An RKHS Approach to Robust Functional Linear Regression

Samsung Software R&D Center and Hankuk University of Foreign Studies

Supplementary Material

We prove the main results in this supplementary note.

S1 Proof of Proposition 1

Differentiating (5) with respect to $\mathbf{c} = (c_1, ..., c_n)^T$ yields

$$-\frac{1}{n}\sum_{i=1}^{n}\psi\left(\frac{y_{i}-\alpha-\sum_{l=1}^{L}d_{l}\int_{\mathcal{T}}x_{i}(t)\theta_{l}(t)dt-\sum_{j=1}^{n}c_{j}\langle\xi_{i},\xi_{j}\rangle_{\mathcal{H}}}{\hat{\sigma}}\right)\frac{\langle\xi_{i},\xi_{k}\rangle_{\mathcal{H}}}{\hat{\sigma}}+2\lambda\sum_{i=1}^{n}c_{i}\langle\xi_{i},\xi_{k}\rangle_{\mathcal{H}}=0$$
(S1.1)

for k = 1, ..., n. For $\beta \in S_n$, (S1.1) is written as

$$\left\langle -\frac{1}{n} \sum_{i=1}^{n} \xi_{i} \psi \left(\frac{y_{i} - \alpha - \langle \eta_{i}, \beta \rangle_{\mathcal{H}}}{\hat{\sigma}} \right) \frac{1}{\hat{\sigma}} + 2\lambda P_{1} \beta, \xi_{k} \right\rangle_{\mathcal{H}} = 0, \quad k = 1, \dots, n,$$

which implies that $-(n\hat{\sigma})^{-1}\sum_{i=1}^{n}\xi_{i}\psi\left(\frac{y_{i}-\alpha-\langle\eta_{i},\beta\rangle_{\mathcal{H}}}{\hat{\sigma}}\right)+2\lambda P_{1}\beta$ is an element in \mathcal{H}_{1} perpendicular to ξ_{1},\ldots,ξ_{n} . However, $-(n\hat{\sigma})^{-1}\sum_{i=1}^{n}\xi_{i}\psi\left(\frac{y_{i}-\alpha-\langle\eta_{i},\beta\rangle_{\mathcal{H}}}{\hat{\sigma}}\right)+2\lambda P_{1}\beta$ belongs to span $\{\xi_{1},\ldots,\xi_{n}\}$, so

$$-\frac{1}{n}\sum_{i=1}^{n}\xi_{i}\psi\left(\frac{y_{i}-\alpha-\langle\eta_{i},\beta\rangle_{\mathcal{H}}}{\hat{\sigma}}\right)\frac{1}{\hat{\sigma}}+2\lambda P_{1}\beta=0$$
(S1.2)

holds for a minimizer $\hat{\beta}_{n\lambda}$. Also, differentiating (5) with respect to $\mathbf{d} = (d_1, \dots, d_L)^T$ yields

$$\sum_{i=1}^{n} \psi\left(\frac{y_i - \alpha - \langle \eta_i, \beta \rangle_{\mathcal{H}}}{\hat{\sigma}}\right) \frac{\int_{\mathcal{T}} x_i(t)\theta_l(t)dt}{\hat{\sigma}} = 0, \quad l = 1, \dots, L.$$
 (S1.3)

Combining (S1.2) and (S1.3) with the fact that $\eta_i(t) = \int_{\mathcal{T}} x_i(u)K(u,t)du = \sum_{l=1}^L \{\int_{\mathcal{T}} x_i(u)\theta_l(u)du\}\theta_l(t) + \xi_i(t)$, we have

$$-\frac{1}{n}\sum_{i=1}^{n}\eta_{i}\psi\left(\frac{y_{i}-\alpha-\langle\eta_{i},\beta\rangle_{\mathcal{H}}}{\hat{\sigma}}\right)\frac{1}{\hat{\sigma}}+2\lambda P_{1}\beta=0$$

for $\beta \in S_n$. Therefore, a minimizer $\hat{\beta}_{n\lambda}$ satisfies (6). \square

S2 Proof of Theorem 1

Let us define the norm $|||f|||_{n\lambda} = ||\mathcal{G}_{n\lambda}^{-1}f||_{\Gamma}$ for $f \in S_n$ and constant $B_n = \sup_{1 \leq j \leq n} E|||\eta_j|||_{n\lambda}^2$. Note that $\mathcal{G}_{n\lambda}^{-1}f$ is a function of η_1, \ldots, η_n and so $\mathcal{G}_{n\lambda}^{-1}\eta_1, \ldots, \mathcal{G}_{n\lambda}^{-1}\eta_n$ are dependent, but the $\mathcal{G}_{n\lambda}^{-1}\eta_j$ are identically distributed. This means

that the random variables $|||\eta_j|||_{n\lambda}$ are not independent but identically distributed. Thus, $B_n = \sup_{1 \leq j \leq n} E|||\eta_j|||_{n\lambda}^2 = E|||\eta_1|||_{n\lambda}^2$. Also, note that, by Lemma 1 and (14),

$$\lim_{n \to \infty} n^{-1} B_n = \lim_{n \to \infty} B_n C_n = 0.$$
 (S2.1)

By Mean-value theorem, we have

$$\psi\left(\frac{y_{i} - \langle \eta_{i}, \beta \rangle_{\mathcal{H}}}{\hat{\sigma}}\right) \frac{1}{\hat{\sigma}} = \psi\left(\frac{y_{i} - \langle \eta_{i}, \beta \rangle_{\mathcal{H}}}{\sigma}\right) \frac{1}{\sigma} - (\hat{\sigma} - \sigma) \left\{ \psi'\left(\frac{y_{i} - \langle \eta_{i}, \beta \rangle_{\mathcal{H}}}{\sigma_{n}}\right) \left(\varepsilon_{i} + \frac{\langle \eta_{i}, \beta_{0} - \beta \rangle_{\mathcal{H}}}{\sigma_{n}}\right) + \psi\left(\frac{y_{i} - \langle \eta_{i}, \beta \rangle_{\mathcal{H}}}{\sigma_{n}}\right) \right\} \frac{1}{\sigma_{n}^{2}}$$

with $\sigma_n = \inf_{1 \le i \le n} \sigma_{in}$ for σ_{in} lying between $\hat{\sigma}$ and σ . Taking a second-order Taylor expansion of $\psi((y_i - \langle \eta_i, \beta \rangle_{\mathcal{H}})/\sigma)$ around β_0 , observe that

$$|||\Psi_{n\lambda}\beta - \sigma^2\Phi_{n\lambda}(\beta,\hat{\sigma})/E\psi'||_{n\lambda} \leq T_1 + T_2 + T_3,$$

where

$$T_1 = |||n^{-1} \sum_{i=1}^n \eta_i \langle \eta_i, \beta_0 - \beta \rangle_{\mathcal{H}} (\psi'(\varepsilon_i) - E\psi') / E\psi'|||_{n\lambda},$$

and

$$T_2 = |||(2n\sigma)^{-1} \sum_{i=1}^n \eta_i \psi''(\varepsilon_i + a_i) \langle \eta_i, \beta_0 - \beta \rangle_{\mathcal{H}}^2 / E\psi' |||_{n\lambda}$$

for a random variable a_i that is between 0 and $\langle \eta_i, \beta_0 - \beta \rangle_{\mathcal{H}} / \sigma$. Also,

$$T_{3} = |||\frac{(\hat{\sigma} - \sigma)}{\sigma_{n}^{2}} \frac{\sigma^{2}}{E\psi'} \frac{1}{n} \sum_{i=1}^{n} \eta_{i} \left\{ \psi' \left(\frac{y_{i} - \langle \eta_{i}, \beta \rangle_{\mathcal{H}}}{\sigma_{n}} \right) \left(\varepsilon_{i} + \frac{\langle \eta_{i}, \beta_{0} - \beta \rangle_{\mathcal{H}}}{\sigma_{n}} \right) + \psi \left(\frac{y_{i} - \langle \eta_{i}, \beta \rangle_{\mathcal{H}}}{\sigma_{n}} \right) \right\} |||_{n\lambda}.$$

