
Statistica Sinica: Supplement 1

Variable Selection in Functional Data Classification:
a Maxima-Hunting Proposal
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S1 Introduction

This document includes extended versions of some sections of our paper “Variable selection

in functional data classification: a maxima-hunting proposal”. For the sake of brevity, many

details about the empirical results (Sections 5 to 7) were omitted in that paper. Moreover, the

proofs of all the theoretical results were also removed. The present document aims at giving

the interested reader some design considerations, implementation aspects and empirical results

omitted in the main paper together with further theoretical details and proofs. We refer to the

original paper and references therein for additional details.

This document is organized as follows: in Section S2 we present the methods involved in

the simulation study and the criteria for comparing them. Section S3 is devoted to general

implementation details such as data representation and validation procedures. The simulated

models are extensively described in Section S4 and some empirical results are presented in

Section S5. Section S6 is devoted to real data and Section S7 contains some tentative rankings

of the methods. Section S8 includes the proofs of all the theoretical results of the paper and

a couple of auxiliary lemmas. An appendix contains the full list of the models considered in

the simulations. Let us recall that the complete empirical outputs are collected in www.uam.es/

antonio.cuevas/exp/outputs.xlsx.

S2 The variable selection methods under study. Criteria for comparisons

These are the methods under study and their corresponding notations as they appear in the

tables and figures below.

1. Maxima hunting. The methods based on the estimation of the maxima of R2 and V2 are

implemented as follows. The functional data x(t), t ∈ [0, 1] are discretized to (x(t1), . . . ,

x(tN )), so a non-trivial practical problem is to decide which points in the grid are the

local maxima: a point ti is declared to be a local maximum when it is the highest local

maximum on the sub-grid {tj}, j = i−h . . . , i+h. The proper choice of h depends on the

nature and discretization pattern of the data at hand. Thus, h could be considered as a

smoothing parameter to be selected in an approximately optimal way. In our experiments

h is chosen by a validation step explained in next section.

www.uam.es/antonio.cuevas/exp/outputs.xlsx
www.uam.es/antonio.cuevas/exp/outputs.xlsx
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Then, we sort the maxima ti by relevance (the value of the function at ti). This seems

to be the natural order and it produces better results than other simple sorting strategies.

We denote these maxima-hunting methods by MHR and MHV depending on the use

of R or V. This relevance criterion and an alternative domain criterion (sorting by the

length of the interval where the maximum is global maximum) are illustrated in Figure

S1. Our empirical results (not included in this study) show that the use of this domain

criterion does not lead, on average, to any improvement with respect to the relevance

ordering.

Figure S1: Blue line stands for R2(X(t), Y ) for the first derivative of the Tecator data. The first five

selected maxima are marked in red and the selection order is indicated by the red number beside each

maximum. On the left picture it is used the relevance criterion while the domain one is applied on the

right graph. In this noiseless case identification by relevance is preferable.

2. Univariate t-ranking method, denoted by T, is frequently used when selecting relevant

variables [see e.g. the review by Fan and Lv (2010)]. It is based on the simple idea of

selecting the variables Xt with highest Student’s t two-sample scores

T (Xt) =
|X̄1t − X̄0t|√
s2

1t/n1 + s2
0t/n0

.

3. mRMR. The minimum Redundancy Maximum Relevance algorithm, proposed in Ding

and Peng (2005) and Peng, Long and Ding (2005), is a relevant intrinsic variable selection

method. It aims at maximizing the relevance of the selected variables avoiding an excess

of redundancy which seems particularly suitable for functional data. Denoting the set of

selected variables by S, the variables are sequentially incorporated to S with the criterion

of maximizing the differenceRelevance(S)−Redundancy(S) (or alternatively the quotient

Relevance(S)/Redundancy(S)). Two ways of measuring relevance and redundancy have

been proposed:
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– The Fisher statistic for relevance and the standard correlation for redundancy.

– A three-fold discretized version of the so-called Mutual Information measure for

both relevance and redundancy (see equation (1) in Ding and Peng (2005)).

In principle these two approaches are intended for continuous and discrete variables re-

spectively. However, Ding and Peng (2005) report a good performance for the second one

even in the continuous case. We have considered mRMR as a natural competitor for our

maxima-hunting approximation. We have computed both Fisher-Correlation and Mutual

Information approaches with both difference and quotient criteria. For the sake of clarity

we only show the results of FCQ (Fisher Correlation Quotient) and MID (Mutual Infor-

mation Difference) which outperform on average their corresponding counterparts (FCD

and MIQ). All four approaches outputs are shown on the web.

4. DHB. In the comparisons with real data sets we have incorporated the method recently

proposed by Delaigle, Hall and Bathia (2012). We will denote it by DHB. Given a classi-

fier, the DHB method proposes a leave-one-out choice of the best variables for the consid-

ered classification problem. While this is a worthwhile natural idea, it is computationally

intensive. So the authors implement a slightly modified version, which we have closely

followed. It is based on a sort of trade-off between full and sequential search, together

with some additional computational savings. Let us note, as an important difference with

our maxima-hunting method, that the DHB procedure is a “wrapper” method, in the

sense that it depends on the chosen classifier. Following Delaigle, Hall and Bathia (2012),

we have only implemented the DHB method with the LDA classifier.

5. PLS. According to the available results (Preda, Saporta and Lévéder (2007); Delaigle

and Hall (2012)) PLS is the “‘method of choice” for dimension reduction in functional

classification. Note however that PLS is not a variable selection procedure; in particular

it lacks the interpretability of variable selection. In some sense, the motivation for in-

cluding PLS is to check how much do we loss by restricting ourselves to variable selection

methods, instead of considering other more general linear projections procedures (as PLS)

for dimension reduction.

6. Base. Variable selection methods are also compared with the functional k-NN classifier

applied to the entire curves. In general, the Base performance can be seen as a reference

to assess the usefulness of dimension reduction methods. Somewhat surprisingly, this

Base procedure is often outperformed by variable selection methods.

The classifiers used in all cases are the nearest neighbor rule k-NN, based on the Euclidean

distance, and the linear discriminant analysis (LDA). As motivated in the Introduction similar

comparisons could be done with other classifiers, since the considered methods (except DHB)

do not depend on the classifier. For comparing the different methods we use the classification

accuracy, measured by the percentage of correct classification for the k-NN and LDA classifiers,
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based only on the selected variables (or the PLS projections). Recall that LDA apply only for

the reduced data since it typically fails with functional data.

S3 Some implementation details

Our empirical study required the implementation of all methods described above, including

mRMR, DHB and PLS, as well as the classifiers k-NN and LDA. All algorithms have been

implemented in MATLAB. The code is available upon request. We are also working on a

user-friendly R library. Here are some algorithmic details:

• Our k-NN implementation allows for the use of different distances; we use the usual

Euclidean distance. Also, the computation for different k’s can be simultaneously made

with no additional cost.

