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S1 Simulation results

The overlapping structures are categorized into four types: truly grouped estimators, truly

grouped non-zero estimators, truly grouped zero estimators, and truly ungrouped estimators,

with the index set of the categories as TG, NG, ZG, and UG, respectively. Thus, we have

TG = {j : β0
lad,j = β0

ls,j}, NG = {j : β0
lad,j = β0

ls,j ̸= 0}, ZG = {j : β0
lad,j = β0

ls,j = 0}, and
UG = {j : β0

lad,j ̸= β0
ls,j}. We measured the performance of the overlapping recovery using

overlapping ratios: TG ratio, NG ratio, ZG ratio, and UG ratio. These ratios are defined as

follows:

TG ratio =
|{j : β̂lad,j = β̂ls,j} ∩ TG|

|TG| ,

NG ratio =
|{j : β̂lad,j = β̂ls,j} ∩NG|

|NG| ,

ZG ratio =
|{j : β̂lad,j = β̂ls,j} ∩ ZG|

|ZG| ,

UG ratio =
|{j : β̂lad,j = β̂ls,j} ∩UG|

|UG| .

Since TG is partitioned into NG and ZG, the TG ratio is the weighted average of the NG ratio

and the ZG ratio with the weights |NG|/|TG| and |ZG|/|TG|. We report the averages of these

ratios over the repetitions in Table S1 below.

S2 Proofs

Proof of Lemma 1.

From A1, the minimizer of the composite risk function, β0 is bounded and unique. The

composite risk function is finite for each (αT ,βT )T ∈ RK·(p+1) since it is a weighted lin-

ear combination of the finite separate risk functions from A2. The composite loss function,

L(z, (αT ,βT )), is also differentiable with respect to (αT ,βT )T at (α0T ,β0T )T for Pz-almost
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n=100 n=500
Category TG NG ZG UG TG NG ZG UG

N(0,3) Oracle 0.75 0 1 0.75 0 1
Ordinary 0 0 0 0.0008 0 0.0011
AdLasso 0.4883 0 0.6511 0.56 0 0.7467
SCAD 0.4758 0 0.6344 0.57 0 0.76
PCQ oracle 1 1 1 1 1 1
PCQ 1 1 1 1 1 1
ACME oracle 1 1 1 1 1 1
ACME 0.78 0.5567 0.8544 0.8692 0.69 0.9289

DE Oracle 0.75 0 1 0.75 0 1
Ordinary 0 0 0 0 0 0
AdLasso 0.5008 0 0.6678 0.5567 0 0.7422
SCAD 0.5117 0 0.6822 0.5392 0 0.7189
PCQ oracle 1 1 1 1 1 1
PCQ 1 1 1 1 1 1
ACME oracle 1 1 1 1 1 1
ACME 0.8333 0.6667 0.8889 0.8408 0.6833 0.8933

t(4) Oracle 0.75 0 1 0.75 0 1
Ordinary 0 0 0 0 0 0
AdLasso 0.4767 0 0.6356 0.5333 0 0.7111
SCAD 0.4725 0 0.63 0.5683 0 0.7578
PCQ oracle 1 1 1 1 1 1
PCQ 1 1 1 1 1 1
ACME oracle 1 1 1 1 1 1
ACME 0.8508 0.6867 0.9056 0.8575 0.7033 0.9089

LLS Oracle 0.6667 0 1 0 0.6667 0 1 0
Ordinary 0 0 0 0 0 0 0 0
AdLasso 0.3458 0 0.5187 0.0033 0.45 0 0.675 0
SCAD 0.3017 0 0.4525 0.0017 0.4125 0 0.6188 0
PCQ oracle 1 1 1 1 1 1 1 1
PCQ 1 1 1 1 1 1 1 1
ACME oracle 1 1 1 0 1 1 1 0
ACME 0.7458 0.53 0.8538 0.2217 0.8642 0.6925 0.95 0.005

Table S1: Simulation results with Grouping Ratios (TG ratio, NG ratio, ZG ratio, and
UG ratio). Note that N(0,3), DE, t(4) correspond to Simulation 4.1 and LLS corresponds
to Simulation 4.2. For Simulation 4.1, the UG column is left empty since the two
regression models are completely overlapped in that case. Thus there is no covariate
with different parameter values across the models.
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every z with derivative

∇(αT ,βT )T L(z, (α
T ,βT ))

=(w1∇(α1,β1)
L1(y, α1 + xTβ1)

T , · · · , wK∇(αK ,βK)LK(y, αK + xTβK)T )T .