We have that for any $\beta \in S_n$,

$$\begin{split} ET_{1}^{2} &= E|||n^{-1}\sum_{i=1}^{n}\eta_{i}\langle\eta_{i},\beta_{0}-\beta\rangle_{\mathcal{H}}(\psi'(\varepsilon_{i})-E\psi')/E\psi'|||_{n\lambda}^{2} \\ &= E||n^{-1}\sum_{i=1}^{n}\mathcal{G}_{n\lambda}^{-1}\eta_{i}\langle\eta_{i},\beta_{0}-\beta\rangle_{\mathcal{H}}(\psi'(\varepsilon_{i})-E\psi')/E\psi'||_{\Gamma}^{2} \\ &= n^{-2}\sum_{i=1}^{n}E\left[||\mathcal{G}_{n\lambda}^{-1}\eta_{i}||_{\Gamma}^{2}\langle\eta_{i},\beta_{0}-\beta\rangle_{\mathcal{H}}^{2}(\psi'(\varepsilon_{i})-E\psi')^{2}/(E\psi')^{2}\right] \\ &+ n^{-2}\sum\sum_{i\neq j}E\left[\langle\mathcal{G}_{n\lambda}^{-1}\eta_{i},\mathcal{G}_{n\lambda}^{-1}\eta_{j}\rangle_{\Gamma}\langle\eta_{i},\beta_{0}-\beta\rangle_{\mathcal{H}}\langle\eta_{j},\beta_{0}-\beta\rangle_{\mathcal{H}}\right] \\ &\times E[(\psi'(\varepsilon_{i})-E\psi')]E[(\psi'(\varepsilon_{j})-E\psi')]/(E\psi')^{2} \\ &= n^{-2}\sum_{i=1}^{n}E\left[|||\eta_{i}|||_{n\lambda}^{2}\langle\eta_{i},\beta_{0}-\beta\rangle_{\mathcal{H}}^{2}\right]Var(\psi')/(E\psi')^{2} \\ &\leq n^{-1}CE|||\eta_{1}||_{n\lambda}^{2}\left\{n^{-1}\sum_{i=1}^{n}E\langle\eta_{i},\beta_{0}-\beta\rangle_{\mathcal{H}}^{2}\right\}Var(\psi')/(E\psi')^{2} \\ &= n^{-1}CB_{n}||\beta_{0}-\beta||_{\Gamma}^{2}Var(\psi')/(E\psi')^{2} \end{split}$$

because the x_i and ε_i are independent, the ε_i are independent and identically distributed, the x_i are independent and identically distributed, and $E\langle \eta_i, \beta_0 - \beta \rangle_{\mathcal{H}}^2 = E\left(\int_{\mathcal{T}} x_i(t)(\beta_0(t) - \beta(t))dt\right)^2 = \|\beta_0 - \beta\|_{\Gamma}^2$. Remark that the expectation for T_1 is taken with respect to the sample x_1, \ldots, x_n and $\varepsilon_1, \ldots, \varepsilon_n$. Note that the inequality above is obtained by Cauchy-Schwarz inequality, (A7) and Lemma 2, where we have

$$E\left[|||\eta_i|||_{n\lambda}^2 \langle \eta_i, \beta_0 - \beta \rangle_{\mathcal{H}}^2\right] \le \left\{E|||\eta_i|||_{n\lambda}^4 E \langle \eta_i, \beta_0 - \beta \rangle_{\mathcal{H}}^4\right\}^{1/2}$$
$$\le CE|||\eta_i|||_{n\lambda}^2 E \langle \eta_i, \beta_0 - \beta \rangle_{\mathcal{H}}^2.$$

We have that for any $\beta \in S_n$,

$$T_{2} = |||(2n\sigma)^{-1} \sum_{i=1}^{n} \eta_{i} \psi''(\varepsilon_{i} + a_{i}) \langle \eta_{i}, \beta_{0} - \beta \rangle_{\mathcal{H}}^{2} / E \psi' |||_{n\lambda}$$

$$\leq \frac{1}{2n\sigma} \frac{\sup |\psi''|}{|E\psi'|} ||| \sum_{i=1}^{n} \eta_{i} \langle \eta_{i}, \beta_{0} - \beta \rangle_{\mathcal{H}}^{2} |||_{n\lambda}$$

$$\leq \frac{1}{2n\sigma} \frac{\sup |\psi''|}{|E\psi'|} \sum_{i=1}^{n} |||\eta_{i}|||_{n\lambda} \langle \eta_{i}, \beta_{0} - \beta \rangle_{\mathcal{H}}^{2},$$

and so

$$ET_2 \le \frac{1}{2\sigma} \frac{\sup |\psi''|}{|E\psi'|} C^{1/2} B_n^{1/2} \|\beta_0 - \beta\|_{\Gamma}^2$$

because, by Cauchy-Schwarz inequality and (A7),

$$E\left[|||\eta_i|||_{n\lambda}\langle \eta_i,\beta_0-\beta\rangle_{\mathcal{H}}^2\right] \leq \left\{E|||\eta_i|||_{n\lambda}^2 E\langle \eta_i,\beta_0-\beta\rangle_{\mathcal{H}}^4\right\}^{1/2} \leq C^{1/2} \left\{E|||\eta_i|||_{n\lambda}^2\right\}^{1/2} \|\beta_0-\beta\|_{\Gamma}^2.$$

Also, for $\beta \in S_n$,

$$T_{3} \leq \frac{|\hat{\sigma} - \sigma|}{\sigma_{n}^{2}} \frac{\sigma^{2}}{|E\psi'|} \left\{ \sup |\psi'| \left(n^{-1} \sum_{i=1}^{n} |||\eta_{i}|||_{n\lambda} |\varepsilon_{i}| + \sigma_{n}^{-1} n^{-1} \sum_{i=1}^{n} |||\eta_{i}|||_{n\lambda} |\langle \eta_{i}, \beta_{0} - \beta \rangle_{\mathcal{H}}| \right) + \sup |\psi| \left(n^{-1} \sum_{i=1}^{n} |||\eta_{i}|||_{n\lambda} \right) \right\}.$$

From the fact that $(\sum_{i=1}^{n} a_i)^2 \le n \sum_{i=1}^{n} a_i^2$, observe that $E\left(n^{-1} \sum_{i=1}^{n} |||\eta_i|||_{n\lambda}\right)^2 \le E|||\eta_1|||_{n\lambda}^2$

$$E\left(n^{-1}\sum_{i=1}^{n}|||\eta_{i}|||_{n\lambda}|\varepsilon_{i}|\right)^{2} \leq n^{-1}\sum_{i=1}^{n}E|||\eta_{i}|||_{n\lambda}^{2}E\varepsilon_{i}^{2} = E|||\eta_{1}|||_{n\lambda}^{2}$$

and

$$E\left(n^{-1}\sum_{i=1}^{n}|||\eta_{i}|||_{n\lambda}|\langle\eta_{i},\beta_{0}-\beta\rangle_{\mathcal{H}}|\right)^{2} \leq n^{-1}\sum_{i=1}^{n}E\left[|||\eta_{i}|||_{n\lambda}^{2}\langle\eta_{i},\beta_{0}-\beta\rangle_{\mathcal{H}}|^{2}\right]$$
$$\leq CE|||\eta_{1}|||_{n\lambda}^{2}||\beta_{0}-\beta||_{\Gamma}^{2}.$$

Thus, by Cauchy-Schwarz inequality and (A3), we have

$$ET_3 \le C_1(n^{-1}B_n)^{1/2} + C_2(n^{-1}B_n)^{1/2} \|\beta_0 - \beta\|_{\Gamma}$$

for some positive constants C_1 and C_2 .

