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Abstract: We propose a new and unified construction method, general supplemen-
tary difference sets (GSDS)s, for near-Hadamard designs when the run sizes are
n ≡ 2 (mod 4). These designs possess high D-efficiencies. Ehlich (1964) derived
an upper bound for the determinant of matrices of order n ≡ 2 (mod 4) achievable
only if 2n − 2 is a sum of two squares. Between 1 to 100, there are 6 parameters,
22, 34, 58, 70, 78, and 94, that do not fulfill this condition. We formulate a class of
near-Hadamard designs whose determinants are very close to Ehlich’s upper bound,
and construct these designs for many values of n.
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1. Introduction

There is much interest in studying large-scale systems and considerable effort
goes into designing more efficient studies. Careful design considerations, even
with only minor variations from traditional designs, can provide more precise
estimates or ability to estimate more effects at the same cost (Phoa, Wong, and
Xu (2009); Phoa, Xu, and Wong (2009); Xu, Phoa, and Wong (2009)).

We propose a systematic approach to constructing a class of two-level square
designs with large determinant. To quantify the D-optimality of a design, we
adopt the D-efficiency criterion of Jones and Nachtsheim (2011) and Phoa and
Lin (2015):

de(D, Do) =
( |X(D)′X(D)|

|X(Do)′X(Do)|

)1/p

,

where X(D) and X(Do) are the design matrices of design D and D-optimal
design Do respectively, |M | is the determinant of a matrix M , and p is the
number of terms in the model that consists of all main effects.

For notation here, In denotes an identity matrix of order n, Jn an n × n

square matrix with all entries +1, and j an n × 1 all-ones vector; A′ denotes the
transpose of a matrix A; + and − are used as abbreviations for +1 and −1; |D|
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or det(D) denotes the determinant of a matrix D, and |c| denotes the absolute
value of a constant c.

Let Xn be the set of all ±1 designs of order n. Hadamard (1893) proved that
for all X = (xi,j) ∈ Xn

det(X) ≤ (
n∏

i=1

n∑
j=1

x2
i,j)1/2 ≤ nn/2.

And if |xi,j | ≤ 1 and the equality is satisfied, then the design X is (±1)-
valued and n is 1, 2, or a multiple of 4.

A D-optimal design of order n is an n × n matrix with entries ±1 having
maximum determinant. For n ≡ 2 (mod 4), say n = 2v, Ehlich (1964), and
independently Wojtas (1964), proved that for all X ∈ Xn,

det(X) ≤ (2n − 2)(n − 2)(n/2)−1. (1.1)

A necessary condition for equality in (1.1) to hold is that 2n − 2 (equivalently
n − 1) is a sum of two squares, see Ehlich (1964); we refer to the upper bound
as Ehlich’s upper bound. Cohn (1989) proved that equality holds if and only if
there exists X ∈ Xn such that

XX ′ = X ′X = L ⊗ I2, (1.2)

where L = (n − 2)I + 2J is a v × v matrix and ⊗ is the Kronecker product.
Ehlich (1964) also proved that if A and B are commuting ±1 matrices of order
v such that

AA′ + BB′ = 2(v − 1)Iv + 2Jv, (1.3)

then the matrix

X =
(

A B

−B′ A′

)
has the maximum determinant. Such A and B can be constructed by using
supplementary difference sets (SDSs) with parameters (v; r, s; λ) (Wallis (1972)).

There are two known infinite families of D-optimal designs, one for v =
q2 + q + 1, where q is a prime power, and one for v = 2q2 + 2q + 1, where q

is an odd prime power (Koukouvinos, Kounias, and Seberry (1991); Whiteman
(1990)). More details are given by Colbourn (2010), Ðoković (1997), and Gysin
and Seberry (1998). Ðoković and Kotsireas (2012) give a comprehensive table
of all odd v < 200 for which D-optimal SDS are known, but there are still many
unknown cases. For n = 22, 34, 58, 70, 78, 94 (n ≤ 100) Ehlich’s upper bound
cannot be attained as 2n − 2 is not a sum of two squares. Orrick and Slolmon
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(2002) created a website (http://www.indiana.edu/~maxdet) which lists an
n × n design with the largest known determinant for 1 ≤ n ≤ 119.

