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Abstract: A new decision tree method for analyzing paired comparison data is

proposed. It finds the preference patterns of the subjects based on some covariates.

A scoring system is implemented first and the total scores associated with each

object for each subject are counted. The GUIDE regression tree for multi-responses

is then applied to the score outcomes and the average scores of the objects are used

to give the preference scale of the subjects in each terminal node. This way of

preference ranking is identical to that given by the Bradley-Terry model when the

2-1-0 scoring system is employed. Our tree method itself is free of selection bias.

Simulation and data analysis are given to demonstrate its usefulness.

Key words and phrases: Bradley-Terry model, GUIDE, regression tree, scoring

system, selection bias.

1. Introduction

Paired comparison data are collected by comparing objects in couples. The

ultimate goal is to find the preference patterns (ranks) of the subjects. How-

ever, it may be easier for people to compare pairs of objects than to rank a

list of items (Cattelan (2012)). The Bradley-Terry model (Bradley and Terry

(1952); Davidson (1970)) which gives a latent preference scale to the objects is

commonly used to analyze such data. Other paired comparison models include

Thurston’s model, Mallows’ model and the Babington Smith model (Marden

(1995)). Moreover, the preference scaling of a group of people may not only de-

pend on characteristics of the objects but also on some covariates related to the

people themselves. Cattelan (2012) reviews various methods on modeling paired

comparison data. Among them, Strobl, Wickelmaier, and Zeileis (2011) proposes

a model-based tree method to incorporate the covariates.

Classical tree methods, including classification and regression trees, are com-

monly used in data mining, machine learning, and statistics. Starting at the root

node, the methods recursively partition the data into two or more subnodes. A

split is used to partition the sample at each node. One way to decide the split

is by using node impurity criteria. A different approach to determine the split

is by conducting statistical tests. The final tree model is determined by either a
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direct stopping rule or a pruning method (Loh (2011)). The tree methods have

been applied to analyze various data collected from diverse fields (Breiman et al.

(1984); Hothorn, Hornik, and Zeileis (2006); Loh (2011)). Easy interpretation is

the key feature of these methods. In order to achieve this goal, the associated

split selection method should be free of bias. That is, the probability of each

covariate being selected is equal when the response variable is independent of the

covariates. Several tree methods are proposed to eliminate such bias. Among

them are QUEST (Loh and Shih (1997)), GUIDE (Loh (2002, 2009); Loh and

Zheng (2013)), CTREE (Hothorn, Hornik, and Zeileis (2006)), and MOB (Zeileis,

Hothorn, and Hornik (2008)). For paired comparison data, Strobl, Wickelmaier,

and Zeileis (2011) takes the subject-related information into account first by fit-

ting a Bradley-Terry model at each node. After such fitting, the split which

consists of a covariate and a set is chosen by conducting the parameter insta-

bility tests on the fitted model (Zeileis and Hornik (2007)). A direct stopping

procedure based on p-values is performed to obtain the final tree.

In this article, we propose an alternative method to construct decision trees

for paired comparison data. It relies on a scoring system that gives two points

for a win, one point for a tie, and no points for a loss for each paired comparison

and counts the total scores associated with each object for each subject. We

then treat the scores as multi-response outcomes and use the GUIDE regression

tree method to help us identify possible preference patterns within each terminal

node. In each terminal node, the average scores of the objects are used to give

the preference scale to the objects. A nice property of using the 2-1-0 scoring

system and its average scores to give preference ranking is given in Proposition 1.