Now observe that for $A \geq 8/\delta$,

$$P[\|\tilde{\beta}_{n\lambda} - \beta_0\|_{\Gamma} < (1/2)(AC_n)^{1/2}] > 1 - \delta/2$$
(S2.2)

by Markov's inequality. From Lemma 1 and (13), there is a constant C_3 such that $|B_n/(nC_n)| \leq C_3$ for sufficiently large n. Let $C_4 = C_1 C_3^{1/2}$. Define $F_n = \{\beta \in S_n : \|\beta - \beta_0\|_{\Gamma}^2 \leq (A^{1/2}C_4 + 1)^2 A C_n\}$. Then, for $\beta \in F_n$, we have

$$ET_1^2 \le n^{-1}C(A^{1/2}C_4 + 1)^2AB_nC_nVar(\psi')/(E\psi')^2$$

and

$$ET_2 \le \frac{1}{2\sigma} \frac{\sup |\psi''|}{|E\psi'|} C^{1/2} (A^{1/2}C_4 + 1)^2 A B_n^{1/2} C_n.$$

Also, for $\beta \in F_n$,

$$ET_3 \le \left\{ C_1 A^{-1/2} (n^{-1} B_n C_n^{-1})^{1/2} + (A^{1/2} C_4 + 1) C_2 (n^{-1} B_n)^{1/2} \right\} (AC_n)^{1/2}.$$

By (S2.1), for sufficiently large n, $ET_3 \leq C_4 C_n^{1/2}$.

Letting $D_1 = \{8\delta^{-1}C(A^{1/2}C_4 + 1)^2 \text{Var}(\psi')/(E\psi')^2\}^{1/2}$ and $D_2 = 2\delta^{-1}\sigma^{-1}C^{1/2}(A^{1/2}C_4 + 1)^2 (\sup |\psi'|/|E\psi'|)$, by Markov inequality, we have

$$P[T_1 \le D_1(n^{-1}AB_nC_n)^{1/2}] > 1 - \delta/8$$
(S2.3)

and

$$P[T_2 \le D_2 A B_n^{1/2} C_n] > 1 - \delta/4. \tag{S2.4}$$

Also,

$$P[T_3 \le C_4 A C_n^{1/2}] > 1 - \delta/8. \tag{S2.5}$$

Recall that $\tilde{\beta}_{n\lambda}$ is the solution of $\Psi_{n\lambda}\beta = 0$. From $\Psi_{n\lambda}\tilde{\beta}_{n\lambda} = 0$, we have $n^{-1}\sum_{i=1}^{n} \tilde{y}_{i}\eta_{i} = \mathcal{G}_{n\lambda}\tilde{\beta}_{n\lambda}$. So, for any $\beta \in S_{n}$, $\Psi_{n\lambda}\beta = -n^{-1}\sum_{i=1}^{n} \tilde{y}_{i}\eta_{i} + \mathcal{G}_{n\lambda}\beta = -\mathcal{G}_{n\lambda}\tilde{\beta}_{n\lambda} + \mathcal{G}_{n\lambda}\beta = \mathcal{G}_{n\lambda}(\beta - \tilde{\beta}_{n\lambda})$. Combining (S2.2), (S2.3), (S2.4) and (S2.5), we have an event of probability greater than $1 - \delta$ on which for all $\beta \in F_{n}$,

$$\begin{aligned} |||\sigma^{2}\Phi_{n\lambda}(\beta,\hat{\sigma})/E\psi' - \mathcal{G}_{n\lambda}(\beta - \beta_{0})|||_{n\lambda} &\leq |||\sigma^{2}\Phi_{n\lambda}(\beta,\hat{\sigma})/E\psi' - \Psi_{n\lambda}\beta|||_{n\lambda} + |||\Psi_{n\lambda}\beta - \mathcal{G}_{n\lambda}(\beta - \beta_{0})|||_{n\lambda} \\ &= |||\sigma^{2}\Phi_{n\lambda}(\beta,\hat{\sigma})/E\psi' - \Psi_{n\lambda}\beta|||_{n\lambda} + ||\tilde{\beta}_{n\lambda} - \beta_{0}||_{\Gamma} \\ &\leq \{D_{1}(n^{-1}B_{n})^{1/2} + D_{2}A^{1/2}B_{n}^{1/2}C_{n}^{1/2} + 1/2 + C_{4}A^{1/2}\}(AC_{n})^{1/2}. \end{aligned}$$

By (S2.1), the quantity in braces will be less than or equal to $C_4A^{1/2}+1$ for sufficiently large n. For such n, if $x \in F_n^*$ with $F_n^* = \{\beta - \beta_0 : \beta \in F_n\}$ and

$$U(x) = x - \sigma^2 \mathcal{G}_{n\lambda}^{-1} \Phi_{n\lambda}(x + \beta_0, \hat{\sigma}) / E\psi',$$

then $||U(x)||_{\Gamma}^2 \leq (A^{1/2}C_4 + 1)^2 A C_n$, which means that the continuous function U maps the compact, convex set F_n^* into itself. By Brouwer's theorem, U has a fixed point x_0 in F_n^* such that $U(x_0) = x_0$, i.e., $\Phi_{n\lambda}(x_0 + \beta_0, \hat{\sigma}) = 0$. Taking $\hat{\beta}_{n\lambda} = x_0 + \beta_0$, $\Phi_{n\lambda}(\hat{\beta}_{n\lambda}, \hat{\sigma}) = 0$. Also, for such $\hat{\beta}_{n\lambda}$, $|||\Psi_{n\lambda}\hat{\beta}_{n\lambda} - \sigma^2\Phi_{n\lambda}(\hat{\beta}_{n\lambda}, \hat{\sigma})/E\psi'||_{n\lambda} = |||\Psi_{n\lambda}\hat{\beta}_{n\lambda}||_{n\lambda} = |||\mathcal{G}_{n\lambda}(\hat{\beta}_{n\lambda} - \tilde{\beta}_{n\lambda})||_{n\lambda} = ||\hat{\beta}_{n\lambda} - \tilde{\beta}_{n\lambda}||_{\Gamma}$. Thus, together with (S2.3), (S2.4) and (S2.5), we have

$$\|\hat{\beta}_{n\lambda} - \tilde{\beta}_{n\lambda}\|_{\Gamma} = \|\Psi_{n\lambda}\hat{\beta}_{n\lambda} - \sigma^2 \Phi_{n\lambda}(\hat{\beta}_{n\lambda}, \hat{\sigma}) / E\psi'\|_{n\lambda}$$

$$\leq \{D_1(n^{-1}B_n)^{1/2} + D_2A^{1/2}B_n^{1/2}C_n^{1/2} + C_4A^{1/2}\}(AC_n)^{1/2}$$

where the inequality holds on an event of probability greater than $1 - \delta$. Applying (S2.1) completes the proof. \Box

Lemma 1. Under the assumptions (A4)-(A8), we have

$$E|||\eta_i|||_{n\lambda}^2 = O(n^{1/(2r+2s+1)})$$

for $1 \leq j \leq n$, where the norm $||| \cdot |||_{n\lambda}$ is defined as $|||f|||_{n\lambda} = ||\mathcal{G}_{n\lambda}^{-1}f||_{\Gamma}$ for $f \in S_n$.

