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Abstract: Often when we deal with ‘Big Data’, the true effects we are interested in

are Rare and Weak (RW). Researchers measure a large number of features, hoping

to find perhaps only a small fraction of them to be relevant to the research in

question; the effect sizes of the relevant features are individually small so the true

effects are not strong enough to stand out for themselves.

Higher Criticism (HC) and Graphlet Screening (GS) are two classes of methods

that are specifically designed for the Rare/Weak settings. HC was introduced to

determine whether there are any relevant effects in all the measured features. More

recently, HC was applied to classification, where it provides a method for selecting

useful predictive features for trained classification rules. GS was introduced as a

graph-guided multivariate screening procedure, and was used for variable selection.

We develop a theoretical framework where we use an Asymptotic Rare and

Weak (ARW) model simultaneously controlling the size and prevalence of use-

ful/significant features among the useless/null bulk. At the heart of the ARW

model is the so-called phase diagram, which is a way to visualize clearly the class

of ARW settings where the relevant effects are so rare or weak that desired goals

(signal detection, variable selection, etc.) are simply impossible to achieve. We

show that HC and GS have important advantages over better known procedures

and achieve the optimal phase diagrams in a variety of ARW settings.

HC and GS are flexible ideas that adapt easily to many interesting situations.

We review the basics of these ideas and some of the recent extensions, discuss their

connections to existing literature, and suggest some new applications of these ideas.

Key words and phrases: Classification, control of FDR, feature ranking, feature

selection, graphlet screening, hamming distance, higher criticism, large-scale infer-

ence, rare and weak effects, phase diagram, sparse precision matrix, sparse signal

detection, variable selection.

1. Introduction

We are often said to be entering the era of ‘Big Data’. High-throughput

devices measure thousands or even millions of different features per single subject

on a daily basis. Such an activity is the driving force of many areas of science

and technology, including a new branch of statistical practice which Efron (2011)

calls Large-Scale Inference (LSI).

http://dx.doi.org/10.5705/ss.2014.138
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In many high-throughput data sets, the relevant effects are Rare and Weak

(RW). The researchers expect that only a small fraction of these measured fea-

tures are relevant for the research in question, and the effect sizes of the relevant

features are individually small. The researchers do not know in advance which

features are relevant and which are not, so they choose to measure all features

within a certain range systematically and automatically, hoping to identify a

small fraction of relevant ones in the future.

Examples include, but are not limited to, Genome-Wide Association Study

(GWAS) and deep sequencing study, where we are in the so-called “large-p small-

n” paradigm, with p being the number of SNPs and n the number of subjects.

As technology on data acquisition advances, we are able to measure increasingly

more features per subject. However, the number of relevant features do not grow

proportionally, so the relevant effects are sparse; in addition, since n is usually

not as large as we wish, the effect sizes of the relevant features (in the summary

statistics, e.g., two-sample t-tests) are individually small.

Effect rarity is a useful hypothesis proposed as early as 1980’s by Box and

Mayer (1986). Later, this hypothesis was found to be valid in many applications

(e.g., wavelet image processing Donoho and Johnstone (1994), cosmology and

astronomy Jin et al. (2005), genetics and genomics Tibshirani et al. (2002)) and

had inspired a long line of researches, where the common theme was to exploit

sparsity (e.g., Donoho and Johnstone (1994, 1995)).

However, these works have been largely focused on the regime where the

effects are rare but are individually strong (Rare/Strong), with limited attention

to the more challenging Rare/Weak regime; the latter contains many new phe-

nomena which we have not seen, to discover which, we need new methods and

new theoretical frameworks (the notions of Rare/Strong and Rare/Weak effects

are made precise in Section 2.3).

It is instructive to consider a two-group study. For a specific disease under

consideration, suppose we have two groups of subjects, a treatment group and

a control group, each subject being measured on the same set of features. In

many such studies, signals are Rare and Weak (we call a feature a signal if it is

relevant to the disease and a noise otherwise). In this paper, we investigate two

interconnected LSI problems in the Rare/Weak regime.

• Sparse signal detection. We are interested in deciding whether there is any

difference between two groups. In the Rare/Weak settings, the inter-group

difference for any single relevant feature is not significant enough, so we have

to combine the strengths of these features.

• Sparse signal recovery. We are interested in separating relevant features from

the overwhelmingly more irrelevant ones (i.e., variable selection).
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1.1. Higher criticism (HC) and graphlet screening (GS)

HC and GS are recent methods for detecting and recovering sparse signals,
respectively, specifically designed for the Rare/Weak settings.