Such a tree is illustrated with a training-delivery-mode data set in which

there are 198 trainees with 3 subject-specific covariates and 5 objects. The goal

of the study is to compare training delivery modes (objects) among trainees

(subjects). These modes include computer-based (CO), TV-based (TV), paper-

based (PA), audio-based (AU), and classroom-based (CL) training. The three

covariates are age, learning personality type (1 accommodating, 2 diverging, 3

converging, 4 assimilating), and sex (1 male, 2 female). Complete data descrip-

tion is given in Section 4. Starting from the top node, the data are recursively

partitioned by a split which is determined by the values of the covariates. This

tree growing process continues until some terminal nodes are formed. For those

terminal nodes, the plot of the average scores of the objects is shown and their

values are given in Table 1. For this data set, there are three terminal nodes

and they are further presented in Figure 1 (nodes 3, 4 and 5). From Figure 1,

we can quickly summarize that the male (sex=1) trainees whose learning type is

accommodating or diverging (node 4) rate their training modes in the following

order: CO>CL>TV>AU>PA. For the female trainees of the same learning types (node
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Table 1. Mean scores in the terminal nodes of the GUIDE tree for the
TRDEL data (Figure 1).

CO TV PA AU CL
node 3 5.11 2.70 4.44 2.07 5.67
node 4 5.53 4.00 3.16 3.21 4.11
node 5 5.12 3.27 4.38 1.69 5.54

5), they preference is in the order of CL>CO>PA>TV>AU. The differences between

these two groups show on their first two priorities (CO vs. CL) as well as the last

three ones. For the last group of trainees whose learning type is either converging

or assimilating (node 3), their preference is CL>CO>PA>TV>AU which is the same

as that of the subjects in node 5. Furthermore, Table 1 shows that the largest

scaling difference between CO and CL is 1.42 (5.53−4.11) in node 4. The amounts

of the scaling difference between CL and CO are .56 and .42 in node 3 and node

5, respectively. The resulting tree helps us understand how the covariates are

related to the preference pattern of the subjects in each terminal node. In this

way, the preference pattern of future trainees can be predicted.

The rest of the paper is organized as follows. The Bradley-Terry model is

introduced in Section 2. Our proposed method and the tree method of Strobl,

Wickelmaier, and Zeileis (2011) are described and contrasted in Section 3 and 4.

In Section 5, simulation experiments are reported comparing these two methods.

2. The Bradley-Terry Model

We consider n subjects who compare all unordered pairs of J objects. As a

result, each subject performs k∗ = J ∗ (J − 1)/2 comparisons. Each comparison,

say (j, k), yields a choice for an answer c ∈ {1, 2, 3} where “1” means a win, “2”

means a loss and “3” means a tie for object j. Bradley and Terry (1952) intro-

duces a probability model to fit such data with no ties. Davidson (1970) extends

the model to allow tie (no preference) between two objects. The probabilities of

three possible outcomes when comparing object j and k are defined as

pjk1 =
πj

πj + πk + ν
√
πjπk

,

pjk2 =
πk

πj + πk + ν
√
πjπk

,

pjk3 =
ν
√
πjπk

πj + πk + ν
√
πjπk

,

where the πj > 0, j = 1, . . . , J are the locations of objects on the preference scale

known as the worth parameters and ν ≥ 0 is a discriminant constant controlling

the probability of ties. The worth parameters are scaled to sum to unity and
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Figure 1. GUIDE decision tree for the TRDEL data. At each intermediate
node, an observation goes to the left branch if and only if the condition is
satisfied. Sample sizes are below nodes. The plot also shows the average
scores of the objects in each terminal node (CO: computer-based, TV: TV-
based, PA: paper-based, AU: audio-based, and CL: classroom-based).

their values give the preference scaling of the subjects. The MLE of the param-

eters, Π̂ = (π̂1, . . . , π̂J) and ν̂, can be obtained through an iterative procedure

(Davidson (1970)). We refer to this general model as the BT model. Possible
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extensions of the BT model can be found in Marden (1995), Turner and Firth

(2012), Hatzinger and Dittrich (2012), and Cattelan (2012).

3. Tree Methods

In this section, we first present our proposed method. It uses a scoring system

that converts paired comparison outcomes into score vectors. The decision tree

is obtained after the GUIDE regression tree (Loh and Zheng (2013)) is applied

to the score vectors. Later, we introduce the tree method of Strobl, Wickelmaier,

and Zeileis (2011). Both methods use the covariates only for node (data) splitting.

