an empty r × t matrix W whose (i, j)th element is wi,j , let

W(((j − 1)m + l), :) = Q̄l(j, :), j = 1, . . . , s, l = 1, . . . ,m. For each

group of m elements W(((j − 1)m + 1) : jm, i), i = 1, . . . , t and

j = 1, . . . , s, randomly permute them within those m locations. Let

π((j − 1)r+ i) = wi,j , i = 1, . . . , r, j = 1, . . . , t, then {π(1), . . . , π(n)} is

a BSPV π(m, t, s) on Zn.

We illustrate the construction of π(m, t, s) step by step for m = 2, t = 4 and

s = 3. Based on the relations previously defined, we have n = 24, r = 6, h = 8,

and p = 12.

First, use Step 1 to construct an s×tmatrixQ on Z12. The s = 3 blocks from

Z12 are {1, 2, 3, 4}, {5, 6, 7, 8}, and {9, 10, 11, 12}. The s = 3 uniform random

permutations on Z4 we have obtained are {3, 1, 2, 4}, {1, 4, 3, 2}, and {2, 3, 4, 1}.
The corresponding NPT T based on the permutations is given in Table 2.

To find a Q matrix with the desired properties described in Step 1, we use

the procedures in the Appendix. First, we find the 4× 4 G matrix whose entries

equal the number of elements inside each cell (not subcell) of T given in Table 2:

G =


1 1 1 0

1 0 0 2

0 2 1 0

1 0 1 1

 .

For example, number “2” at the 2nd row and 4th column of G means there are

two numbers (“4” and “6”) in the corresponding cell of T. The matrix G is then
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decomposed into three permutation matrices, with one possible result being

G =


1 1 1 0

1 0 0 2

0 2 1 0

1 0 1 1



= P1 +P2 +P3 =


0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

+


1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

+


0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0

 .

Corresponding to these permutation matrices, we might extract these three vec-
tors from T: (5, 8, 1, 11), (2, 9, 10, 6), (12, 3, 7, 4). This set of extracted vectors is
not unique when there is at least one entry larger than 1 in matrix G (refer to
the Appendix for details). These vectors are then joined row by row to obtain

Q1 =

 5 8 1 11

2 9 10 6

12 3 7 4

 .

Randomly permute the rows and then columns of Q1, with possible outcome
being

Q′
1 =

11 5 8 1

4 12 3 7

6 2 9 10

 .

For l = 1, we have Q̄1 = Q′
1. Repeat the above steps for l = 2, with one possible

outcome being

Q̄2

15 21 17 24

19 13 23 16

22 20 14 18

 .

In Step 3, we obtain a possible W matrix as

W =



11 21 8 24

15 5 17 1

4 12 3 16

19 13 23 7

22 20 9 18

6 2 14 10


.

Finally, we use W to obtain the following vector:

vT = π(2, 4, 3)

= (11, 15, 4, 19, 22, 6, 21, 5, 12, 13, 20, 2, 8, 17, 3, 23, 9, 14, 24, 1, 16, 7, 18, 10).
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Now we verify the properties of v. It has p = 12 element blocks defined by

Sij = (π(6(i− 1) + 2j − 1), π(6(i− 1) + 2j)), i = 1, . . . , 4, and j = 1, 2, 3.

(1) ⌈vT /12⌉ = ((1, 2), (1, 2), (2, 1), (2, 1), (1, 2), (2, 1), (1, 2), (1, 2), (1, 2), (2, 1),

(2, 1), (2, 1)). This verifies that each ⌈Sij/12⌉ is a permutation on Z2.

(2) For easier illustration with t = 4 row-blocks and s = 3 column-blocks, we

define W1 and W2 as:

W1 =


ST
1•

ST
2•

ST
3•

ST
4•

 , W2 =

ST
•1

ST
•2

ST
•3

 ,

where each row-block is a row in W1 and each column-block is a row in W2.

We then obtain

⌈W1/4⌉ =


3 4 1 5 6 2

6 2 3 4 5 1

2 5 1 6 3 4

6 1 4 2 5 3

 , ⌈W2/3⌉ =

4 5 7 2 3 6 8 1

2 7 4 5 1 8 6 3

8 2 7 1 3 5 6 4

 .

This verifies that each row-block Si• is a permutation on Z6, and each column-

block S•j is a permutation on Z8. The vector v here is indeed a BSPV.

To construct a BSLHD (m, t, s, q), we independently generate q BSPVs:

πk(m, t, s), and fill an empty n × q matrix by letting its lth row and kth col-

umn entry be πk(l), l = 1, . . . , n, k = 1, . . . , q. Based on this matrix, an n × q

BSLHD D is generated through

dlk =
(πk(l)− ulk)

n
, l = 1, . . . , n, k = 1, . . . , q, (2.1)

where the ulk’s are independent U(0, 1] random variables, πk(l)’s and ulk’s are

mutually independent.

3. Sampling Properties

In this section, we present some sampling properties of the proposed design.

We have assumed t ≥ s. Due to its complex combinatorial construction, we derive

the sampling properties of BSLHD for t = cs, where c is any positive integer.