The term of “Higher Criticism” was coined by Tukey (1976, 1989) with the
following story, in the context of multiple testing. A young scientist administers
250 uncorrelated tests, out of which 11 are signifiant at the level of 5%, and he
is very excited about the findings. However, before he makes a big deal about it,
a senior researcher tells him that, even in the purely null case, one would expect
12.5 significances, and finding only 11 significances is in fact disappointing. Tukey
proposed HC as “a second-level significance testing”

HC250,0.05 =

√
250[(Fraction significant at level 0.05)− 0.05]√

0.05× 0.95
.

If the young researcher really “had discovered something”, this score should be
large (say, ≥ 2). However, in Tukey’s example, HC250,0.05 = −0.43, suggesting
that the overall body of the evidence is consistent with the null of “no evidence”.

Here, the problem of interest is related to the problem of multiple testing
Benjamini and Hochberg (1995), but is different. Given p different (component)
null hypotheses H1, . . . , Hp, the goal of multiple testing is to decide which null
are true and which are not. Here, the goal is to test the (joint) null hypothesis
that all (component) null are true against the alternative that a small fraction
of them is untrue.

In modern multiple testing settings, p (number of tests) is usually large and
the component tests may be rare and individually weak (not strong enough to
stand out by itself). In such settings, it is desirable to generalize Tukey’s HC
beyond a single significance level of α = 0.05. In light of this, Donoho and Jin
(2004) proposed the following Higher Criticism statistic:

HC∗
p = max

0≤α≤α0

HCp,α, where HCp,α =

√
p[(Fraction significant at level α)− α]√

α(1− α)
,

where α0 ∈ (0, 1) is a tuning parameter. Under the joint null, HCp,α andHCp,1−α

have the same distribution, so it is unnecessary to consider the case α > 1/2.
For this reason, we usually set α0 = 1/2. The Higher Criticism statistic HC∗

p

can be computed efficiently as follows.

• For each 1 ≤ i ≤ p, obtain the individual P -value πi.

• Sort the P -values in the ascending order: π(1) < π(2) < . . . < π(p).

• The Higher Criticism statistic HC∗
p can be equivalently written as

HC∗
p = max

{1≤i≤α0p}
HCp,i, where HCp,i ≡

√
p[i/p− π(i)]√
π(i)(1− π(i))

. (1.1)
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Later, we will discuss several variants of HC. To distinguish one from the other,
we call that in (1.1) the Orthodox HC (OHC). OHC is known to be heavy-tailed.
To alleviate the problem, we recommend the following modified version Donoho
and Jin (2004):

HC+
p = max

{1≤i≤α0p: π(i)>1/p}
HCp,i. (1.2)

Graphlet Screening is a recent idea for variable selection Jin, Zhang, and
Zhang (2014). Consider a linear regression of n samples and p variables:

W = Xβ + z, X = Xn,p = [x1, x2, . . . , xp], z ∼ N(0, In). (1.3)

We assume X is normalized so that the Gram matrix G = X ′X has unit diago-
nals, and that G is sparse in that each row of G has relatively few large entries.
We are interested in the challenging Rare/Weak regime where only a small frac-
tion of the entries of β is nonzero and each nonzero is individually small.

Univariate Screening (US) (also called marginal regression Genovese et al.
(2012) or Sure Screening Fan and Lv (2008)) is a popular and computationally
efficient variable selection approach: we project W to each column of the matrix
X, one at a time, and select the variable where the coefficients (W,xj) are large
in magnitude. The main challenge US faces is “signal cancellation” Roeder and
Wasserman (2009): due to correlations among the columns of X, |E[(W,xj)]|
could be small even when |βj | is large.

Our proposal is graph-guided multivariate screening or Graphlet Screeing
(GS) for short, an approach to overcoming the challenge of “signal cancelation”
with only a modest increase in computational cost. The idea of GS can be illus-
trated as follows. Suppose that in order to alleviate the effects “signal cancella-
tion”, we decide to use bivariate screening instead of US. We may use Exhaustive
Bivariate Screening (EBS): we project W to all possible pairs of columns of X,
one at a time, and recruit both variables in the pair if the norm of projected
coefficients is large. Unfortunately, this approach is both ineffecient and compu-
tationally infeasible: it includes too many, O(p2) number of, pairs for screening
so it needs signals stronger than necessary for successful screening.