The covariates are not used for data fitting in the terminal nodes.

3.1. The proposed method

We use the GUIDE regression tree for multi-response data to build our de-

cision tree. Other multivariate regression trees, such as CTREE, can be used as

well.

The GUIDE regression tree originally targeted univariate responses (Loh

(2002)). It was extended to multi-responses by Loh and Zheng (2013). The

method creates binary regression trees for multi-response data and it is free of

selection bias (Loh and Zheng (2013)). The GUIDE regression tree method is

implemented in the GUIDE program which can be obtained from the webpage:

http://www.stat.wisc.edu/~loh/guide.html.

For paired comparison outcomes, we first employ a scoring system to convert

them into multi-response outcomes. Our scoring system allows two points for a

win, one point for a tie, and no points for a loss for each paired comparison; this 2-

1-0 scoring system is used, for example, in some hockey and soccer tournaments.

For each subject, we count the accumulated points for each object and treat

the score outcomes as the corresponding multi-response outcomes. The GUIDE

regression tree method is then applied to these outcomes and the covariates. At

each terminal node, the average scores of the objects are obtained, which in turn

gives the preference scale of the subjects. This approach results in a decision

tree that can be used to analyze paired comparison data. This method can be

applied directly to rank data, and can be used with other scoring systems.

A proposition due to Davidson (1970) ties the ranking sequence on the total

scores vector to the ranking sequence on the worth parameter estimators for

complete paired comparison data.

Proposition 1. Let the total scores for object j be sj =
∑n

i=1(2∗wij+ tij) where

wij and tij are the numbers of wins and ties for subject i, respectively. Denote

the total scores vector as S = (s1, . . . , sJ). Then, the ranks based on S agree with

the ranks obtained from the worth parameter estimators, Π̂, under the BT model.

http://www.stat.wisc.edu/~loh/guide.html
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For the TRDEL data set, we find the worth parameter estimates (0.30, 0.12,

0.19, 0.08, 0.31) with ranks (4, 2, 3, 1, 5), where our scoring system yields the

average scores (5.19, 3.10, 4.18, 2.19, 5.33). The rank vectors here are the same.

Some optimum properties of using the row sum ranking method are given by

Huber (1963, p. 517-518).

By treating the score outcomes as multi-responses and applying the GUIDE

method, a decision tree is obtained. The associated average scores can be used

to give the object preference scaling of the subjects in each terminal node, and

preference margins can be compared within and across terminal nodes.

3.2. The bttree method

The bttree method of Strobl, Wickelmaier, and Zeileis (2011) is based on the

model-based recursive partitioning scheme (Zeileis, Hothorn, and Hornik (2008))

that fits local parametric models by partitioning the sample space. The advan-

tages of recursively fitting local BT models as opposed to a fully parametric

approach are given in Strobl, Wickelmaier, and Zeileis (2011, Section 4). The

method fits the BT model at each node. It then utilizes the parameter instability

tests (Zeileis and Hornik (2007)) to select split variables.

The procedure is applied recursively until the subsample size is too small

(default value is 10) or the instability tests in a node are not significant (default

value is .05). The tree method is implemented in the R package psychotree

function bttree (Strobl, Wickelmaier, and Zeileis (2011)).

The default options of the bttree function are used in our study. The 2-1-0

scoring system is applied to obtain the scores. The default options of the GUIDE

program are used. As well, the 0-SE pruning rule with cross-validation (Breiman

et al. (1984)) is used. For both tree methods, the minimum node size is 5 for

data analysis and is 10 in the simulation studies.

4. Data Analysis

Our proposed method and the bttree method are applied to two data sets.

The methods yield the same object ranks for the same subjects, but yield different

trees in these two cases, mainly because of different split selection methods.

4.1. TRDEL data

This data set was the result of a paired comparison study on training delivery

modes and is included in the R package prefmod (Hatzinger and Dittrich (2012)).