In Section 2, we introduce general supplementary difference sets (GSDS)s. In
Section 3, we define near-Hadamard designs and evaluate their determinants. We
utilize GSDSs as a unified method for constructing near-Hadamard designs that
are almost D-optimal. For n = 22, 34, 58, 70, 78, 94, these designs have at least
99.5% D-efficiency. When n ≡ 0 (mod 4), assuming the Hadamard conjecture
is true, a D-optimal design is called a Hadamard design of order n. If H is
a Hadamard design of order n, then the rows in H are pairwise orthogonal,
HHT = nIn, and the Hadamard conjecture says that such designs with ±1
entries exist if n is divisible by 4. Hadamard designs were originally investigated
as a family of orthogonal designs by Sylvester (1867), he constructed Hadamard
designs of orders power of two. Fletcher, Gysin, and Seberry (2001) constructed
Hadamard designs with two circulant cores. These designs are obtained by using
SDSs. Kotsireas, Koukouvinos, and Seberry (2006) conjectured that Hadamard
designs of order n ≥ 8 can be constructed via SDSs in a systematic and unified
way. In this paper, we utilize GSDSs to construct near-Hadamard designs and
formulate two types of near-Hadamard designs of order n. If it exists, each type
is conjectured to be D-optimal when 2n − 2 is not a sum of two squares.

2. Preliminaries and Definitions

Difference sets are powerful tools for constructing balanced incomplete block
designs (BIBD). For example, Bose (1939) used pure and mixed difference sets to
construct some special BIBDs. Many examples and results about difference sets
can be found in Andersen (1990) and Wallis (2007). An n × n matrix A = (ai,j)
is circulant if ai+1,j+1 = ai,j where the subscripts are reduced modulo n. Such
a circulant matrix A can be obtained from its first row, so it can be denoted
by A = circ(a1,1, a1,2, . . . , a1,n). Suppose that G is an Abelian group of order v,
written in additive notation, and suppose B is a set of k elements of G. Then the
design generated from B (in G) consists of all the blocks {B + g : g ∈ G}, where
B + g = {x + g : for all x ∈ B}. It is a symmetric block design, and B is called
the base block. We only consider the Abelian group Zv. The concept of general
difference set (GDS) was proposed by Lin, Phoa, and Kao (2015).

Definition 1. A (v, k; λ1, . . . , λ⌊v/2⌋) GDS is a set D = {d1, . . . , dk} of dis-
tinct elements of Zv such that each difference (±i) appears λi times for all
i = 1, . . . , ⌊v/2⌋.

If λ1 = . . . = λ⌊v/2⌋ = λ, we write (v, k, λ) for short. Difference sets are the
special cases of GDSs, where a GDS allows each difference to appear different
times. In general, a GDS can be represented by its incidence matrix.

http://www.indiana.edu/~maxdet
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Table 1. The incidence matrix D.
1 2 3 4 5 6 7 8

D + 0 − − − + + + + +
D + 1 + − − − + + + +
D + 2 + + − − − + + +
D + 3 + + + − − − + +
D + 4 + + + + − − − +
D + 5 + + + + + − − −
D + 6 − + + + + + − −
D + 7 − − + + + + + −

Definition 2. Let D be a (v, k; λ1, . . . , λ⌊v/2⌋) GDS. The incidence matrix of D

is a v × v matrix D with entries

di,j =

− if j ∈ D + (i − 1),
+ otherwise.

D is a circulant matrix, where the first row of D corresponds to the base block
D and each row of D is a right shift of the previous row.

Example 1. Choose elements 1, 2, and 3 in Z8 to form a set D. The differences
±1 and ±2 appear exactly twice and once respectively, so D is a (8, 3; 2, 1, 0, 0)
GDS. By definition the first row of the incidence matrix D is obtained by placing
“ − ” at the position i if i ∈ D and “ + ” otherwise (see Table 1).

For special parameters, such an incidence matrix directly constructs
Hadamard designs.

Example 2. If D = {2, 4, 5, 6, 10}, then D is a (11, 5, 2) difference set. The
incidence matrix D is an 11 × 11 design. By adding a row with all “−” entries,
we obtain the Plackett and Burman design of 11 factors and 12 runs. A further
addition of a column with all “+” entries leads to a Hadamard design of order
12.

Hall and Ryser (1951) proved the multiplier theorem as a necessary condition
for the existence of a (v, k, λ) difference set. For example, it is impossible to find
a (37, 9, 2) difference set (Andersen (1990)). Since a difference set may not exist
for a given set of parameters, we propose general supplementary difference sets
(GSDS).