If t ̸= cs, the distribution function of π(m, t, s) is more complicated because of

the dependence among the rows in the nested permutation table. Performances

of the proposed designs for t ̸= cs will be demonstrated through the numerical

example.

In a similar spirit as SLHD and GSLHD, one major advantage of BSLHD lies

in the collective evaluation of computer models. For example, we are interested
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in a physical system with s variants (e.g., s operating modes or system configura-
tions). There are t different computer models available for simulating this system,
which might be built based on t different algorithms. Each computer model con-
tains a categorical variable with s levels, corresponding to the s variants of the
physical system it describes. Denote the computer models as fij , i = 1, . . . , t,
j = 1, . . . , s, where fij is the jth variant of the ith computer model. Assume
each fij has factors x = (x1, . . . , xq) whose distribution is the uniform measure
on (0, 1]q, denoted by F . For i = 1, . . . , t, j = 1, . . . , s, define µij = E[fij(x)].
For i1, i2 = 1, . . . , t, j1, j2 = 1, . . . , s, define Cov i1j1i2j2 = Cov [fi1j1(x), fi2j2(x)],
which is σ2

i1j1
= Var [fi1j1(x)] if i1 = i2 and j1 = j2. The mean value µij can be

estimated by running fij at m selected input values. For 0 ≤ λij ≤ 1, i = 1, . . . , t,
j = 1, . . . , s, the following linear combinations are of interest in practice:

µi• =
∑
j

λijµij ,

µ•j =
∑
i

λijµij ,

µ =
∑
i

∑
j

λijµij .

In collectively evaluating t different computer models each with s variants,
µi• gives the weighted mean output of the ith model across all of its variants, µ•j

gives the weighted mean output of all t models for their jth variant, and µ is the
weighted grand mean.

Consider the following schemes to achieve this goal.

Definition 1. Let m, s, t, and p be strictly positive integers with n = mp = mst.

(i) Let IID denote a scheme that takes an independent and identically dis-
tributed sample of m runs for each fij , with the p samples generated inde-
pendently.

(ii) Let LH denote the scheme that obtains p independent ordinary LHDs of m
runs, each of which is associated with one fij .

(iii) Let SLH denote the scheme that produces an n× q SLHD with p slices by
using the method in Qian (2012), where each slice is a smaller LHD with
m runs and randomly assigned to one fij .

(iv) Let S-ROW denote the scheme that independently produces t SLHDs of
size ms× q, each of which has s slices, by using the method in Qian (2012).
For i = 1, . . . , t, j = 1, . . . , s, assign the jth slice of the ith SLHD to fij .

(v) Let S-COL denote the scheme that independently produces s SLHDs of size
mt× q, each of which has t slices, by using the method in Qian (2012). For
i = 1, . . . , t, j = 1, . . . , s, assign the ith slice of the jth SLHD to fij .
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(vi) Let GS-ROW denote the scheme that produces an n×q GSLHD of two layers

by using the method in Xie et al. (2014), where its first layer contains s slices

and its second layer contains t slices, s1 = s and s2 = t in their notation.

For i = 1, . . . , t, and j = 1, . . . , s, the sub-design at the jth slice of the first

layer and the ith slice of the second layer is an LHD with m runs and is

assigned to fij .

(vii) Let GS-COL denote the scheme that produces an n × q GSLHD of two

layers by using the method in Xie et al. (2014), where its first layer contains

t slices and its second layer contains s slices, i.e., s1 = t and s2 = s in their

notation. For i = 1, . . . , t, and j = 1, . . . , s, the sub-design at the ith slice

of the first layer and the jth slice of the second layer is an LHD with m

runs and is assigned to fij .

(viii) Let BSLH denote the scheme that produces a BSLHD (m, t, s, q). For

i = 1, . . . , t, and j = 1, . . . , s, its element design Dij is assigned to fij .

Expectations, variances, and covariances under the above schemes (in the

same order) are denoted by the subscripts IID, LH, SLH, S-ROW, S-COL, GS-

ROW, GS-COL and BSLH, respectively. For any of these schemes, let Dij denote

its design set for fij , and x denote one row of D. For i = 1, . . . , t, j = 1, . . . , s,

we have the following estimators

µ̂ij = m−1
∑

x∈Dij

fij(x),

µ̂i• =
∑
j

λijµ̂ij ,

µ̂•j =
∑
i

λijµ̂ij ,

µ̂ =
∑
i

∑
j

λijµ̂ij .