Proof. Recall that $\tilde{\beta}_{n\lambda} = \mathcal{G}_{n\lambda}^{-1} \left(n^{-1} \sum_{i=1}^{n} \tilde{y}_{i} \eta_{i} \right)$ from the fact that $\tilde{\beta}_{n\lambda}$ is the solution to $\Psi_{n\lambda}\beta = 0$. Then, $\mathcal{G}_{n\lambda}^{-1} \eta_{j}$ is obtained by taking $\tilde{y}_{i} = n\delta_{ij}$ so that $\tilde{\beta}_{n\lambda j} := \mathcal{G}_{n\lambda}^{-1} \eta_{j}$ is the minimizer over β of

$$\frac{1}{n}\sum_{i=1}^{n}(n\delta_{ij}-\langle\eta_{i},\beta\rangle_{\mathcal{H}})^{2}+2\frac{\lambda\sigma^{2}}{E\psi'}\|P_{1}\beta\|_{\mathcal{H}}^{2},$$

where δ_{ij} is the Kronecker's delta. This enables us to use the techniques in Yuan and Cai (2010) for getting the desired rate for $|||\eta_j|||_{n\lambda}^2$. Note that, if $||P_1\beta||_{\mathcal{H}}^2 = \int_{\mathcal{T}} [\beta^{(m)}(t)]^2 dt$, then $\tilde{\beta}_{n\lambda j}$ is the least squares smoothing spline estimator for functional linear regression with impulse response.

Now let us bring some results and definitions from Yuan and Cai (2010). Let $\omega_k = \nu_k^{-1/2} R^{1/2} \zeta_k$, where $\nu_k = (1 + \gamma_k^{-1})^{-1}$ and ζ_k are the eigenvalues and the corresponding eigenfunctions of the operator $R^{1/2} \Gamma R^{1/2}$. Then, it was shown in Yuan and Cai (2010) that for any $f \in \mathcal{H}$, $f = \sum_{k=1}^{\infty} f_k \omega_k$ with $f_k = \nu_k \langle f, \omega_k \rangle_R$, $||f||_{\Gamma}^2 = \sum_{k=1}^{\infty} f_k^2$, and $||f||_{R}^2 = \sum_{k=1}^{\infty} (1 + \gamma_k^{-1}) f_k^2$. For $0 \le a \le 1$, define the norm $||\cdot||_a$ by

$$||f||_a^2 = \sum_{k=1}^{\infty} (1 + \gamma_k^{-a}) f_k^2.$$
 (S2.6)

Note that $||f||_0^2 = 2||f||_{\Gamma}^2$ and $||f||_1^2 = ||f||_R^2$.

For $f \in \mathcal{H}$, define the operator G_{λ} by

$$G_{\lambda}f(\cdot) = \int_{\mathcal{T}} \int_{\mathcal{T}} f(s)\Gamma(s,t)K(\cdot,t)dsdt + 2\frac{\lambda\sigma^2}{E\psi}P_1f(\cdot).$$

From Lemma 3, we observe that the operator G_{λ}^{-1} given by

$$G_{\lambda}^{-1}f(\cdot) = \sum_{k=1}^{\infty} \left(1 + 2\frac{\lambda\sigma^2}{E\psi'}\gamma_k^{-1}\right)^{-1} \langle f, \omega_k \rangle_{\mathcal{H}} \omega_k(\cdot)$$

is the inverse operator of G_{λ} . Let $\tilde{\beta}_{n\lambda j}^* = G_{\lambda}^{-1}\eta_j$. Then, we have

$$E|||\eta_j|||^2_{n\lambda} = E\|\tilde{\beta}_{n\lambda j}\|^2_{\Gamma} \leq 2E\|\tilde{\beta}_{n\lambda j} - \tilde{\beta}^*_{n\lambda j}\|^2_{\Gamma} + 2E\|\tilde{\beta}^*_{n\lambda j}\|^2_{\Gamma}.$$

We investigate the upper bounds for both terms in the right-hand side of the inequality above. Let $\lambda_0 = 2\lambda\sigma^2/E\psi'$. Since $\tilde{\beta}_{n\lambda j}^* = G_{\lambda}^{-1}\eta_j = \sum_{k=1}^{\infty} (1 + \lambda_0 \gamma_k^{-1})^{-1} \langle \eta_j, \omega_k \rangle_{\mathcal{H}} \omega_k$, we have

$$\|\tilde{\beta}_{n\lambda j}^*\|_a^2 = \sum_{k=1}^{\infty} (1 + \gamma_k^{-a}) \nu_k^2 \langle \tilde{\beta}_{n\lambda j}^*, \omega_k \rangle_R^2 = \sum_{k=1}^{\infty} (1 + \gamma_k^{-a}) (1 + \lambda_0 \gamma_k^{-1})^{-2} \left(\int_{\mathcal{T}} x_j(t) \omega_k(t) dt \right)^2$$

using the fact that $\langle \eta_j, \omega_k \rangle_{\mathcal{H}} = \int_{\mathcal{T}} x_j(t) \omega_k(t) dt$ and $\langle \omega_k, \omega_l \rangle_R = \nu_k^{-1} \delta_{kl}$. Thus,

$$E\|\tilde{\beta}_{n\lambda j}^*\|_a^2 = \sum_{k=1}^{\infty} (1 + \gamma_k^{-a})(1 + \lambda_0 \gamma_k^{-1})^{-2} \underbrace{E\left(\int_{\mathcal{T}} x_j(t)\omega_k(t)dt\right)^2}_{=\|\omega_k\|_{\Gamma}^2 = 1}$$

$$= \sum_{k=1}^{\infty} (1 + \gamma_k^{-a})(1 + \lambda_0 \gamma_k^{-1})^{-2}$$

$$\leq C_5 \sum_{k=1}^{\infty} (1 + k^{a(2r+2s)})(1 + \lambda_0 k^{2r+2s})^{-2}$$

$$\leq C_6 \lambda_0^{-(a+1/(2r+2s))} \int_{\lambda_0^{a+1/(2r+2s)}}^{\infty} \left(1 + y^{(2r+2s)/(a(2r+2s)+1)}\right)^{-2} dy$$

$$= O(\lambda^{-(a+1/(2r+2s))})$$

for some positive constants C_5 and C_6 , so $E\|\tilde{\beta}_{n\lambda j}^*\|_0^2 = O(\lambda^{-1/(2r+2s)})$ by taking a=0, equivalently, we have $E\|\tilde{\beta}_{n\lambda j}^*\|_{\Gamma}^2 = O(\lambda^{-1/(2r+2s)})$. Next observe that $G_{\lambda}\tilde{\beta}_{n\lambda j}^* = \eta_j = \mathcal{G}_{n\lambda}\tilde{\beta}_{n\lambda j}$, so