Recall the modes (objects) computer-based (CO), TV-based (TV), paper-based

(PA), audio-based (AU), and classroom-based (CL) training. Three covariates

were age in years, learning personality types of accommodating, diverging, con-

verging, and assimilating, and sex male or female. The accumulated frequencies
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Table 2. Observed frequencies of paired comparisons for the TRDEL data.

> <
CO : TV 157 41
CO : PA 109 89
TV : PA 82 116
CO : AU 162 36
TV : AU 129 69
PA : AU 137 61
CO : CL 86 112
TV : CL 55 143
PA : CL 72 126
AU : CL 51 147

Table 3. Worth parameter estimates in the terminal nodes of the bttree
decision tree for the TRDEL data (Figure 2.)

CO TV PA AU CL
node 2 0.38 0.13 0.14 0.10 0.25
node 3 0.25 0.10 0.22 0.06 0.37

table of 10 paired comparisons is listed in Table 2. The learning types (styles)

were characterized in Kolb and Kolb (2005). The data set was analyzed by

Hatzinger and Dittrich (2012) using a loglinear model and they found that learn-

ing type to be an informative factor.

We applied the bttree method to the data and the resulting tree is given

in Figure 2. The worth parameter estimates in the terminal nodes are given

in Table 3. From Figure 2, we observe that the method splits on gender only.

For female trainees (node 3), the preference is CL>CO>PA>TV>AU. The preference

order of the male trainees (node 2) is CO>CL>PA>TV>AU, differing from that of the

female trainees only on the first two objects. The bttree method does not use the

learning type variable to distinguish the preference patterns among the trainees,

where our tree (Figure 1) shows that our method splits first on learning type and

then on sex. Our method has that the learning type variable is informative.

4.2. ISSP2000 data

The dataset contains 6 items and 1,595 respondents from Austria and Great

Britain who were asked about their perception of environmental dangers. The

data are included in the R package prefmod. The objects are C, air pollution

caused by cars, I, air pollution caused by industry, F, pesticides and chemicals

used in farming, W, pollution of country’s rivers, lakes and streams, T, a rise

in the world’s temperature, and G, modifying the genes of certain crops. The

covariates are SEX : (1) male, (2) female; URB: (1) urban area, (2) suburbs of
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Figure 2. Bttree decision tree for the TRDEL data (CO: computer-based,
TV: TV-based, PA: paper-based, AU: audio-based, and CL: classroom-
based). At each intermediate node, an observation goes to the child node if
and only if the stated condition is satisfied. The plot also shows the worth
parameter estimates in each terminal node.

large cities, small town, county seat (3) rural area; AGE: (1) < 40 years, (2) 41-59

years, (3) 60+ years; CNTRY: (1) Great Britain, (2) Austria; and EDU: (1) below

A-level/matrice, (2) A-level/matrice or higher. One of the goals in the study is

to find the relative importance of the objects among the respondents (Dittrich

et al. (2007)).

Our resulting tree is displayed in Figure 3. The average scores in the ter-

minal nodes are given in Table 4. The GUIDE decision tree indicates that the

participants of Great Britain are concerned more about industrial pollution and

water quality. People in this group with EDU=1 rate water quality on top (node

7). Otherwise, they are more serious about industrial pollution (node 6). For

the respondents from Austria, industrial pollution is also an important item. So

are rising temperatures and genetic modification. In particular, people in this

group with URB=2 or 3 (node 5), rank G and T at the forefront. They have the

largest average score for G and T among all the terminal nodes.

The bttree decision tree is given in Figure 4. It splits on AGE and SEX after

first splitting on CNTRY. It shows that the respondents from Great Britain put

I and W at the forefront. Among them, younger people (AGE = 1) rank I over

W, otherwise, it is the reverse. For the Austrian respondents, I is the top concern

for those people with AGE = 1. For others, women rank G and T on top and

men rank I on top followed by G and T.
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Figure 3. GUIDE decision tree for the ISSP2000 data. At each intermediate
node, an observation goes to the left branch if and only if the condition is
satisfied. Sample sizes are below nodes. The plot also shows the average
scores of the objects in each terminal node (C: Car, I: Industry, F: Farm,
W: Water, T: Temperature, and G: Gene).