(3.1)

For later development, we describe the ANOVA decomposition of integrable

functions on (0, 1]q (Owen (1992); Loh (1996)). With F the uniform measure on

(0, 1]q, let dF =
∏q

k=1 dF
k and dF−k =

∏
i̸=k dF

i. If f : Rq → R is a measurable

function of x = (x1, . . . , xq) and E{[f(x)]2} is well defined and finite, then f can

be decomposed as

f(x) = µ+

q∑
k=1

f−k(xk) + r(x),

where µ =
∫
f(x) dF is the grand mean and the functional main effect of xk is

f−k(xk) =

∫
[f(x)− µ] dF−k, for k = 1, . . . , q. (3.2)
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The residual term, r(x), contains all possible functional interaction effects of

the function f(x). Explicit forms of interaction effects are omitted here due to

irrelevance in the later development, but can be found in Owen (1992). For

k = 1, . . . , q,
∫
f−k dF k = 0 and

∫
r(x) dF−k = 0. Define

γz(a, b) =

{
1, if ⌈az ⌉ = ⌈ b

z ⌉,
0, if ⌈az ⌉ ≠ ⌈ b

z ⌉,
(3.3)

where a, b and z are positive real numbers. We present some results on the

probability mass function of the proposed BSPV under the condition that t = cs,

c = 1, 2, . . .

Lemma 1. For m, t, s in Definition 1 and t= cs, c=1, 2, . . ., let π(m, t, s) =

{π(1), . . . , π(n)} be a BSPV. For any two elements π(l1) and π(l2) from π(m, t, s),

l1 ̸= l2, l1, l2 = 1, . . . , n, they each belongs to an element block in S. Assume

π(l1) ∈ Si1j1 and π(l2) ∈ Si2j2, i1, i2 = 1, . . . , t; j1, j2 = 1, . . . , s. Based on the

relationships between i1 and i2, j1 and j2, define the groups

B1 = {(π(l1), π(l2)) | i1 = i2 and j1 = j2},
B2 = {(π(l1), π(l2)) | i1 = i2 and j1 ̸= j2},
B3 = {(π(l1), π(l2)) | i1 ̸= i2 and j1 = j2},
B4 = {(π(l1), π(l2)) | i1 ̸= i2 and j1 ̸= j2}.

For any u, v ∈ Zn, u ̸= v, we have that

(1) For l = 1, . . . , n, the probability mass function of π(l) is

Pr{π(l) = u} =
1

n
.

(2) For any l1, l2, we have the following cases for the joint probability mass

function

(i) if (π(l1), π(l2)) ∈ B1

Pr{π(l1) = u, π(l2) = v} = n−2 +
γn(u, v)−mγp(u, v)

n2(m− 1)
;

(ii) if (π(l1), π(l2)) ∈ B2

Pr{π(l1) = u, π(l2) = v} = n−2 +
γp(u, v)− sγt(u, v)

n2(s− 1)
;

(iii) if (π(l1), π(l2)) ∈ B3

Pr{π(l1) = u, π(l2) = v} = n−2 +
γp(u, v)− tγs(u, v)

n2(t− 1)
;
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(iv) if (π(l1), π(l2)) ∈ B4

Pr{π(l1) = u, π(l2) = v}

= n−2 +
−γp(u, v) + sγt(u, v) + tγs(u, v)− pγ1(u, v)

n2(s− 1)(t− 1)
.

For Dij , Di•, and D•j defined earlier, we have the following result.

Lemma 2. Let m, s, t be strictly positive integers with n = mst and t = cs,
c = 1, 2, . . . Consider a BSLHD denoted as D. We have that
(i) each Dij, i = 1, . . . , t, j = 1, . . . , s is statistically equivalent to an m × q

standard LHD;
(ii) each Di•, i = 1, . . . , t, is statistically equivalent to an ms × q SLHD with s

slices each containing m runs;
(iii) each D•j, j = 1, . . . , s, is statistically equivalent to an mt × q SLHD with t

slices each containing m runs.

Let xl = (x1l , . . . , x
q
l ) denote the lth row of D, l = 1, . . . , n.

Lemma 3. For l = 1, . . . , n, the marginal distribution of xl is uniform on (0, 1]q.

Lemma 4. For strictly positive integers m, t, s, q with n = mts and t = cs,
c = 1, 2, . . . , let xl1 and xl2 be the l1th and l2th rows of a BSLHD (m, t, s, q)
denoted as D, l1 ̸= l2, l1, l2 = 1, . . . , n. Assume xl1 ∈ Di1j1 and xl2 ∈ Di2j2,
i1, i2 = 1, . . . , t and j1, j2 = 1, . . . , s. The joint density function of xl1 and xl2 is
as follows.

(i) If i1 = i2 and j1 = j2

p(xl1 ,xl2) =

q∏
k=1

{
1 +

δ1(x
k
l1
, xkl2)−mδm(xkl1 , x

k
l2
)

m− 1

}
.

(ii) If i1 = i2 and j1 ̸= j2

p(xl1 ,xl2) =

q∏
k=1

{
1 +

δm(xkl1 , x
k
l2
)− sδr(x

k
l1
, xkl2)

s− 1

}
.

(iii) If i1 ̸= i2 and j1 = j2

p(xl1 ,xl2) =

q∏
k=1

{
1 +

δm(xkl1 , x
k
l2
)− tδh(x

k
l1
, xkl2)

t− 1

}
.

(iv) If i1 ̸= i2 and j1 ̸= j2

p(xl1 ,xl2) =
q∏

k=1

{
1 +

−δm(xkl1 , x
k
l2
) + sδr(x

k
l1
, xkl2) + tδh(x

k
l1
, xkl2)− pδn(x

k
l1
, xkl2)

(s− 1)(t− 1)

}
,
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where xkl1 , x
k
l2
∈ (0, 1] and the δ function is defined as

δc(y, z) = γ1/c(y, z), (3.4)

where γ is defined in (3.3).