The variance of the score function at the true parameters is

J(α0T ,β0T ) ≡ E[∇(αT ,βT )T L(z, (α
0T ,β0T )) · ∇(αT ,βT )T L(z, (α

0T ,β0T ))T ]

= E[wk∇(αk,βT
k
)T Lk(y, αk + xTβ0

k) · wl∇(αl,β
T
l
)T Ll(y, αl + xTβ0

l )
T ]Kk,l=1.

Note that the J(α0T ,β0T ) is a K(p+1)×K(p+1) block matrix with K2 blocks of (p+1)×(p+1)

submatrices, denoted as [Jkl(α
0,β0)]Kk,l=1. All the on-diagonal block matrices are finite since

Jkk(α
0T ,β0T ) = w2

kJk(α
0
k,β

0
k) < ∞ from A3 a). The finiteness of the off-diagonal blocks is

elementwisly shown by Cauchy-Schwarz inequality.

The gradient vector and the Hessian matrix of the composite risk function are as follows:

∇(αT ,βT )T R(αT ,βT ) = (w1∇(α1,β
T
1 )T R1(α1,β1)

T , · · · , wK∇(αK ,βT
K

)T RK(αK ,βK)T ),

H(αT ,βT ) = diag(w1H1(α1,β1), · · · , wKHK(αK ,βK)).

The Hessian matrix at the true parameters, H(α0T ,β0T ), is also positive definite from A3 b).

The composite risk function also has the same assumption on its twice differentiability and the

positive definiteness of Hessian matrix. Lastly, the composite loss function is a linear combi-

nation of the convex functions with respect to (αT ,βT )T . Hence, the composite loss function

achieves the assumption, A4.

Proof of Lemma 3. By definition, both θ̂
o
and θ0 are the unique minimizers of the empirical

distinct loss function and the distinct risk function respectively. We obtain the pointwise con-

vergence of the empirical distinct loss function to the distinct risk function by the weak law of

large numbers for any θ. The uniform convergence of the empirical distinct loss function to the

distinct risk function can be verified by Convexity Lemma from Pollard (1991). The conditions

on Theorem 5.7 of Van der Vaart (2000) are satisfied, thus this completes the proof.

Proof of Theorem 1. The distinct loss function and risk function satisfy the conditions for

the asymptotic normality of an M-estimator. See Theorem 5.23 of Van der Vaart (2000) for

further details. The distinct loss function, L(z,θ), is differentiable with respect to θ at θ0

for Pz-almost every z with derivative ∇θL(z,θ0) and E[∇θL(z,θ0) · ∇θL(z,θ0)T ] < ∞. The

distinct risk function is twice differentiable with respect to θ at θ0 with the positive definite

Hessian matrix H(θ0).

We can extend the results for the original estimators as shown in Corollary 1. From Corol-
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larty 1, we also have
√
n−consistency of the composite oracle estimator, β̂

o

A. The asymptotic

property is preserved because the oracle estimator for each model is a subset of the distinct

oracle estimator.

Corollary 1. If the above assumptions are satisfied, then
√
n(β̂

o

Ak
− β0

Ak
) = Op(1) for all

k = 1, · · · ,K.

Proof of Corollary 1. Note that the
√
n-consistency of distinct oracle estimator is equivalent

to the
√
n-consistency of separate oracle estimator:

√
n(θ̂

o
− θ0) = Op(1) ⇔

√
n(β̂

o

A0 − β0
A0) = Op(1) ⇔

√
n(β̂

o

A0
k
− β0

A0
k
) = Op(1), k = 1, · · · ,K.

The “If” part of the first equivalence is obtained from
√
n|θ̂

o
− θ0| ≤

√
n|β̂

o

A0 − β0
A0 |. The

“Only if” part is from
√
n|β̂

o

A0 − β0
A0 | =

√
n

K∑
k=1

|β̂
o

A0
k
− β0

A0
k
| ≤

√
nK|θ̂

o
− θ0|. The second

equivalence is straightforward as
√
n|β̂

o

A0 − β0
A0 | = (

K∑
k=1

√
n|β̂

o

A0
k
− β0

A0
k
|2)

1
2 .

