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Abstract: Variance estimation in the linear model when p > n is a difficult problem.

Standard least squares estimation techniques do not apply. Several variance estima-

tors have been proposed in the literature, all with accompanying asymptotic results

proving consistency and asymptotic normality under a variety of assumptions.

It is found, however, that most of these estimators suffer large biases in finite

samples when true underlying signals become less sparse with larger per element

signal strength. One estimator seems to merit more attention than it has received

in the literature: a residual sum of squares based estimator using Lasso coefficients

with regularisation parameter selected adaptively (via cross-validation).

In this paper, we review several variance estimators and perform a reasonably

extensive simulation study in an attempt to compare their finite sample perfor-

mance. It would seem from the results that variance estimators with adaptively

chosen regularisation parameters perform admirably over a broad range of sparsity

and signal strength settings. Finally, some intial theoretical analyses pertaining to

these types of estimators are proposed and developed.
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1. Introduction

Consider the linear model

Y = Xβ + ϵ,

where Y is an n-vector of independently distributed responses, X an n× p ma-

trix with individual specific covariate vectors as its rows and ϵ an n-vector of

i.i.d. random variables (usually assumed Gaussian) each with mean 0 and vari-

ance σ2.

When p > n, one cannot estimate the unknown coefficient vector β uniquely

via standard least squares methodology. In fact, it is probably ill-advised to use

least squares to estimate the vector even when p ≤ n with p close to n, since

standard errors are likely to be high and parameter estimates unstable. In this

instance, if one can assume that β is reasonably sparse with many zero entries,
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a successful method for selecting the nonzero elements of β and estimating them

is the Lasso estimator proposed by Tibshirani (1996), obtained by minimising

1

2
||Y −Xβ||22 + λ||β||1,

where the parameter λ is predetermined and controls the amount of regulari-

sation. Broadly speaking, the higher the value of λ, the more elements of the

estimated β vector are set to 0 and the more the nonzero entries are shrunken

toward 0. Smaller λ implies less regularisation and more nonzero β with larger

(absolute) coefficients. The number of non-zero coefficients is not monotone in

the value of λ, since sometimes we have to delete variables as we decrease λ,

especially at smaller values. However, the notion of smaller λ meaning “less

regularisation” is a good rule of thumb.

Much has been written about the model selection and prediction properties

of this class of estimators, but it is only recently that people have turned to

developing significance tests for the estimated coefficients. Examples include

Lockhart et al. (2013) and Javanmard and Montanari (2013). Each of these

requires a good estimate of the error variance σ2 to plug into their chosen test

statistics. The problem of estimating error variance when p > n is interesting in

its own right and several estimators have been proposed by different authors.

The aim of this paper is to review some of these estimators and to run a com-

prehensive simulation comparison of their estimation performance over a broad

range of parameter vector sparsity and signal strength settings. Perhaps such

a comprehensive simulation comparison may reveal the most promising estima-

tor, helping to guide research into fruitful directions. In particular, a promising

estimator seems to be

σ̂2 =
1

n− ŝλ̂
||Y −Xβ̂λ̂||

2
2,

where β̂λ is the Lasso estimate at regularisation parameter λ, λ̂ is selected via

cross-validation and ŝλ̂ is the number of nonzero elements in β̂λ̂.

2. Review of Error Variance Estimators

In this section, we review some of the error variance estimators proposed

recently and list some of their theoretical properties, as well as the assumptions

under which these properties hold.

2.1. The oracle

The ideal variance estimator is the oracle estimator:

σ̂2
O =

1

n

n∑
i=1

(Yi −X ′
iβ

∗)2, (2.1)
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where β∗ is the true (unknown) coefficient vector with s nonzero elements. This

estimator (times n) has a χ2 distribution with n degrees of freedom and serves as

a sample variance for the zero mean ϵ. Obviously this is not a viable estimator

in practice, because we do not know β∗. However, it is useful for comparison

purposes in a simulation study.

2.2. Residual sum of squares based estimators

Fan, Guo, and Hao (2012) consider estimators of the form

σ̂2
L,λn

=
1

n− ŝL,λn

n∑
i=1

(Yi −X ′
iβ̂λn)

2, (2.2)

where βλ is the Lasso coefficient vector estimate, and ŝL,λ the number of nonzero

elements of this vector, at regularisation parameter λ. Greenshtein and Ritov

(2004) show estimators of this form to be consistent for σ2 under some technical

conditions on the population moments of Y and X. Consistency holds if λn =

O(
√

log(p)/n).

Fan, Guo, and Hao (2012) show that this estimator has a limiting zero mean

normal distribution as n → ∞, s log(p)/
√
n → 0 and λn ∝ σ

√
log(p)/n. Further-

more, this limiting distribution has the same variance as the asymptotic variance

of the oracle estimator.

Their results are gleaned by making assumptions on the elements of matrix

X (assumed to be bounded absolutely) and the so-called sparse-eigenvalues. The

smallest and largest sparse eigenvalues are defined as

ϕmin(m) = min
M :|M |≤m

λmin(
1

n
XT

MXM ),

and

ϕmax(m) = max
M :|M |≤m

λmax(
1

n
XT

MXM ),

where M is a set of integers selected from {1, . . . , p}, XM is the n ×M matrix

obtained by selecting columns from X indexed by elements of M , and λmin(A)

and λmax(A) are the smallest and largest eigenvalues of matrix A. Assumptions

are made bounding the asymptotic behaviour of these sparse eigenvalues. A lower

bound on the smallest sparse eigenvalue seems to be particularly important.

These types of assumptions seem to be quite prevalent in the literature that

pertains to our problem.

Although heartening, results of this kind are not useful in practice. The

choice of λ is very important in the pursuit of an accurate finite sample estimator.

Its size controls both the number of variables selected and the degree to which

their estimated coeffcients are shrunk to zero. Set λ too large and we do not select



38 STEPHEN REID, ROBERT TIBSHIRANI AND JEROME FRIEDMAN

all signal variables, leading to rapidly degrading performance (exhibited mostly

by large upward bias) when the true β becomes less sparse with larger signal per

element. On the other hand, should we set λ too small, we would select many

noise variables, allowing spurious correlation to decrease our variance estimate,

leading to substantial downward bias. Simulation results seem to suggest there

is a fine balance to be maintained when selecting the appropriate λ.

2.3. Cross-validation based estimators

Considerations around the selection of an appropriate λ lead us inexorably

toward an adaptive selection method. In particular, one can define

σ̂2
L,λ̂

=
1

n− ŝL,λ̂

n∑
i=1

(Yi −X ′
iβ̂λ̂)

2, (2.3)

where λ̂ is selected using K-fold cross-validation. K is usually set to 5 or 10.

Our simulation results suggest that this estimator is robust to changes in signal

sparsity and strength, more so than its competitors. Fan, Guo, and Hao (2012)

lament the downward bias of this estimator. They claim that it is affected by

spurious correlation. Although this downward bias seems to be borne out in our

simulation results, it does not seem too large and stems from a heavy left tail

in its empirical distribution. The median estimate tends to be very close to the

true σ2 under a surprisingly broad range of sparsity and signal strength settings.

Very little theory exists detailing the properties of this estimator. Hom-

righausen and McDonald (2013) prove a result on the persistence of this estima-

tor that can, with a suitable sparsity assumption on the true β, be adapted to a

consistency result for an estimate closely resembling σ̂2
L,λ̂

.

An implication of their result is that if the true underlying coefficient vector

β∗ is sufficiently sparse, ||β∗||1 = o((n/log(n))1/4), then

n− ŝ

n
σ̂2
L,λ̂

P→ σ2.