The unbiasedness of the estimators in (3.1) has been proven by Lemma 3.

The following theorem discusses their variances under a monotonicity assump-

tion.

Theorem 1. For strictly positive integers t and s with t = cs, c = 1, 2, . . . ,

suppose that fij(x) is monotonic in each argument of x = (x1, . . . , xq), i =

1, . . . , t, j = 1, . . . , s, and any pair of functions fi1j1 and fi2j2, is jointly increasing

or decreasing in each argument of x, i1, i2 = 1, . . . , t and j1, j2 = 1, . . . , s. For the

design schemes in Definition 1, we have the following results for the estimators

in (3.1).

(i) For i = 1, . . . , t, j = 1, . . . , s,

Var BSLH (µ̂ij) = VarGS−ROW (µ̂ij) = VarGS−COL(µ̂ij) = Var S−ROW (µ̂ij)

= Var S−COL(µ̂ij) = Var SLH (µ̂ij) = Var LH (µ̂ij) ≤ Var IID(µ̂ij).

(ii) For i = 1, . . . , t,

Var BSLH (µ̂i•) = VarGS−ROW (µ̂i•)

= Var S−ROW (µ̂i•) ≤ Var LH (µ̂i•) ≤ Var IID(µ̂i•).

(iii)For j = 1, . . . , s,

Var BSLH (µ̂•j) = VarGS−COL(µ̂•j)

= Var S−COL(µ̂•j) ≤ Var LH (µ̂•j) ≤ Var IID(µ̂•j).

Theorem 1 shows that the proposed design is consistently the best in achiev-

ing variance reduction among all the designs. Note that the monotonicity as-

sumption does not hold for computer experiments in many cases. The next

theorem gives a more general result by dropping this assumption.

Theorem 2. Suppose that E{[fij(x)]2}, i = 1, . . . , t, j = 1, . . . , s, are all well-

defined and finite. Let f−k
ij be the functional main effect for the variable xk of

x = (x1, . . . , xq) in the ANOVA decomposition of fij in (3.2). Let m, t, s be

positive integers with n = mts and t = cs, c = 1, 2, . . . . Then, as n → ∞ with t

and s fixed, we have that
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(i) For i = 1, . . . , t, j = 1, . . . , s, and µ̂ij defined in (3.1),

Var BSLH (µ̂ij) =
1

m
σ2
ij −

1

m

q∑
k=1

∫ 1

0
{f−k

ij (x)}2 dx+ o(m−1).

(ii) For i = 1, . . . , t, j = 1, . . . , s, and µ̂i•, µ̂•j defined in (3.1),

Var BSLH (µ̂i•) =
1

m

s∑
j=1

λ2
ijσ

2
ij −

1

m

s∑
j=1

q∑
k=1

λ2
ij

∫ 1

0
{f−k

ij (x)}2 dx+ o(r−1),

Var BSLH (µ̂•j) =
1

m

t∑
i=1

λ2
ijσ

2
ij −

1

m

t∑
i=1

q∑
k=1

λ2
ij

∫ 1

0
{f−k

ij (x)}2 dx+ o(h−1).

(iii)For µ̂ defined in (3.1),

Var BSLH (µ̂) =
1

m

t∑
i=1

s∑
j=1

λ2
ijσ

2
ij−

1

m

t∑
i=1

s∑
j=1

q∑
k=1

λ2
ij

∫ 1

0
{f−k

ij (x)}2 dx+o(n−1).

Remark 1. In Theorem 2, the results in cases (i) and (ii) follow directly from

Stein (1987), Loh (1996), and Qian (2012) due to Lemma 2: Dij ’s are statisti-

cally equivalent to ordinary LHDs, Di•’s and D•j ’s are statistically equivalent to

SLHDs. In case (iii), if the fij ’s are the same with fij = f and λij = 1/p, we

have σ2
ij = σ2 and the variance reduces to

Var BSLH (µ̂) =
1

n
σ2 − 1

n

q∑
k=1

∫ 1

0
{f−k(x)}2 dx+ o(n−1),

which is similar to that of an ordinary LHD of n runs as given in Stein (1987)

and Loh (1996). This suggests that BSLHD, as a whole design, achieves the

similar degree of variance reduction as ordinary LHD, in addition to its desirable

structural properties.

4. Numerical Examples

In this section, two numerical examples are used to compare the properties of

the BSLHD with other design schemes. In addition to the designs of Definition 1,

a design scheme based on a Sobol sequence (Sobol (1967)) is also used. The

Sobol sequence is one of the most popular quasi Monte Carlo methods that

generate low-discrepancy point sets intended for numerical integration. In this

design scheme (coded as SS), each fij is evaluated based on the first m points

consecutively taken from a scrambled Sobol sequence.
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Table 3. RMSEs of the nine design schemes for Example 1, m = 5.