The key idea of GS is to recognize that it is only necessary to screen a pair of
columns together when two columns are highly correlated (otherwise, screening
two columns separately is adequate). The sparsity of G = X ′X dictates that,
out of all O(p2) pairs, only a small fraction of them have two strongly correlated
columns. As a result, GS is computationally much less expensive than EBS.

More generally, fixing a relatively small integer m0 > 1, GS can be viewed
as a graph-guided m0-variate screening. Fix a threshold δ > 0. Let G∗,δ = (V,E)
be the graph where V = {1, . . . , p} and there is an edge between i and j if and
only if |G(i, j)| ≥ δ. Let d∗p = d∗p(δ,G) be the maximal degree of G∗,δ, and let
A∗,δ(m0) = A∗,δ(m0, G) = {all connected subgraphs of G∗,δ with size ≤ m0}.
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• For each 1 ≤ m ≤ m0 and I ∈ A∗,δ(m0), obtain the projection of W from Rn

to the space {xj : j ∈ I}, denoted by P IW .

• For a threshold t that may depend on (m, I, X), retain all nodes in I if and

only if ∥P IW∥ exceeds the threshold (once a node is retained, it stays there

until we finish screening for all I ∈ A∗,δ(m0)).

The target of GS is to retain almost all true signals while removing as much

noise as possible. To filter out the false positives, we may need an additional

step which we call Graphlet Cleaning; see details in Section 4.2.

GS is able to overcome the challenge of “signal cancellation” for it exploits

the graphical structures in the design variables. As for the computational cost,

since G is sparse, the maximum degree of G∗,δ—d∗p—is relatively small given

an appropriate choice of δ. It can be shown that |A∗,δ(m0)| ≤ Cp(ed∗p)
m0 Jin,

Zhang, and Zhang (2014), so the computational cost of GS is higher than that

of US only by a factor of C(ed∗p)
m0 . Of course, in the simplest case where G is

diagonal, “signal cancellation” does not pose a challenge, and GS reduces to US.

1.2. Asymptotic rare and weak model and phase diagrams

We evaluate HC and GS by developing a new theoretical framework using

the Asymptotic Rare and Weak (ARW) model, simultaneously controlling the

signal prevalence and signal strengths. We visualize the ARW model with phase

diagrams. The phase space refers to the two-dimensional space with axes simulta-

neously quantifying the signal prevalence and signal strengths. The phase space

partitions into several subregions, where the desired inference (signal detection,

variable selection, etc.) has distinctly different results; because of the partition

of the phase space, we call it the phase diagram.

Phase diagram can be viewed as a new criterion for optimality which is par-

ticularly appropriate for the ARW model. Given a problem, different methods

may have different phase diagrams, characterizing the subregions where they suc-

ceed and where they fail. When a method partitions the phase space in exactly

the same way as the optimal methods, we say it achieves the optimal phase dia-

gram. We show that in a wide variety of settings, HC and GS achieve the optimal

phase diagrams for signal detection and signal recovery, respectively. In many

of such settings, other methods (such as FDR-controlling methods Benjamini

and Hochberg (1995), L0/L1-penalization methods Donoho and Stark (1998);

Tibshirani (1996)) do not achieve the optimal phase diagrams.

HC and GS are flexible ideas and can be applied to many interesting settings.

They are not tied to the ARW model and their advantages over existing methods

remain in much broader settings.
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1.3. Roadmap and highlights

In Section 2, we discuss the ARW model and phase diagrams for the prob-

lems of sparse signal detection and sparse signal recovery, respectively. In Section

3, we discuss the achievability of the phase diagrams in the presence of uncorre-

lated noise. We show that HC and the well-known method of Hard Thresholding

achieve the optimal phase diagram for signal detection and signal recovery, re-

spectively. We also review the recent developments on HC. In Section 4, we

discuss the achievability for the more challenging case of correlated noise. For

signal detection, we develop HC into the more sophisticated Innovated HC, and

for signal recovery, we use GS. In Section 5, we suggest some new applications

of HC and GS, supported by some preliminary numerical studies. In Section 6,

we extend HC as a feature selection method in the context of classification, and

address the classification phase diagram as well as the optimality of HC.

Our study exposes several noteworthy ideas highlighted below (other note-

worthy ideas include but are not limited to Lemma 1 and Remarks 4, 12).