If one can assume, as do Fan, Guo, and Hao (2012), that ŝ = oP (n), then σ̂2
L,λ̂

is

also consistent. We are not aware of a proof of this for cross-validation though.

Nothing is said about the finite sample distribution of this estimator, or whether

any asymptotic distribution obtains for that matter.

Fan, Guo, and Hao (2012) propose two other cross-validation based variance

estimators. The first defines the K cross-validation folds as {D1, D2, . . . , DK}
and computes

σ̂2
CV L = min

λ

1

n

K∑
k=1

∑
i∈Dk

(Yi −X ′
iβ̂

(−k)
λ )2, (2.4)
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where β̂
(−k)
λ is the Lasso estimate at λ over the data after the kth fold is omitted.

They try K = 5, 10, and n, the latter corresponding to leave-one-out cross-

validation. They find in their simulations that the estimate is consistently above

the true error variance. We found the same tendency and this estimator is

omitted from the simulation study exposition in the next section.

A second estimator uses cross-validation to select the optimal regularisation

parameter λ̂ and then finds the set of indices corresponding to nonzero entries in

β̂λ̂. Call this set M̂ . The “näıve” two-stage Lasso estimator is then defined as

σ̂2
NL =

1

n− |M̂ |
||(I −XM̂ (X ′

M̂
XM̂ )−1X ′

M̂
)Y ||22. (2.5)

This estimator suffers from downward bias for sparse β, because the Lasso tends

to overselect (including the vast majority of signal variables and a few noise

variables). Least squares estimates of parameters are not shrunk toward zero

and inclusion of additional noise variables (that seem well correlated with the

response) drives down the variance estimate. Wasserman and Roeder (2009)

demonstrate the overselection property of the Lasso. The downward bias of this

estimator is made apparent in our simulation results.

2.4. Refitted cross-validation (RCV) estimator

In an attempt to overcome the downward bias caused by spurious correlation

in the näıve Lasso estimator, Fan, Guo, and Hao (2012) propose a refitted cross-

validation (RCV) estimator. They split the dataset into two (roughly) equal parts

X(1) and X(2). On the first part, X(1), they fit the Lasso, using cross-validation

to determine the optimal regularisation parameter λ̂1 and corresponding set of

nonzero indices M̂1. Using those columns in X(2) indexed by M̂1 they obtain the

variance estimate

σ̂2
1 =

1

n− |M̂1|
||(I −X

(2)

M̂1
(X

(2)′
M̂1

X
(2)

M̂1
)−1X

(2)′
M̂1

)Y ||22.

They then repeat the mirror image procedure on X(2), obtaining λ̂2, M̂2 and σ̂2
2.

The RCV variance estimate is then obtained as

σ̂2
RCV =

σ̂2
1 + σ̂2

2

2
. (2.6)

The authors prove consistency and asymptotic normality (with asymptotic vari-

ance the same as that of the oracle estimator) of this estimator under slightly

weaker conditions than those used for proving similar results for σ̂2
L,λn

. They ar-

gue that breaking up the dataset counters the effect of spurious correlation, since

spurious noise variables selected on one half are unlikely to produce significant
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least squares parameter estimates on the second half, reducing the negative bias

associated with the overselection of the Lasso selector.

Theoretical results aside, the finite sample performance of this estimator

seems to suffer when β is less sparse and has larger signal per element. The

plug-in Lasso estimator σ̂2
L,λ̂

remains anchored around the true σ2 for a broader

array of sparsity and signal strength settings.

2.5. SCAD estimator

The Lasso is just one method for selecting the variables to have nonzero

coefficients in our variance estimator. Any other valid variable selection method

could be used to estimate error variance in the spirit of σ̂2
L,λ̂

. One such method is

the Smoothly Clipped Absolute Deviation Penalty (SCAD) of Fan and Li (2001).

Instead of using an ℓ1 penalty, they minimise

1

2
||Y −Xβ||22 +

p∑
j=1

pλ(|βj |),

where p′λ(θ) = λ (I(θ ≤ λ) + [(aλ− θ)+/(a− 1)λ]I(θ > λ)) for some a > 2 (usu-

ally 3.7) and θ > 0. This penalty is chosen for its good model selection properties.

Although no longer a convex criterion, the authors claim to have a stable and

reliable algorithm for determining the optimal β with good properties. Indeed,

their simulations seem to suggest that SCAD outperforms the Lasso at variable

selection in the low noise case when both have their regularisation parameters

chosen by cross-validation.

Given a method with good variable selection performance (it selects the sig-

nal variables and few or none of the noise variables), we have a hope of mimicking

an oracle estimator that is privy to the correct β. Fan, Guo, and Hao (2012)

define their SCAD variance estimator as:

σ̂2
SCAD =

1

n− ŝλ̂
||Y −Xβ̂SCAD,λ̂||

2
2, (2.7)

where β̂SCAD,λ̂ is the SCAD estimate of β at the regularisation parameter λ̂

selected by cross-validation. Again, consistency and asymptotic normality can

be shown for this estimator with an appropriately chosen, deterministic reg-

ularisation parameter sequence λn. Our simulations suggest that it performs

comparably to σ̂2
L,λ̂

.

2.6. Scaled sparse linear regression estimators

Stadler, Buhlmann and van der Geer (2010) introduce the notion of esti-

mating jointly the parameter vector and error variance in the context of mixture



A STUDY OF ERROR VARIANCE ESTIMATION IN LASSO REGRESSION 41

regression models. Sun and Zhang (2010) refine this notion for the non-mixture
case and explore the properties of this new estimator in Sun and Zhang (2012).

In particular, the latter pair proposes the joint optimisation in (β, σ) of the
jointly convex criterion (called the “scaled Lasso” criterion)

||Y −Xβ||22
2nσ

+
σ

2
+ λ0||β||1, (2.8)

where λ0 is some predetermined fixed parameter. An iterative, alternating opti-
misation algorithm is given where, given a current estimate β̂current, parameter
estimates are updated as:

σ̂ =
||Y −Xβ̂current||2√

n
,

λ = σ̂λ0,

β̂current = β̂λ,

where β̂λ is the Lasso estimate of β at regularisation parameter λ. These steps
are interated until the parameter estimates converge.

The authors go on to show consistency, asymptotic normality and oracle
inequalities for this estimator under a compatibility assumption (detailed in their
paper) and assumptions on the sparse eigenvalues of X. The finite sample success
of this method, however, hinges on the choice of λ0. The asymptotic results hold
when λ0 ∝

√
log(p)/n, but finite sample accuracy will depend greatly on an

appropriate choice of the proportionality constant. Simulation results from their
paper suggest that

√
2 is a good choice for the proportionality constant, but our

simulation results show rapid degradation as the true β becomes less sparse with
larger per element signal.

Another estimator proposed by Sun and Zhang (2012) uses the scaled Lasso
criterion to find M̂SZ - the set of indices corresponding to nonzero β̂current after
the final iteration. Once obtained, another estimator is defined as

σ̂2
SZLS =

1

n− |M̂SZ |
||(I −XM̂SZ

(X ′
M̂SZ

XM̂SZ
)−1X ′

M̂SZ
)Y ||22. (2.9)

The authors tout the finite sample accuracy of this estimator.
In a recent paper, Sun and Zhang (2013) propose a different value for λ0.

With this value, tighter error bounds are achieved than in their previous paper.
In particular, they propose

λ0 =
√
2Ln(

k

p
), (2.10)

with Ln(t) = Φ−1(1− t)/
√
n, where Φ is the standard Gaussian cdf and k is the

solution to

k = L4
1(
k

p
) + 2L2

1(
k

p
).
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A least squares after scaled Lasso estimator (as in (2.9)) is also proposed for

this level of the regularisation parameter. All four of the scaled Lasso estimators

were included in our simulation study.