Let D1, . . . , Dn be subsets of Zv (or any finite abelian group of order v)
containing k1, . . . , kn elements respectively. Let Ti be the union of all differences
between elements of Di (with repetitions), and let T be the union of all the
elements of the Ti.
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Definition 3. If T contains each non-zero element of Zv λj times for j =
1, . . . , ⌊v/2⌋, then the sets are called n − {v; k1, . . . , kn; λ1, . . . , λ⌊v/2⌋} general
supplementary difference set (GSDS).

We let n(λ) be the number of the differences g ∈ Zv that appears λ times
in such a T . Sometimes we write down distinct λ only for short. An SDS is a
special case of GSDS where each difference appears an equal number of times
(Wallis (1972)). If k1 = . . . = kn = k, we write n-{v; k; λ1, . . . , λ⌊v/2⌋} GSDS
in brief. When ki = k and λj = λ for all i, j, an n-{v; k; λ} GSDS is a (v, k, λ)
difference family (or difference system) with n base blocks (Colbourn (2010)).

Example 3.
(a) The sets {1, 2, 4, 6} and {1, 3, 6} are a {8, 4; 1, 2, 2, 1} GDS and a {8, 3; 0,

1, 2, 0} GDS, respectively. Hence, {1, 2, 4, 6} and {1, 3, 6} form a 2−{8; 4, 3; 1,
3, 4, 1} GSDS. In this case, the number of the differences that appear once is
2, so n(1) = 2. It follows that n(2) = 0, n(3) = 1 and n(4) = 1.

(b) {1, 3, 4, 9, 10, 12} and {2, 5, 6, 7, 8, 11} form a 2-{13; 6; 5} GSDS.

Obviously, two general difference sets together constitute a GSDS.

3. Construction of Near-Hadamard Designs

A D-optimal design of order n ≡ 2 (mod 4) achieving Ehlich’s upper bound
exists only if 2n − 2 is a sum of two squares. Therefore, one can consider a
different structure from the SDS to construct designs with high D-efficiencies
when a D-optimal design achieving Ehlich’s upper bound cannot exist. We use
the n × n block matrix

M =


c c j′ j′

c −c j′ −j′

j j A B

j −j B′ −A′

 , (3.1)

where |c| = 1 and j is the (n − 2)/2×1 vector of ones, and take a near-Hadamard
design to mean a design that does not reach Ehlich’s upper bound, but has a
very large determinant.

We set our two types of near-Hadamard designs. Let n = 2v + 2 and M be
an n × n matrix with ±1 entries such that

MM ′ =


n 0 c1j′ 0
0 n 0 c2j′

c1j 0 P 0
0 c2j 0 P

 , (3.2)
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where |c1| = |c2| = 2 and P v×v = circ(n, s2, . . . , sv). If |si| = 2 for all i =
2, 3, . . . , v, then M is called a near-Hadamard design; if si = 2(−1)i−1 for all
i = 2, 3, . . . , v, then M is called a near-Hadamard design of Type I, denoted by
M I ; if s(v/2)+1 = 2 and si = 2(−1)i−1 for all i = 2, 3, . . . , v except i = (v/2) + 1,
then M is called a near-Hadamard design of Type II , denoted by M II . The P

matrices for the two types are denoted by P I and P II , respectively.
By Cohn’s theorem, a D-optimal design X achieving Ehlich’s upper bound

must satisfy (1.2), so det(X) = [det(L)]2. Cohn (1989) found an upper bound
for det(L).

Lemma 1. Let k ≥ 2, K(k) denote a positive-definite symmetric matrix with
diagonal elements kr,r = n and with |kr,s| ≥ 2. Then det(K) ≤ (n + 2k − 2)(n −
2)k−1, and equality holds if and only if K = ΣLΣ for Σ some suitable square
diagonal matrix with all its diagonal elements ±1.

For even k and α = (1, −1, 1, −1, . . . , 1, −1) a k × 1 vector, diag(α) is a Σ
such that the equality holds. Since P I = ΣLΣ, det(P I) reaches the upper bound
in Lemma 1, and M I has the maximum determinant among all M that have
the form (3.1). Because P I may not exist for some n, P II is considered though
det(P II) is smaller than det(P I). If P I and P II do not exist, then a general
P matrix is another choice. Since the total number of ±2’s in matrix (1.2) and
MM ′ are the same, a general near-Hadamard design still has high D-efficiency.