The average scores vector is (4.35, 5.73, 4.84, 5.12, 5.20, 4.76), by our method,

and the worth parameter estimates vector is (0.11, 0.25, 0.15, 0.17, 0.18, 0.14) at

the root node. These vectors have the rank order: (1, 6, 3, 4, 5, 2). Both trees

split first on the country variable, yet the other split variables are different. The
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Table 4. Mean scores in the terminal nodes of the GUIDE tree for the
ISSP2000 data (Figure 3).

C I F W T G
node 4 3.66 5.90 5.11 4.55 5.64 5.15
node 5 3.68 5.50 4.88 4.25 5.65 6.04
node 6 5.04 5.92 4.25 5.67 5.37 3.74
node 7 4.99 5.67 4.95 5.88 4.42 4.09

Figure 4. Bttree decision tree for the ISSP2000 data. At each intermediate
node, an observation goes to the child node if and only if the stated condition
is satisfied. The plot also shows the worth parameter estimates in each
terminal node (C: Car, I: Industry, F: Farm, W: Water, T: Temperature,
and G: Gene).

GUIDE tree gives 4 terminal nodes while the bttree method gives 7. The prefer-

ence patterns found in both trees agree with Dittrich et al. (2007, p. 25), while

our tree explains the difference among the subjects’ preferences more simply.
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Table 5. Distributions of X variables used in the simulation studies. Z,
U16, C2, and C10 are mutually independent; Z is a standard normal; Un is
uniform on the integer values [1, n]; Cm denotes a m-level category variable
with equal probability for each category.

X1 ∼ Z
X2 ∼ U16

X3 ∼ C2

X4 ∼ C10

5. Simulation Experiments

While the GUIDE tree method with the 2-1-0 scoring system and the bt-

tree method give the same preference ranks at each node, they yield different

preference values of the subjects at the terminal nodes. Hence, we study their

performance directly on rank data. We focus on the selection power of the two

methods when the response depends on some covariates, then we compare their

predictive power. Rank samples are simulated directly, then converted into paired

comparison outcomes so that we can investigate selection and predictive powers.

Prediction error is defined as the average Kendall’s distance between the true

ranks and the predicted ranks given by the tree.

Rank samples are generated by a Kendall’s tau distance-based model. For

J objects with label 1, . . . , J , let π be a rank function from {1, . . . , J} onto

{1, . . . , J} where π(j) is the rank of object j. The Kendall’s tau distance-based

model for rank data, proposed by Diaconis (1988), is

Pr(π|λ, π0) = e−λd(π,π0) × C(λ)−1, (KDM)

where λ ≥ 0 is the dispersion parameter, d(π, π0) is the Kendall tau distance

function between rank function π and π0,

d(π, π0) =
∑
i<j

I{[π(i)− π(j)][π0(i)− π0(j)]},

and C(λ) is a proportionality constant. The closer to the modal ranking is π0, the

higher the probability of occurrence ranking. The distribution of ranks is more

concentrated around π0 for smaller λ. Four mutually independent covariates were

generated and their distributions are given in Table 5.

5.1. Selection power

In these experiments, the ranking outcomes depend on some of the covariates.

The distribution of the ranks follows the KDM model and its relationship with

some covariates is given in Table 6. For example, under Model A1, if X2 ≤ 8,
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Table 6. Models for selection power studies of the two tree methods. The
ranking outcomes based on the KDMmodel are generated. The distributions
of X’s are given in Table 5.