• We have implemented the minimum Redundancy Maximum Relevance algorithm in order

to allow us to introduce different association measures (such as the distance correlation)

in the definition of the method. The original version of mRMR (based on the mutual

information measure) is available from http://penglab.janelia.org/proj/mRMR/. Also, a

MATLAB/C++ function (not compatible with current MATLAB versions) can be also

downloaded from that URL.

• We have implemented the original iterative PLS algorithm that can be found, e.g. in

Helland (1988).

• We use the empirical estimators of distance correlation and distance covariance given by

Székely, Rizzo and Bakirov (2007), which are also implemented in an efficient way. It can

be seen that this estimator is asymptotically equivalent to that of Theorem 2. Therefore,

the uniform convergence is also guaranteed.

• The DHB algorithm has been implemented according to the instructions given in Delaigle,

Hall and Bathia (2012). We have also used the same parameters and the first stopping

criterion proposed by these authors.

S4 The structure of the simulation study

Our simulation study consists of 400 experiments, aimed at comparing the practical perfor-

mances of several intrinsic variable selection methods described in the previous subsection.

These experiments are obtained by considering 100 different underlying models and 4 sample

sizes, where by “model” we mean either,

(M1) a pair of distributions for X|Y = 0 and X|Y = 1 (corresponding to P0 and P1, respec-

tively); in all cases, we take p = P(Y = 1) = 1/2.

(M2) The marginal distribution of X plus the conditional distribution η(x) = P(Y = 1|X = x).

h
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Models vary in difficulty and number of relevant variables. In all the considered models the

optimal Bayes rule turns out to depend on a finite number of relevant variables, see Section

3. The processes involved include also different levels of smoothing. The full list of considered

models is on the Appendix. All of them belong to one of the following classes:

1. Gaussian models: they are denoted G1, G1b, . . . , G8. In all these models the distri-

butions of X(t)|Yi are chosen among one of the following types: first, the standard

Brownian Motion, B, in [0, 1], i.e., a Gaussian process with E(B(t)) = 0 and covari-

ance function γ(s, t) = min{s, t}. Second, Brownian Motion, BT , with a trend m(t),

i.e., BT (t) = B(t) + m(t); we have considered several choices for m(t), a linear trend,

m(t) = ct, a linear trend with random slope, i.e., m(t) = θt, where θ is a Gaussian

r.v., and different members of two parametric families: the peak functions Φm,k and the

hillside functions, defined by

Φm,k =

∫ t

0

ϕm,k(s)ds , hillsidet0,b(t) = b(t− t0)I[t0,∞),

where, ϕm,k(t) =
√

2m−1
[
I( 2k−2

2m
, 2k−1

2m ) − I( 2k−1
2m

, 2k
2m )

]
for m ∈ N, 1 ≤ k ≤ 2m−1.

Third, the Brownian bridge: BB(t) = B(t) − tB(1). Our fourth class of Gaus-

sian processes is the OrnsteinUhlenbeck process, with a covariance function of type

γ(s, t) = a exp(−b|s − t|) and zero mean (OU) or different mean functions m(t) (OUt).

Finally smoother processes have been also computed by convolving Brownian trajectories

with Gaussian kernels. We have considered two levels of smoothing denoted by sB and

ssB.

2. Logistic models: they are defined through the general pattern (M2): the process

X = X(t) follows one of the above mentioned distributions and Y ∼ Binom(1, η(X)) with

η(x) = (1+e−Ψ(x(t1),··· ,x(td)))−1, a function of the relevant variables x(t1), · · · , x(td). We

have considered 15 versions of this model and a few variants, denoted L1, L2, L3, L3b, . . . , L15.

They correspond to different choices for the link function Ψ (most of them linear or poly-

nomial) and for the distribution of X. For example, in the models L2 and L8 we have

Ψ(x) = 10x30 + 10x70 and Ψ(x) = 10x4
50 + 50x3

80 + 20x2
30, respectively.

3. Mixtures: they are obtained by combining (via mixtures) in several ways the above

mentioned Gaussian distributions assumed for X|Y = 0 and X|Y = 1. These models are

denoted M1, ..., M11 in the output tables.

For each model, all the selection methods are checked for four sample sizes (n = 30, 50,

100, 200). In this way we get 100× 4 = 400 experiments.

All the functional simulated data are discretized to (x(t1), . . . , x(t100)), where ti are

equispaced points in [0, 1]. In fact (to avoid the degeneracy x(t0) = 0 in the Brownian-like

models) we take t1 = 6/105. Similarly, for the case of the Brownian bridge, we truncate as well

at the end of the interval.
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The parameters involved are: the number k of nearest neighbors in the k-NN classifier, the

dimension of the reduced space (number of variables or PLS components) and the smoothing

parameter h in maxima-hunting methods. These are set by standard data-based validation

procedures. Parameter validation can be carried out mainly through a validation set or by

cross-validation on the training set [see e.g. Guyon et al. (2006)]. In the case of the simulation

study, the validation and test samples are randomly generated. In the real data sets we proceed

by cross-validation.

In summary, the methodology used in the simulation study is as follows (see also the

flowchart in Figure S2):

1. Each output in the tables is based on an average over 200 runs.

2. In each run of the simulation experiments three samples are generated: the training

sample of size n (= 30, 50, 100, 200), a validation sample of size 200 and a test sample

of size 200.

3. The relevant variables are selected using the training sample.

4. The validation sample is used for the choice of the parameters.

5. The “accuracy” outputs in the tables correspond to the percentages of correct classifi-

cation obtained for the test samples. In all cases the classification is done either via a

k-NN classifier, applied to the “reduced data” (i.e., to the selected variables or the PLS

projections), or via the linear classifier LDA.

Figure S2: Methodology flowchart for simulations. This process is repeated 200 times for each

experiment.

S5 A few numerical outputs from the simulations

First Table S1 shows the number of selected variables (or PLS components) associated with

Table S1 in the paper. Models are in rows and methods in columns. Let us recall that the
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first two columns correspond to the mRMR method implemented with different association

measures. T denotes the univariate t-ranking method and, as usual, PLS stands for the partial

least squares dimension reduction method. Besides, MHR and MHV stand for the maxima-

hunting methods described above, based on the distance correlation and the distance covariance,

respectively. The method called “Base” refers to the classification success obtained with the

complete curves (with a k-NN functional classifier). The marked outputs correspond to the

winner and second best method in each row. Next, we present a summary of some results

grouping the 400 experiments (averaged over 200 runs) by sample size. The outputs obtained

with k-NN are shown in Table S2 while those corresponding to LDA are in Table S3. Each

row contains the averages on 100 models with a specific sample size except the last block which

summary the results of the 400 experiments. Then, in both tables, blocks 1 to 4 corresponds to

n = 30 n = 50, n = 100 and n = 200 respectively, and the last block has de average of the 400

examples. Different measures are presented in rows and methods in columns. The measures

considered are the average accuracy, the average standard deviation of the classification accuracy

and the number of variables (or components) selected in average. Additionally, the proportion

of models in which the methods beats the “Base” results, and the average of this gain in terms

of accuracy are presented only in Table S2 since the “Base” method cannot be computed with

LDA. Columns are organized as in the previous table.