Lemma 2. Let M be a near-Hadamard design of order n ≡ 2 (mod 4). Then
det(M I) = 2(n − 2)n/2, and det(M II) = 2(n − 4)(n2 + 4)(n − 6)(n−6)/4(n +
2)(n−6)/4.

Since P I = ΣLΣ for a suitable Σ, its determinant should be maximum
among all matrices satisfying the conditions of Lemma 1. The difference between
P I and P II is the sign of s(v/2)+1. By Lemma 2, det(M II) is smaller than
det(M I). Moreover, M I has D-efficiency ((n − 2)/(n − 1))2/n.

Example 4. Let A = circ(−, −, +, −, +, −, +, −, +, +), B = circ(−, −, −, −, +,
+, −, +, +, +) and M be a matrix of order 22, as follows (next page).

This is a near-Hadamard design of Type I with at least 99.56% D-efficiency.
The submatrices A and B are constructed by GSDS.

A (v, k, λ) difference set is equivalent to a symmetric BIBD with parameter
(v, b, r, k, λ), where b is the number of blocks and each element appears in r

blocks. If A is the incidence matrix of a (v, b, r, k, λ) BIBD, then AA′ = (r −
λ)Iv +λJv. Lin, Phoa, and Kao (2015) proved the following regarding incidence
matrices of GDSs.
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M =



+ + + + + + + + + + + + + + + + + + + + + +
+ − + + + + + + + + + + − − − − − − − − − −
+ + − − + − + − + − + + − − − − + + − + + +
+ + + − − + − + − + − + + − − − − + + − + +
+ + + + − − + − + − + − + + − − − − + + − +
+ + − + + − − + − + − + + + + − − − − + + −
+ + + − + + − − + − + − − + + + − − − − + +
+ + − + − + + − − + − + + − + + + − − − − +
+ + + − + − + + − − + − + + − + + + − − − −
+ + − + − + − + + − − + − + + − + + + − − −
+ + + − + − + − + + − − − − + + − + + + − −
+ + − + − + − + − + + − − − − + + − + + + −
+ − − + + + − + + − − − + − − + − + − + − +
+ − − − + + + − + + − − + + − − + − + − + −
+ − − − − + + + − + + − − + + − − + − + − +
+ − − − − − + + + − + + + − + + − − + − + −
+ − + − − − − + + + − + − + − + + − − + − +
+ − + + − − − − + + + − + − + − + + − − + −
+ − − + + − − − − + + + − + − + − + + − − +
+ − + − + + − − − − + + + − + − + − + + − −
+ − + + − + + − − − − + − + − + − + − + + −
+ − + + + − + + − − − − − − + − + − + − + +


Theorem 1. If A is the incidence matrix of a (v, k; λ1, . . . , λ⌊v/2⌋) GDS, then
AA′ is a v × v circulant matrix with entries

ai,j =


v if i = j,

v − 4k + 8λv/2 if | j − i |= v
2 and v is even,

v − 4k + 4λs otherwise,

where s = min{|j − i|, |v − (j − i)|}. Furthermore, AA′ = A′A.

Back circulant matrices do not commute, but circulant matrices do. Since
every incidence matrix of a general difference set is circulant, we have the follow-
ing.

Lemma 3. If A and B are the incidence matrices of two general difference sets,
then AB′ = B′A.

Next, using Theorem 1 and Lemma 3, matrices P , P I , and P II are con-
structed via GSDSs.

Lemma 4. Let A, B be the incidence matrices of two base blocks of a 2 −
{2t; k1, k2; λ1, λ2, . . . , λt} GSDS.
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(a) If k1 = k2 = t, λt = ⌊t/2⌋, λi = t or t − 1 such that n(t) = ⌊(t − 1)/2⌋ and
n(t − 1) = ⌈(t − 1)/2⌉, then 2J2t + AA′ + BB′ = P .

(b) If k1 = k2 = t, λt = ⌊t/2⌋ and λi = t− ((1+(−1)i+1)/2) for all 1 ≤ i ≤ t−1,
then 2J2t + AA′ + BB′ = P I .

(c) If k1 = t, k2 = t + 1, λt = (t + 1)/2 and λi = t + ((1 + (−1)i)/2) for all
1 ≤ i ≤ t − 1, then 2J2t + AA′ + BB′ = P II .