2.7. Method of moments estimators

Dicker (2014) takes a different tack. Instead of attempting to emulate the

sum of squares estimator of standard least squares regression methodology, he

makes distributional assumptions on both the errors ϵ and the columns of the

predictor matrix X.

He retains the standard assumption that ϵ ∼ Nn(0, σ
2In), although he makes

it at the outset; the subsquent derivation of his estimator depending heavily on

this assumption. Furthermore, he assumes that each of the n rows of X (call

the ith one xi) is normally distributed: xi ∼ Np(0,Σ). Also, all ϵi and xi are

assumed independent.

These distributional assumptions allow one to compute the expectations of

the quantities ||y||2 and ||X ′y||2. Equating these moments to their sample coun-

terparts enables one to derive estimators for σ2.

He proposes two estimators. The first holds when we assume Σ = Ip,

σ̂2
D1 =

p+ n+ 1

n(n+ 1)
||y||2 − 1

n(n+ 1)
||X ′y||2, (2.11)

while a second estimator is an approximate method of moments estimator for

the case of general Σ,

σ̂2
D2 =

[
1 +

pm̂2
1

(n+ 1)m̂2

]
1

n
||y||2 − m̂1

n(n+ 1)m̂2
||X ′y||2, (2.12)

where

m̂1 =
1

p
tr

(
1

n
X ′X

)
, m̂2 =

1

p
tr

[(
1

n
X ′X

)2
]
− 1

pn

[
tr

(
1

n
X ′X

)]2
.

He shows how these estimators are consistent for σ2 and have asymptotic

Gaussian distributions.

3. A Simulation Study

The merits of each of the estimators mentioned are demonstrated by the

authors who devised them. Asymptotic results are gleaned for each and simula-

tion studies run to show some applicability. In this section we exact upon the

entire collection a fairly extensive simulation study. In the study we control the

sparsity of the underlying true β vector as well as its signal-to-noise ratio (SNR).

The correlation between columns of the X matrix is also controlled. The aim of
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the study is to reveal the strengths and weaknesses of the estimators (and the

sparsity-signal strength combinations in which these are most clearly revealed).

In particular, we would like to ascertain which estimator provides reasonable

estimates of the error variance over the broadest range of sparsity and signal

strength settings.

Use of the Lasso (and other sparsity-inducing coefficient estimators) makes

a large bet on sparsity. Most of the good results obtained for this class of es-

timators make some crucial assumptions about the sparsity of the underlying

ground truth. The variance estimators at issue also rely heavily on the notion

of finding the small set of nonzero coefficients and using it to remove the signal

from the response, leaving only random error, the variance of which can then be

obtained. In practice though, we are rarely certain about the extent of sparsity

of the ground truth. A variance estimator that performs reasonably over a broad

range of ground truth settings lends some peace of mind.

3.1. Simulation parameters

All simulations were run at a sample size of n = 100. For the number of

total predictors we took p = 100, 200, 500, 1,000. Elements of the predictor

matrix X were generated randomly as Xij ∼ N(0, 1). Two correlation struc-

tures for columns of X were considered, each parameterised by parameter ρ:

Cor(Xi, Xj) = ρ ∀i, j; Cor(Xi, Xj) = ρ|i−j| ∀i, j.
The true β was generated in steps. First, the number of nonzero elements

was set to pnz = ⌈nα⌉. The parameter α controls the degree of sparsity of β:

the higher the α; the less sparse the β. It ranges between 0 and 1, except when

we set it to −∞ to enforce β = 0. The indices corresponding to nonzero β were

then selected randomly. Their values were set equal to that of a random sample

from a Laplace(1) distibution. The elements of the resulting β were then scaled

such that the signal-to-noise ratio, defined as β′Σβ/σ2, was some predetermined

value, snr. Here Σ is the covariance matrix of the elements of a single row of X.

Simulations were run over a grid of values for each parameter. In particular,

ρ = 0, 0.2, 0.4, 0.6, 0.8; α = 0.1, 0.3, 0.5, 0.7, 0.9 and snr = 0.5, 1, 2, 5, 10, 20. At

each setting of the parameters, B = 100 replications of each of a collection of

error variance estimators were obtained. The collection of estimators considered

were as follows.

• The oracle estimator at (2.1).

• The cross-validation based Lasso estimator σ̂2
L,λ̂

at (2.3), denoted CV L in the

simulation output.

• The näıve Lasso estimator σ̂2
NL at (2.5), denoted CV LS.

• The SCAD estimator σ̂2
SCAD at (2.7), denoted CV SCAD.
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• The RCV estimator σ̂2
RCV at (2.6).

• The scaled Lasso estimator of Sun and Zhang (2012) at (2.8), denoted SZ in

output.

• Its least-squares-after-scaled-Lasso version at (2.9), denoted SZ LS.

• The scaled Lasso estimator of Sun and Zhang (2013) with smaller regularisa-

tion parameter at (2.10), denoted SZ2.

• Its least-squares-after-scaled-Lasso version, denoted SZ2 LS.

• The method of moments estimators of Dicker (2014) at (2.11) and (2.12),

denoted D1 and D2, respectively.

All figures, tables and results are quoted in terms of the standard deviation

estimate. Results were obtained for true error variance values σ = 1, 3.

3.2. No signal case: β = 0

We first considered the edge case α = −∞, forcing β = 0. The snr is irrele-

vant here, because we have no signal. Figure 1 shows boxplots of the replications

of the standard deviation estimates when ρ = 0 and σ = 1. True σ is indicated

by the horizontal line, for reference.

It is apparent that the CV L, CV SCAD, and SZ2 estimators are slightly

downward biased, whereas the RCV, SZ, and SZ LS estimators appear unbiased.

The least-squares-after-Lasso-CV estimator (CV LS) has considerable downward

bias (as in SZ2 LS). This probably stems from the tendency of Lasso to overselect

when the regularisation parameter is chosen via CV. The relatively large set of

predictors chosen, coupled with the ill effects of spurious correlation when esti-

mating via least squares, probably contribute most significantly to this downward

bias.

The method of moments estimators tend to be median unbiased, but their

variances increase considerably as p increases relative to n. This increase in

variance is most pronounced in the bottom right panel (p = 1,000), where the

method of moments estimators have significantly larger variance than the rest.

Median biases for each of the estimators are tabulated in Table 1 for the

different n-p combinations. This is defined as medianb=1,2,...,B{σ̂b}−σ, where σ̂b
is the bth replication of the standard deviation estimate of interest. It would seem

that median biases for CV L, CV LS, and CV SCAD increase (absolutely) as p

increases. Although lamentable, the biases of CV L and CV SCAD are not that

large, particularly when compared to the biases of the other estimators when we

start increasing the signal (see below). Furthermore, in practice, the assumption

is often that there is indeed a signal. This is usually the point of a study. This

particular setup then, may not be encountered too often in practice.
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Figure 1. Standard deviation estimates for β = 0 case. Sample size n = 100,
predictors p = 100, 200, 500, 1,000, moving left to right along rows. ρ = 0.

Table 1. Median biases of standard deviation estimators. No signal, σ = 1,
ρ = 0.