• Innovated Transformation (IT) is the key to many methods (e.g., Innovated

HC and GS; see also Jin (2012), Fan, Jin, and Yao (2013)) that exploit graphic

structures. Among all possible transformations, IT yields the largest (post-

transformation) Signal-to-Noise Ratios (SNR) simultaneously at all (pre-trans-

formation) signal sites, and so it is preferred; see Section 4.1.

• Contrary to what we might have expected, the optimal phase diagrams do not

critically depend on the local graphic structures, and remain the same across

a wide range of cases. Therefore, to have procedures that achieve the optimal

phase diagram, we must exploit local graphic structures.

• The L0/L1-penalization methods are well-known approaches to variable selec-

tion, but they do not adequately exploit local graphic structures as GS does.

The primary focus of these methods is usually to fully recover Rare/Strong

signals, and in the more challenging Rare/Weak settings, they do not achieve

the optimal phase diagram, even in very simple settings and even when the

tuning parameters are ideally set; see Sections 4.2−4.4.

• In classification, a prevailing idea is to select a few important predictive fea-

tures so that the (feature) FDR Benjamini and Hochberg (1995) is small.

Recent studies reveal something very different: in some Rare/Weak settings,

we must select features in a way so that the FDR is very high, so that we are

able to include almost all useful features for classification. See Section 6.

2. The ARW Model and Phase Diagrams

In this section, we discuss phase diagrams and the watershed phenomena

associated with the problems of signal detection and signal recovery. Discussions
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on the achievability of the phase diagrams are long, so they are deferred to

Sections 3−4. See Section 2.4 for our plan for the discussions on the achievability.

The ARW model was first proposed by Donoho and Jin (2004) for sparse

signal detection. More recently, it was extended to more complicated forms Hall

and Jin (2010) and to different settings including classification Donoho and Jin

(2009); Ingster, Pouet, and Tsybakov (2009); Ji and Jin (2011); Jin (2009); Jin,

Ke, and Wang (2015); Jin and Wang (2014); Jin, Zhang, and Zhang (2014).

In this paper, we use a version of the ARW model that is simple for presen-

tation, yet contains all important ingredients associated with the major insights

exposed in the above references. Consider a Stein’s p-normal means model

Y = β + z, z ∼ N(0,Σ), (2.1)

where Σ = Σp,p is the covariance matrix. Denote the precision matrix by

Ω = Ωp,p = Σ−1
p,p.

For simplicity, we usually drop subscripts ‘p, p’. We assume Ω is sparse in the

(strict) sense that each row of Ω has relatively few nonzeros. Such an assumption

is only for simplicity in presentation; see Hall and Jin (2010); Jin, Zhang, and

Zhang (2014) for discussions on more general Ω. Model (2.1) may arise from

many applications, including the following.

• Two-group study. In the two-group study in Section 1, {Yj , 1 ≤ j ≤ p} can

be viewed as the two-sample t-statistic associated with the j-th feature. In

many such studies (e.g., Genetic Regulatory Network (GRN)), the precision

matrix is sparse Peng et al. (2010).

• Linear models with random designs. Given W ∼ N(Xβ̃, In), where the rows

of X are iid samples from the p-variate normal N(0,Ω) for a sparse (in strict

sense) matrix Ω. Such settings can be found in Compressive Sensing Donoho

(2006); Donoho, Maleki, and Montanari (2009) or Computer Security Fienberg

and Jin (2012); Jin, Zhang, and Zhang (2014), where Ω = Ip. Letting W̃ =

(1/
√
n)X ′W and β =

√
nβ̃, then approximately W̃ ∼ N(Ωβ,Ω), which is

equivalent to model (2.1); the connection is solidified in Jin, Zhang, and Zhang

(2014).

We assume Ω is known, as our primary goal is to investigate how the graphic

structures of Ω affect the constructions of the optimal methods and optimal phase

diagrams. Such an assumption is valid in many applications. For example, in the

linear model, Ω plays the role of the Gram matrix which is known to us. When

Ω is unknown but is sparse, it can be estimated by many recent algorithms,

such as the glasso Friedman, Hastie, and Tibshirani (2007). The gained insight



8 JIASHUN JIN AND ZHENG TRACY KE

here is readily extendable to the case where Ω is unknown but can be estimated

reasonably well, as only large entries of Ω have a major influence on the problems

of interest.

We choose a somewhat unconventional normalization such that

Ω(i, i) = 1, 1 ≤ i ≤ p. (2.2)

Let d∗p be the maximum number of nonzeros in the rows of Ω:

d∗p = d∗p(Ω) = max
1≤i≤p

{
#{1 ≤ j ≤ p : Ω(i, j) ̸= 0}

}
.

