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We prove the main results in this supplementary note.

S1 Proof of Proposition 1
Differentiating (5) with respect to ¢ = (c1,...,¢,)7 yields

_% iw <yi —a— ZIL:I di fT xi(t)igl(t)dt - Z;‘L:1 Cj <£i:€j>7-¢> <§z,§k>

g

420 cil€ibi)y =0 (S1.1)

i=1

for k=1,...,n. For 8 € Sy, (S1.1) is written as
<_125iw(w>i+2)\[ﬁg7§k> =0, k=1,...,n,
n & 6 H

which implies that —(n&) ™" >0 &9 (%) +2\P; 3 is an element in H; perpendicular to &1, .. ., &,. However,

—(né) 'Y Gy (M) + 2\P1 8 belongs to span{¢i,...,&n}, so

I~ (yi—a—n,B)wn) 1 _
L ;w <f) ERDVERL (S1.2)

holds for a minimizer Bnx. Also, differentiating (5) with respect to d = (di,...,dr)7T yields

i}w (yi _a_&w’m”) re®Of®dt _ -y L (S1.3)

g

Combining (S1.2) and (S1.3) with the fact that n;(t) = S xi(u) K (u, t)du = Zle{fT x; ()0, (u)du}o,(t) + &i(t), we

have

1w i —a — (ni, 1
**me(—y = A<n ﬁ>H)7+2AP16:0
n G &
for B € S,.. Therefore, a minimizer B, satisfies (6). O

S2 Proof of Theorem 1

Let us define the norm |||f||[»x = |G,y fllr for f € S, and constant B, = sup; <<, E|llns|ll7x. Note that G fisa

function of 7ni,...,n, and so g;;m, e g;)%nn are dependent, but the Q’;;nj are identically distributed. This means
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that the random variables [[|7;]|»x are not independent but identically distributed. Thus, B, = sup; <<, Elln;ill2s =
E||lm|||2x. Also, note that, by Lemma and (14),

lim n 'B, = lim B,C, =0. (S2.1)

n—oo n—roo

By Mean-value theorem, we have

() s ()

(-0 {¢/<yi*<m76>ﬂ> (EH- (771-,50*5');{) +w(yi*<maﬂ>y)}%

with oy, = inf1<i<n 0in for oi, lying between 6 and o. Taking a second-order Taylor expansion of ¥((yi — (ni, 8)4,)/0)

around (o, observe that
[[WnrfB — 0 ®nx(B,6)/EY||lnx < Ty + Ta + Ts,

where

Ty =||In"" > ni(ni, Bo — B)4 (¥ (e:) — EY')/E|||na,
=1

and

Ty = |||(2n0)~ me (i + ai)(mi, Bo — BY5e/E'[||mx

=1

for a random variable a; that is between 0 and (n;, B0 — 3),,/0. Also,

o — 2 = i — (M, iy 00 — i — (M,
5= S 2L S (o (M) (o 1P =Py (B

n

We have that for any 8 € Sy,
ET? = E|lln™" Y ni(ni, Bo — B)5, (&' () — EY')/EY|[[7n
=1

=E|n"" Zggimw, Bo — B4, (' () — EY')/EY' ||

= *QZE 1GaxmlIE (i, Bo — B)3, (¥ (e0) — Ew')?/(Ew')?]
+n 222 B Gk, Gang) (e, B — B3 ns o — B) )
x B¢/ (e:) — BY)E[(W(e;) — BY)]/(BY')®
S B [l G o — )% Var(w!) /(20

< OB|m|llna {nl ZEW,ﬁo - 6)3{} Var(y)/(E¢')®

=n"'CBu,||fo — B} Var(y')/(Ey')?
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because the z; and €; are independent, the ¢; are independent and identically distributed, the z; are independent and
identically distributed, and E(n;, So — ,3) =FE (fT 2 () (Bo(t) — ﬂ(t))dt)2 = ||fo — Bl|?. Remark that the expectation
for Ty is taken with respect to the sample z1,...,x, and €1,...,e,. Note that the inequality above is obtained by