This is a summary of the complete results that allow us to draw some general considerations

about the performance of the methods. The reader can consult the Excel tables available online

with the entire results, if interested on some particular model. Although tables seem clear

enough, let us point out some details. In general terms, Tables S2 and S3 show that MHR is

the overall winner on average with a slight advantage, followed by MHV and PLS. PLS and

the maxima-hunting methods (MHR and MHV) obtain similar scores and clearly outperform

the other methods. Note that they also beat (often very clearly) the Base method in almost

all cases using just a few variables. This suggests that dimension reduction would be, in fact,

“mandatory” in many cases. Note that these methods obtain improvements close to 2% of the

total accuracy with just the 5− 6% of original variables. In terms of number of variables, MHR

and MHV often need less variables to achieve better results than th e rest of variable selection

methods.

Table S2 also shows that the benefits of reducing the dimension (compared to the Base

approach) are higher when lower sample sizes are considered. This is a relevant fact since in

many practical cases (e.g. in biomedical studies) only small samples are available.

S6 Real data examples

We have chosen three examples due to their popularity in FDA. Here we give a broader de-

scription than in the main paper. We start with a summary of some basic features in Table S4.

Figure S3 shows the trajectories X(t) and mean functions for each set and each class.

Berkeley Growth Study. These data have been thoroughly analyzed in the monograph

by Ramsay and Silverman (2005) and are available in the fda package of R. It contains the
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Table S1: Average number of selected variables (or components) over 200 runs of the considered

methods with sample size n = 50

k-NN outputs

Models FCQ MID T PLS MHR MHV Base

L2 OUt 9.96 8.71 11.56 3.41 7.19 7.32 100

L6 OU 12.86 10.84 14.23 3.54 10.77 10.70 100

L10 B 7.79 10.64 8.76 4.96 8.23 7.64 100

L11 ssB 8.52 6.03 9.61 4.06 2.54 2.52 100

L12 sB 7.96 6.67 8.18 4.43 4.51 5.64 100

G1 11.08 7.75 11.91 3.62 5.46 4.49 100

G3 9.69 5.13 11.46 5.84 1.77 1.97 100

G6 11.46 11.53 12.94 5.55 5.22 4.59 100

M2 9.90 12.14 13.46 7.49 6.79 6.15 100

M6 8.73 9.90 9.51 5.51 6.25 6.50 100

M10 8.88 11.43 9.56 4.96 6.82 6.17 100

LDA outputs

Models FCQ MID T PLS MHR MHV Base

L2 OUt 5.64 5.91 6.64 2.00 6.49 6.17 -

L6 OU 6.45 5.63 6.90 1.38 6.40 6.54 -

L10 B 5.10 7.74 4.89 4.47 7.39 6.53 -

L11 ssB 3.00 3.66 3.25 2.28 2.15 2.29 -

L12 sB 3.40 3.48 3.86 1.72 3.44 4.29 -

G1 8.03 6.08 7.87 4.83 6.40 6.69 -

G3 9.07 7.05 8.97 6.52 5.43 5.50 -

G6 13.93 10.74 14.07 4.41 7.62 6.84 -

M2 11.89 13.97 11.80 4.96 11.11 10.58 -

M6 4.66 6.39 4.13 3.19 6.40 6.86 -

M10 9.72 7.71 10.60 3.33 6.59 6.25 -
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Table S2: The first four blocks are organized as follows. Row 1: average accuracy (proportion of correct

classification over 200 runs) over 100 models. Row 2: average standard deviation of the classification

accuracy (in 200 runs) over 100 simulation models. Row 3: average number of variables (or components)

used by the method. Row 4: proportion of experiments where the method outperforms the Base. Row

5: average gain over the Base method. The training sample size is indicated at the headboard of each

block. The last block (“All simulations”) provides the global averages. All outputs correspond to the

k-NN classifier.

k-NN outputs

n = 30 FCQ MID T PLS MHR MHV Base

Avg. acc.(%) 79.65 80.09 79.16 81.42 81.87 81.53 78.98

Avg. acc. std.(%) 4.18 4.20 4.36 3.52 3.68 3.77 3.84

Avg. dim. red. 9.50 9.20 9.90 4.28 6.21 6.26 100

Victories over Base(%) 58.00 71.00 51.00 77.00 95.00 89.00

Avg. gain over Base(%) 0.67 1.11 0.18 2.44 2.89 2.55

n = 50 FCQ MID T PLS MHR MHV Base

Avg. acc.(%) 80.40 81.43 79.84 82.48 82.89 82.59 80.34

Avg. acc. std.(%) 3.93 3.67 4.04 3.16 3.41 3.45 3.35

Avg. dim. red. 9.63 9.28 10.07 4.77 6.15 6.24 100

Victories over Base(%) 53.00 71.00 46.00 76.00 91.00 89.00

Avg. gain over Base(%) 0.06 1.09 -0.50 2.14 2.55 2.25

n = 100 FCQ MID T PLS MHR MHV Base

Avg. acc.(%) 81.34 83.01 80.71 83.79 84.21 83.87 81.99

Avg. acc. std.(%) 3.64 3.23 3.74 2.84 3.16 3.25 2.95

Avg. dim. red. 9.89 9.58 10.25 5.50 6.10 6.11 100

Victories over Base(%) 49.00 71.00 38.00 77.00 86.00 81.00

Avg. gain over Base(%) -0.65 1.02 -1.28 1.80 2.22 1.88

n = 200 FCQ MID T PLS MHR MHV Base

Avg. acc.(%) 82.09 84.28 81.27 84.84 85.37 84.96 83.38

Avg. acc. std.(%) 3.47 2.93 3.57 2.63 3.05 3.09 2.69

Avg. dim. red. 10.07 9.75 10.43 6.22 5.81 5.76 100

Victories over Base(%) 42.00 73.00 33.00 72.00 80.00 75.00

Avg. gain over Base(%) -1.28 0.90 -2.11 1.46 1.99 1.58

All simulations FCQ MID T PLS MHR MHV Base

Avg. acc.(%) 80.87 82.20 80.24 83.13 83.58 83.23 81.17

Avg. acc. std.(%) 3.81 3.51 3.93 3.04 3.33 3.39 3.21

Avg. dim. red. 9.77 9.45 10.16 5.19 6.07 6.09 100

Victories over Base(%) 50.50 71.50 42.00 75.50 88.00 83.50

Avg. gain over Base(%) -0.30 1.03 -0.93 1.96 2.41 2.06
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Table S3: The first four blocks are organized as follows. Row 1: average accuracy (proportion of correct

classification over 200 runs) over 100 models. Row 2: average standard deviation of the classification

accuracy (in 200 runs) over 100 simulation models. Row 3: average number of variables (or components)

used by the method. The training sample size is indicated at the headboard of each block. The last

block (“All simulations”) provides the global averages. All outputs correspond to the LDA classifier.