IID SS LH SLH S-ROW S-COL GS-ROW GS-COL BSLH

t = 2
s = 2

µ̂11 0.298 0.145 0.066 0.066 0.066 0.067 0.066 0.066 0.067
µ̂1• 0.105 0.028 0.024 0.020 0.012 0.024 0.012 0.022 0.012
µ̂•1 0.105 0.051 0.023 0.019 0.023 0.012 0.022 0.012 0.012
µ̂ 0.150 0.020 0.033 0.008 0.017 0.017 0.008 0.008 0.008

t = 3
s = 2

µ̂11 0.298 0.145 0.067 0.067 0.067 0.067 0.066 0.067 0.067
µ̂1• 0.070 0.018 0.016 0.014 0.008 0.016 0.008 0.015 0.008
µ̂•1 0.087 0.044 0.019 0.015 0.019 0.006 0.018 0.006 0.006
µ̂ 0.120 0.018 0.028 0.005 0.014 0.009 0.005 0.005 0.005

Table 4. RMSEs of the nine design schemes for Example 1, m = 10.

IID SS LH SLH S-ROW S-COL GS-ROW GS-COL BSLH

t = 2
s = 2

µ̂11 0.212 0.055 0.023 0.024 0.024 0.024 0.024 0.023 0.024
µ̂1• 0.074 0.010 0.008 0.007 0.004 0.008 0.004 0.008 0.004
µ̂•1 0.075 0.021 0.008 0.007 0.008 0.004 0.008 0.004 0.004
µ̂ 0.104 0.007 0.012 0.003 0.006 0.006 0.003 0.003 0.003

t = 3
s = 2

µ̂11 0.209 0.056 0.023 0.024 0.023 0.024 0.024 0.023 0.023
µ̂1• 0.049 0.007 0.006 0.005 0.003 0.006 0.003 0.005 0.003
µ̂•1 0.061 0.020 0.007 0.005 0.007 0.002 0.006 0.002 0.002
µ̂ 0.085 0.006 0.010 0.002 0.005 0.003 0.002 0.002 0.002

Example 1. Consider a function with five-dimensional input:

f(x) =

5∑
i=1

x2i ,

where x is uniform on (0, 1]5.

This function is treated as a computer code. We run the computer code in

batch mode with fixed batch size m. For integers s and t, let p = st denote the

total number of batches tested. Let µ be the true function mean, and µ̂ij be

the sample average from one batch with its corresponding design set denoted as

Dij , i = 1, . . . , t, j = 1, . . . , s. Here we use the same function for all batches,

fij(x) = f(x), with λij = λ = 1/p. For each design scheme in Definition 1 plus

the Sobol sequence based design, we are interested in estimating µ̂11, µ̂1•, µ̂•1 and

µ̂ as defined in (3.1).

We set up two scenarios to test all design schemes in estimating the four

quantities. In the first scenario, s = t = 2; in the second scenario, s = 2 and

t = 3. For each design scheme in each scenario, we computed µ̂11, µ̂1•, µ̂•1 and

µ̂ 10,000 times for m = 5, 10, 20, 40. Tables 3−6 present the root mean squared

errors (RMSE) of µ̂11, µ̂1•, µ̂•1 and µ̂ based on 10,000 estimates.

The four tables indicate that BSLH achieves the smallest variances in all

scenarios, while the other eight design schemes are weak in estimating certain
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Table 5. RMSEs (×10−2) of the nine design schemes for Example 1, m = 20.

IID SS LH SLH S-ROW S-COL GS-ROW GS-COL BSLH

t = 2
s = 2

µ̂11 15.01 1.99 0.83 0.83 0.83 0.84 0.83 0.83 0.84
µ̂1• 5.27 0.36 0.30 0.24 0.15 0.30 0.15 0.28 0.15
µ̂•1 5.35 0.64 0.29 0.24 0.29 0.15 0.28 0.15 0.15
µ̂ 7.51 0.25 0.42 0.10 0.21 0.21 0.10 0.10 0.10

t = 3
s = 2

µ̂11 15.11 2.01 0.84 0.84 0.83 0.83 0.82 0.85 0.83
µ̂1• 3.52 0.23 0.20 0.18 0.10 0.20 0.10 0.19 0.10
µ̂•1 4.29 0.61 0.24 0.19 0.24 0.08 0.23 0.08 0.08
µ̂ 6.12 0.22 0.34 0.06 0.17 0.11 0.06 0.06 0.06

Table 6. RMSEs (×10−2) of the nine design schemes for Example 1, m = 32.