Method p = 100 p = 200 p = 500 p = 1,000

Oracle 0.0000 0.0004 0.0015 -0.0110
CV L -0.0165 -0.0348 -0.0374 -0.0491
CV LS -0.0612 -0.0871 -0.0680 -0.0910
CV SCAD -0.0177 -0.0242 -0.0355 -0.0440
RCV -0.0050 0.0014 -0.0170 -0.0059
SZ -0.0006 0.0002 0.0015 -0.0122
SZ LS -0.0096 -0.0150 -0.0171 -0.0191
SZ2 -0.0396 -0.0474 -0.0484 -0.0534
SZ2 LS -0.1065 -0.1332 -0.1596 -0.1727
D1 0.0150 -0.0068 0.0074 -0.0286
D2 -0.0079 -0.0084 0.0048 -0.0008

We also notice from Figure 1 the tight clustering of the estimates around

the true σ. None of the clusterings are as tight as that of the oracle, but on the

whole, all the standard deviation estimates seem to have low variance (except for

CV LS, D1, and D2). CV L and RCV seem to produce rare outlier estimates,

with those from CV L always coming in below the true σ. The distribution

of CV L appears skewed to the left, which may make it difficult to analyse,

particularly when one wants to ascertain the distribution of a test statistic using

this variance estimator. The effort may be merited though, as we will see below

that this estimator performs admirably over a broad range of sparsity and signal

strength assumptions.

Correlation between the columns of the predictor matrix seems to have little

effect on the performance of each of our estimators. Curves (not shown) depicting
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Figure 2. Standard deviation estimates for α = 0.1 (sparse). Sample size
n = 100, predictors p = 100, 200, 500, 1,000, moving left to right along rows.
ρ = 0, snr = 1.

median standard deviation estimates as a function of predictor correlation ρ all

seem relatively flat, with the estimators retaining their properties as discussed

above. Similar looking curves are obtained for the high noise case, σ = 3 (also

not shown).

3.3. Effect of sparsity: changing α

The true value of the CV L estimator becomes apparent once we consider

different sparsity levels and signal strength settings. It should be noted that each

of the estimators eventually breaks down when signals become non-sparse and

large. This is reflected by the very large upward biases in all of the estimators.

The question then is not whether we can find a silver bullet for all conceivable

ground truths, but rather one that performs reasonably for a broad range of

possible ground truths.

Our first consideration in the quest for such a broadly applicable estimator is

the effect of decreased sparsity. In our simulation, the sparsity level is controlled

by changing the value of α. The higher the α; the less sparse the ground truth

β becomes.

Figure 2 shows the boxplots of standard deviation estimates when α = 0.1

and snr = 1 in the uncorrelated case (ρ = 0). Notice that the median bias

of the CV L estimator seems to have decreased, while that of the CV SCAD

estimator has remained negative, roughly of the same size as in the no-signal case.

Downward bias in CV LS now seems more pronounced, while the SZ estimator

has become upwardly biased, with bias increasing with p. SZ LS performs best,
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Figure 3. Standard deviation estimates for α = 0.5 (less sparse). Sample
size n = 100, predictors p = 100, 200, 500, 1,000, moving left to right along
rows. ρ = 0, snr = 1.

being unbiased with a tight distribution around its median. CV L and RCV
perform comparably.

This changes quite dramatically when we set α = 0.5, as in Figure 3. Here
we see that the CV L and CV SCAD estimators are the only two estimators
without substantial biases in either direction. RCV, SZ, and SZ LS have all
become biased upward by roughly 20%, while SZ2 becomes increasingly more
upwardly biased as p increases, starting with a bias of about 7.5% at p = 100,
growing to about 18% when p = 1,000.

Figures 4 and 5 were generated under positive correlation ρ = 0.4. The
former shows output for the case where all pairwise correlations are ρ = 0.4,
while the latter has the decaying correlation structure described earlier.

In practice, one would expect the p predictors to be correlated. These two
plots are meant to reveal estimator performance under more realistic assumptions
than the ρ = 0 assumption of Figure 3. Notice that results are qualitatively
similar over Figures 3, 4, and 5, albeit slightly more muted for larger p when
ρ = 0.4.

3.3.1. Explaining the biases

In attempt to understand why the biases obtain, consider the oracle estimator

σ̂2
O =

1

n

n∑
i=1

(Yi −X ′
iβ

∗)2.

The success of this estimator hinges on the fact that it knows the true β (which
we call β∗). It is able to remove all the signal from the observed Yi, leaving only
the errors ϵi, the variance of which we wish to measure.
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Figure 4. Standard deviation estimates for α = 0.5 (less sparse). Sample
size n = 100, predictors p = 100, 200, 500, 1,000, moving left to right along
rows. ρ = 0.4 (all pairwise), snr = 1.

Figure 5. Standard deviation estimates for α = 0.5 (less sparse). Sample
size n = 100, predictors p = 100, 200, 500, 1,000, moving left to right along
rows. ρ = 0.4 (decaying), snr = 1.

Other estimators (except the method of moment estimators) attempt to em-

ulate the form of the oracle, but none of them are privy even to the set of non-zero

βj , let alone their true values. Each of these estimators needs to estimate the

set of non-zero estimators and then place values on their coefficients. Departures

from oracle performance occur when true signal variables are not selected (false

negatives), irrelevant variables are selected (false positives) and when estimates

of the coefficient values do not match their true underlying values.

Figure 6 is a diagnostic plot showing three measures pertaining to the quality

of the estimated β for each of the methods (CV Lasso, CV SCAD, SZ, SZ2, and
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Figure 6. Diagnostic plot. Top panel shows boxplots of the number of non-
zero coefficients correctly identified by each procedure over the B = 100
simulation runs. Horizontal line at 10 – the true number of signal variables.
Middle panel shows the number of zero coefficients incorrectly given non-
zero values. Horizontal line at zero – the target number of false positives.
Bottom panel shows the ratio of the estimated signal to the true signal∑p

j=1 |β̂j |/
∑p

j=1 |β∗
j |. Horizontal line at 1, reflecting the ratio that would

occur should we capture the true signal perfectly. p = 100, α = 0.5 (so that
there are 10 signal variables and 90 zero variables), and snr = 1.

both halves of the RCV - labelled RCV1 and RCV2). Parameters for this figure

are p = 100, α = 0.5 and snr = 1. This is one of many such figures that can be

drawn, but this one is representative.

CV L and CV SCAD tend to select more of the signal variables than do

the other variables. None of the methods select all the signal variables. This

leads to considerable upward bias as signal size increases, as the residual sum of

squares on which all of these estimators are based would inflate with the signal

not successfully removed from it.

CV L and CV SCAD seem to counter this shortcoming by selecting a moder-

ate number of irrelevant variables and giving them non-zero coefficients (middle).

The balance between missing signal variables and capturing irrelevant variables

seems to lead to an estimated coefficient vector with signal size rather close to

that of the true parameter vector (bottom panel).

RCV seems to select too few signal variables, making it difficult to strike a
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balance to find a decent variance estimate. SZ and SZ2 select fewer true signal

variables than CV L and CV SCAD and detect almost no false positives. The

signal variables not selected by the SZ and SZ2 estimators then degrade their

performance as signal size increases. Neither RCV, SZ, nor SZ2 produces signal

sizes large enough to match the underlying signal (bottom panel). Least squares

estimates tend to have signals larger than the true signal, because they have the

same set of nonzero coefficients as their penalised counterparts, but with larger,

unpenalised coefficients.

Large upward biases occur because none of the methods select all the true

signal variables. Some methods seem to find a balance between selecting signal

and non-signal variables to produce reasonably good variance estimates over a

broad range of sparsity and signal size settings. Why CV L and CV SCAD be-

have this way is not fully understood, but we suspect that the adaptive selection

of the regularisation parameter contributes.

In particular, it would seem that adaptively chosen regularisation parame-

ters are less onerous in their omitting of variables and the biasing of non-zero

coefficients. Although the numerical comparison of the regularisation parame-

ters chosen by the CV, SCAD, SZ, and SZ2 methods is probably not sensible,

one gets the impression that those chosen by CV and SCAD are in some sense

“smaller” than those selected by the SZ methods, leading to more, less biased,

non-zero coefficients in their fits. The SZ methods tend to choose their regulari-

sation parameters large enough so as to guarantee control of the noise variables

(to ensure asymptotically that they are not selected). This focus on noise could

lead to reduced control over signal in small samples.