LDA outputs

n = 30 FCQ MID T PLS MHR MHV Base

Avg. acc.(%) 77.58 78.72 76.77 81.04 80.66 80.71 -

Avg. acc. std.(%) 4.37 4.47 4.48 3.58 4.08 4.06 -

Avg. dim. red. 4.71 5.61 4.92 2.73 5.51 5.43 -

n = 50 FCQ MID T PLS MHR MHV Base

Avg. acc.(%) 78.53 80.28 77.77 81.86 81.81 81.73 -

Avg. acc. std.(%) 3.95 3.86 4.02 3.20 3.66 3.62 -

Avg. dim. red. 5.68 6.52 5.89 2.99 6.14 6.14 -

n = 100 FCQ MID T PLS MHR MHV Base

Avg. acc.(%) 79.62 81.85 78.93 82.71 82.99 82.81 -

Avg. acc. std.(%) 3.56 3.33 3.62 2.91 3.23 3.24 -

Avg. dim. red. 7.08 7.93 7.44 3.48 6.99 7.04 -

n = 200 FCQ MID T PLS MHR MHV Base

Avg. acc.(%) 80.47 82.96 79.83 83.39 83.83 83.53 -

Avg. acc. std.(%) 3.31 2.98 3.35 2.71 3.03 3.03 -

Avg. dim. red. 8.33 9.03 8.88 4.17 7.48 7.46 -

All simulations FCQ MID T PLS MHR MHV Base

Avg. acc.(%) 79.05 80.95 78.33 82.25 82.32 82.20 -

Avg. acc. std.(%) 3.80 3.66 3.87 3.10 3.50 3.49 -

Avg. dim. red. 6.45 7.27 6.78 3.34 6.53 6.52 -
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Table S4: Description of the real datasets: n is the number of observations of dimension dim. “Base

acc.” represents the proportion of classification success obtained with the complete curves (with a k-NN

functional classifier).

Dataset n dim. Base acc. References

Growth 93 31 96.77% Ramsay and Silverman (2005)

Tecator (2nd derivative) 215 100 98.60% Ferraty and Vieu (2006)

Phoneme (binary) 1717 256 78.97% Hastie, Tibshirani and Friedman (2009)

heights of 54 girls and 39 boys measured at 31 non-equally distant time points. It has been used

in many classification studies, see e.g. Mosler and Mozharovskyi (2014) for a recent summary.

Tecator. This is another well-known data set used many times as a benchmark for com-

parisons in FDA studies. It is available via the fda.usc R package. It consists of 215 near-infrared

absorbance spectra of finely chopped meat, obtained using a Tecator Infratec Food & Feed Ana-

lyzer. Thus the final data set is made of 215 curves, observed at 100 equispaced points, ranging

from 850 to 1050 nm with associated values of moisture, fats and protein contents. Following

Ferraty and Vieu (2006), the sample is separated in two classes according to the fat content

(smaller or larger than 20%). A particularity of Tecator dataset is the high homogeneity among

the raw data, which makes the classification problem harder. For this reason, these data are

often used in a differentiated version, that is, they are smoothed (e.g., via splines) and then the

first or the second derivative of the smoothed curves is used (e.g. the cited monograph Ferraty

and Vieu (2006)). We show here the results corresponding to the second derivatives (which

turn out to provide a higher discrimination power than the raw data or the first derivative). A

recent review of classification performances for different methods is given in Galeano, Joseph

and Lillo (2014).

Phoneme. These are data of speech recognition, discussed in Hastie, Buja and Tibshi-

rani (1995). They can be downloaded from www-stat.stanford.edu/ElemStatLearn and are

analyzed in Hastie, Tibshirani and Friedman (2009) and Ferraty and Vieu (2006). The orig-

inal sample has 4509 curves, corresponding to log-periodograms constructed from 32 ms long

recordings of males pronouncing five phonemes. Each curve was observed at 256 equispaced

points. This five-classes discrimination problem is adapted to our binary setup by taking just

(as in Delaigle, Hall and Bathia (2012)) the curves corresponding to the phonemes “aa” and

“ao”. The sample size is n = 1717 (695 from “aa” and 1022 from “ao”).

In this real data setting we use the same methods and follow the same methodology as in

the simulation study with the only exception of the generation of the training, validation and

test samples. Here we consider the usual cross-validation procedure which avoids splitting the

sample (sometimes small) into three different sets. Each output is obtained by standard leave-

one-out cross-validation. The only exception is the phoneme data set for which this procedure

www-stat.stanford.edu/ElemStatLearn
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Figure S3: Data trajectories and mean functions from class 0 (first row) and class 1 (second row).

Columns correspond to growth, Tecator and phoneme data from left to right.

is extremely time-consuming (due to the large sample size); so we use instead ten-fold cross-

validation (10CV). The respective validation steps are done with the same resampling schemes

within the training samples. This is an usual way to proceed when working with real data;

see e.g. Hastie, Tibshirani and Friedman (2009, Subsection 7.10) for further details. Several

outputs obtained with the three considered data sets are given in Tables S5 (accuracy) and S6

(number of variables) below. The complete results (incorporating some additional dimension

reduction methods) can be found in the last sheet of the excel file www.uam.es/antonio.cuevas/

exp/outputs.xlsx.

These results are similar to those obtained in the simulation study. While (as expected)

there is no clear global winner, maxima-hunting method looks as a very competitive choice. In

particular, Tecator outputs are striking, since MHR and MHV achieve (with k-NN) a near per-

fect classification with just one variable. Note also that maxima-hunting methods (particularly

MHR) outperform or are very close to the Base outputs (which uses the entire curves). PLS is

overcome by our methods in two of the three problems but it is the clear winner in phoneme

example. In any case, it should be kept in mind, as a counterpart, the ease of interpretability

of the variable selection methods.

The DHB method performs well in the two first considered examples but relatively fails

in the phoneme case. There is maybe some room for improvement in the stopping criterion

(recall that we have used the same parameters as in Delaigle, Hall and Bathia (2012)). Recall

also that, by construction, this is (in the machine learning terminology) a “wrapper” method.