IID SS LH SLH S-ROW S-COL GS-ROW GS-COL BSLH

t = 2
s = 2

µ̂11 11.80 0.41 0.41 0.42 0.41 0.41 0.41 0.41 0.41
µ̂1• 4.16 0.07 0.15 0.12 0.07 0.15 0.07 0.14 0.07
µ̂•1 4.17 0.16 0.15 0.12 0.15 0.07 0.14 0.07 0.07
µ̂ 5.88 0.05 0.21 0.05 0.10 0.10 0.05 0.05 0.05

t = 3
s = 2

µ̂11 11.68 0.41 0.41 0.41 0.41 0.41 0.42 0.41 0.41
µ̂1• 2.75 0.05 0.10 0.09 0.05 0.10 0.05 0.09 0.05
µ̂•1 3.38 0.13 0.12 0.09 0.12 0.04 0.11 0.04 0.04
µ̂ 4.82 0.05 0.17 0.03 0.08 0.06 0.03 0.03 0.03

quantities. Except for SS, the following observations can be summarized: IID

produces the worst results in all situations, all other schemes achieve a similar

level of variance reduction in estimating µ̂11; S-ROW, GS-ROW, and BSLH

achieve significantly smaller RMSEs in estimating µ̂1•; S-COL, GS-COL, and

BSLH achieve significantly smaller RMSEs in estimating µ̂•1; SLH, GS-ROW,

GS-COL, and BSLH achieve significantly smaller RMSEs in estimating µ̂. The

results from SS are mixed and depend on the value m. Although SS significantly

outperforms IID in all cases, no advantage is seen in comparison with LHD-based

methods when m = 5, 10, 20. When m = 32, though still outperformed by BSLH

in all scenarios, SS shows substantial improvement in its performance. This

phenomenon is also seen in many other m values we have tried, not shown here.

In general, the performance of SS is competitive only when m is some power of 2,

where the point set constitutes a scrambled net. On the other hand, LHD-based

designs are quite consistent with all m values, showing their flexibility in terms

of the number of design runs.

The above numerical results are consistent with the statistical properties of

the different design schemes. Except for IID and SS, all other designs perform

similarly at the µ̂11 level as they are all equivalents of LH. In estimating µ̂1•,

µ̂•1, and µ̂, where combinations of µ̂ij are involved, the performance depends on

whether a particular design can achieve a LHD structure for the combination. It
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can be seen that the proposed design is the most versatile. Regarding the two

scenarios, the superior results of BSLH in t = s = 2 were shown in the previous

section. The BSLH scheme also outperformed all other methods for the unproven

case, t is not a multiple of s, when t = 3 and s = 2.

Example 2. Consider four similar functions from Qian (2012):

f11(x) = log

(
1

√
x1

+
1

√
x2

)
,

f12(x) = log

(
0.98
√
x1

+
0.95
√
x2

)
,

f21(x) = log

(
1.02
√
x1

+
1.02
√
x2

)
,

f22(x) = log

(
1

√
x1

+
1.03
√
x2

)
.

Suppose that they can be categorized in two ways: f11 and f12 belong to

one group, f21 and f22 belong to the other group; f11 and f21 belong to one

group, f12 and f22 belong to the other group. For example, consider a physical

system with a categorical variable of two levels, L1 and L2, that might be two

operating modes of the system. Assume two computer models based on different

algorithms, A and B, are available for simulating this system. Functions f11 and

f12 might be level L1 implementations of algorithms A and B, respectively; f21
and f22 might be L2 implementations of algorithms A and B, respectively. Then

the four cases can be grouped either by the level of the categorical variable or by

the algorithm they are built on.

Let µ11, µ12, µ21, µ22 denote the mean of f11, f12, f21, f22, respectively.

We are interested in the mean of each function, as well as µ = (µ11 + µ12 +

µ21 + µ22)/4, µ1• = (µ11 + µ12)/2, µ•1 = (µ11 + µ21)/2, µ2• = (µ21 + µ22)/2, and

µ•2 = (µ12 + µ22)/2. Here µ is the grand mean of all functions; µ1• and µ2• are

the means of level L1 and L2 implementations, respectively; µ•1 and µ•2 are the

means of algorithm A and B models, respectively. With the same setup as in

the previous example, we compare all the schemes in Definition 1 for estimating

these parameters, plus the Sobol sequence based design. As µ1• and µ2• / µ•1 and

µ•2 are similar in evaluating the design schemes, Tables 7−10 µ̂11, µ̂1•, µ̂•1 and

µ̂. The conclusion is similar from that in Example 1. The proposed design works

consistently well in estimating all parameters, while other schemes have their

respective weaknesses in estimating one or more parameters. The performance’s

dependence upon the m value is again quite evident in this example for SS. It

even slightly outperforms the BSLH in some cases when m = 32.
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Table 7. RMSEs of the nine design schemes for Example 2, m = 5.

IID SS LH SLH S-ROW S-COL GS-ROW GS-COL BSLH

µ̂11 0.193 0.130 0.113 0.113 0.112 0.109 0.112 0.113 0.112
µ̂1• 0.069 0.036 0.040 0.035 0.030 0.040 0.031 0.037 0.030
µ̂•1 0.069 0.047 0.040 0.035 0.039 0.031 0.037 0.031 0.031
µ̂ 0.097 0.039 0.057 0.033 0.043 0.044 0.033 0.034 0.033

Table 8. RMSEs of the nine design schemes for Example 2, m = 10.