Proof of Lemma 4. Our aim is to show that, for a sufficiently large constant C,

P{inf |u|=C, ∀kQn((α
0T ,β0T ) + n− 1

2uT ) > Q(α0T ,β0T )} → 1,

where u = (uT
0 ,u

T
1 , · · · , uT

K)T ∈ RK(p+1), u0 ∈ RK and uk ∈ Rp. That is, there is a minimizer

inside the ball |(αT ,βT )T −(α0T ,β0T )T | < n− 1
2C, with probability tending to 1. It is the same

argument as in the proof of Theorem 1 in Fan and Li (2001). Our objective function is (3). Let

us define

Dn(u) ≡ Qn((α
0T ,β0T ) +

1√
n
uT )−Qn(α

0T ,β0T )

=

n∑
i=1

[L(zi, (α
0T ,β0T ) +

uT

√
n
)− L(zi, (α

0T ,β0T )]

+n

K∑
k=1

p∑
j=1

(pλ1n(|β
0
kj +

1√
n
ukj |)− pλ1n(|β

0
kj |)

+n
∑
k<k′

p∑
j=1

(pλ2n(|β
0
k′j +

1√
n
uk′j − β0

kj −
1√
n
ukj |)− pλ2n(|β

0
k′j − β0

kj |))

≥
n∑

i=1

[L(zi,β
0 +

u√
n
)− L(zi,β

0)] + n

K∑
k=1

∑
j∈Ak

(pλ1n(|β
0
kj +

1√
n
ukj |)− pλ1n(|β

0
kj |)) (S2.1)

+n
∑
k<k′

∑
j∈Oc

kk′

(pλ2n(|β
0
k′j +

1√
n
uk′j − β0

kj −
1√
n
ukj |)− pλ2n(|β

0
k′j − β0

kj |))

≡T1 + T2 + T3

The inequality holds because β0
kj = 0 if j ∈ Ac

k and β0
k′j = β0

kj if j ∈ Okk′ . By Lemma 2, the T1
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converges to 1
2
uTH(α0T ,β0T )u+W Tu in probability and further uniformly converges on any

compact subset of Rd. We consider the T2 and T3 parts with three types of penalty functions:

folded concave, one-step folded concave and weighted L1 penalty functions. We first examine

the folded concave penalty functions. For a large n, if |t| > aλ1n and λ1n → 0,

T2 = n

K∑
k=1

∑
j∈Ak

(pλ1n(β
0
kj +

1√
n
ukj)− pλ1n(β

0
kj)) = 0 (S2.2)

since p′λ1n
(t) = 0. The same argument is applied to the T3 for a large n:

T3 = n
∑
k<k′

∑
j∈Oc

kk′

(pλ2n(β
0
k′j − β0

kj +
1√
n
(uk′j − ukj))− pλ2n(β

0
k′j − β0

kj)) = 0. (S2.3)

For the weighted L1 penalty, the terms T2 and T3 go to zero in probability. We now

consider one-step folded concave penalty functions under the assumption of λ1n → 0.

T2 =
√
n

K∑
k=1

∑
j∈Ak

p′λ1n
(|β(0)

kj |)
|β0

kj +
1√
n
ukj | − |β0

kj |
1/

√
n

= op(1) (S2.4)

Note that
|β0

kj +
1√
n
ukj | − |β0

kj |
1/

√
n

→ sgn(β0
kj)ukj and

√
np′λ1n

(|β(0)
kj |)

p→ 0 as |β(0)
kj |

p→ |β0
kj | ≠ 0

and p′λ1n
(t) = 0 for t > aλ1n. For T3,

T3 =
√
n
∑
k<k′

∑
j∈Oc

kk′

p′λ2n
(|β(0)

k′j − β
(0)
kj |)

|β0
k′j − β0

kj +
1√
n
(uk′j − ukj)| − |β0

k′j − β0
kj |

1/
√
n

(S2.5)

Similar to T2, we obtain
|β0

k′j − β0
kj +

1√
n
(uk′j − ukj)| − |β0

k′j − β0
kj |

1/
√
n

→ sgn(β0
k′j − β0

kj)(uk′j −

ukj) and
√
np′λ2n

(|β(0)

k′j − β
(0)
kj |)

p→ 0. Thus, T3 is also op(1). For the other weighted L1 penalty

functions, we obtain

T2 =
√
nλ1n

K∑
k=1

∑
j∈Ak

p′(|β(0)
kj |)

|β0
kj +

1√
n
ukj | − |β0

kj |
1/

√
n

, (S2.6)

under the assumption that
√
nλ1n → 0.