Notice that λt is not equal to ⌊t/2⌋ in (c). Since the total number of λ should
equal the total number of pairs in a GSDS, it follows that

∑t
i=1 λi =

(k1
2
)

+
(k2

2
)
.

When t is even, λt in (c) is t/2 by Theorem 1. However,
∑t

i=1 λi = (2t+1)(t/2−
1) + t + λt = t2 − 1 is not equal to

(t
2
)

+
(t+1

2
)

= t2. Hence, P II does not exist
when t is even. By Lemma 3 and Lemma 4, near-Hadamard designs are provided
by the following.

Theorem 2. Let n = 4t+2 and M be a matrix constructed by a 2−{2t; k1, k2; λ1,
λ2, . . . , λt} GSDS.

(a) If k1 = k2 = t, λt = ⌊t/2⌋, λi = t or t − 1 such that n(t) = ⌊(t − 1)/2⌋ and
n(t − 1) = ⌈(t − 1)/2⌉, then M is a near-Hadamard design.

(b) If k1 = k2 = t, λt = ⌊t/2⌋ and λi = t− ((1+(−1)i+1)/2) for all 1 ≤ i ≤ t−1,
then M is a near-Hadamard design of Type I.

(c) If k1 = t, k2 = t + 1, λt = (t + 1)/2 and λi = t + ((1 + (−1)i)/2) for all
1 ≤ i ≤ t − 1, then M is a near-Hadamard design of Type II.

Cohn (2000) found a design of order 22 which has 0.90 efficiency, where
his efficiency is defined to be the ratio |D|/|Do| and |Do| is the Ehlich’s upper
bound. Álvarez et al. (2012) proposed two algorithms and found designs of order
22 and 34 with 0.90 efficiency. More bounds for the maximum determinant were
discussed by Koukouvinos, Mitrouli, and Seberry (2000).

Table 1 of the supplementary material provides a list of all 2-{2t; k1, k2; λ1,
λ2, . . . , λt} GSDSs satisfying Theorem 2 when 1 ≤ t ≤ 25. The third column
reports the types of near-Hadamard designs, where Type G means general form.
When n = 22, 34, and 70, a near-Hadamard design of Type I is found. Since Type
I may not exist when n = 78 and 94 Orrick and Slolmon (2002), but Type II

design was found in both cases. An exhaustive search shows that when n = 58,
Types I and II do not exist, so the best among all possible near-Hadamard
designs of order 58 is listed in the table. Furthermore, each of the near-Hadamard
designs of order 22, 34, 58, 70, 78, and 94 constructed by the GSDS has at least
99.5% D-efficiency.

Corollary 1. A GSDS-constructed near-Hadamard design of order n exists when-
ever 6 ≤ n ≤ 98.



CONSTRUCTING NEAR-HADAMARD DESIGNS BY GSDSs 421

We conjecture that the near-Hadamard designs of Type I and II for n =
22, 34, 70, 78, and 94 are D-optimal.

4. Design Table

Table 2 provides lower bounds for the D-efficiencies of GSDS-based near-
Hadamard designs of orders n ≡ 2 (mod 4). To calculate these lower bounds,
the Ehlich’s upper bound was used.

5. Discussion and Conclusion

By the definition of supplementary difference sets (Wallis (1972)), SDS is a
special case of GSDS where all λ’s are the same. Fletcher, Gysin, and Seberry
(2001) constructed Hadamard designs with two circulant cores via SDSs. This is
a unified method for constructing Hadamard designs. Kotsireas, Koukouvinos,
and Seberry (2006) provided a series of methods to construct Hadamard designs
with two circulant cores via SDSs, and conjectured such Hadamard designs of
order 2l + 2 exist for any odd l ≥ 3. Following our notation, the matrix used by
Fletcher, Gysin, and Seberry (2001) is matrix (3.1) with c = −1. The existence
of a 2 − {2t − 1; t − 1; t − 2} GSDS implies the existence of a Hadamard design
of order 4t, and 2 − {2t − 1; t − 1; t − 2} GSDS is conjectured to exists for every
t ≥ 2. Chiarandini et al. (2008) proposed heuristic algorithms for constructing
Hadamard designs with two circulant cores via SDSs. Our contribution here is
making the connection between GSDSs and near-Hadamard designs of Type I

and Type II. Algorithms for searching GSDSs that exploit this connection will
be considered in our future work.