The residual sum of square type variance estimators rely, at least in principle,

on a good estimate of the underlying signal. The estimated signal is removed

from the response leaving, hopefully, only the noise, the average of which provides

a good estimate of noise variance. A direct measure of the quality of signal

estimation is
1

n
||Xβ̂ −Xβ∗||22,

where β̂ is the estimated coefficient vector for the method at hand and β∗ is the

true underlying signal.

Table 2 shows medians of this average signal bias for the CV L and SZ

methods (and their least squares equivalents). That of CV SCAD is also shown.

The median is taken over the B = 100 replications at the setting α = 0.5,

snr = 1, and ρ = 0. These methods were chosen because they seem to produce

the best variance estimates.

CV L and CV SCAD tend to produce better signal estimates than their SZ

counterparts (lower median signal biases). This could help to explain why the

former methods produce better variance estimates.
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Table 2. Median over B = 100 replications of average signal biases for
selected estimation methods. α = 0.5, snr = 1, σ = 1, ρ = 0.

Method p = 100 p = 200 p = 500 p = 1,000

CV L 0.3269 0.3037 0.3688 0.4465
CV LS 0.5246 0.5527 0.6806 0.7225
CV SCAD 0.3261 0.2481 0.3073 0.3998
SZ 0.7326 0.4764 0.6443 0.8079
SZ LS 0.4951 0.2967 0.3869 0.5864
SZ2 0.6739 0.3115 0.4009 0.4858
SZ2 LS 0.3701 0.3869 0.4460 0.5241

SZ least squares methods sometimes improve on their unadjusted counter-

parts, while the least squares variant of the CV method produces generally poorer

signal estimates. It would seem that the elimination of the coefficient biasing ef-

fect of the unadjusted SZ methods helps to counter the bias it experiences in

overall signal estimation. Such an effect does not seem to obtain for the CV

method.

3.3.2. Different regularization parameters for method CV L

It is clear from the difference in performance between SZ and SZ2 that the

small sample success of a given method hinges crucially on the regularisation

parameter chosen with which to apply the method. We have seen that CV L

performs admirably when compared to other methods, but the question begs

whether other choices of regularisation parameter – still used in the CV L esti-

mator – could lead to better variance estimates.

The current CV L estimate uses the standard mean-squared error CV crite-

rion. We divide the dataset into K = 10 folds, fit the lasso at a sequence of λ to

K = 10 versions of the dataset, each time omitting a different fold, find the mean

squared prediction error for each λ over each left-out fold, average and then find

that λ minimising the average mean squared error over folds.

Yu and Feng (2013) suggest a modified criterion to be used in each fold. They

have two versions: the Exactly Modified Cross-validation Criterion (EMCC) and

the Modified Cross-validation Criterion. The claim is that traditional CV method

overselects variables, obviously curtailing model selection effectiveness, and re-

duces prediction accuracy. Their adjustments are meant to lead to regularisation

parameters that deliver better model selection and prediction performance. In

general, the regularisation parameter chosen here is larger than for the tradi-

tional CV criterion, reducing the number of false positives amongst the selected

variables. The reader is referred to their paper for details.

For variance estimation, false positives seem, counterintuitively, to aid the

endeavor, especially in a setting where we cannot hope to identify exactly the
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set of true non-zero coefficients. Modified cross-validation criteria might reduce

false positives, which is better for model selection (and perhaps prediction), but

this may lead them to have poorer variance estimates. We compared variance

estimation performance of the traditional CV method (CV L) to the same esti-

mator using a regularisation parameter chosen by MCC. We elected to consider

this method for its ease of implementation and reasonable variance estimation

performance, denoting it by CV MCC.

A further tweak to the setting of the value of the regularisation parameter

comes from a subtlety associated with the definition of the objective. Consider

two formulations of the lasso criterion:

1

2
||y −Xβ||22 + λn||β||1, (3.1)

1

2n
||y −Xβ||22 + τn||β||1. (3.2)

When we useK-fold CV, the sample size ism = (1−1/K)n and the estimated

regularisation parameters satisfy λ̂m = mτ̂m. Since we fix a sequence of λ (or τ)

at which we fit the lasso before cross-validation (based on the entire dataset), we

have, after cross-validation that

nτ̂n = nτ̂m =
n

m
λ̂m =

n

m
λ̂n > λ̂n,

so that the criterion in (3.2) leads to a slightly larger sequence of regularisation

parameters (and, one supposes, a larger optimal regularisation parameter). For

our method, K = 10 implies that m = 0.9n, which is unlikely to cause much

difference. Still, we performed cross validation under (3.1) and (3.2) and com-

pared their results. The former is our original CV L estimate, while the latter is

denoted CV L ADJ.

Figure 7 plots the standard deviation estimates over B = 100 replicates at

the setting α = 0.5, ρ = 0, and snr = 1. There is little or no difference between

the performance of CV L and CV L ADJ. CV MCC seems to produce slightly

more upwardly biased estimates, with the bias increasing as we increase p. Again,

it seems that CV L strikes a good balance between true and false positives and

the coefficient values assigned to them. The MCC method, touted for its ability

to reduce the number of false positives selected, seems to go too far, biasing the

remaining selected variables too much for a decent variance estimate.

We thank an anonymous reviewer for the input that led to the development

of this section.

3.3.3. Ranging over different α

Figure 8 plots median standard deviation estimates over different values of

α. Here we set snr = 1 and σ = 1. Notice how CV L and CV SCAD resist
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Figure 7. Standard deviation estimates for α = 0.5 (less sparse) at different
regularisation parameter levels for CV L estimator. Sample size n = 100,
predictors p = 100, 200, 500, 1,000, moving left to right along rows. ρ = 0,
snr = 1.

Figure 8. Median standard deviation estimates over different levels of β
sparsity. Plot numbers refer to CV L (1), CV SCAD (2), RCV (3), SZ (4),
SZ2 (5) and D1 (6), respectively. σ = 1.

upward bias over a broader range of sparsity settings, with CV L performing

most admirably for smaller values of p (top row). This is revealed in the figure

by lines 1 and 2 hugging the reference line (true σ) quite closely for α up to 0.5,

while by this time, all the other curves have diverged significantly.

The median method of moments estimators are largely immune to a decrease



54 STEPHEN REID, ROBERT TIBSHIRANI AND JEROME FRIEDMAN

in sparsity (increase in α); this comes at the expense of larger estimator variance,

as reflected in the preceding figures.

3.4. Effect of signal-to-noise ratio

There are two components contributing to the size of β: the degree of sparsity

and the per element signal size. For a given sparsity level (number of nonzero

elements of β), the higher the SNR (as defined earlier), the higher the per element

signal strength. We found in our simulations that individual signal sizes have

significant impact on the quality of variance estimates.

Figure 9 is a telling demonstration of the superiority of the CV L and

CV SCAD estimators, those with data dependent, adaptively selected regulari-

sation parameters. Sparsity level is set at α = 0.5, a level both theoretically and

anecdotally significant. Theoretical results suggest that, at this level of spar-

sity, all estimators considered are consistent. This asymptotic result is falsely

comforting in finite samples. Clearly some of the estimators are significantly

upwardly biased when the signal strength increases.

Anecdotally, it seems as though this level of sparsity coincides with a point

of deterioriation of our estimators. As the β vector becomes less sparse beyond

this point, the performance of all estimators deteriorates rapidly, suggesting that

this level is a significant watershed beyond which we have little hope of decent

error variance estimates. As we skirt this precarious edge by increasing the

per element signal, we see that CV L and CV SCAD remain unaffected, while

all other candidates suffer significantly. Although not shown, these plots look

similar for the high noise (σ = 3) case.