IID SS LH SLH S-ROW S-COL GS-ROW GS-COL BSLH

µ̂11 0.138 0.072 0.062 0.063 0.062 0.061 0.061 0.061 0.060
µ̂1• 0.048 0.019 0.022 0.020 0.017 0.021 0.017 0.020 0.017
µ̂•1 0.049 0.027 0.022 0.019 0.022 0.016 0.020 0.017 0.017
µ̂ 0.068 0.020 0.031 0.019 0.024 0.023 0.018 0.018 0.018

Table 9. RMSEs (×10−2) of the nine design schemes for Example 2, m = 20.

IID SS LH SLH S-ROW S-COL GS-ROW GS-COL BSLH

µ̂11 9.77 3.82 3.30 3.26 3.31 3.29 3.32 3.35 3.31
µ̂1• 3.43 1.03 1.18 1.03 0.91 1.16 0.91 1.11 0.90
µ̂•1 3.45 1.24 1.15 1.04 1.18 0.92 1.11 0.92 0.93
µ̂ 4.80 1.08 1.65 1.04 1.31 1.28 1.02 1.03 1.03

Table 10. RMSEs (×10−2) of the nine design schemes for Example 2, m =
32.

IID SS LH SLH S-ROW S-COL GS-ROW GS-COL BSLH

µ̂11 7.69 2.04 2.21 2.21 2.21 2.25 2.23 2.21 2.22
µ̂1• 2.74 0.53 0.79 0.70 0.62 0.79 0.62 0.73 0.62
µ̂•1 2.72 0.78 0.78 0.71 0.78 0.62 0.74 0.61 0.62
µ̂ 3.82 0.54 1.10 0.72 0.87 0.88 0.71 0.71 0.72

So far, we have used equal weights λij ’s for µij ’s in all estimations. It can be

desirable to use different weights. For example, in multi-model ensemble analy-

sis for climate prediction, Krishnamurti et al. (1999) proposed a superensemble

approach where each constituent model is weighted by its performance to obtain

a weighted ensemble average that shows major improvement in overall perfor-

mance. With the same experiment setup, results in Tables 11−14 illustrate their

performances using λ11 = 0.4, λ12 = 0.3, λ21 = 0.2, and λ22 = 0.1. As can be

seen, similar conclusions as those from the equal weights scenario can be drawn.

5. Conclusion

We have proposed a new type of design called BSLHDs for computer exper-

iments. It extends the idea of the standard SLHDs and features a special bi-

directional slicing structure. The proposed construction procedure of BSLHDs is
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Table 11. RMSEs of the nine design schemes for Example 2, unequal weights,
m = 5.

IID SS LH SLH S-ROW S-COL GS-ROW GS-COL BSLH

µ̂1• 0.193 0.130 0.113 0.113 0.112 0.109 0.112 0.113 0.112
µ̂•1 0.097 0.050 0.056 0.050 0.044 0.056 0.044 0.053 0.044
µ̂ 0.087 0.059 0.051 0.046 0.050 0.040 0.047 0.042 0.042

Table 12. RMSEs of the nine design schemes for Example 2, unequal weights,
m = 10.

IID SS LH SLH S-ROW S-COL GS-ROW GS-COL BSLH

µ̂1• 0.138 0.072 0.062 0.063 0.062 0.061 0.061 0.061 0.060
µ̂•1 0.069 0.027 0.031 0.028 0.024 0.030 0.024 0.028 0.024
µ̂ 0.062 0.033 0.028 0.026 0.027 0.022 0.026 0.022 0.022

Table 13. RMSEs (×10−2) of the nine design schemes for Example 2, unequal
weights, m = 20.

IID SS LH SLH S-ROW S-COL GS-ROW GS-COL BSLH

µ̂1• 9.77 3.82 3.30 3.26 3.31 3.29 3.32 3.35 3.31
µ̂•1 4.85 1.46 1.66 1.46 1.30 1.64 1.31 1.58 1.30
µ̂ 4.36 1.59 1.46 1.34 1.49 1.23 1.42 1.24 1.23

Table 14. RMSEs (×10−2) of the nine design schemes for Example 2, unequal
weights, m = 32.

IID SS LH SLH S-ROW S-COL GS-ROW GS-COL BSLH

µ̂1• 7.69 2.04 2.21 2.21 2.21 2.25 2.23 2.21 2.22
µ̂•1 3.87 0.77 1.12 1.00 0.89 1.12 0.89 1.04 0.89
µ̂ 3.44 0.98 0.99 0.91 0.99 0.84 0.96 0.82 0.83

general. When t is a multiple of s, we have proved the equivalence between some

substructures of a BSLHD with ordinary LHDs and SLHDs, and hence their

statistical properties. By comparing with some existing design schemes, desir-

able statistical properties of the proposed design have been further demonstrated

through the numerical examples. In cases when t is not a multiple of s, although

the design’s statistical property has not been proved, numerical examples have

shown a similar performance on variance reduction as in the t = cs case.

The special structure of BSLHD makes it suitable for applications include,

but not limited to batch-running computer experiments, design and cross- vali-

dation for computer models with qualitative factor(s), and collective evaluation

of multiple computer models (multi-model ensemble analysis). The experimental

design for computer experiments involving discrete ingredients is still at its early

stage of development. However, we are starting to see growing needs for this

type of design due to the increasingly complex settings of computer experiments
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for practical needs. We believe this trend will continue.