We introduced a class of designs called the near-Hadamard designs of order
4t + 2. To our best knowledge, there is no prior method for the construction of
almost D-optimal designs of any order n in which the Ehlich’s upper bound is
not achievable. We proposed general supplementary difference sets (GSDSs) as
a unified method to directly construct near-Hadamard designs.

We derive a formula for the determinants of these designs (both Type I and
II), and provide a list of GSDSs for constructing almost D-optimal designs of
orders 22, 34, 58, 70, 78, and 94. Our newly found Type I design of order 22
has the same determinant as that of the order 22 design listed on http://www.
indiana.edu/~maxdet, yet the two designs are not equivalent. This answers the
uniqueness questions posed there in the negative.

The GSDS method greatly reduces the search space, to at most
(2t−1

t−1
)(2t−1

t−1
)

combinations when t = n/4 and less than
(2t

t

)( 2t
t+1
)

when t = (n − 2)/4. The
method provides various criteria for further reducing the search space efficiently.
Without requiring determinants, Theorem 2 provides helpful criteria for finding
Type I, Type II near-Hadamard designs and near-Hadamard designs in general.

http://www.indiana.edu/~maxdet
http://www.indiana.edu/~maxdet
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Table 2. Lower Bounds on D-efficiencies of GSDS-based (near)-Hadamard designs.

t N = 4t + 2 Runs D-efficiencies t N = 4t + 2 Runs D-efficiencies
1 6 92.83 % 2 10 97.67%
3 14 97.79% 4 18 99.34%
5 22 99.56% 6 26 99.10%
7 30 98.89% 8 34 99.82%
9 38 99.16% 10 42 99.88%

11 46 99.36% 12 50 99.62%
13 54 99.93% 14 58 99.50%
15 62 99.38% 16 66 99.43%
17 70 99.50% 18 74 99.50%
19 78 99.91% 20 82 99.73%
21 86 99.69% 22 90 99.61%
23 94 99.93% 24 98 99.60%

These criteria are based on frequencies of differences. Hence, checking these cri-
teria is much cheaper than computing determinants of candidate designs. This
makes it possible to design efficient search algorithms for finding near-Hadamard
designs. By making good use of these criteria many unsuitable sequences can
be ignored. For instance, a 2-{34; 17, 17; 16, 17, . . . , 16, 17, 8} GSDS provides a
Type I near-Hadamard matrix of order 70. If one of the two base blocks is
{1, 3, 5, . . . , 33}, then it is a (34, 17; 0, 17, . . ., 0, 17, 0) GDS. By definition, an-
other base block must be a (34, 17; 16, 0, . . . , 16, 0, 8) GDS. However, for any
three integers in Z34 there must exist two integers such that their difference is
even. Hence it is impossible to find a (34, 17; 16, 0, . . . , 16, 0, 8) GDS, and the set
{1, 3, 5, . . . , 33} can be ruled out. GSDS based search algorithms that exploit the
Theorem 2 criteria for finding Type I and Type II designs for large n will be a
topic of future research.

Table 2 shows the D-efficiencies of our GSDS-based near-Hadamard designs.
When 2n − 2 is not a sum of two squares, Type I and II near-Hadamard designs
are conjectured to be D-optimal. Table 1 in the supplementary materials provides
the corresponding catalog.
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Appendix

Proof of Lemma 2. If Aα×α = cric(x, y, y, . . . , y), then det(A) = (x + (α −
1)y)(x − y)α−1. It is easy to see this by adding each column to the first column.
(i) Subtract c1/n times the first row of M IM ′

I from each row starting with
c1, and then c1/n times the first column from each column starting with c1.
Similarly, remove each element c2 in the second row and column. Without loss of
generality, we may assume that c1 = c2 = 2. Without altering the determinant,
this changes M IM ′

I to

H =

∣∣∣∣∣∣∣∣∣
n 0 0 0
0 n 0 0
0 0 Q 0
0 0 0 Q

∣∣∣∣∣∣∣∣∣ ,

where Q = circ(N, a, b, . . . , a, b, a) is a square matrix of order (n − 2)/2. The
elements N , a, and b are n − (4/n), (−2) − (4/n) and 2 − (4/n), respectively.
Now, we calculate det(Q). After adding each column to the first column and
removing a factor (N + ((n − 2)/4)a + ((n − 6)/4)b) of the first column, the
first column becomes the all-ones vector. Subtracting the first row from every
other row, using the properties of the determinant and the cofactor formula,
we get det(Q) = (N + ((n − 2)/4)a + ((n − 6)/4)b)(N − b)(n−6)/4 · det(W ),
where W = circ(N − a, b − a, . . . , b − a) is a square matrix of order (n − 2)/4.
Using det(W ) = ((N − a) + (b − a)(n − 6)/4)(N − b)(n−6)/4, and simplifying,
det(M IM