We assume d∗p(Ω) grows slowly enough:

d∗p(Ω)p
−δ → 0, for any fixed δ > 0. (2.3)

Fixing ϵ ∈ (0, 1) and τ > 0, we model the vector β by

βi
iid∼ (1− ϵ)ν0 + ϵντ , 1 ≤ i ≤ p, (2.4)

where νa is the point mass at a. We are primarily interested in the case where ϵ is

small and τ is small or moderately large, so that the signals (i.e., nonzero entries

of β) are Rare/Weak. In our asymptotic framework, we let p be the driving

asymptotic parameter, and tie (ϵ, τ) to p through fixed parameters ϑ and r:

ϵ = ϵp = p−ϑ, τ = τp =
√

2r log(p), 0 < ϑ < 1, r > 0. (2.5)

As p grows, the signals become increasingly sparser. To counter this effect,

we have to let the signal strength parameter τ grow to ∞ slowly, so that the

problems of detection and signal recovery are non-trivial. Let Sp(β) and sp(β)

be the support of β and the number of signals, respectively:

Sp(β) = {1 ≤ i ≤ p : βi ̸= 0}, sp(β) = |Sp(β)|.

It is seen that with overwhelming probability,

sp(β) ∼ pϵp = p1−ϑ. (2.6)

Definition 1. We call (2.1)–(2.5) the Asymptotic Rare/Weak model ARW (ϑ, r,

Ω).

See Genovese et al. (2012); Hall and Jin (2008, 2010); Ji and Jin (2011); Jin,

Zhang, and Zhang (2014); Ke, Jin, and Fan (2014) for the ARW model in more

general forms. The ARW model is subtle even when Ω = Ip; see Donoho and Jin
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(2004) for example. See Section 2.3 for remarks on the concepts of Rare/Weak

and Rare/Strong.

2.1. Detecting rare and weak signals

We formulate the sparse signal detection problem as a hypothesis testing

problem, where we test a joint null hypothesis that all βi’s are 0:

H
(p)
0 : β = 0, (2.7)

against a specific complement of the joint null:

H
(p)
1 : β satisfies a Rare and Weak model (2.4)−(2.5). (2.8)

In the simplest case where Ω = Ip, we have that Yi
iid∼ N(0, 1) underH

(p)
0 and that

Yi
iid∼ (1− ϵp)N(0, 1) + ϵpN(τp, 1) under H

(p)
1 , so the testing problem (2.7)−(2.8)

is also the problem of detecting Gaussian mixtures Donoho and Jin (2004).

We have a watershed phenomenon: in the two-dimensional phase space

{(ϑ, r) : 0 < ϑ < 1, r > 0}, there is a curve that partitions the whole phase

space into two regions where the testing problem (2.7)−(2.8) has distinctly dif-

ferent results. One may think that this curve depends on the off-diagonals of

Ω in a complicated way. Somewhat surprisingly, this is not the case, and the

off-diagonals of Ω do not have a major influence on the partition.

In detail, define the standard phase function for detection

ρ∗(ϑ) =


0, 0 < ϑ ≤ 1

2 ,

ϑ− 1
2 ,

1
2 < ϑ ≤ 3

4 ,

(1−
√
1− ϑ)2, 3

4 < ϑ < 1.

(2.9)

Theorem 1. Fixing ϑ ∈ (0, 1) and r > 0, consider a sequence of ARW (ϑ, r,Ω)

indexed by p. As p → ∞, if r < ρ∗(ϑ), then for any sequence of tests that test

H
(p)
1 against H

(p)
0 , the sum of Type I and Type II errors tends to 1; if r > ρ∗(ϑ),

then there is a test for which the sum of Type I and Type II errors tends to 0.

In (2.9), ρ∗(ϑ) = 0 when ϑ < 1/2. This does not mean that H
(p)
0 and

H
(p)
1 are asymptotically separable for any (ϵp, τp); it only means that they are

asymptotically separable even when τp ≪
√

log(p); see Donoho and Jin (2004).