Cauchy-Schwarz inequality, (A7) and Lemma where we have

E I3 (mi, Bo — B)2]) < {EllmlllixEmi, fo — B3}
< CElmill[ZEni, Bo — B)3,.-

We have that for any 3 € S,
Tz = |[|(2n0) me e+ ai)(mi, Bo — B3,/ EY|||n

1 sup|y”|
sup [V |||Zm s Bo — BY2,

= 2no |E|
1 sup|1/; |
= 9o |Ev| Z|||"71|||n>\ i, Bo — ,8)
and so 1 »
sup 1/2 p1/2 5
ETy < .- == CY2B/?|1 5o —
> =2 |EV| 160 = BlIr
because, by Cauchy-Schwarz inequality and (A7)

1/2

E [lInilllax(mis Bo — BY2] < {Elmill2AE(mi, Bo — B2} < CV2 {EInall22 2 1180 — BII2.

Also, for § € S,

|&—U| o? -1 G -1 -1 =
oz BY] sup [/ { 070> [[milllaalesl + on ™Y 1 malllnal(mi, Bo — B) 5]
" i=1 i=1

+ sup [ <n_1 > |||77i|||nA> } :
i=1

From the fact that (37, a;)> <n > 7" | ai, observe that E (n™" >, |H772|Hn>\) < Elllmll2s,

T3

IN

n 2 n
E (n_l > ||m||m|6i> <07 ElllnalllaaEed = Elllna Il
=1

i=1
and 5
E (n_l > Mmilllanl (ni, Bo — ﬂm) <n” > E([lImlllaa (i, Bo — By’
i=1 i=1

< CE||lml||axl1Bo — BII7-

Thus, by Cauchy-Schwarz inequality and (A3), we have

ETs < Ci(n"'By)" + Ca(n™" Ba)'"?|1Bo — BlIr
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for some positive constants C; and Cs.
Now observe that for A > 8/,
Pll|Bnx = Bollr < (1/2)(ACw)'?] > 1 - 5/2 (52.2)

by Markov’s inequality. From Lemma 1 and (13), there is a constant Cs such that |B,/(nCy)| < Cs for sufficiently
large n. Let Cy = Clc';/Q. Define F,, = { € S : |3 — Bol|2 < (AY2C4 +1)2AC,.}. Then, for 8 € F,, we have

ET{ <n 'C(AY?Cy+1)*AB,CoVar(v') /(E')?

and ) y
BT, < 1 sup [¢"]

1/2( 41/2 12 ABL2C,.
< 5 |E¢/|C ( Cys+1) nC

Also, for B € F,,
ETs < {CIA_I/Q(n_anO,ZI)l/Q (A0, 4 1)02(71—13")1/2} (AC,)2.

By li for sufficiently large n, ET5 < CLCL2.
Letting D1 = {86 1C(AY2Cy + 1)?Var(y')/(Ey')?}Y? and Dy = 26 1o~ CY2(AY2Cy + 1)%(sup |¢'| /| EY'|), by

Markov inequality, we have

P[Ty < Di(n"'AB,C,)"?] >1-4/8 (S2.3)
and
P[Ty < DyABY*C,] > 1 —6/4. (S2.4)
Also,
P[T3 < C4ACY?] > 1—4/8. (52.5)

Recall that Bnx is the solution of ¥, 8 = 0. From \II,MBM = 0, we have n~! S Gim = QHABM. So, for any
BE Sn, UpaB = —n" 0 Gini + GurB = —GnrBar + GnrnB = Gur(B — Bnr). Combining (S2.2), (S2.3), (S2.4) and
(S2.5)), we have an event of probability greater than 1 — ¢ on which for all 8 € F,,

116° @01 (8,8) /B¢ = Gun(B = Bo)lllnx < [0 ®ur(8,8)/EY" = CurBlllux + [[[¥0rB = Gur(8 = Bo)lllnx

= [[16@nr(8,8)/EY" = WnrB|l|nx + [|Bux — Bollr

<ADi1(n"'Bn)Y? + Dy AYPBY2CH? +1/2 + CLAY Y (AC,) Y2,
By 1} the quantity in braces will be less than or equal to C4LAY? 41 for sufficiently large n. For such n, if x € F};
with Fy ={8— 5o : 8 € F,} and