Interestingly, the least-squares-after-scaled-Lasso estimator with the smaller

regularisation parameter (SZ2 LS) seems to perform admirably here as well (not

shown). This, however, is an artifact of setting the sparsity level at α = 0.5.

For all other sparsity levels, this estimator exhibits significant biases in either

direction.

3.5. Effect of predictor correlation: changing ρ

It is interesting to note that correlation between predictors seems to come to

the rescue of some of the variance estimators considered. Figure 10 again plots

median standard deviations, this time as a function of predictor correlation (ρ).

Notice how the large upward bias of the RCV, SZ and SZ2 estimators decreases

as ρ increases. Unfortunately, the method of moments estimators perform rather

poorly as predictor correlation increases, even D2, designed for general predictor

correlation structures.
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Figure 9. Median standard deviation estimates over different levels of signal-
to-noise ratio. Plot numbers refer to CV L (1), CV SCAD (2), RCV (3), SZ
(4), SZ2 (5), and D1 (6), respectively. α = 0.5, σ = 1.

4. The Effect of σ on the Covariance Test

The previous section detailed the superiority of estimators like CV L and

CV SCAD, with their adaptively chosen regularisation parameters, in the esti-

mation of error variance when p ≥ n. Of course, we are rarely interested solely in

the estimation of σ. Often its estimation is secondary, with the main goal being

to plug it into a test statistic for some hypothesis test. Clearly a badly biased

estimate of σ can lead to poor test performance.

In this section, we consider the performance of the covariance test statistic

of Lockhart et al. (2013) in a very simple setup. By varying the value used for σ

in the denominator of that statistic, we can get an impression of how badly the

testing procedure is affected should we have a poor variance estimate.

Consider then, for n = 100, an independent sample Yi ∼ N(βi, σ
2), for

i = 1, . . . , n, βi = 0 for i = 2, . . . , n, and some value for β1 (to be set later). All

but one of the sample elements have zero signal. Suppose that the true variance

σ2 = 1. We want to use the covariance test statistic to test the global null

hypothesis H0 : β1 = 0.

Take |Y |(1) ≥ |Y |(2) ≥ ≥̇|Y |(n) as the order statistics of the absolute sample

elements. Lockhart et al. (2013) propose the test statistic:

T =
|Y |(1)(|Y |(1) − |Y |(2))

σ2
= |Y |(1)(|Y |(1) − |Y |(2))
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Figure 10. Median standard deviation estimates over different levels of pre-
dictor correlation. Sample size n = 100 and predictor numbers p = 100,
200, 500, 1,000, left to right over rows. Plot numbers refer to CV L (1),
CV SCAD (2), RCV (3), SZ (4), SZ2 (5) and D2 (6), respectively. α = 0.5,
σ = 1, snr = 1.

to test H0. They show that T
d→ Exp(1) as n → ∞. If we let Eα be such that

P (Exp(1) > Eα) = α, then their test suggests that we reject H0 if T > Eα. This

gives the test an approximate level of α.

All of their results hinge on the notion that σ = 1 is known. We performed

a small simulation studying the effect of using T
σ̂2 instead of T as test statistic

for different values of σ̂. In this way we can get an impression of the asymmetric

effects of having σ̂ = 0.5 (downward bias) versus σ̂ = 1.5 (upward bias) and also

the extent of the impact on power caused by upward biases.

In our simulation, we considered a sequence of σ̂: 0.1, 0.2, 0.3, . . . , 2. We

considered the effect on test size and power, as a function of σ̂, of using T/σ̂2

instead of T in the covariance test. Power was computed under alternatives

corresponding to a signal-to-noise ratio of snr = 0.5, 1, 2, 5, 10, 20 (this implies

β1 =
√
snr).

The left panel Figure 11 shows the estimated size of the test, P (T/σ̂2 >

Eα|β1 = 0), as a function of σ̂. The estimate was obtained be finding the pro-

portion of rejections (at each value of σ̂) of the test over B = 1,000 replications
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Figure 11. Left panel: Estimated size of test at different values of σ̂. Stated
test size is 0.05 (horizontal line for reference). Right panel: Estimated
power of test at different settings of β1 as function of σ̂. Vertical line drawn
at σ̂ = 1 for reference.

of the experiment when β1 = 0:

ˆsize(σ̂) =
1

B

B∑
b=1

I{ T

σ̂2
> Eα|β1 = 0}.

The major problem here is encountered when the estimate of σ is downwardly
biased, leading to actual test sizes far exceeding the stated size of α = 0.05; even
moderately downwardly biased variances estimates result in rather large increases
in actual test size. For example, for σ̂ = 0.9 and σ̂ = 0.8, we see the actual sizes
are 0.092 and 0.141 respectively – quite far removed from the advertised 0.05.

The right hand panel of the same figure shows that upward biases are also
quite harmful, in this case, to test power. Each curve represents a different
setting of β1. We compute the average power over B = 1,000 replications at a
given setting of β1,

ˆpower(β1, σ̂) =
1

B

B∑
b=1

I{ T

σ̂2
> Eα|β1}.

Larger signals (large β1) lead to larger power, as expected, but notice the steep
decrease in power once we move beyond σ̂ = 1 into the realm of upwardly biased
variance estimates. The effect is perhaps better illustrated in Figure 12, which
plots the ratio

ˆpower(β1, σ̂)

ˆpower(β1, 1)
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Figure 12. Left panel: Ratio of estimated power to estimated power at
correct variance estimate (σ̂ = 1) as function of σ̂ for different values of β1.
Vertical line drawn at σ̂ = 1 for reference. Right panel: Same as left panel,
only magnifying the area to the right of the vertical line.

at the different settings of β1 (left) with an magnification of the figure, including

only those σ̂ larger than 1 (right panel). These tell us, for example, that at

σ̂ = 1.1 (an upward bias of 10%) and a signal size of β1 =
√
5, snr = 5, our

power is only 69% of what it would it should be at the correct variance. By the

time we get to σ̂2 = 1.5, the power is only 9% of what it should be. Recall from

Figure 9 that some standard error estimates had median around this value at

snr = 5. Although not directly comparable with the previous simulation study,

this study gives an indication of the dire effects of misestimating the variance.

5. Orthogonal Predictor Matrix and a Certainty Equivalent Variance

Estimator

Obtaining finite sample results (or even asymptotic results) about variance

estimators with adaptively chosen regularisation parameters seems like a diffi-

cult task. In this section, we consider a very simple setup that allows for some

tractable results. In particular, since most error variance estimators are based on

residual sum of squares, we wish to study the behaviour of a variance estimator

based on this quantity in a simple scenario.

Consider the orthogonal case where p = n and X = In, the n × n identity

matrix. In this case, we have each Yi ∼ N(βi, σ
2). We assume that sparsity of the

β vector is governed by α < 1. In particular, we have βi = β for i = 1, 2, . . . , ⌈nα⌉
and βi = 0 otherwise. Call this the orthogonal sparsity model.
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Estimates of βi are obtained by minimising the objective
n∑

i=1

(Yi − βi)
2 + λ

n∑
i=1

|βi|

to obtain the solution β̂i = S(Yi, λ), where S(x, t) = sign(x)max{|x| − t, 0} is
the soft thresholding operator with threshold t. Plugging these quantities into
the residual sum of squares, we obtain

RSS =

n∑
i=1

(Yi − β̂i)
2

=

n∑
i=1

min{Y 2
i , λ

2},

from which we derive the family of estimators for σ2 (indexed by λ),

σ̂2
n,λ =

∑n
i=1min{Y 2

i , λ
2}∑n

i=1 I{|Yi| ≤ λ}
. (5.1)

To make this a practicable estimate of σ2, we need to select a single member
from the family (i.e. a value for λ). Many are possible, but in light of the
discussion of previous sections, let us select it adaptively. Consider then a single

held out set Zi
d
= Yi, independent of Yi, with corresponding cross-validation error

CV (λ) =

n∑
i=1

(Zi − S(Yi, λ))
2.