Each term converges to a certain value in a probabilistic sense. p′(|β(0)
kj |)

p→ p′(|β0
kj |) by

the continuity of the derivative of the penalty function and the last term goes to sgn(β0
kj)ukj .

As
√
nλ1n → 0, we have T2 = op(1). In a similar way, we can write T3 as

T3 =
√
nλ2n

∑
k<k′

∑
j∈Oc

kk′

p′(|β(0)

k′j − β
(0)
kj |)

|β0
k′j − β0

kj +
1√
n
(uk′j − ukj)| − |β0

k′j − β0
kj |

1/
√
n

(S2.7)
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p′(|β(0)

k′j − β
(0)
kj |)

p→ p′(|β0
k′j − β0

kj |) and the next term goes to sgn(β0
k′j − β0

kj)(ukj − ukj).

We have T3 = op(1) as
√
nλ2n → 0. The terms T2 and T3 converge to zero in probability

under every penalty function. For the |u| equal to a sufficiently large C, Qn((α
0T ,β0T ) +

1√
n
uT ) − Qn(α

0T ,β0T ) is dominated by the quadratic term, 1
2
uTH(α0T ,β0T )u. Thus, the

√
n-consistency is achieved.

Lemma 5 and Theorem 2.

Lemma 5. Suppose that λ1n → 0, λ2n → 0,
√
nλ1n → ∞, and

√
nλ2n → ∞ for folded concave,

one-step folded concave penalty functions. For weighted L1 penalty functions, suppose
√
nλ1n →

0,
√
nλ2n → 0, n

s+1
2 λ1n → ∞, and n

s+1
2 λ2n → ∞. Assume that there exists at least one

j ∈ Okk′ for some k < k′. Consider a given random vector (αDT ,βDT )T and c, whose lengths

are K ·(p+1). Denote βDT = (βD1T , · · · , βDKT ), where βDk = [β
Dk
j ]pj=1. Suppose that βD

kj =

0 ∀j ∈ Ac
k for every k and βD

kj = βD
k′j ∀j ∈ Okk′ for all k < k′. Denote cT = (cT0 , c

T
1 , · · · , cTK),

where c0 = [c0k]
K
k=1, ck = [ckj ]

p
j=1 and ckj = 0 for j ∈ Ak and j /∈ Okk′ ∀k′ ̸= k. Define

(αD′T ,βD′T ) = (αDT ,βDT ) + cT and denote βD′T = (βD′
1T , · · · , βD′

KT ), where βD′
k =

[β
D′

k
j ]pj=1. Assume that |(αDT ,βDT )T − (α0T ,β0T )T | = Op(n

−1/2). With probability tending to

one, for any constant C1,

Qn(α
DT ,βDT ) = min

|c|≤n−1/2C1

Qn(α
D′T ,βD′T ).

Note that given a constant C1,
∑

k<k′
∑

j∈Okk′
|ck′j − ckj | ≤ n−1/2C2, where the constant, C2,

depends on all Okk′s, Aks, K, and p.

Proof. It follows the same line as the proof of Lemma 1 of Wu and Liu (2009). We let

γ0 = (α0T ,β0T )T , γD = (αDT ,βDT )T and γD′
= (αD′T ,βD′T )T .

Qn(γ
DT )−Qn(γ

D′T ) = [Qn(γ
D)−Qn(γ

0)]− [Qn(γ
D′

)−Qn(γ
0)]

=

n∑
i=1

[L(zi,γ
DT )− L(zi,γ

0T )]−
n∑

i=1

[L(zi,γ
D′T )− L(zi,γ

0T )]

+n
K∑

k=1

∑
j∈Ak

(pλn1(|β
D
kj |)− pλn1(|β

D′
kj |))− n

K∑
k=1

∑
j∈Ac

k

pλn1(|β
D′
kj |)

+n
∑
k<k′

∑
j∈Oc

kk′

(pλn2(|β
D
k′j − βD

kj |)− pλn2(|β
D′

k′j − βD′
kj |))− n

∑
k<k′

∑
j∈Okk′

pλn2(|β
D′

k′j − βD′
kj |)

≡U1 + U2 + U3 + U4 + U5 + U6,

where Oc
kk′ = {1, 2, · · · , p}\Okk′ . Note that |βD−β0| = Op(n

−1/2) and |βD′
−β0| = Op(n

−1/2).