U(z) =2 — oGy ®ua(a + Bo,6)/ B,

then |U(z)||% < (AY2Cy + 1)2AC,,, which means that the continuous function U maps the compact, convex set F
into itself. By Brouwer’s theorem, U has a fixed point zo in F;; such that U(xo) = =o, i.e., Pnr(zo + Bo,5) = 0.
Taking Bnx = @0 + Bo, ®nx(Bar,6) = 0. Also, for such Bux, ||| ¥nrBax — 07 ®nx(Bur: 8)/ BV [[[nx = [[[WnrBaxlllnr =
111Gra(Bax = Br)|llnr = |Bnr — Bnxllr- Thus, together with (S2.3), (S2.4) and (S2.5), we have

[1Brx — Buallr = 11| ZnrBnr — 0> ®r(Bur, 3)/EY'|||nx
<A{Di(n"'Bn)Y? + Dy AY2BL2CY? + €AY AC,)Y?,

where the inequality holds on an event of probability greater than 1 — §. Applying (S2.1) completes the proof. O
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Lemma 1. Under the assumptions (A4)-(A8), we have

Elllnj||[7x = O(n"/Cr2e7D)
for 1< j <n, where the norm ||| -|||nx is defined as |||f[|lnx = |Gox flie for f € Sn.

Proof. Recall that BM = Q;\l (n*1 Zl 1 ym,) from the fact that BM is the solution to ¥,x5 = 0. Then, gm n; is

obtained by taking ¢; = nd;; so that ﬁn)\j = gm n; is the minimizer over S of

—Z § = (i B)) +2 Ew,umnﬂ,

where d;; is the Kronecker’s delta. This enables us to use the techniques in Yuan and Cai (2010) for getting the desired
rate for |||n;]||25. Note that, if | P83, = fT[B(m)(t)}zdt, then B,»; is the least squares smoothing spline estimator for
functional linear regression with impulse response.

Now let us bring some results and definitions from Yuan and Cai (2010). Let wir = Vk_l/QleCk, where v, =
1+ 7;1)71 and (i are the eigenvalues and the corresponding eigenfunctions of the operator RY2IRY2. Then, it was
shown in Yuan and Cai (2010) that for any f € H, f = >_po, fowr with fi = ve(f,wi)p, |fIF = Sae, fi, and
1£11% = Yo, (1 +7; ") f7. For 0 < a <1, define the norm || - ||o by

A2 = (147 ) fi. (S2.6)
k=1

Note that [|f[|§ = 2||f[|? and || f][§ = [|f]%-
For f € H, define the operator G by

Grf () //f K(, )dsdt+2/\¢P1f()

From Lemma we observe that the operator G;l given by
oo

Gzlfc):Z(HzAW o ) (o) ()

k=1

is the inverse operator of Gx. Let B;Aj = G;lnj. Then, we have
2 n 2 bl ot 2 D* 2
Ellnjlllax = EllBnxilIt < 2EBnxi — Baxj It + 2B Bax; lIr-
We investigate the upper bounds for both terms in the right-hand side of the inequality above. Let Ao = 2X\o?/E4’.
Since /S’ZM- = G>_\1’I7j => o (1+ )\07;1)71<77j7Wk>HWk, we have

||/é:i)\j”3 = Z(l + ’Yk )Vk<ﬂn>\]7wk

k=1

bl
&MS
>—l
+
Q
o
=
+
>
o
Q
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=
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<
g
~
N———
(V)



6 HYEJIN SHIN AND SEOKHO LEE

using the fact that (nj,wr),, = [ z;(t)w(t)dt and (wk,wi) z = v, '0ki. Thus,

o]

BBl = 30+ 20+ 2008 ([ st

k=1

=lwilIz=1

M

(144 (1 + Aoy 1) 2

>
Il

1
S CS Z(l + ka(2r+25))(1 + A0k27‘+25)72
k=1

2

< Coag a1/ @reze) /°° 14 y(2r+2s)/(a(2T+2S)+1))‘ dy

g+ (2re2s) (

_ O()\f(a+1/(27"+2s)))

for some positive constants Cs and Cs, so E f)’:ﬂ 2=\ @r+29) by taking a = 0, equivalently, we have E BiyillE =
J g Y. nAj T
O()\fl/@’”’zs)). Next observe that GAﬁZAj =15 = GnrBnrj, SO