$$\begin{split} \tilde{\beta}_{n\lambda j} - \tilde{\beta}_{n\lambda j}^* &= G_{\lambda}^{-1} G_{\lambda} (\tilde{\beta}_{n\lambda j} - \tilde{\beta}_{n\lambda j}^*) \\ &= G_{\lambda}^{-1} (G_{\lambda} \tilde{\beta}_{n\lambda j} - \mathcal{G}_{n\lambda} \tilde{\beta}_{n\lambda j}) \\ &= \sum_{k=1}^{\infty} (1 + \lambda_0 \gamma_k^{-1})^{-1} \left[\langle G_{\lambda} \tilde{\beta}_{n\lambda j}, \omega_k \rangle_{\mathcal{H}} - \langle \mathcal{G}_{n\lambda} \tilde{\beta}_{n\lambda j}, \omega_k \rangle_{\mathcal{H}} \right] \omega_k \\ &= \sum_{k=1}^{\infty} (1 + \lambda_0 \gamma_k^{-1})^{-1} \left[\int_{\mathcal{T}} \int_{\mathcal{T}} \tilde{\beta}_{n\lambda j}(s) \Gamma(s, t) \omega_k(t) ds dt \\ &- \int_{\mathcal{T}} \int_{\mathcal{T}} \tilde{\beta}_{n\lambda j}(s) \left(\frac{1}{n} \sum_{i=1}^{n} x_i(s) x_i(t) \right) \omega_k(t) ds dt \right] \omega_k. \end{split}$$

Now write $\tilde{\beta}_{n\lambda j} = \sum_{k=1}^{\infty} \tilde{b}_{jk} \omega_k$. Then,

$$\|\tilde{\beta}_{n\lambda j} - \tilde{\beta}_{n\lambda j}^*\|_{a}^{2} = \sum_{k=1}^{\infty} (1 + \gamma_{k}^{-a})(1 + \lambda_{0}\gamma_{k}^{-1})^{-2} \left[\sum_{l=1}^{\infty} \tilde{b}_{jl} \int_{\mathcal{T}} \int_{\mathcal{T}} \omega_{l}(s) \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}(s) x_{i}(t) - \Gamma(s, t) \right) \omega_{k}(t) ds dt \right]^{2}$$

$$\leq \sum_{k=1}^{\infty} (1 + \gamma_{k}^{-a})(1 + \lambda_{0}\gamma_{k}^{-1})^{-2} \underbrace{\left(\sum_{l=1}^{\infty} (1 + \gamma_{l}^{-c}) \tilde{b}_{jl}^{2} \right)}_{=\|\tilde{\beta}_{n\lambda j}\|_{c}^{2}}$$

$$\times \left(\sum_{l=1}^{\infty} (1 + \gamma_{l}^{-c})^{-1} \left[\int_{\mathcal{T}} \int_{\mathcal{T}} \omega_{l}(s) \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}(s) x_{i}(t) - \Gamma(s, t) \right) \omega_{k}(t) ds dt \right]^{2} \right).$$

Note that by the Cauchy-Schwarz inequality and (A7),

$$E\left(\sum_{l=1}^{\infty} (1+\gamma_{l}^{-c})^{-1} \left[\int_{\mathcal{T}} \int_{\mathcal{T}} \omega_{l}(s) \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}(s) x_{i}(t) - \Gamma(s,t) \right) \omega_{k}(t) ds dt \right]^{2} \right)$$

$$= \frac{1}{n} \sum_{l=1}^{\infty} (1+\gamma_{l}^{-c})^{-1} \operatorname{Var} \left(\int_{\mathcal{T}} X(s) \omega_{l}(s) ds \int_{\mathcal{T}} X(t) \omega_{k}(t) dt \right)$$

$$\leq \frac{1}{n} \sum_{l=1}^{\infty} (1+\gamma_{l}^{-c})^{-1} E\left[\left(\int_{\mathcal{T}} X(s) \omega_{l}(s) ds \int_{\mathcal{T}} X(t) \omega_{k}(t) dt \right)^{2} \right]$$

$$\leq \frac{C}{n} \sum_{l=1}^{\infty} (1+\gamma_{l}^{-c})^{-1} \leq \frac{C_{5}}{n} \sum_{k=1}^{\infty} (1+k^{c(2r+2s)})^{-1} = O(n^{-1})$$

for c > 1/(2r + 2s). Thus,

$$\|\tilde{\beta}_{n\lambda i} - \tilde{\beta}_{n\lambda i}^*\|_a^2 = O_p(n^{-1}\lambda^{-(a+1/(2r+2s))}\|\tilde{\beta}_{n\lambda i}\|_c^2).$$

Taking a = c yields

$$\|\tilde{\beta}_{n\lambda j} - \tilde{\beta}_{n\lambda j}^*\|_c^2 = O_p(n^{-1}\lambda^{-(c+1/(2r+2s))}\|\tilde{\beta}_{n\lambda j}\|_c^2).$$

If $n^{-1}\lambda^{-(c+1/(2r+2s))} \to 0$ as $n \to \infty$, then

$$\|\tilde{\beta}_{n\lambda_{i}}^{*}\|_{c} \geq \|\tilde{\beta}_{n\lambda_{i}}\|_{c} - \|\tilde{\beta}_{n\lambda_{i}} - \tilde{\beta}_{n\lambda_{i}}^{*}\|_{c} = (1 - o_{p}(1))\|\tilde{\beta}_{n\lambda_{i}}\|_{c},$$

so $\|\tilde{\beta}_{n\lambda j}\|_c^2 = O_p(\|\tilde{\beta}_{n\lambda j}^*\|_c^2)$. Since $\|\tilde{\beta}_{n\lambda j}^*\|_c^2 = O_p(\lambda^{-(c+1/(2r+2s))})$ and $\|\cdot\|_\Gamma^2 = \frac{1}{2}\|\cdot\|_0^2$,

$$\|\tilde{\beta}_{n\lambda j} - \tilde{\beta}_{n\lambda j}^*\|_{\Gamma}^2 = O_p(n^{-1}\lambda^{-1/(2r+2s)}\|\tilde{\beta}_{n\lambda j}\|_c^2) = O_p(\lambda^{-1/(2r+2s)}n^{-1}\lambda^{-(c+1/(2r+2s))}) = o_p(\lambda^{-1/(2r+2s)}).$$

Therefore, $E|||\eta_j|||_{n\lambda}^2 = E||\tilde{\beta}_{n\lambda j}||_{\Gamma}^2 = O(\lambda^{-1/(2r+2s)})$ for all j, so the proof is complete by (A6). \square

Lemma 2. Under the assumption (A7), we have

$$E|||\eta_{j}|||_{n\lambda}^{4} \le C \left\{ E|||\eta_{j}|||_{n\lambda}^{2} \right\}^{2}$$

for $1 \leq j \leq n$.