It implies that βD p→ β0 and βD′ p→ β0. First, from Lemma 2, U1 and U2 are bounded in
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probability.

U1 + U2 =

n∑
i=1

[L(zi,γ
DT )− L(zi,γ

0T )]−
n∑

i=1

[L(zi,γ
D′T )− L(zi,γ

0T )]

=
√
n(γD − γ0)TH(γ0T )

√
n(γD − γ0) +W T√n(γD − γ0) + op(1)

−
√
n(γD′

− γ0)TH(γ0T )
√
n(γD′

− γ0)−W T√n(γD′
− γ0) + op(1)

=Op(1) +W T√nc+ op(1) = Op(1)

Next, U3, U4, U5, U6 are considered with folded concave, one-step folded concave, and weighted

L1 penalty functions. We have the conditions such that 0 < c ≤ n−1/2C1 and 0 <
∑
k<k′

∑
j∈Okk′

|ck′j−

ckj | ≤ n−1/2C2. For folded concave penalty functions, each term of U3 is op(1), thus U3 = op(1)

by continuous mapping theorem and ckj → 0. The U5 is also op(1) from the same argument.

We now show that both U4 and U6 dominate in magnitude.

U4 =− n

K∑
k=1

∑
j∈Ac

k

pλ1n(|ckj |) = −np′λ1n
(0+)

K∑
k=1

∑
j∈Ac

k

|ckj |(1 + o(1))

≤− a1

√
nλ1n ·

√
n

K∑
k=1

∑
j∈Ac

k

|ckj |(1 + o(1))

As
√
nλ1n → ∞ and 0 <

√
n

K∑
k=1

∑
j∈Ac

k

|ckj | ≤ C1, we have U4
p→ −∞. We obtain the same result

for the U6 as follows:

U6 =− n
∑
k<k′

∑
j∈Okk′

pλ2n(|ck′j − ckj |) = −np′λ2n
(0+)(

∑
k<k′

∑
j∈Okk′

|ck′j − ckj |)(1 + o(1))

≤− a1

√
nλ2n ·

√
n
∑
k<k′

∑
j∈Okk′

|ck′j − ckj |(1 + o(1)).

With one-step folded concave and weighted L1 penalty functions, the U3, U4, U5 and U6 are

written as follows:

U3 = n
K∑

k=1

∑
j∈Ak

p′λ1n
(|β(0)

kj |)(|β
D
kj | − |βD

kj + ckj |) (S2.8)

U4 = −n
K∑

k=1

∑
j∈Ac

k

p′λ1n
(|β(0)

kj |)|ckj | (S2.9)

U5 = n
∑
k<k′

∑
j∈Oc

kk′

p′λ2n
(|β(0)

k′j − β
(0)
kj |)(|β

D′
k′j − βD′

kj | − |βD′
k′j − βD′

kj + ck′j − ckj |) (S2.10)

U6 = −n
∑
k<k′

∑
j∈Okk′

p′λ2n
(|β(0)

k′j − β
(0)
kj |) · |ck′j − ckj | (S2.11)



Sunyoung Shin, Jason Fine, and Yufeng Liu

Both U3 and U5 converge to zero in probability in the same sense of (S2.4) and (S2.5). Both U4

and U6 are bounded by −a1
√
nλ1n

√
n

K∑
k=1

∑
j∈Ak

|ckj | and −a1
√
nλ1n

√
n
∑
k<k′

∑
j∈Okk′

|ck′j − ckj |.

Both go to the negative infinity in probability as
√
nλ1n → ∞. Now, we plug-in the weighted

L1 penalty function to (S2.8)-(S2.11).