The adatively chosen regularisation parameter is then

λ̃ = argminλCV (λ). (5.2)

Its theoretical properties are not considered here, but we believe that σ̂2
n,λ̃

is

amenable to theoretical analysis and that such an analysis may be instructive to
the workings of variance estimators with adaptively chosen regularisation param-
eters. This is definitely a channel for future investigation. However, in the sequel
we consider the behaviour of estimators (5.1) under deterministic sequences λn.
After some general results, we consider a specific sequence, dubbed the certainty
equivalent (CE) sequence of λ, and denoted λ̂n,α,β, which bears resemblance to
the adaptive selection (5.2). Finally, a small simulation reveals how similarly
σ̂2
n,λ̃

and σ̂2
n,λ̂n,α,β

behave in small samples, giving hope that the results gleaned

for the latter apply to the former.

5.1. General deterministic sequences: λn

Our first result considers the large sample behaviour of the denominator in
(5.1) under a determinsitic sequence λn.
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Lemma 1. If λn → ∞ as n → ∞, then under the orthogonal sparsity model,

(1/n)
∑n

i=1 I{|Yi| > λn}
P→ 0.

All theorems and lemmas are proved in the Appendix. Lemma 1 suggests
that we need not consider σ̂2

n,λn
directly, but rather the more tractable

σ̃2
n,λn

=
1

n

n∑
i=1

min{Y 2
i , λ

2
n}.

Lemma 2. If λn → ∞ as n → ∞, then under the orthogonal sparsity model
E[σ̃2

n,λn
] → σ2 and Var [σ̃2

n,λn
] → 0.

Theorem 1. If λn → ∞ as n → ∞, then under the orthogonal sparsity model

σ̂2
n,λn

P→ σ2,
√
n(σ̂2

n,λn
− σ2)

d→N(0, 2σ4).

The consistency and asymptotic normality (with asymptotic variance equal
to that of the oracle estimator) are not too hard to come by in this family
of estimators. All we need to do is select λn that tends to ∞ with n. This
is somewhat surprising, but meshes nicely with evidence from our simulation
studies. An estimator can have these desirable asymptotic properties, but since
the requirement on λn to achieve these properties is weak, many consistent,
asymptotically normal estimators can have poor finite sample performance.

For example, suppose we set λn = ∞, so that σ̂2
n,λn

= (1/n)
∑n

i=1 Yi. This
estimator satisfies the conditions of Theorem 1, but has finite sample expectation
σ2 + (nα/n)β2. We can make this estimator arbitrarily biased upward in a finite
sample by merely increasing the signal strength β or reducing sparsity (increasing
α). We need a λn → ∞, but chosen so as to have good finite sample performance
as well.

5.2. Certainty equivalent sequence λ̂n,α,β

Instead of choosing λ as the (random) minimiser of CV (λ) and inducing
dependence between the summands of the numerator of σ̂2

n,λ̃
(further increasing

complexity), we could choose a deterministic sequence (hopefully) bearing close
relation to it. In particular, we can minimise ECVn(λ, β, α) = E[CV (λ)], which
can be written as

ECVn(λ, β, α) = nσ2 +
nα

n
· rS(λ, β) +

n− nα

n
· rS(λ, 0),

where rS(λ, β) = E(S(Yi, λ) − β)2 is the risk of the soft thresholding operator,
for which we have the expression (Johnstone (2013))

rS(λ, β) = σ2 + λ2 + (β2 − λ2 − σ2)
[
Φ
(λ− β

σ

)
− Φ

(λ− β

σ

)]
−σ(λ− β)ϕ(λ+ β)− σ(λ+ β)ϕ(λ− β).
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Figure 13. Certainty equivalent regularisation parameter as a function of sig-
nal strength (β), at different sparsity levels (α) along with reference boxplots
of CV (λ) minimising regularisation parameter. Top left panel corresponds
to α = 0; top right, α = 0.1; bottom left, α = 0.3 and bottom right, α = 0.5.
A sample size of n = 100 was used when generating replications of CV
minimising λ̃.

The “certainty equivalent” choice for λ then becomes

λ̂n,α,β = λ̂n(β, α) = argminλRn(λ, β, α),

where Rn(λ, β, α) = (nα/n)rS(λ, β) + [(n− nα)/n]rS(λ, 0).

The optimisation can be done numerically. Figure 13 plots λ̂n,α,β(β, α) as

a function of the signal strength β for four different levels of sparsity α (solid

lines). Also plotted in Figure 13 are boxplots gleaned from B = 100 realisations

of λ̃ where

λ̃ = argminλCV (λ)

for a sample of size n = 100. We plot these for reference, because they are the

realisations of the random regularisation parameter we would actually compute

in an application. Notice how λ̂n,α,β tends to lie everywhere above the rump

of the λ̃ values at a given signal strength, exhibiting a similar shape. Although

convenient theoretically, the certainty equivalent estimate of λ does not seem to

accord with the random estimate obtained by minimising CV (λ). Despite this,

their estimates for σ2 are not too different, as demonstrated in the next section.

This sequence cannot be obtained in applications, because we do not know

σ2 nor β. The certainty equivalent sequence can only be generated by an oracle.
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Figure 14. Variance estimates as a function of signal strength (β), at dif-
ferent sparsity levels (α). Curves labelled “1” plot the CV estimate, while
those labelled “2” and “3” the CE estimates (with different denominators).
Sparsity parameter α = 0, 0.1, 0.3 and 0.5, varying left to right along rows
and then down along columns. Horizontal lines show the true variance.

The true utility of this sequence comes from its theoretical tractability. As a
function of λ, rS(λ, 0) is monotonically decreasing, convex, and non-negative.
Its minimum value is 0, achieved by setting λ = ∞. For β ̸= 0, rS(λ, β) is
initially decreasing in λ, attains a unique global minimum, whereafter is non-
decreasing in λ, with horizontal asymptote β2. Similar properties are shared by
(nα/n)rS(β, λ) + [(n− nα)/n]rS(λ, 0).

We can show that λ̂n,α,β → ∞, making σ̂2
n,λ̂n,α,β

consistent for σ2 and en-

suring it has an asymptotic normal distribution (from the previous section).
Furthermore, one can show how this sequence minimises an upper bound to the
upward bias of the estimator in small samples. Downward bias does not seem to
be a problem for this estimator (see Figure 14).

Theorem 2. Assume the orthogonal sparsity model. The certainty equivalent
sequence λ̂n,α,β → ∞ as n → ∞.

To see how this sequence minimises an upper bound on the upward bias, con-
sider the Stein Unbiased Risk Estimate (SURE) for rS(λ, β) (Johnstone (2013)):

rS(λ, β) = E[σ2 − 2σ2I{|Y | ≤ λ}+min{Y 2, λ2}],

where Y ∼ N(β, σ2), so that

E[min{Y 2
i , λ}]− σ2 = rS(λ, βi)− 2P (|Yi| > λ)
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≤ rS(λ, βi),

which translates to

E[σ̃2
n,λn

]− σ2 ≤ nα

n
rS(λn, β) +

n− nα

n
rS(λn, 0),

the right hand side of which is minimised by the certainty equivalent sequence

of λ. The certainty equivalent sequence minimises an upper bound to the bias,

making a concerted effort to keep it as small as possible in the finite sample.