Proof. Recall that $\eta_j(t) = \int_{\mathcal{T}} x_j(u) K(u,t) du$. Observe that

$$|||\eta_j|||_{n\lambda}^2 = ||\mathcal{G}_{n\lambda}^{-1}\eta_j||_{\Gamma}^2 = \int_{\mathcal{T}} \int_{\mathcal{T}} \mathcal{G}_{n\lambda}^{-1}\eta_j(s)\Gamma(s,t)\mathcal{G}_{n\lambda}^{-1}\eta_j(t)dsdt = \sum_{k=1}^{\infty} \pi_k \left(\int_{\mathcal{T}} \mathcal{G}_{n\lambda}^{-1}\eta_j(t)\phi_k(t)dt\right)^2,$$

where the (π_k, ϕ_k) are the pairs of the eigenvalue and eigenfunction of the covariance operator Γ . Letting $g_{n\lambda k}(u) =$

 $\int_{\mathcal{T}} \mathcal{G}_{n\lambda}^{-1} K(u,t) \phi_k(t) dt, |||\eta_j|||_{n\lambda}^2 = \sum_{k=1}^{\infty} \pi_k \left(\int_{\mathcal{T}} x_j(u) g_{n\lambda k}(u) du \right)^2 \text{ and so we have}$

$$E|||\eta_{j}|||_{n\lambda}^{4} = E\left[\sum_{k=1}^{\infty} \pi_{k} \left(\int_{\mathcal{T}} x_{j}(u)g_{n\lambda k}(u)du\right)^{2}\right]^{2}$$

$$= \sum_{k} \pi_{k}^{2} E\left(\int_{\mathcal{T}} x_{j}(u)g_{n\lambda k}(u)du\right)^{4}$$

$$+ \sum_{k\neq l} \pi_{k} \pi_{l} E\left[\left(\int_{\mathcal{T}} x_{j}(u)g_{n\lambda k}(u)du\right)^{2} \left(\int_{\mathcal{T}} x_{j}(u)g_{n\lambda l}(u)du\right)^{2}\right]$$

$$\leq \sum_{k} \pi_{k}^{2} E\left(\int_{\mathcal{T}} x_{j}(u)g_{n\lambda k}(u)du\right)^{4}$$

$$+ \sum_{k\neq l} \pi_{k} \pi_{l} \left\{E\left(\int_{\mathcal{T}} x_{j}(u)g_{n\lambda k}(u)du\right)^{4} E\left(\int_{\mathcal{T}} x_{j}(u)g_{n\lambda l}(u)du\right)^{4}\right\}^{1/2}$$

$$\leq C\sum_{k} \pi_{k}^{2} \left\{E\left(\int_{\mathcal{T}} x_{j}(u)g_{n\lambda k}(u)du\right)^{2}\right\}^{2}$$

$$+ C\sum_{k\neq l} \pi_{k} \pi_{l} E\left(\int_{\mathcal{T}} x_{j}(u)g_{n\lambda k}(u)du\right)^{2} E\left(\int_{\mathcal{T}} x_{j}(u)g_{n\lambda l}(u)du\right)^{2}$$

$$= C\left\{\sum_{k} \pi_{k} E\left(\int_{\mathcal{T}} x_{j}(u)g_{n\lambda k}(u)du\right)^{2}\right\}^{2}$$

by Cauchy-Schwarz inequality and the assumption (A7). The proof is complete. \Box

Lemma 3. For $f \in \mathcal{H}$, define

$$G_{\lambda}f(\cdot) = \int_{\mathcal{T}} \int_{\mathcal{T}} f(s)\Gamma(s,t)K(\cdot,t)dsdt + \lambda P_1f(\cdot)$$

and

$$G_{\lambda}^{-1} f = \sum_{k=1}^{\infty} (1 + \lambda \gamma_k^{-1})^{-1} \langle f, \omega_k \rangle_{\mathcal{H}} \omega_k.$$

Then, $G_{\lambda}^{-1}G_{\lambda}f = f = G_{\lambda}G_{\lambda}^{-1}f$.

Proof. We will first show that $G_{\lambda}^{-1}G_{\lambda}f=f$ for any $f\in\mathcal{H}$. For this, observe that

$$G_{\lambda}^{-1}G_{\lambda}f = \sum_{k=1}^{\infty} (1 + \lambda \gamma_k^{-1})^{-1} \langle G_{\lambda}f, \omega_k \rangle_{\mathcal{H}} \omega_k$$
$$= \sum_{k=1}^{\infty} (1 + \lambda \gamma_k^{-1})^{-1} \left[\int_{\mathcal{T}} \int_{\mathcal{T}} f(s) \Gamma(s, t) \omega_k(t) ds dt + \lambda \langle P_1 f, P_1 \omega_k \rangle_{\mathcal{H}} \right] \omega_k$$

because $\langle P_1 f, \omega_k \rangle_{\mathcal{H}} = \langle P_1 f, P_1 \omega_k \rangle_{\mathcal{H}}$. Note that $\omega_k \in \mathcal{H}$ since we observe $\|\omega_k\|_{\mathcal{H}}^2 \leq \|\omega_k\|_R^2 < \infty$ from the definition of the norm $\|\cdot\|_R^2$. For any $f \in \mathcal{H}$, $f = \sum_{k=1}^\infty f_k \omega_k$ with $f_k = \nu_k \langle f, \omega_k \rangle_R$ and so

$$G_{\lambda}^{-1}G_{\lambda}f = \sum_{k=1}^{\infty} (1 + \lambda \gamma_k^{-1})^{-1} \left[\sum_{j=1}^{\infty} f_j \left\{ \int_{\mathcal{T}} \int_{\mathcal{T}} \omega_j(s) \Gamma(s,t) \omega_k(t) ds dt + \lambda \langle P_1 \omega_j, P_1 \omega_k \rangle_{\mathcal{H}} \right\} \right] \omega_k.$$

Now, from the definition of $\|\cdot\|_R^2$, we can observe that

$$\langle f, g \rangle_R = \int_{\mathcal{T}} \int_{\mathcal{T}} f(s) \Gamma(s, t) g(t) ds dt + \langle P_1 f, P_1 g \rangle_{\mathcal{H}},$$

so that we have

$$\int_{\mathcal{T}} \int_{\mathcal{T}} \omega_{j}(s) \Gamma(s,t) \omega_{k}(t) ds dt + \lambda \langle P_{1} \omega_{j}, P_{1} \omega_{k} \rangle_{\mathcal{H}} = (1-\lambda) \int_{\mathcal{T}} \int_{\mathcal{T}} \omega_{j}(s) \Gamma(s,t) \omega_{k}(t) ds dt + \lambda \langle \omega_{j}, \omega_{k} \rangle_{R}$$

$$= \{ (1-\lambda) + \lambda \nu_{k}^{-1} \} \delta_{jk}$$

$$= (1+\lambda \gamma_{k}^{-1}) \delta_{jk}$$

because $\langle \omega_j, \omega_k \rangle_R = \nu_k^{-1} \delta_{jk}$, $\int_{\mathcal{T}} \int_{\mathcal{T}} \omega_j(s) \Gamma(s,t) \omega_k(t) ds dt = \delta_{jk}$ and $\nu_k = (1 + \gamma_k^{-1})^{-1}$. Thus,

$$G_{\lambda}^{-1}G_{\lambda}f = \sum_{k=1}^{\infty} (1 + \lambda \gamma_k^{-1})^{-1} \left[\sum_{j=1}^{\infty} f_j (1 + \lambda \gamma_k^{-1}) \delta_{jk} \right] \omega_k = \sum_{k=1}^{\infty} f_k \omega_k = f.$$

To see that $G_{\lambda}G_{\lambda}^{-1}f=f$, observe that

$$G_{\lambda}G_{\lambda}^{-1}f(\cdot) = \int_{\mathcal{T}} \int_{\mathcal{T}} G_{\lambda}^{-1}f(s)\Gamma(s,t)K(\cdot,t)dsdt + \lambda P_{1}G_{\lambda}^{-1}f(\cdot)$$

$$= \sum_{k=1}^{\infty} (1 + \lambda \gamma_{k}^{-1})^{-1} \langle f, \omega_{k} \rangle_{\mathcal{H}} \left[\int_{\mathcal{T}} \int_{\mathcal{T}} \omega_{k}(s)\Gamma(s,t)K(\cdot,t)dsdt + \lambda P_{1}\omega_{k}(\cdot) \right].$$