U3 = nλ1n

K∑
k=1

∑
j∈Ak

p′(|β(0)
kj |)(|β

D
kj | − |βD

kj + ckj |)

U4 = −nλ1n

K∑
k=1

∑
j∈Ac

k

p′(|β(0)
kj |)|ckj | = −n

1+s
2 λ1n

K∑
k=1

∑
j∈Ac

k

(
√
n|β(0)

kj |)
−s

p′(|β(0)
kj |)

|β(0)
kj |−s

√
n|ckj |

U5 = nλ2n

∑
k<k′

∑
j∈Oc

kk′

p′(|β(0)

k′j − β
(0)
kj |)(|β

D′
k′j − βD′

kj | − |βD′
k′j − βD′

kj + ck′j − ckj |)

U6 = −nλ2n

∑
k<k′

∑
j∈Okk′

p′(|β(0)

k′j − β
(0)
kj |) · |ck′j − ckj |

= −n
1+s
2 λ2n

∑
k<k′

∑
j∈Okk′

(
√
n|β(0)

k′j − β
(0)
kj |)

−s
p′(|β(0)

k′j − β
(0)
kj |)

|β(0)

k′j − β
(0)
kj |−s

√
n|ck′j − ckj |

As
√
nλ1n → ∞ and

√
nλ2n → ∞, both U3 and U5 go to zero in probability as (S2.6)

and (S2.7). As n
1+s
2 λ1n → ∞ and n

1+s
2 λ2n → ∞, both U4 and U6 go to the negative infinity

in probability. This term is higher order than any other terms, thus dominates the remain-

ing terms. In other words, Qn(γ
DT ) − Qn(γ

D′T ) < 0 for a large n. Thus, the minimizer of

Qn(γ
D′T ) satisfies βkj = 0 ∀j ∈ Ac

k for every k and βk′j = βkj ∀j ∈ Okk′ for every k < k′ with

probability tending to 1. Note that there exists at least one non-empty set of Okk′ for some

k < k′. This extra condition is needed because the thrid term is zero without the condition. �

From Lemma 5, the (α̂T , β̂
T
)T does not minimize the objective function, Qn(α

T ,βT ) if

at least one of the true zero parameters is estimated as non-zero or at least one overlapping

structure is estimated with different values with probability tending to one. Theorem 2 is the

straightforward result from Lemma 5.

Proof of Theorem 3. Our proof follows the proof of the Theorem in Wang, Li, and Jiang

(2007). Denote θ̂A0(G0) the minimizer of Q′
n(θ) ≡ Qn(βA0(θ)), where βA0(θ) is written as

(θ01, · · · , θ0K ,βT
A1

(θ), · · · ,βT
AK

(θ), )T .

Q′
n(θA0) =

K∑
k=1

n∑
i=1

wkLk(yi, θ0k + x
A0

kT

i βA0
k
(θ)) + n

K∑
k=1

∑
j∈Ak

pλ1n(βAkj(θ))

+ n
∑
k<k′

∑
j∈Oc

kk′

pλ2n(βA′
k
j(θ)− βAkj(θ))
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Let Ψn(u) = Q′
n(θ

0 +
u√
n
), then

√
n(θ̂A0(G0) − θ0) is the minimizer of Ψn(u) − Ψn(0). For

any u ∈ RK+
∑Q

q=1 Gq , denote

Vn(u) ≡ Ψn(u)−Ψn(0)

=
n∑

i=1

L(zi,θ
0 +

u√
n
)−

n∑
i=1

L(zi,θ
0)

+n

K∑
k=1

∑
j∈Ak

pλ1n(β
0
Akj(θ) +

ũkj(u)√
n

)− pλ1n(β
0
Akj(θ))

+n
∑
k<k′

∑
j∈Oc

kk′

pλ2n(β
0
Ak′ j(θ)− β0

Akj(θ) +
ũk′j(u)− ũkj(u)√

n
)− pλ2n(β

0
A′

k
j(θ)− β0

Akj(θ))

≡Vn1(u) + Vn2(u) + Vn3(u),

where ũk(u) = [ũkj ]j∈Ak is the element of u corresponding to β0
Ak

. Similar to Lemma 2, we

have

Vn1(u)
d→ 1

2
uTH(θ0)u+W T

θu,

where W θ ∼ N(0,J (θ0). Both Vn2(u) and Vn3(u) are op(1) under any penalty function form

as (S2.2)-(S2.7) in the proof of Lemma 4. Finally, we obtain

Vn(u)
d→ 1

2
uTH(θ0)u+W T

θu.

Lemma 2.2 and Remark 1 of Davis, Knight, and Liu (1992) imply that if an objective function

converges in distribution to a strictly convex function, its minimum converges in distribution

to the unique minimum of the strictly convex function. Hence, we complete the proof.
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