′
I) = det(H) = n2 · [det(Q)]2 = 4(n − 2)n. Therefore, det(M I) =

2(n − 2)n/2.

(ii) Similarly, reduce M IIM ′
II to a matrix that has the form of H without

altering its determinant. Now Q is a circulant matrix of order (n − 2)/2 with
the first row (N, a, b, . . . , a, b, b, b, a, b, . . . , a, b, a), where N = n − (4/n), a =
(−2) − (4/n) and b = 2 − (4/n). Observe that

Q =
(

Q1 Q2
Q2 Q1

)
, where Q1 =



N a b a b · · · a b

a N a b a · · · b a

b a N a b · · · a b

a b a N a · · · b a

b a b a N · · · a b
...

...
...

...
... . . . ...

...
a b a b a · · · N a

b a b a b · · · a N


, and
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Q2 =



b b a b a · · · b a

b b b a b · · · a b

a b b b a · · · b a

b a b b b · · · a b

a b a b b · · · b a
...

...
...

...
... . . . ...

...
b a b a b · · · b b

a b a b a · · · b b


, where Q1 and Q2 are n − 2

4
× n − 2

4
.

Since det(Q) = det(Q1 −Q2) ·det(Q1 +Q2), we evaluate det(Q1 −Q2) first.
Let N ′ = N − b, a′ = a − b and b′ = b − a. Adding each column except the 1st
to the 2nd column, then interchanging the first two rows and columns, we get

det(Q1 − Q2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N ′ + a′ a′ a′ b′ · · · b′ a′

0 N ′ b′ a′ · · · a′ b′

N ′ + a′ b′ N ′ a′ · · · a′ b′

N ′ + a′ a′ a′ N ′ · · · b′ a′

...
...

...
... . . . ...

...
N ′ + a′ a′ a′ b′ · · · N ′ a′

N ′ + a′ b′ b′ a′ · · · a′ N ′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N ′ + a′ a′ a′ b′ · · · b′ a′

0 N ′ b′ a′ · · · a′ b′

0 b′ − a′ N ′ − a′ a′ − b′ · · · a′ − b′ b′ − a′

0 0 0 N ′ − b′ · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · N ′ − b′ 0
0 b′ − a′ b′ − a′ a′ − b′ · · · a′ − b′ N ′ − a′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Notice that a′ + b′ = 0, b′ − a′ = 8, N ′ − a′ = n + 2, N ′ + a′ = n − 6 = N ′ − b′,
N − b = N ′ = n − 2, a′ = −4, and b′ = 4. By using the properties of the
determinant and the cofactor formula, det(Q1 − Q2) = (n − 6)(n−6)/8 · det(E),
where

det(E) =
∣∣∣∣∣ n − 2 4j

8j E′

∣∣∣∣∣ , and E′ = circ(n + 2, 8, . . . , 8).

Here, E′ is a square matrix of order (n−6)/8. Subtracting 8/(n−2) times the first
row from every other row yields det(E) = [(n2−36)+(n−14)(n−6)](n−6)(n−14)/8.
Therefore, det(Q1 − Q2) = 2(n − 4)(n − 6)(n−6)/4. Now, it is easy to see that
Q1 +Q2 = circ(N +b, a+b, . . . , a+b), where N = n−(4/n), a = −2−(4/n) and
b = 2 − (4/n). So det(Q1 + Q2) = [(N + b) + ((n − 6)/4)(a + b)](N − a)(n−6)/4 =
(n + (4/n))(n + 2)(n−6)/4. Since det(M IIM

′
II) = det(H) = n2[det(Q)]2, we get
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det(M II) = n · det(Q) = n · det(Q1 − Q2) · det(Q1 + Q2) = 2(n − 4)(n2 + 4)(n −
6)(n−6)/4(n + 2)(n−6)/4.