Now we have

$$\langle G_{\lambda}G_{\lambda}^{-1}f, \omega_{l}\rangle_{\mathcal{H}} = \sum_{k=1}^{\infty} (1 + \lambda \gamma_{k}^{-1})^{-1} \langle f, \omega_{k}\rangle_{\mathcal{H}} \left[\int_{\mathcal{T}} \int_{\mathcal{T}} \omega_{k}(s) \Gamma(s, t) \omega_{l}(t) ds dt + \lambda \langle P_{1}\omega_{k}, P_{1}\omega_{l}\rangle_{\mathcal{H}} \right]$$

$$= \sum_{k=1}^{\infty} (1 + \lambda \gamma_{k}^{-1})^{-1} \langle f, \omega_{k}\rangle_{\mathcal{H}} (1 + \lambda \gamma_{k}^{-1}) \delta_{kl}$$

$$= \langle f, \omega_{l}\rangle_{\mathcal{H}},$$

which implies that $G_{\lambda}G_{\lambda}^{-1}f = f$ for $f \in \mathcal{H}$ since both $G_{\lambda}G_{\lambda}^{-1}f - f$ and ω_l are in \mathcal{H} . \square

S3 Proof of Theorem 3

Now define the norm $|||f|||_{n\lambda} = ||\mathcal{G}_{n\lambda}^{-1}f||$ for $f \in S_n$ and constants $B_n = \sup_{1 \le j \le n} E|||\eta_j|||_{n\lambda}^2$ and $C_n = E||\tilde{\beta}_{n\lambda} - \beta_0||^2$. Since $||\beta_0 - \beta||_{\Gamma}^2 = E\left(\int_{\mathcal{T}} X(t)(\beta_0(t) - \beta(t))dt\right)^2 \le E||X||^2||\beta_0 - \beta||^2$, the proof of Theorem 1 goes exactly the same with respect to $||\cdot||$ and so Theorem 1 remains under the \mathcal{L}_2 -norm $||\cdot||$. Thus, it is sufficient to show the condition on B_n and C_n in (S2.1) and Lemma 2 under the norm $||\cdot||$. From the fact that the norm in (S2.6) with a = s/(r+s) is equivalent to $||\cdot||$, we can show that

$$B_n = \sup_{1 \le j \le n} E|||\eta_j|||_{n\lambda}^2 = O(n^{(2s+1)/(2r+2s+1)})$$

in analogous to Lemma 1. Also, from Yuan and Cai (2010), we have that under the assumption (A4)-(A8),

$$C_n = E \|\tilde{\beta}_{n\lambda} - \beta_0\|^2 = O(n^{-2r/(2r+2s+1)}).$$

Consequently, the condition (S2.1) is met when 2r > 2s + 1.

Next we show that Lemma 2 holds with $|||f|||_{n\lambda} = ||\mathcal{G}_{n\lambda}^{-1}f||$. For this, observe that $\mathcal{G}_{n\lambda}^{-1}\eta_j(t) = \int_{\mathcal{T}} x_j(u)\mathcal{G}_{n\lambda}^{-1}K(u,t)du = \sum_{k=1}^{\infty} \zeta_k \int_{\mathcal{T}} x_j(u)\mathcal{G}_{n\lambda}^{-1}\vartheta_k(u)du\vartheta_k(t)$, where the (ζ_k,ϑ_k) are the pairs of the eigenvalue and eigenfunction of the reproducing kernel K. Then,

$$\begin{split} |||\eta_{j}|||_{n\lambda}^{2} &= \|\mathcal{G}_{n\lambda}^{-1}\eta_{j}\|^{2} = \int_{\mathcal{T}} \left(\sum_{k=1}^{\infty} \varsigma_{k} \int_{\mathcal{T}} x_{j}(u) \mathcal{G}_{n\lambda}^{-1} \vartheta_{k}(u) du \vartheta_{k}(t)\right)^{2} dt \\ &= \sum_{k} \varsigma_{k}^{2} \left(\int_{\mathcal{T}} x_{j}(u) \mathcal{G}_{n\lambda}^{-1} \vartheta_{k}(u) du\right)^{2} \int_{\mathcal{T}} \vartheta_{k}^{2}(t) dt \\ &+ \sum_{k \neq l} \varsigma_{k} \varsigma_{l} \int_{\mathcal{T}} x_{j}(u) \mathcal{G}_{n\lambda}^{-1} \vartheta_{k}(u) du \int_{\mathcal{T}} x_{j}(u) \mathcal{G}_{n\lambda}^{-1} \vartheta_{l}(u) du \int_{\mathcal{T}} \vartheta_{k}(t) \vartheta_{l}(t) dt \\ &= \sum_{k} \varsigma_{k}^{2} \left(\int_{\mathcal{T}} x_{j}(u) \mathcal{G}_{n\lambda}^{-1} \vartheta_{k}(u) du\right)^{2}. \end{split}$$

In a similar way to the proof of Lemma 2, we have

$$\begin{split} E|||\eta_{j}|||_{n\lambda}^{4} &= E\left(\sum_{k}\varsigma_{k}^{2}\left(\int_{\mathcal{T}}x_{j}(u)\mathcal{G}_{n\lambda}^{-1}\vartheta_{k}(u)du\right)^{2}\right)^{2} \\ &= \sum_{k}\varsigma_{k}^{4}E\left(\int_{\mathcal{T}}x_{j}(u)\mathcal{G}_{n\lambda}^{-1}\vartheta_{k}(u)du\right)^{4} \\ &+ \sum\sum_{k\neq l}\varsigma_{k}^{2}\varsigma_{l}^{2}E\left[\left(\int_{\mathcal{T}}x_{j}(u)\mathcal{G}_{n\lambda}^{-1}\vartheta_{k}(u)du\right)^{2}\left(\int_{\mathcal{T}}x_{j}(u)\mathcal{G}_{n\lambda}^{-1}\vartheta_{l}(u)du\right)^{2}\right] \\ &\leq C\left\{\sum_{k}\varsigma_{k}^{2}E\left(\int_{\mathcal{T}}x_{j}(u)\mathcal{G}_{n\lambda}^{-1}\vartheta_{k}(u)du\right)^{2}\right\}^{2} = C\left\{E|||\eta_{j}|||_{n\lambda}^{2}\right\}^{2} \end{split}$$

by Cauchy-Schwarz inequality and (A7). Since $\|\hat{\beta}_{n\lambda} - \tilde{\beta}_{n\lambda}\|^2 = O_p(C_n)$ and $\|\hat{\beta}_{n\lambda} - \beta_0\|^2 \le 2\|\tilde{\beta}_{n\lambda} - \beta_0\|^2 + 2\|\hat{\beta}_{n\lambda} - \tilde{\beta}_{n\lambda}\|^2$, the convergence rate for the estimation error of our M-type smoothing spline estimator $\hat{\beta}_{n\lambda}$ is the same for the least squares smoothing spline estimator $\tilde{\beta}_{n\lambda}$. \square

S4 Proof of Theorem 4

Recall that our M-estimate of scale is given in the form of $\sum_{i=1}^{n} \Psi(r_i^0, \sigma) = 0$ with $\Psi(r, \sigma) = \rho_0(|r|/\sigma) - \delta$ for some $\delta \in (0, 1)$. Although $r_i^0 = y_i - \int_{\mathcal{T}} x_i(t) \hat{\beta}(t) dt$ with an estimator $\hat{\beta}$ obtained using all the observations in the sample, we take $r_i^0 = y_i - \int_{\mathcal{T}} x_i(t) \hat{\beta}_{-i}(t) dt$ with a leave-one-out estimator $\hat{\beta}_{-i}$, in sense that $\hat{\beta}_{-i} \approx \hat{\beta}$ for sufficiently large n.