This means that the variables selected by DHB are specific for the LDA classifier (and might

dramatically change with other classification rules).

www.uam.es/antonio.cuevas/exp/outputs.xlsx
www.uam.es/antonio.cuevas/exp/outputs.xlsx
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Table S5: Classification accuracy (in percentages) for the real data with both classifiers (k-NN above

and LDA below).

k-NN outputs

Data FCQ MID T PLS MHR MHV DHB Base

Growth 83.87 95.70 83.87 94.62 95.70 94.62 - 96.77

Tecator 99.07 99.07 99.07 97.21 99.53 99.53 - 98.60

Phoneme 80.43 79.62 80.43 82.53 80.20 78.86 - 78.97

LDA outputs

Data FCQ MID T PLS MHR MHV DHB Base

Growth 91.40 94.62 91.40 95.70 95.70 96.77 96.77 -

Tecator 94.42 95.81 94.42 94.42 95.35 94.88 95.35 -

Phoneme 79.38 80.37 79.09 80.60 80.20 78.92 77.34 -

Table S6: Average number of variables (or components) selected for the real data sets using both

classifiers (k-NN above and LDA below).

k-NN outputs

Data FCQ MID T PLS MHR MHV DHB Base

Growth 1.0 3.5 1.0 2.8 4.0 4.0 - 31

Tecator 3.0 5.7 3.0 2.7 1.0 1.0 - 100

Phoneme 10.7 15.3 12.3 12.9 10.2 12.3 - 256

LDA outputs

Data FCQ MID T PLS MHR MHV DHB Base

Growth 5.0 3.4 5.0 2.0 4.0 4.0 2.3 -

Tecator 8.4 2.6 3.1 9.7 1.7 1.8 3.0 -

Phoneme 8.5 17.1 7.9 15.5 16.1 11.0 2.0 -
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Also note that the use of the LDA classifier didn’t lead to any significant gain; in fact, the

results are globally worse than those of k-NN except for a few particular cases.

Although in principle our methodology is not primarily targeted to the best classification

rate, but to the choice of the most representative variables, we can conclude that maxima-

hunting procedures combined with the simple k-NN are competitive when compared with PLS

and other successful and sophisticated methods in literature: see Galeano, Joseph and Lillo

(2014) for Tecator data, Mosler and Mozharovskyi (2014) for growth data and Delaigle, Hall

and Bathia (2012) for phoneme data.

S7 Overall conclusions: a tentative global ranking of methods

We have summarized the conclusions of our 400 simulation experiments in three rankings,

prepared with different criteria. We have considered the classification accuracy, that is, the

proportion of correct classification obtained with the different procedures. Thus, the global

scores of the different methods with respect to this criterion along the 400 experiments are

computed in three alternative ways. According to the relative ranking assessment, the

winner method (with performance W ) in each of the 400 experiments gets 10 score points, and

the method with the worst performance (say w) gets 0 points. The score of any other method,

with performance u is just assigned in a proportional way: 10(u − w)/(W − w). Second, the

positional ranking scoring criterion just gives 10 points to the winner in every experiment, 9

points to the second one, etc. Finally, the F1 ranking rewards strongly the winner. For each

experiment, points are divided as in a F1 Grand Prix, that is, the winner receives 25 points and

the rest 18, 15, 10, 8, 6 and 4 successively. The final scores are given in Table S7 below. For

each sample size, the results are the average over the 100 experiments corresponding to that

sample size. The winner and the second best classifier in each category appear marked in the

table. Also, the relative ranking scores of the full 400 models are shown in Figure S4.

S8 Some results and proofs

To prove Theorem 2 we need two lemmas dealing with the uniform strong consistency of one-

sample and two-sample functional U-statistics, respectively.

Lemma 1. Let X : T → R be a process with continuous trajectories a.s. defined on the compact

rectangle T =
∏d
i=1[ai, bi] ⊂ Rd. Let X1, . . . , Xn be a sample of n independent trajectories of

X. Define the functional U-statistic

Un(t) =
2

n(n− 1)

∑
i<j

k[Xi(t), Xj(t)],

where the kernel k is a real continuous, permutation symmetric function. Assume that

E
(

sup
t∈T
|k[X(t), X ′(t)]|

)
<∞,
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Table S7: Final scores of the considered methods for the simulation experiments. The rankings

correspond to the observed performances in classification accuracy. The individual scores are in turn

combined according to three different ranking criteria (proportional, positional and F1).

k-NN rankings

Ranking criterion FCQ MID T PLS MHR MHV Base

Relative (n = 30) 4.66 4.79 3.61 6.94 8.64 7.64 2.68

Relative (n = 50) 4.62 5.45 3.25 6.94 8.50 7.48 3.25

Relative (n = 100) 4.37 6.23 2.71 7.06 8.35 7.21 3.97

Relative (n = 200) 4.04 6.72 2.15 7.02 8.19 7.06 4.64

Relative (whole) 4.42 5.80 2.93 6.99 8.42 7.35 3.64

Positional (n = 30) 6.52 6.22 5.59 7.93 9.09 8.06 5.59

Positional (n = 50) 6.55 6.50 5.64 7.90 8.72 7.95 5.74

Positional (n = 100) 6.42 6.83 5.48 8.03 8.58 7.72 5.98

Positional (n = 200) 6.26 7.30 5.27 7.96 8.34 7.62 6.25

Positional (whole) 6.44 6.71 5.50 7.96 8.68 7.84 5.89

F1 (n = 30) 11.64 10.58 9.54 17.37 19.55 15.93 9.39

F1 (n = 50) 12.01 11.27 9.77 17.29 18.12 15.80 9.74

F1 (n = 100) 11.58 12.39 9.51 17.71 17.46 15.03 10.41

F1 (n = 200) 11.24 13.90 9.01 17.19 16.71 14.89 11.06

F1 (whole) 11.62 12.04 9.46 17.39 17.96 15.41 10.15

LDA rankings

Ranking criterion FCQ MID T PLS MHR MHV Base

Relative (n = 30) 3.57 3.46 1.79 7.60 8.15 8.11 -

Relative (n = 50) 3.74 4.61 1.89 7.20 8.60 8.16 -

Relative (n = 100) 3.83 5.95 1.90 6.70 8.96 8.18 -

Relative (n = 200) 3.89 6.74 2.27 6.09 8.78 7.83 -

Relative (whole) 3.76 5.19 1.96 6.90 8.62 8.07 -

Positional (n = 30) 6.75 6.51 5.71 8.54 8.75 8.74 -

Positional (n = 50) 6.72 6.71 5.87 8.39 8.80 8.52 -

Positional (n = 100) 6.72 7.15 5.92 7.95 8.79 8.47 -

Positional (n = 200) 6.62 7.58 6.18 7.63 8.81 8.23 -

Positional (whole) 6.70 6.99 5.92 8.13 8.79 8.49 -

F1 (n = 30) 11.96 11.12 9.58 19.08 17.95 18.31 -

F1 (n = 50) 11.91 11.68 10.12 18.57 18.33 17.41 -

F1 (n = 100) 12.20 12.92 10.24 16.64 18.58 17.42 -

F1 (n = 200) 11.74 14.35 10.92 15.66 18.76 16.74 -

F1 (whole) 11.95 12.52 10.22 17.49 18.41 17.47 -
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Figure S4: Display of relative ranking scores, the darker the better (black corresponds to 10 and white 0).

Each column represents a simulation model and each file corresponds to a dimension reduction method. The

ranking outputs are obtained with both k-NN (first display) and LDA (second display) classifiers. Maxima-

hunting with R is often the best and never the worst.

where X and X ′ denote two independent copies of the process. Then, as n→∞, ‖Un−U‖∞ →
0, a.s., where U(t) = E(k[X(t), X ′(t)]).