Model Child node π0

A1 X2 ≤ 8 1, 2, 3, 4
X2 > 8 4, 1, 3, 2

A2 X2 ≤ 8 1, 2, 3, 4
X2 > 8 4, 3, 2, 1

B1 |X2 − 8.5| ≤ 4 1, 2, 3, 4
|X2 − 8.5| > 4 4, 1, 3, 2

B2 |X2 − 8.5| ≤ 4 1, 2, 3, 4
|X2 − 8.5| > 4 4, 3, 2, 1

a distance-based model with the modal ranking π0 = (1, 2, 3, 4) is generated.

Otherwise, the modal ranking is π0 = (4, 1, 3, 2). Two scenarios were considered

and two different modal rankings (π0 = (4, 1, 3, 2) and π0 = (4, 3, 2, 1)) for the

right child node were used. In Scenario A, models with a single change point on

X2 were considered; while in Scenario B, models with a pair of change points

on X2 were considered. For each model, we generated 200 random samples.

The number of times in 500 repetitions each covariate was selected by the two

methods was recorded. The selected probabilities of X2 for various λ values are

given in Figures 5 and 6.

For Scenario A, the mean shift on X2 affects the out-coming KDM models.

In Figure 5, the bttree method performs better than the proposed method under

Model A1 and A2. For Scenario B, the variance change on X2 has an effect on

the out-coming KDM models. In Figure 6, the proposed method outperforms the

bttree method under Model B1 and B2. Each tree method has its own strength

in selecting informative covariates.

5.2. Prediction

Two simulated tree models were used to compare the predictive power of the

proposed tree method and the bttree method.

The tree model in Figure 7 was simulated. In each terminal node, a KDM

model with specified π0 and λ = 0.51 was used to generate the data. The

π0 parameter vectors (1, 2, 3, 4), (4, 1, 3, 2) and (4, 3, 2, 1) were taken to generate

data. A learning sample of size 400 was generated first. The bttree and our

method were applied to the learning sample and the corresponding trees were

obtained. A test sample of size 1,000 was then generated using the same model

(Figure 7), and was used to measure the prediction errors of the resulting trees.

This procedure was repeated 100 times and the results are summarized in Table

7. Similarly, the tree model in Figure 8 was simulated. It has four terminal nodes
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Figure 5. The estimated probability of X2 selected by the bttree method
(BTtree) and the proposed method (GUIDE) under Model A1 and A2.

Figure 6. The estimated probability of X2 selected by the bttree method
(BTtree) and the proposed method (GUIDE) under Model B1 and B2.

and the first two splits depend on the X2 covariate. The same computational

procedure was conducted and the results are given in Table 8. For the first
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Figure 7. Simulated tree model I. The split beside each intermediate node
channels each case to the left node, if it is satisfied; otherwise to the right.
Beside each terminal node is the associated π0 parameter in the KDM model
which was used to generate the data in the node.

Table 7. The prediction results for the bttree and the GUIDE methods. A
learning sample of size 400 and a test sample of size 1,000 were generated
by the tree model in Figure 7. The paired t statistic was computed for the
prediction difference between the bttree and the GUIDE methods over 100
repetitions.

πA πB πC t statistic p-value
(1,2,3,4) (4,1,3,2) (4,3,2,1) -3.21 0.002
(4,1,3,2) (1,2,3,4) (4,3,2,1) -0.29 0.772
(4,3,2,1) (1,2,3,4) (4,1,3,2) -1.38 0.170

tree model, the first split is on X2 and the mean difference on X2 (X2 ≤ 8 vs.

X2 > 8) separates the data into node 1 and the other nodes. The X3 values

further divide the data into nodes 2 and 3. For the second tree model, the first

two splits channel the data into three parts where nodes 1 and 2 contain data

following the same KDM model; the variance change on X2 (|X2 − 8.5| > 4 vs.

|X2 − 8.5| ≤ 4) separates the data into nodes 1, 2 and the other nodes.

In Table 7, the bttree method performs better than the GUIDE method in

one scenario when the p-value is less than .05. In the other two scenarios, the

differences are insignificant. On the other hand, In Table 8, the GUIDE method

is better than the bttree method in the last case, but worse in the first case.

Overall, the two methods are competitive in terms of prediction power.
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