Brxi = Brai = GX'Ga(Bnrj — Brxry)
= G5 (CrBrrj — GrrBnri)

oo

= 2(1 + X7 )7 |:<G)\Bn>\j’wk>’}-[ - <gn>\Bn>\ijk>H] Wk

_ 2(1 o) V / By ()0 (s, o (1) st
B /T/TB”“(S) <i iwi(s)xi(t)> wk(t)dsdt] w

bl
-

Now write Bua; = S5, bjrws. Then,

5 - —a -2 N7 1 ’
1 Brxs — @ml\a:; + 7 )L+ Aoy, ) |:;bjl\[F~/Twl(8) (n ;xz(s)xl(t)—F(SJ)) wk(t)dsdt]

(142714 Ay (Z(Hmcﬁ?z)

=l1BnxjliZ

X(Z(lerC)l [/T/Twl < Zml zi(t) — T(s, t)> (t)dsdt] )
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Note that by the Cauchy-Schwarz inequality and (A7),

E(oo 1+ ¢ //wl < Zm i (t) — (s, t)) (t)dsdtr)

=1

:lZ(lJr'yl Var(/X s)wi(s ds/X wi(t dt)
=1

A4+~ 9'E {([rX(s)wl(s)ds/TX(t)wk(t)dt> ]

—c\— C - c(2r42s)\— —
( +’Yl ) 1§f2(1+k(2+2>) 120(n 1)
k=1

3

A IA
I 3=
M8EM8

Il
—

for ¢ > 1/(2r 4+ 2s). Thus,

1Buri = Binslla = Op(n™ AT (HI/CHE2D ) 5 5512).

Taking a = ¢ yields

1Buri = Bans 2 = Op(n™ ATEFVCIH2DY B3 12).

If n=tA—(eFY/@r+29) 5 0 ag n — oo, then
1Brxille > 1Bnrille = 1Bars = Brrjlle = (1 = 0p(1))[1Burlles
50 [|BuxsllZ = Op(l185x;112)- Since 855,112 = Op(A~ Y/ Er2D) and || - |2 = 3| - |13,
1Bnrs — BinslI2 = O, (R~ A"V @+ 5 12y O (AT (@r2s) pm1 (k1) (2r+28)) _ (3 =1/(2r429))
Therefore, E||[n;][|2x = E||Bnxrsl|2 = OA"Y 229 for all 4, so the proof is complete by (A6). O
Lemma 2. Under the assumption (A7), we have
Ellln;lllax < C{Ellnglll2n}’
for1 <j<n.

Proof. Recall that 7;(t) = [, x;(u)K (u,t)du. Observe that

oo 2
75111 = ||g;jnj|\%:/ / Gox i ()T (s, )Gam; (t)dsdt = (/ gifﬁj(t)qﬁk(t)dt) :
TIT k=1 T

where the (7, ¢) are the pairs of the eigenvalue and eigenfunction of the covariance operator I'. Letting gnax(u) =
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TQ;/\lK(u,th(t)dt, Hmilll2x = 320, 7k (meJ )gnak(u )du)2 and so we have

B> ([ mu)gm(u)duﬂ 2

k=1

=St ( [ wwo piu)

55t ([ ot ([ somion)|
SWL (/ (W) g ( )du)‘*

Y wl{ ( /T xj(u)gnkk(u)du)élE( /T xj(u)gw(u)du)él}l/g
<oy {E (/ xjw)gm(u)du)T

+CY Zk#mmE ( /T z; (u)gmk(u)du)2 E ( /T x; (u)gm\l(u)du)2

C{ZmE (/ () g )du)2}2

by Cauchy-Schwarz inequality and the assumption (A7). The proof is complete. [

4
Elllnslllnx =

Lemma 3. For f € H, define
GAf() / / F()T (s, t)K (-, t)dsdt + APy f(-)

and

GY'f= Zwm H(fs wn) k-

Then, Gy'Gaf = f = GAGY'f.