Proof. First, we show that U(t) is continuous. Let tn ⊂ T such that tn → t. Then, due to

the continuity assumptions on the process and the kernel, k[X(tn), X ′(tn)] → k[X(t), X ′(t)],

a.s. Using the assumption E
(

supt∈T |k[X(t), X ′(t)]|
)
< ∞, Dominated Convergence Theorem

(DCT) allows us to deduce U(tn) → U(t).

Let Mδ(t) = sups:|s−t|d≤δ |h(s) − h(t)| where, for the sake of simplicity, we denote h(t) =

k[X(t), X ′(t)]. The next step is to prove that, as δ ↓ 0,

sup
t∈T

E(Mδ(t))→ 0. (S8.1)

Both Mδ(t) and λδ(t) = E(Mδ(t)) are continuous functions. Since h(t) is uniformly continuous

on {s : |s − t|d ≤ δ}, Mδ(t) is also continuous. The fact that λδ(t) is continuous follows

directly from DCT since |Mδ(t)| ≤ 2 supt∈T |h(t)| and, by assumption, E(supt∈T |h(t)|) < ∞.

By continuity, Mδ(t)→ 0 and λδ(t)→ 0, as δ ↓ 0. Now, since δ > δ′ implies λδ(t) ≥ λδ′(t), for
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all t ∈ T , we can apply Dini’s Theorem to deduce that λδ(t) converges uniformly to 0, that is,

supt∈T λδ(t)→ 0, as δ ↓ 0.

The last step is to show ‖Un − U‖∞ → 0 a.s., as n → ∞. For i 6= j, denote Mij,δ(t) =

sups:|s−t|d<δ |hij(s)−hij(t)|, where hij(t) = k[Xi(t), Xj(t)], and λδ(t) = E(Mij,δ(t)). Fix ε > 0.

By (S8.1), there exists δ > 0 such that λδ(t) < ε, for all t ∈ T . Now, since T is compact, there

exist t1, . . . , tm in T such that T = ∪mk=1Bk, where Bk = {t : |t− tk|d ≤ δ} ∩ T . Then,

‖Un − U‖∞ = max
1≤k≤m

sup
t∈Bk

|Un(t)− U(t)|

≤ max
1≤k≤m

sup
t∈Bk

[|Un(t)− Un(tk)|+ |Un(tk)− U(tk)|+ |U(tk)− U(t)|]

≤ max
1≤k≤m

sup
t∈Bk

|Un(t)− Un(tk)|+ max
k=1,...,m

|Un(tk)− U(tk)|+ ε,

since |s− t|d ≤ δ implies |U(s)− U(t)| = |E[h(s)− h(t)]| ≤ E|h(s)− h(t)| ≤ λδ(t) < ε.

For the second term, we have maxk=1,...,m |Un(tk)− U(tk)| → 0 a.s., as n → ∞, applying

SLLN for U-statistics (see e.g. DasGupta (2008), Theorem 15.3(b), p. 230). As for the first

term, observe that using again SLLN for U-statistics,

sup
t∈Bk

|Un(t)− Un(tk)| ≤ 2

n(n− 1)

∑
i<j

sup
t∈Bk

|hij(tk)− hij(t)|

=
2

n(n− 1)

∑
i<j

Mij,δ(tk)→ λδ(tk), a.s.,

where λδ(tk) < ε. Therefore,

lim sup
n
‖Un − U‖∞ ≤ lim sup

n
max

k=1,...,m
sup
t∈Bk

|Un(t)− Un(tk)|

+ lim sup
n

max
k=1,...,m

|Un(tk)− U(tk)|+ ε ≤ 2ε.

Lemma 2. Let X(0) : T → R and X(1) : T → R be a pair of independent processes with

continuous trajectories a.s. defined on the compact rectangle T =
∏d
i=1[ai, bi] ⊂ Rd. Let

X
(0)
1 , . . . , X

(0)
n0 and X

(1)
1 , . . . , X

(1)
n1 be samples of n0 and n1 independent trajectories of X(0)

and X(1), respectively. Define the functional two-sample U-statistic

Un0,n1(t) =
1

n0n1

n0∑
i=1

n1∑
j=1

k[X
(0)
i (t), X

(1)
j (t)],

where the kernel k is a continuous, permutation symmetric function. Assume that

E
(

sup
t∈T
|h(t)| log+ |h(t)|

)
<∞,
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with h(t) = k[X(0)(t), X(1)(t)]. Then, as min(n0, n1)→∞,

‖Un0,n1 − U‖∞ → 0, a.s.,

where U(t) = E(k[X(0)(t), X(1)(t)]).

Proof. It is analogous to the proof of Lemma 1 so it is omitted. We need to apply a strong

law of large numbers for two-sample U-statistics. This result can be guaranteed under slightly

stronger conditions on the moments of the kernel; see Sen (1977, Th.1). Hence the condition

E
(

supt∈T |h(t)| log+ |h(t)|
)
<∞ in the statement of the lemma.

Proofs of the results of the main document

In what follows all the equation labels [(2.1), (3.1), etc.] not starting with S refer to equations

in the main body of the paper.

Theorem 1. (a) From (2.1), asXt is d-dimensional and Y is one-dimensional, taking into account

c1 = π, we have

V
2(Xt, Y ) =‖ ϕXt,Y (u, v)− ϕXt(u)ϕY (v) ‖2w

= 1
πcd

∫
R

∫
Rd |ϕXt,Y (u, v)− ϕXt(u)ϕY (v)|2 1

|u|d+1
d

v2
dudv.

Let’s analyze the integrand,

ϕXt,Y (u, v)− ϕXt(u)ϕY (v) = E
[
eiu
>XteivY

]
− E

[
eiu
>Xt

]
E
[
eivY

]
= E

[
(eiu

>Xt − ϕXt(u))(eivY − ϕY (v))
]

= E
[
E
[
(eiu

>Xt − ϕXt(u))(eivY − ϕY (v))|X
]]

= E
[
(eiu

>Xt − ϕXt(u))E
[
(eivY − ϕY (v))|X

]]
(∗)
= E

[
(eiu

>Xt − ϕXt(u))(eiv − 1)(η(X)− p)
]

= (eiv − 1)E
[
(eiu

>Xt − ϕXt(u))(η(X)− p)
]

= (eiv − 1)E
[
eiu
>Xt(η(X)− p)

]
= (eiv − 1)ζ(u, t).

Step (*) in the above chain of equalities is motivated as follows:

E
[
(eivY − ϕY (v))|X

]
= E

[
eivY |X

]
− ϕY (v) = (eiv − 1)η(X)− (eiv − 1)p

= (eiv − 1)((η(X)− p)).