5.3. Comparison of CE and CV variance estimators

Figure 14 plots, for different levels of sparsity in different panels, the mean

over B = 100 replications of three variance estimators. The curves labelled

“1” are the means of the replications of σ̂2
CV = σ̂2

n,λ̃
, where λ̃ is chosen ac-

cording to (5.2). Curves labelled “2” are of the means of the replications of

σ̂2
CE = σ̂2

n,λ̂n,α,β
, where λ̂n,α,β is the certainty equivalent sequence of λ, while

those labelled “3” are of σ̃2
CE = σ̃2

n,λ̂n,α,β
. Notice how close curves “2” and “3”

are to each other. We have the theoretical guarantee on the bias of curves “3”.

The three estimators behave reasonably similarly, except for low sparsity,

high signal cases. It is heartening to note that the CE estimate seems to suffer

from upward bias in this case, despite its guarantee of a minimum upper bound on

this bias. The CV estimator actually seems to do an even better job of selecting

the appropriate regularisation parameter in the small sample setting - a clear

case for further analysis of its properties.

6. Discussion

Error variance estimation in linear regression when p > n is a difficult prob-

lem that deserves attention. Several estimators have been proposed. We have re-

viewed these and some of the theoretical results around them. Despite some com-

forting asymptotic results, finite sample performance of these estimators seems

to suffer, particularly when signals become large and non-sparse.

Variance estimators based on residual sums of squares with adaptively cho-

sen regularisation parameters seem to have promising finite sample properties.

In particular, we recommend the cross-validation based, Lasso residual sum of

squares estimator as a good variance estimator under a broad range of sparsity

and signal strength assumptions. The complexity of their structure seem to dis-

courage their rigorous analysis. Simulation results from this paper suggest that

there could be value in understanding these estimators more fully.
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Appendix. Proofs of lemmas and theorems

Proof of Lemma 1. Assume the orthogonal sparsity model and consider

E

[
1

n

n∑
i=1

I{|Yi| > λn}

]
=

1

n

n∑
i=1

P (|Yi| > λn)

=
nα

n

(
1− Φ

(
λn − β

σ

)
+Φ

(
−λn − β

σ

))
+ 2

n− nα

n

(
1− Φ

(
λn

σ

))
≤ 2

nα

n
+ 2

n− nα

n

(
1− Φ

(
λn

σ

))
→ 0

as n, λn → ∞. The result follows upon the application of Markov’s inequality.

Proof of Lemma 2. Assume the orthogonal sparsity model and λn → ∞ as

n → ∞ and consider:

E
[
min{Y 2

i , λ
2
n}

]
= E[Y 2

i ;−λn ≤ Yi ≤ λn] + λ2
nP (|Yi| > λn)

= E[Y 2
i ;−λn ≤ Yi ≤ λn] + λ2

n

(
1− Φ

(
λn − βi

σ

))
+ λ2

n

(
1− Φ

(
λn + βi

σ

))
.

Now

E[Y 2
i ;−λn ≤ Yi ≤ λn] = σ2m2(λn, βi) + 2σβim1(λn, βi) + β2

i m0(λn, βi),

where

mj(λ, β) =

∫ λ−β
σ

−λ−β
σ

xjϕ(x) dx

for all non-neative integers j. Note that for fixed β and σ and λ → ∞, these

tend to the jth moments of the standard normal distribution. So m0(λn, βi) → 1,

m1(λn, βi) → 0 and m2(λn, βi) → 1 as n → ∞. This suggests that E[Y 2
i ;−λn ≤

Yi ≤ λn] → σ2 + β2
i as n → ∞.

Also note that for x > 0, as x → ∞, xk (1− Φ(x)) ∼ xk−1ϕ(x) → 0 for any

finite integer k > 1. Hence
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E[σ̃2
n,λn

] ∼ nα

n
(σ2 + β2) +

n− nα

n
σ2

→ σ2

as n → ∞.

Similarly,

E[min{Y 4
i , λ

4}]

= E[Y 4
i ;−λn ≤ Yi ≤ λn] + λ4

n

(
1− Φ

(
λn − βi

σ

))
+ λ4

n

(
1− Φ

(
λn + βi

σ

))
with

E[Y 4
i ;−λn ≤ Yi ≤ λn] = σ4m4(λn, βi) + 4σ3βim3(λn, βi) + 6σ2β2

i m2(λn, βi)

+ 4σβ3
i m1(λn, βi) + β4

i m0(λn, βi)

∼ 3σ4 + 6σ2β2
i + β4

i .

Also

E[min{Y 2
i , λ

2
n}min{Y 2

j , λ
2
n}] = E[min{Y 2

i , λ
2
n}]E[min{Y 2

j , λ
2
n}]

∼ σ4 + σ2β2
i + σ2β2

j + β2
i β

2
j .

So that

E[σ̃4
n,λn

] ∼ nα

n2
(3σ4+6σ2β2+β4)+

n− nα

n2
(3σ4)+

nα(nα − 1)

n2
(σ4+2σ2β2+β4)

+
nα(n− nα)

n2
(σ4 + σ2β2) +

(n− nα)(n− nα − 1)

n2
(σ4)

→ σ4

as n → ∞. Hence V ar[σ̃2
n,λn

] → 0.

Proof of Theorem 1. An application of Markov’s inequality to (σ̃2
n,λn

− σ2)2,

combined with the results of Lemma 2 give us consistency of σ̃2
n,λn

for σ2. Com-

bined with the result of Lemma 1, we have that σ̂2
n,λn

is consistent for σ2.

Asymptotic normality of σ̃2
n,λn

follows from a central limit theorem applied to

the independent summands of the numerator. The asymptotic variance is gleaned

from the proof of Lemma 2, by noting that the results quoted there imply that

nV ar[σ̃4
n,λn

] ∼ 3σ4−σ4 = 2σ4. Lemma 1 ensures that this asymptotic normality

holds for σ̂2
n,λ as well.

Proof of Theorem 2. Fix α and β and let Qn(λ) = Rn(λ, β, α) and Q0(λ) =

rS(λ, 0).
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Now

|Qn(λ)−Q0(λ)| =
nα

n
|rS(λ, β)− rS(λ, 0)|

≤ nα

n
[rS(λ, β) + rS(λ, 0)]

≤ nα

n

[
2rS(λ, 0) + β2

]
≤ nα

n

[
2σ2 + β2

]
→ 0

as n → ∞, uniformly in λ. The third and fourth lines follow from Johnstone

(2013).

For any ϵ > 0, we have from the fact that λ̂n,α,β = argminλ≥0Qn(λ) and

(nα/n)β2 → 0, that ∃N1 = N1(ϵ) such that ∀n > N1,

Qn(λ̂n,α,β) < Qn(∞) +
ϵ

3

=
nα

n
β2 +

ϵ

3
<

2ϵ

3
.

Furthermore, by the uniform convergence proven above, ∃N2 = N2(ϵ) such

that ∀n > N2, Q0(λ̂n,α,β) < Qn(λ̂n,α,β) + ϵ/3. Hence, ∀n > max{N1, N2},
Q0(λ̂n,α,β) < ϵ.

Let M > 0. Since the set [0,M ] is closed and compact, Q0(λ
⋆
M ) = infλ∈[0,M ]

Q0(λ) attains. Note Q0(λ
⋆
M ) > Q0(∞) = 0. Choosing ϵ = ϵ(M) = Q0(λ

⋆
M ), we

have Q0(λ̂n,α,β) < Q0(λ
⋆
M ), so that λ̂n,α,β > M . Since M is arbitrary, we have

λ̂n,α,β → ∞.
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