Proof. We will first show that G;lGAf = f for any f € H. For this, observe that

Gy'Gyf Z (14 X5 ) TGS, i) gy

1+ /\'yk [/ / F()T(s, t)wi(t)dsdt + A(P1f, lek)?—l] Wk
k=1
because (P f,wk)y, = (P1f, Piwk),,. Note that wy, € H since we observe HwkH% < HwkH% < 0o from the definition of
the norm || - ||%. For any f € H, f = Y oneq Jewr with fr = ve(f, wr) z and so

G;laxf:i(umk [Zf]{//w] L(s, t)w(t )dsdHA(lej,lek)HH W

k=1
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Now, from the definition of || - ||%, we can observe that

/ / F(s g(t)dsdt + (Pof, Prg),,.

so that we have

/ / w; ()T (s, t)wr (t)dsdt + A Prw;, Prwg),, = (1 — / / w;(s)I(s, t)wr (t)dsdt + Mwj, w) 5

={(1=X) + A, ' Fojn
= (14 My )k

because (wj,wk)p = Vi, Ok, [ [ w;i ()T (s, t)wy(t)dsdt = 65 and vy = (1+ ;") ~". Thus,

GQGﬁ:§]1+MJ)1b:ﬁu+mﬁwﬂ}%=§:hw:f
k=1

k=1 =1

To see that GAGglf = f, observe that
G631 10 = [ [ 6RO O (L dsdt + ARG 1)
TIT

:530+A%})%ﬁwwy{/;Aﬂﬂ@m@ﬂKCJM&ﬁ+Aawdﬂ.

Now we have

<G)\G;1f7 W)y = Z(l + )\’y,; f7 WE) 9 {/ / wi(8)I(s, t)wi (t)dsdt + N Prw, lez>7_[]

k=1

(1+ M )7 wi) 5 (1 + My ok

M

1

fa wl>’H7

—~ =

which implies that GyG ' f = f for f € H since both GA\G;'f — f and w; are in H. O

S3 Proof of Theorem 3

Now define the norm H|f||\n)\ ||gmf\| for f € Sn and constants B, = sup,,<, Ell[n;||[7\ and C,, = E||Bnx — Bol|*
Since ||8o — B} = (fT —B(t ))dt) < E||X||?||Bo — BI|?, the proof of Theorem 1 goes exactly the same with
respect to || - || and so Theorem 1 remains under the Lo-norm || -||. Thus, it is sufficient to show the condition on B,, and
Cp in and Lemma [2] under the norm | - ||. From the fact that the norm in with a = s/(r + s) is equivalent
to || - ||, we can show that

By = sup Ell[n;lllnx = O(n(F0/Er2e4D)
1<j<n

in analogous to Lemmal[l] Also, from Yuan and Cai (2010), we have that under the assumption (A4)-(A8),

Cn = EHBnX — 60”2 = O(n_QT/(2T+23+1)).
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Consequently, the condition is met when 2r > 2s 4 1.

Next we show that Lemmalholds with ||| f|||nx = [|G;x f||. For this, observe that G\ n; (t = [rz;(u ()G N K (u, t)du =
Yoy Sk Jr i (u)G 5 L 94 (w)dudy (t), where the (g, 91) are the pairs of the eigenvalue and elgenfunctlon of the reproducing
kernel K. Then7

2
31112 = G, |2 = / (ch / )G O )dwm)) dt

= ng </ xj(u gn/\ﬁk(u du) / 192
+sz;ﬂgkg/Tl’j(u)g;;ﬂk(u)du/Txj(u)g;/\l'ﬂl(u)duLﬁk(t)ﬂl(t)dt
- ng (/ WG9k (u )du>2.