Therefore, since
∫
R
|eiv−1|2
πv2

dv = 2,

V
2(Xt, Y ) =

∫
R

|eiv − 1|2

πv2
dv

∫
Rd

|ζ(u, t)|2

cd|u|d+1
d

du =
2

cd

∫
Rd

|ζ(u, t)|2

|u|d+1
d

du.
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(b) Since ζ(u, t) = E
[
(η(X)− p) eiu

>Xt
]
,

|ζ(u, t)|2 = E
[
(η(X)− p)eiu

>Xt
]
E
[
(η(X ′)− p)e−iu

>X′t
]

= E
[
(η(X)− p)(η(X ′)− p)eiu

>(Xt−X′t)
]

= E
[
(η(X)− p)(η(X ′)− p) cos(u>(Xt −X ′t))

]
= −E

[
(η(X)− p)(η(X ′)− p)(1− cos(u>(Xt −X ′t)))

]
,

where we have used |ζ(u, t)|2 ∈ R and E [(η(X)− p)(η(X ′)− p)] = 0. Now, using expression

(3.1),

V
2(Xt, Y ) = −2E

[
(η(X)− p)(η(X ′)− p)

∫
Rd

1− cos(u>(Xt −X ′t))
cd|u|d+1

d

du

]
= −2E

[
(η(X)− p)(η(X ′)− p)|Xt −X ′t|d

]
= −2E

[
(Y − p)(Y ′ − p)|Xt −X ′t|d

]
,

since [see e.g. Lemma 1 in Székely, Rizzo and Bakirov (2007)],∫
Rd

1− cos(u>x)

cd|u|d+1
d

du = |x|d, for all x ∈ Rd.

(c) By conditioning on Y and Y ′ we have

E[(Y − p)(Y ′ − p)|Xt −X ′t|d] = p2I00(t)(1− p)2 − p(1− p)I01(t)2p(1− p)

+ (1− p)2I11(t)p2 = p2(1− p)2(I00(t) + I11(t)− 2I01(t)).

Now, using (3.2), V2(Xt, Y ) = 4p2(1− p)2
[
I01(t)− I00(t)+I11(t)

2

]
.

Theorem 2. Continuity of V2
n(Xt, Y ) is straightforward from DCT. It suffices to prove the result

for sequences of samples X
(0)
1 , . . . , X

(0)
n0 , and X

(1)
1 , . . . , X

(1)
n1 , drawn from X|Y = 0 and X|Y = 1,

respectively, such that n1/(n0 + n1)→ p = P(Y = 1).

From the triangle inequality it is enough to prove the uniform convergence of Î00(t), Î11(t)

and Î01(t) to I00(t), I11(t) and I01(t), respectively. For the first two quantities we apply Lemma 1

to the kernel k(x, x′) = |x−x′|. For the last one we apply Lemma 2 to the same kernel. Observe

that E‖X‖∞ <∞ implies the moment condition of Lemma 1 whereas E(‖X‖∞ log+ ‖X‖∞) <∞
implies the moment condition of Lemma 2. The last statement readily follows from the uniform

convergence and the compactness of [0, 1]d.

Proposition 1. We know g∗(x) = I{η(x)>1/2}. Then, we use equation (4.1), which provides η(x)

in terms of the Radon-Nikodym derivative dµ0/dµ1, and the expression for dµ0/dµ1 given in

Liptser and Shiryayev (1977), p. 239. This gives

η(x) =

[
1− p
p

√
2e−x

2
1/4 + 1

]−1

.
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Now, from g∗(x) = I{η(x)>1/2}, we get g∗(x) = 1 if and only if x2
1 > 4 log

(√
2(1−p)
p

)
.

Proposition 2. Again, we use expression (4.1) to derive the expression of the optimal rule

g∗(x) = I{η(x)>1/2}. In this case the calculation is made possible using the expression of the

Radon-Nikodym derivative for the distribution of a Brownian process with trend, F (t) +B(t),

with respect to that of a standard Brownian:

dµ1

dµ0
(B) = exp

{
−1

2

∫ 1

0

F ′(s)2ds+

∫ 1

0

F ′dB

}
, (S8.2)

for µ0-almost all B ∈ C[0, 1]; see, Mörters and Peres (2010), Th. 1.38 and Remark 1.43, for

further details. Observe that in this case we have F (t) = ct. Thus, from (4.1), we finally get

η(x) =
[

1−p
p

exp
(
c2

2
− cx1

)
+ 1
]−1

, which again only depends on x through x(1) = x1. The

result follows easily from this expression.

Proposition 3. In this case, the trend function is F (t) = Φm,k(t). So F
′
(t) = ϕm,k and F

′′
(t) =

0. From equations (4.1) and (S8.2), we readily get (4.3) and (4.4).

Proposition 4. Let us first consider the model in Proposition 1 (i.e., Brownian vs. Brownian

with a stochastic trend). Such model entails that Xt|Y = 0 ∼ N(0,
√
t) and Xt|Y = 1 ∼

N(0,
√
t2 + t). Now, recall that if ξ ∼ N(m,σ), then,

E|ξ| = σ

√
2

π
e
−m

2

σ2 +m
(

2Φ
(m
σ

)
− 1
)
, (S8.3)

where Φ(z) denotes the distribution function of the standard normal.

Now, using (3.3) and (S8.3) we have the following expressions,

I01(t) = E|
√
tZ −

√
t2 + tZ′| =

√
2(t2 + 2t)

π
,

I00(t) = E|
√
tZ −

√
tZ′| =

√
4t

π
,

I11(t) = E|
√
t2 + tZ −

√
t2 + tZ′| =

√
4(t2 + t)

π
,

where Z and Z′ are independent N(0, 1) random variables.

Then, the function V2(Xt, Y ) = 4p2(1 − p)2
(
I01(t)− I00(t)+I11(t)

2

)
grows with t so it is

maximized at t∗ = 1, which is the only point that has an influence on the Bayes rule.

Let us now consider the model in Proposition 2 (i.e., Brownian vs. Brownian with a linear

trend). Again, from (S8.3) we have in this case,

I01(t) = E|ct+
√
tZ −

√
tZ′| = 2

√
t

π
e−

c2t
2 + ct

(
2Φ

(
c

√
t

2

)
− 1

)
,

I00(t) = I11(t) = E|
√
tZ −

√
tZ′| =

√
4t

π
,
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where Z and Z′ are iid standard Gaussian variables. Therefore using (3.3),

V
2(Xt, Y ) = C

[
2

√
t

π

(
e−

c2t
2 − 1

)
+ ct

(
2Φ

(
c

√
t

2

)
− 1

)]
,

where C = 4p2(1−p)2. We can check numerically that this an increasing function which reaches

its only maximum at t∗ = 1. According to Proposition 1 this is the only relevant point for the

Bayes rule.

Appendix: models

We now list all the models included in the simulation study. The relevant variables are indicated

in brackets (for Gaussian and mixture models) or in the expression of ψ(X) (for the logistic-type

models). Variables in bold face had found to be specially relevant.

1. Gaussian models:

1. G1 :

{
µ0 : B(t)

µ1 : B(t) + θt , θ ∼ N(0, 3)

variables = {X100}.

2. G1b :

{
µ0 : B(t)

µ1 : B(t) + θt , θ ∼ N(0, 5)

variables = {X100}.