Proof of Lemma 4. Let D1 and D2 be two base blocks of a 2 − {2t; k1, k2; λ1,
λ2, . . . , λt} GSDS, where D1 is a (2t, k1; µ1, µ2, . . . , µt) GDS, D2 is a (2t, k2; µ′

1,
µ′

2, . . . , µ′
t) GDS, and µi + µ′

i = λi for i = 1, 2, . . . , t. Let AA′ = (ai,j) and
BB′ = (bi,j).

(a) Let k1 = k2 = t, λt = ⌊t/2⌋, λi = t or t − 1 such that n(t) = ⌊(t − 1)/2⌋ and
n(t − 1) = ⌈(t − 1)/2⌉. By Theorem 1, ai,i + bi,i = 4t. If |j − i| ̸= t then
ai,j + bi,j = 2(2t) − 4(2t) + 4(µi + µ′

i) = 0 or −4 when λi = t or t − 1. If
|j − i| = t then ai,j +bi,j = 2(2t)−4(2t)+8(µt +µ′

t) = 4t−8t+8(⌊t/2⌋) = −4
or 0 when t is odd or even. It follows that 2J2t + AA′ + BB′ = P .

(b) Let k1 = k2 = t, λt = ⌊t/2⌋ and λi = t−((1+(−1)i+1)/2) for all 1 ≤ i ≤ t−1.
By Theorem 1, ai,i + bi,i = 4t. If |j − i| ̸= t then ai,j + bi,j = 2(2t) − 4(2t) +
4(µi +µ′

i) = 4t−8t+4(t−((1+(−1)i+1)/2)) = −4 or 0 when i is odd or even.
If |j−i| = t then ai,j +bi,j = 2(2t)−4(2t)+8(µt+µ′

t) = 4t−8t+8(⌊t/2⌋) = −4
or 0 when t is odd or even. Therefore, 2J2t + AA′ + BB′ = P I .

(c) Let k1 = t, k2 = t + 1, λt = (t + 1)/2 and λi = t + ((1 + (−1)i)/2) for all
1 ≤ i ≤ t − 1. By Theorem 1, ai,i + bi,i = 4t. If |j − i| ̸= t then ai,j + bi,j =
2(2t)−4(2t+1)+4(µi+µ′

i) = 4t−8t−4+4(t+((1+(−1)i)/2)) = −4 or 0 when
i is odd or even. If |j − i| = t then ai,j + bi,j = 2(2t) − 4(2t + 1) + 8(µt + µ′

t) =
4t − 8t + 8((t + 1)/2) = 0 when t is odd. Hence, 2J2t + AA′ + BB′ = P II .

Proof of Theorem 2. Let A and B be the incidence matrices of two base
blocks of a 2 − {2t; k1, k2; λ1, λ2, . . . , λt} GSDS. Using A and B to construct the
n × n matrix M defined in (3.1), we have

MM ′ = (A.1)
n 0 2cj′ + j′A + j′B′ j′B − j′A′

0 n j′A − j′B′ 2cj′+j′B+j′A′

2cj+A′j+Bj A′j − Bj 2J2t+A′A+BB′ A′B − BA′

B′j − Aj 2cj+B′j+Aj B′A − AB′ 2J2t+B′B+AA′

 .

We prove (a) first. Since A and B are circulant matrices corresponding
to the base block with size t, there should be t “ − 1” and t “ + 1” in each
column and each row. Therefore, the row sum and column sum of A and B are
zero, this implies that 2cj′ + j′A + j′B′ = 2cj′, 2cj + A′j + Bj = 2cj and
j′A − j′B′ = j′B − j′A′ = 0. By Lemma 3, B′A − AB′ = A′B − BA′ = 0.
By Lemma 4, 2J2t + A′A + BB′ = P . Hence, M is a near-Hadamard design.
Similarly, if λi satisfies (b) then, by Lemma 4, all submatrices except the diagonals
are as in the proof of part (a) and 2J2t + A′A + BB′ = P I . Therefore, M is a
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near-Hadamard design of Type I. If k1 = t, k2 = t + 1 and λi satisfies (c), then
set c = 1. It follows that 2j′ +j′A+j′B′ = 2j +A′j +Bj = 0, j′A−j′B′ = 2j′,
and j′B −j′A′ = −2j′. By Lemma 4, we have 2J2t +A′A+BB′ = P II . Hence
M is a near-Hadamard design of Type II.
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