In a similar way to the proof of Lemma [2} we have

E|H77j‘||i)\* (Z% (/ gn)\ﬁk( )du)2>2

—Z% (/ (u)Gpx Ik (w)d )4
+ ZZI# Gl E (/T z; (U)gnfﬁk(u)dU)Q (/T xj(u)g;jﬁl(u)du) 2]
<C {ZkzcxfE (/ij(u)gn;ﬂk(u)du>2}2 =C{Ellnll7a}

by Cauchy-Schwarz inequality and (A7). Since ||Bnx—Burll? = Op(Ch) and || Bnx —Bol|? < 2/|Bnx — Boll2 +2/|Bnar — Bur |,
the convergence rate for the estimation error of our M-type smoothing spline estimator BM is the same for the least

squares smoothing spline estimator Bn A O

S4 Proof of Theorem 4

Recall that our M-estimate of scale is given in the form of Y7 | ¥(r{,0) = 0 with ¥(r,0) = po(|r|/o) — § for some
d € (0,1). Although r? = yl fT z;(t)B(t)dt with an estimator 3 obtained using all the observations in the sample, we
take r? = y; — fT xi(t t)dt with a leave one-out estimator B i, in sense that ﬁ,i ~ 5 for sufficiently large n.

Let & be the solutlon of 21:1 U(e;,0) = 0, where €; = y; — fﬁoxi. Then, we can show that

YW 0) =0T Y W(e, o) + op(n” ) (S4.1)
=1 =1
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implies 6 — & = 0,(n~/?). This is because
‘n*”? S w6 - n*l/QZ\p(q,&)‘ - ‘n*ﬂ Z\I/(ei,6)
i=1 i=1 j

:‘ *1/22\11 €i,0 +n71/2z\11 €,00)(6 — &)

i=1

- \n—lz\r(ei,mw(&—&) ,

where ¢ is some value between 6 and & and ¥ = ¥ /Oc. Note that the second equation above yields by the first-
order Talyor expansion of ¥ at . Since n™' 31" | U(e;,00) = E[¥(e1,00)] < oo in probability, implies that
Vn(6 — &) = 0p(1). Also, it can be shown that \/n(¢ — o) = Op(1) by asymptotic normality of M-estimates for scale
in the form of > 7 | ¥(e;, 0) = 0. Thus, it suffices to show to verify (A3).

We now show ‘ A second-order Talyor expansion of pg at 8 yields

7S o <;) =Y (D) o Vo,
1=1 i=1

where Vi = n™ ' S0, ph(ei/0) [ (B—i— Bo)()zi(t)dt and Vo = n~ S0 ply (Eites) (fT(B_i - Bo)(t)xi(t)dt)Q for some
u; in between 0 and [ (fo — B_:)(t)xi(t)dt. For Va, observe that

E|Vo| < Min 'Y E

i=1

(/T(sz‘ - ﬂo)(t)ﬂ?i(t)dt> 2] — MLE||B: — Bol2

with My = sup, |pg (t)] < co. Now let D; = pp(ei/o) fT(/['ALi — Bo)(t)z;(t)dt. For Vi, we have

nEVY =n~ ZE[D —|—n_1zz JEID:D;).

Observe that

n! ZE[D?} n! ZE

(shtci/on | (Bi—ﬁoxt)xi(t)dt)g} — MEB — foll>

since E[po(e;/o)] =0 and Mo = Var(pp(e;/0)) < co. Let Di; = pi(ei /o) fT(Bij — Bo)(t)z;(t)dt. Then, observe that
E[D;Dji] = EID;i E[Di|(zk, yx),1 < k <n, k #1]] =
from the fact that E[D;|(zk,yx), 1 <k <n,k #1i] = f(/s',l — o) (t)Ele;xi(t))dt = 0. Similarly, E[D;;D;] = E[D;;Dj;] =

0. Thus, we have E[DZDJ] = E[(Dl — D”)(DJ — D]z)} Note that Bu = B—iv SO Dz = D” Since |E[(Dz - D”)(D] —
D;i)]| < E[(D; — D;;)?] by Cauchy-Schwarz inequality and

E[(D; - Dy)’| =E

(steso) [ 6 mamwdtﬂ B — B
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we have N
nEVE < _IE ED?-{- _IE E E[(D; — D;;)?
13N £ [ ] n oy [( J)]

= MzE||B-i — Bollf + Mon™ ' > > " E|lB-: — Byl

i=1 j=1

Under the assumptions (15) and (16), we have

n 0 n
-1 i\ _ -1 (2) -1/2
n ;leo (a) n E = + op(n ),

=1

which proves (S4.1). O
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