3. G2 :

{
µ0 : B(t) + t

µ1 : B(t)

variables = {X100}.

4. G2b :

{
µ0 : B(t) + 3t

µ1 : B(t)

variables = {X100}.

5. G3 :

{
µ0 : BB(t)

µ1 : B(t)

variables = {X100}.

6. G4 :

{
µ0 : B(t) + hillside0.5,4(t)

µ1 : B(t)

variables = {X47,X 100}.

7. G5 :

{
µ0 : B(t) + 3Φ1,1(t)

µ1 : B(t)

variables = {X1,X 48, X100}.

8. G6 :

{
µ0 : B(t) + 5Φ2,2(t)

µ1 : B(t)

variables = {X48,X 75, X100}.

9. G7 :

{
µ0 : B(t) + 5Φ3,2(t) + 5Φ3,4(t)

µ1 : B(t)

variables = {X22,X 35, X49, X74,X 88, X100}.

10. G8 :

{
µ0 : B(t) + 3Φ2,1.25(t) + 3Φ2,2(t)

µ1 : B(t)

variables = {X9,X 35, X48, X62,X 75, X100}.

2. These are the ψ functions used to define the different logistic models,

L1: ψ(X) = 10X65.

L2: ψ(X) = 10X30 + 10X70.

L3: ψ(X) = 10X30 − 10X70.
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L4: ψ(X) = 20X30 + 50X5020X80.

L5: ψ(X) = 20X30 − 50X50 + 20X80.

L6: ψ(X) = 10X10 + 30X40 + 10X72 + 10X80 + 20X95.

L7: ψ(X) =
∑10
i=1 10X10i.

L8: ψ(X) = 20X2
30 + 10X4

50 + 50X3
80.

L9: ψ(X) = 10X10 + 10|X50|+ 0X2
30X85.

L10: ψ(X) = 20X33 + 20|X68|.

L11: ψ(X) = 20
X35

+ 30
X77

.

L12: ψ(X) = logX35 + logX77.

L13: ψ(X) = 40X20 + 30X28 + 20X62 + 10X67.

L14: ψ(X) = 40X20 + 30X28 − 20X62 − 10X67.

L15: ψ(X) = 40X20 − 30X28 + 20X62 − 10X67.

The variations included are,

L3b: ψ(X) = 30X30 − 20X70.

L4b: ψ(X) = 30X30 + 20X50 + 10X80.

L5b: ψ(X) = 10X30 − 10X50 + 10X80.

L6b: ψ(X) = 20X10 + 20X40 + 20X72 + 20X80 + 20X95.

L8b: ψ(X) = 10X2
30 + 10X4

50 + 10X3
80.
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3. Mixture models:

1. M1 :


µ0 :

{
B(t) + 3t , 1/2

B(t)− 2t , 1/2

µ1 : B(t)

variables = {X100}.

2. M2 :


µ0 :

{
B(t) + 3Φ2,2(t) , 1/2

B(t) + 5Φ3,2(t) , 1/2

µ1 : B(t)

variables = {X22,X 35, X48,X 75, X100}.

3. M3 :


µ0 :

{
B(t) + 3Φ2,2(t) , 1/10

B(t) + 5Φ3,2(t) , 9/10

µ1 : B(t)

variables = {X22,X 35, X48,X 75, X100}.

4. M4:


µ0 :

{
B(t) + 3Φ2,2(t) , 1/2

B(t) + 5Φ3,3(t) , 1/2

µ1 : B(t)

variables = {X48,X 62,X 75, X100}.

5. M5 :


µ0 :


B(t) + 3Φ2,1(t) , 1/3

B(t) + 3Φ2,2(t) , 1/3

B(t) + 5Φ3,2(t) , 1/3

µ1 : B(t)

variables = {X1,X 22,X 35, X48,X 75, X100}.

6. M6 :


µ0 :

{
B(t) + 3Φ2,1(t) , 1/2

B(t) + 3t , 1/2

µ1 : B(t)

variables = {X1,X 22, X49,X 100}.

7. M7 :


µ0 :

{
B(t) + 3Φ1,1(t) , 1/2

BB(t) , 1/2

µ1 : B(t)

variables = {X1,X 48,X 100}.

8. M8 :


µ0 :

{
B(t) + θt, θ ∼ N(0, 5) , 1/2

B(t) + hillside0.5,5(t) , 1/2

µ1 : B(t)

variables = {X47,X 100}.

9. M9 :


µ0 :

{
B(t) + θt, θ ∼ N(0, 5) , 1/2

BB(t) , 1/2

µ1 : B(t)

variables = X100.

10. M10 :


µ0 :


B(t) + 3Φ1,1(t) , 1/3

B(t)− 3t , 1/3

BB(t) , 1/3

µ1 : B(t)

variables = {X1,X 48,X 100}.

11. M11 :


µ0 :


B(t) + 3Φ1,1(t) , 1/4

B(t)− 3t , 1/4

B(t) + hillside0.5,5(t) , 1/4

BB(t) , 1/4

µ1 : B(t)

variables = {X1,X 48,X 100}.

Finally, the full list of models involved is, in summary, as follows:

1. L1 OU

2. L1 OUt

3. L1 B

4. L1 sB

5. L1 ssB

6. L2 OU

7. L2 OUt

8. L2 B

9. L2 sB

10. L2 ssB

11. L3 OU

12. L3b OU

13. L3 OUt

14. L3b OUt

15. L3 B

16. L3b B

17. L3 sB

18. L3 ssB

19. L4 OU

20. L4b OU

21. L4 OUt

22. L4b OUt

23. L4 B

24. L4 sB

25. L4 ssB

26. L5 OU

27. L5b OU

28. L5 OUt
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29. L5 B

30. L5 sB

31. L5 ssB

32. L6 OU

33. L6b OU

34. L6 OUt

35. L6b OUt

36. L6 B

37. L6 sB

38. L6 ssB

39. L7 OU

40. L7b OU

41. L7 OUt

42. L7b OUt

43. L7 B

44. L7 sB

45. L7 ssB

46. L8 B

47. L8 sB

48. L8 ssB

49. L8b OU

50. L9 B

51. L9 sB

52. L9 ssB

53. L10 OU

54. L10 B

55. L10 sB

56. L10 ssB

57. L11 OU

58. L11 OUt

59. L11 B

60. L11 sB

61. L11 ssB

62. L12 OU

63. L12 OUt

64. L12 B

65. L12 sB

66. L12 ssB

67. L13 OU

68. L13 OUt

69. L13 B

70. L13 sB

71. L13 ssB

72. L14 OU

73. L14 OUt

74. L14 B

75. L14 sB

76. L15 OU

77. L15 OUt

78. L15 B

79. L15 sB

80. G1

81. G1b

82. G2

83. G2b

84. G3

85. G4

86. G5

87. G6

88. G7

89. G8

90. M1

91. M2

92. M3

93. M4

94. M5

95. M6

96. M7

97. M8

98. M9

99. M10

100. M11
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