When Ω = Ip, Theorem 1 was proved by Donoho and Jin (2004) (see also

Ingster (1997, 1999)). When Ω ̸= Ip, the second claim follows from Theorem 4,

and the proof of the first claim is similar to that in (Fan, Jin, and Yao, 2013,

Thm. 1.1) so we skip it. The proof requires subtle analysis of the Hellinger

distance as well as the following lemma.
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Lemma 1 (Chromatic Number). Fix a p × p matrix Ω. If each row of Ω has

no more than K nonzeros, then we can color indices 1, . . . , p in no more than K

different colors so that for any pair of indices i, j with the same color, Ω(i, j) = 0.

2.2. Recovering rare and weak signals

Consider again the ARW model Y = β + z, where z ∼ N(0,Σ) and (β,Ω)

satisfying (2.2)−(2.5). The main interest here is to separate the nonzero entries of

β from the zero ones (i.e., signal recovery or variable selection). For any estimator

β̂, we measure the errors by the Hamming distance hp(β̂, β) =
∑p

i=1 P{sgn(β̂i) ̸=
sgn(βi)}, which is the sum of the expected number of signals that have been

classified as noise and the expected number of noise that have been classified

as signals. Here, sgn(u) = −1, 0, 1 according to u < 0, u = 0, or u > 0. The

minimax Hamming distance is then

Hamm∗
p(ϑ, r; Ω) = inf

β̂
{hp(β̂, β)}. (2.10)

Definition 2. Lp > 0 denotes a generic multi-log(p) term that may change from

occurrence to occurrence and satisfies that Lpp
δ → ∞ and Lpp

−δ → 0 for any

δ > 0, as p→ ∞.

The following theorem was proved by Ji and Jin (2011) (see also Jin, Zhang, and

Zhang (2014); Ke, Jin, and Fan (2014)).

Theorem 2 (Lower bound). Fixing ϑ ∈ (0, 1) and r > 0, consider a sequence of

ARW (ϑ, r,Ω) indexed by p. As p→ ∞,

Hamm∗
p(ϑ, r; Ω)

{
≥ Lp · p1−(ϑ+r)2/(4r), r > ϑ,

∼ p1−ϑ, 0 < r < ϑ.
(2.11)

For many sequences of Ω (especially Ω = Ip), the lower bound is tight. We

address this in Section 3.2 (Ω = Ip) and in Section 4 (Ω ̸= Ip).

In principle, Hamm∗
p(ϑ, r; Ω) may depend on Ω in a complicated way. Still,

for many sequences of Ω = Ωp,p (with careful calibrations), there is a constant

c = c(ϑ, r; Ω) depending on (ϑ, r) and the calibrations we choose for Ω such that

Hamm∗
p(ϑ, r; Ω) = Lpp

1−c(ϑ,r;Ω).

Examples include (a) Ω = Ip, (b) Ω is the diagonal block-wise matrix as in Section

4.4, (c) a long-memory time series model and a change point model discussed in

Ke, Jin, and Fan (2014) (see Remark 9). In all these cases, c(ϑ, r; Ω) = 1 gives

the curve r = ρ∗exact(ϑ; Ω):
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Figure 1. Phase diagrams (Ω = Ip). Left: curves in red, green, and blue are
r = ρ∗exact(ϑ; Ip), r = ϑ, and r = ρ∗(ϑ), correspondingly. Right: enlargement
of the region bounded by the dashed lines in the left panel.

• Fixing (ϑ, r) in the interior of the region {0 < ϑ < 1, r > ρ∗exact(ϑ; Ω)}, it is
possible to exactly recover the support of β with high probabilities.

• Fixing (ϑ, r) in the interior of the region {0 < ϑ < 1, 0 < r < ρ∗exact(ϑ; Ω)}, it
is impossible to exactly recover the support of β with high probabilities.

2.3. Phase diagrams

The preceding results give rise to the phase diagrams: the three curves r =

ρ∗(ϑ), r = ϑ, and r = ρ∗exact(ϑ; Ω) partition the phase space {(ϑ, r) : 0 < ϑ <

1, r > 0} into four different subregions, where the inference is distinctly different.

• Region of Undetectable: {(ϑ, r) : 0 < ϑ < 1, r < ρ∗(ϑ)}. The signals are so

Rare/Weak that it is impossible to detect their existence: H
(p)
1 and H

(p)
0 are

nearly inseparable and any test is asymptotically powerless.

• Region of Not Recoverable but Detectable: {(ϑ, r) : 0 < ϑ < 1, ρ∗(ϑ) < r < ϑ}.
It is possible to have an asymptotically full power test, but impossible to

separate the signals from the noise: the Hamming errors of any estimator is

comparable to the total number of signals as Hamm∗
p(ϑ, r; Ω) & p1−ϑ.