Let $\check{\sigma}$ be the solution of $\sum_{i=1}^{n} \Psi(\epsilon_i, \sigma) = 0$, where $\epsilon_i = y_i - \int \beta_0 x_i$. Then, we can show that

$$n^{-1} \sum_{i=1}^{n} \Psi(r_i^0, \sigma) = n^{-1} \sum_{i=1}^{n} \Psi(\epsilon_i, \sigma) + o_p(n^{-1/2})$$
(S4.1)

implies $\hat{\sigma} - \check{\sigma} = o_p(n^{-1/2})$. This is because

$$\left| n^{-1/2} \sum_{i=1}^{n} \Psi(r_i^0, \hat{\sigma}) - n^{-1/2} \sum_{i=1}^{n} \Psi(\epsilon_i, \hat{\sigma}) \right| = \left| n^{-1/2} \sum_{i=1}^{n} \Psi(\epsilon_i, \hat{\sigma}) \right|
= \left| n^{-1/2} \sum_{i=1}^{n} \Psi(\epsilon_i, \check{\sigma}) + n^{-1/2} \sum_{i=1}^{n} \dot{\Psi}(\epsilon_i, \sigma_0) (\hat{\sigma} - \check{\sigma}) \right|
= \left| n^{-1} \sum_{i=1}^{n} \dot{\Psi}(\epsilon_i, \sigma_0) \sqrt{n} (\hat{\sigma} - \check{\sigma}) \right|,$$

where σ_0 is some value between $\hat{\sigma}$ and $\check{\Phi}$ and $\dot{\Psi} = \partial \Psi / \partial \sigma$. Note that the second equation above yields by the first-order Talyor expansion of Ψ at σ . Since $n^{-1} \sum_{i=1}^{n} \dot{\Psi}(\epsilon_i, \sigma_0) \to E[\dot{\Psi}(\epsilon_1, \sigma_0)] < \infty$ in probability, (S4.1) implies that $\sqrt{n}(\hat{\sigma} - \check{\sigma}) = o_p(1)$. Also, it can be shown that $\sqrt{n}(\check{\sigma} - \sigma) = O_p(1)$ by asymptotic normality of M-estimates for scale in the form of $\sum_{i=1}^{n} \Psi(\epsilon_i, \sigma) = 0$. Thus, it suffices to show (S4.1) to verify (A3).

We now show (S4.1). A second-order Talyor expansion of ρ_0 at β yields

$$n^{-1} \sum_{i=1}^{n} \rho_0 \left(\frac{r_i^0}{\sigma} \right) = n^{-1} \sum_{i=1}^{n} \rho_0 \left(\frac{\epsilon_i}{\sigma} \right) + \sigma^{-1} V_1 + \sigma^{-2} V_2,$$

where $V_1 = n^{-1} \sum_{i=1}^n \rho_0'(\epsilon_i/\sigma) \int_{\mathcal{T}} (\hat{\beta}_{-i} - \beta_0)(t) x_i(t) dt$ and $V_2 = n^{-1} \sum_{i=1}^n \rho_0''\left(\frac{\epsilon_i + u_i}{\sigma}\right) \left(\int_{\mathcal{T}} (\hat{\beta}_{-i} - \beta_0)(t) x_i(t) dt\right)^2$ for some u_i in between 0 and $\int_{\mathcal{T}} (\beta_0 - \hat{\beta}_{-i})(t) x_i(t) dt$. For V_2 , observe that

$$|E|V_2| \le M_1 n^{-1} \sum_{i=1}^n E\left[\left(\int_{\mathcal{T}} (\hat{\beta}_{-i} - \beta_0)(t) x_i(t) dt\right)^2\right] = M_1 E \|\hat{\beta}_{-i} - \beta_0\|_{\Gamma}^2$$

with $M_1 = \sup_t |\rho_0''(t)| < \infty$. Now let $D_i = \rho_0'(\epsilon_i/\sigma) \int_{\mathcal{T}} (\hat{\beta}_{-i} - \beta_0)(t) x_i(t) dt$. For V_1 , we have

$$nEV_1^2 = n^{-1} \sum_{i=1}^n E[D_i^2] + n^{-1} \sum_{i \neq j} \sum_{i \neq j} E[D_i D_j].$$

Observe that

$$n^{-1} \sum_{i=1}^{n} E[D_i^2] = n^{-1} \sum_{i=1}^{n} E\left[\left(\rho_0'(\epsilon_i/\sigma) \int (\hat{\beta}_{-i} - \beta_0)(t) x_i(t) dt \right)^2 \right] = M_2 E \|\hat{\beta}_{-i} - \beta_0\|_{\Gamma}^2.$$

since $E[\rho'_0(\epsilon_i/\sigma)] = 0$ and $M_2 = \text{Var}(\rho'_0(\epsilon_i/\sigma)) < \infty$. Let $D_{ij} = \rho'_0(\epsilon_i/\sigma) \int_{\mathcal{T}} (\hat{\beta}_{ij} - \beta_0)(t) x_i(t) dt$. Then, observe that

$$E[D_iD_{ii}] = E[D_{ii}E[D_i|(x_k, y_k), 1 \le k \le n, k \ne i]] = 0$$

from the fact that $E[D_i|(x_k,y_k), 1 \le k \le n, k \ne i] = \int (\hat{\beta}_{-i} - \beta_0)(t) E[\epsilon_i x_i(t)] dt = 0$. Similarly, $E[D_{ij}D_j] = E[D_{ij}D_{ji}] = 0$. Thus, we have $E[D_iD_j] = E[(D_i - D_{ij})(D_j - D_{ji})]$. Note that $\hat{\beta}_{ii} = \hat{\beta}_{-i}$, so $D_i = D_{ii}$. Since $|E[(D_i - D_{ij})(D_j - D_{ji})]| \le E[(D_i - D_{ij})^2]$ by Cauchy-Schwarz inequality and

$$E[(D_i - D_{ij})^2] = E\left[\left(\rho'_0(\epsilon_i/\sigma) \int_{\mathcal{T}} (\hat{\beta}_{-i} - \hat{\beta}_{ij})(t) x_i(t) dt\right)^2\right] = M_2 E \|\hat{\beta}_{-i} - \hat{\beta}_{ij}\|_{\Gamma}^2,$$

we have

$$nEV_1^2 \le n^{-1} \sum_{i=1}^n E[D_i^2] + n^{-1} \sum_{i \ne j} \sum_{i \ne j} E[(D_i - D_{ij})^2]$$
$$= M_2 E \|\hat{\beta}_{-i} - \beta_0\|_{\Gamma}^2 + M_2 n^{-1} \sum_{i=1}^n \sum_{j=1}^n E \|\hat{\beta}_{-i} - \hat{\beta}_{ij}\|_{\Gamma}^2.$$

Under the assumptions (15) and (16), we have

$$n^{-1} \sum_{i=1}^{n} \rho_0 \left(\frac{r_i^0}{\sigma} \right) = n^{-1} \sum_{i=1}^{n} \rho_0 \left(\frac{\epsilon_i}{\sigma} \right) + o_p(n^{-1/2}),$$

which proves (S4.1). \square