The proposed BSLHD has a similar genesis as the GSLHD developed by

Xie et al. (2014), but with different properties. The GSLHD is able to provide

multiple layers for the slicing structure, including the ordinary LHD (zero layer)

and SLHD (one layer) as its special cases. Following their definition, the BSLHD

has a two layer slicing structure (a two layer GSLHD is called doubly SLHD in

their paper). However, in obtaining the next layer slice Dij ’s from slice Di•’s,

their algorithm is independently implemented across i, while our algorithm cor-

relates the Dij ’s both within and across i. This achieves the crucial property that

D•j =
∪t

i=1Dij is also a SLHD with some Dij ’s as its next layer slices. Di•’s and

D•j ’s play interchangeable roles in a BSLHD, as illustrated in Section 3 as well

as the numerical examples. While in their doubly SLHD, D•j =
∪t

i=1Dij has no

such desirable property.

A possible future work is to extend the BSLHD structure to more than two

layers, in a similar spirit as with GSLHD. However, our initial attempts have

shown that the extension to more layers is not trivial, certain restrictions on the

design parameters may need to be imposed.

Supplementary Materials

This paper has a supplementary document that covers the proofs of Lemma

1−4 and Theorem 1−2.
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Appendix: Detailed Procedures for Step 1

The NPT T contains exactly s elements in each row (not subrow) and each

column. Define a t × t matrix G such that the value of its ith row and jth

column cell, gij , equals the number of elements in the ith row (not subrow) and

jth column cell of T (equals zero if the corresponding cell in T has no element).
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For example, for the table illustrated in Table 2, its corresponding G matrix is

G =


1 1 1 0

1 0 0 2

0 2 1 0

1 0 1 1

 .

Such a G matrix has row and column sums all equal to s. It is equivalent,

by a multiplicative factor s, to a rational doubly stochastic matrix with common

denominator s. A doubly stochastic matrix is a square matrix with nonnegative

real numbers whose row and column sums all equal to 1. By the Birkhoff–von

Neumann theorem (Birkhoff (1946); von Neumann (1953)), any doubly stochastic

matrix can be represented as a convex combination of permutation matrices.

A direct corollary of this theorem guarantees that any such G matrix can be

represented as a sum of s permutation matrices (Asratian, Denley, and Häggkvist

(1998)). A permutation matrix is a binary square matrix with exactly one entry

1 in each row and each column. For the matrix G in the example, we have a

representation

G =


1 1 1 0

1 0 0 2

0 2 1 0

1 0 1 1



= P1 +P2 +P3 =


0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

+


1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

+


0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0

 .

Once such a representation is found, a group of t numbers, qk, from G’s cor-

responding T table can be extracted based on each Pk, k = 1, . . . , s. Specifically,

for each Pk, if its ith row and jth column element is ‘1’, i, j = 1, . . . , t, a number

in the ith row (not subrow) and jth column cell of the T table is removed and

assigned to the jth position of qk. If there is more than one number in the chosen

cell, randomly pick one. After this has been completed for all Pk’s, each number

in T has been chosen once and only once. We obtain q1, . . . ,qs, each of which

is a t × 1 vector. Then the s × t matrix Q is obtained by letting Q(k, :) = qT
k ,

k = 1, . . . , s.

Taking T and G in the previous example, corresponding to P1, P2, and P3,

we might obtain

qT
1 = (5, 8, 1, 11), qT

2 = (2, 9, 10, 6), qT
3 = (12, 3, 7, 4),
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Q =

 5 8 1 11

2 9 10 6

12 3 7 4

 .

It can be easily verified that for any j = 1, . . . , 3, ⌈Q(j, :)/3⌉ is a permutation on

Z4, and for any i = 1, . . . , 4, ⌈Q(:, i)/4⌉ is a permutation on Z3.

While the existence of such representation of a G matrix is guaranteed by

the Birkhoff–von Neumann theorem, it does not give a recipe for the decompo-

sition. First of all, we point out that any constructive proof of the Birkhoff–von

Neumann theorem may be used as an algorithm to decompose a G matrix (e.g.,

Bapat and Ragnavan (1997)). Nonetheless, here we introduce an algorithm that

is easy to implement:

Step (a) Generate all t! possible permutations on Zt, denote the ith permutation

as πi = {πi(1), πi(2), . . . , πi(t)}, i = 1, . . . , t!.

Step (b) For each πi, calculate ci =
∏t

j=1Gj,πi(j), where Gj,πi(j) is the jth row

and πi(j)th column element in G; identify all πi’s with its corresponding

ci being nonzero;

Step (c) Randomly choose a πi from those identified in Step (b) with nonzero ci,

define a permutation matrix P, whose jth row and πi(j)th column is 1.

Let P1 = P, and G(1) = G−P1. Since G(1) still has equal row and column

sums, similar procedures as in Steps (a)−(c) can be applied to G(1) as well to

obtain P2. Repeat this approach s− 1 times and we obtain G = P1 + · · ·+Ps,

where Ps = G(s−1).
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