• Region of Almost Fully Recoverable: {(ϑ, r) : 0 < ϑ < 1, ϑ < r < ρ∗exact(ϑ; Ω)}.
It is possible to recover almost all signals but not all of them; the Hamming

distance is much smaller than p1−ϑ, but is also much larger than 1.

• Region of Exactly Recoverable: {(ϑ, r) : 0 < ϑ < 1, r > ρ∗exact(ϑ; Ω)}. The

signals are sufficiently strong so that Hamm∗
p(ϑ, r; Ω) = o(1), and it is possible

to have exact recovery with overwhelming probabilities.
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Only the last two regions may depend on Ω. See Figure 1 for the case Ω = Ip (see

Section 4 for more general cases). We call the union of the last three subregions

the Region of Detectable:

{(ϑ, r) : 0 < ϑ < 1, r > ρ∗(ϑ)}. (2.12)

Phase diagram is a flexible notion that has been extended to many different

settings, including large-scale multiple testing Arias-Castro, Candes, and Plan

(2011); Hall and Jin (2010); Jager and Wellner (2004), variable selection Ji and

Jin (2011); Jin, Zhang, and Zhang (2014); Ke, Jin, and Fan (2014), classification

Donoho and Jin (2009); Fan, Jin, and Yao (2013); Ingster, Pouet, and Tsybakov

(2009); Jin (2009), spectral clustering Jin and Wang (2014); Jin, Ke, and Wang

(2015).

Remark 1. In the four regions aforementioned, we may call signals correspond-

ing to the first three regions Rare/Weak, and signals corresponding to the last one

Rare/Strong. However, in more general settings, Rare/Weak and Rare/Strong

are relative concepts that are scientifically meaningful but are not always easy

to define mathematically.

2.4. Achievability of the phase diagrams

In the preceding section, we have only said that the optimal phase diagrams

are achievable, without referring to any specific method. It is of primary interest

to develop methods—preferably easy-to-implement and not tied to the ARW

model—to achieve the optimal phase diagrams.

• We say a testing procedure achieves the optimal phase diagram for detection

if for any (ϑ, r) in the interior of Region of Detectable, the power of the

procedure tends to 1 as p→ ∞.

• We say a variable selection procedure β̂ achieves the optimal phase diagram

for recovery if hp(β̂, β) ≤ Lp · Hamm∗
p(ϑ, r; Ω) for sufficiently large p, where

Lp is the generic multi-log(p) term as in Definition 2.

In Section 3, we address achievability for the case Ω = Ip, and show that

Orthodox Higher Criticism (OHC) and Hard Thresholding achieve the optimal

phase diagrams for detection and recovery, respectively. In Section 4, we address

the acheivabilty for more genera Ω, and show that Innovated HC and GS achieve

the optimal phase diagrams for detection and recovery, respectively. Combining

these with Theorems 1 and 2 gives the phase diagrams in Section 2.3.

3. Detecting and Recovering Signals in White Noise

We revisit the problems of signal detection and signal recovery, and show that

when Ω = Ip, OHC and Hard Thresholding achieve the optimal phase diagrams
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for detection and recovery, respectively. We also review the recent applications

and extensions of the HC idea. Discussion on the general Ω is in Section 4.

3.1. Optimal signal detection by higher criticism (white noise)

To apply Orthodox HC (OHC) to the testing problem (2.7)−(2.8), we com-

pute HC∗
p following the three steps in (1.1) where the P -values πi are given by

P (|N(0, 1)| ≥ |Xi|), 1 ≤ i ≤ p. Fix 0 < α < 1. To use the HC∗
p for a level-α test,

we must find the critical value h(p, α) defined by P
H

(p)
0

{HC∗
p > h(p, α)} = α.

Asymptotically, it is known that for any fixed α ∈ (0, 1),

h(p, α) =
√

2 log log(p)(1 + o(1)). (3.1)

We say a sequence αp tends to 0 slowly enough if h(p, αp) ∼
√

2 log log(p). Con-

sider the HC-test where we reject H
(p)
0 if and only if

HC∗
p ≥ h(p, αp). (3.2)

The following theorem was proved by Donoho and Jin (2004), where ρ∗(ϑ) is the

standard phase function defined in (2.9).

Theorem 3. Fix (ϑ, r) in the phase space such that r > ρ∗(ϑ). Suppose as

p → ∞, the level αp of the HC-test tends to 0 slowly enough, then the power of

the HC-test tends to 1.

Combining this with Theorem 1 (not requiring Ω = Ip), for any fixed (ϑ, r)

in Region of Detectable (see (2.12)), OHC yields an asymptotically full power

test when Ω = Ip. Therefore, OHC achieves the optimal phase diagram for

detection. Theorem 3 continues to hold if we replace HC∗
p in (3.2) by HC+

defined in (1.2) and replace h(p, α) by its counterpart h+(p, α), defined through

P
H

(p)
0

(HC+
p ≥ h+(p, α)) = α.

Remark 2. For fixed 0 < α < 1, h(p, α) ∼ h+(p, α) ∼
√

2 log log(p). However,

this approximation is asymptotic, and may not be accurate for finite p. In the lit-

erature it is known that Shorack andWellner (1986, p.600), as p→ ∞, bpHC
∗
p−cp

and bpHC
+
p − cp both converge weakly to the standard Gumbel distribution,

where bp =
√

2 log log(p) and cp = 2 log log(p) + (1/2)[log log log(p) − log(4π)].

As a result, for any fixed α ∈ (0, 1) and large p, h(p, α) ≈ h+(p, α) ≈ b−1
p

[
cp −

log log(1/(1− α))
]
. For h+(p, α), this approximation is reasonably accurate, es-

pecially for large p and small α. See Table 1 of Donoho and Jin (2015).

Remark 3. We only need P -values to implement the OHC-test with no knowl-

edge of the parameters (ϵp, τp), so the test is not tied to the specific model in
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(2.7)−(2.8). In the idealized case where (ϵp, τp) are known, the optimal test is

the Likelihood Ratio Test (LRT). There is an interesting phase transition asso-

ciated with the limiting distribution of LRT. Write the log-likelihood ratio as-

sociated with (2.7)−(2.8) as LRp(ϵp, τp) = LRp(ϵp, τp;Y ) =
∑p

i=1 log((1 − ϵp) +

ϵpe
τpYi−τ2p/2). With the calibrations in (2.5), LRp can have non-degenerate limits

only when (ϑ, r) fall exactly onto the phase boundary r = ρ∗(ϑ); still, this alone

is inadequate, and we must modify the calibrations slightly. In detail, let

r = ρ∗(ϑ), τp =
√

2r log(p), ϵp =

{
p−ϑ, if 1

2 < ϑ ≤ 3
4 ,

τ
2
√
r

p p−ϑ, if 3
4 < ϑ < 1.

(3.3)

As p→ ∞, if (3.3) holds, then LRp has weak limits as follows (see Jin (2003)):

LRp −→


N(∓1

2 , 1), if 1
2 < ϑ < 3

4 ,

N(∓1
4 ,

1
2), if ϑ = 3

4 ,

ν
(ϑ)
∓ , if 3

4 < ϑ < 1,

under H
(p)
0 and H

(p)
1 , respectively.

Here, ν
(ϑ)
∓ are the distributions with the characteristic functions ψ

(ϑ)
∓ given by

ψ
(ϑ)
− (t) = (1/

√
2π)

∫∞
−∞[e

√
−1t log(1+ez)−1−

√
−1tez]e−(z/ϑ)(1+

√
1−ϑ)dz and ψ

(ϑ)
+ (t)

= (1/
√
2π)

∫∞
−∞[e

√
−1t log(1+ez) − 1]e−(z/ϑ)(1−ϑ+

√
1−ϑ)dz, respectively.

3.2. Optimal signal recovery by Hard Thresholding (white noise)

We now discuss signal recovery for the case of Ω = Ip. In this simple setting,

Yi
iid∼ (1 − ϵp)N(0, 1) + ϵpN(τp, 1), and a conventional approach to estimating β

is to use Hard Thresholding (HT). Fixing a threshold t > 0, we estimate β by

β̂HT
t,i = Yi · 1{|Yi| ≥ t}. A convenient choice of t is tq(p) =

√
2q log(p), where

0 < q < 1 is a fixed parameter. Ideally, when (ϑ, r) are given, we choose q as

qideal =

{
(ϑ+r)2

4r , r > ϑ,

ϑ, 0 < r < ϑ.
(3.4)

With the ideal threshold tidealp =
√

2qideal log(p), it follows from the Mills’ ratio

Wasserman (2006) that the Hamming distance between β̂HT
tidealp

and β satisfies

hp(β̂
HT
tidealp

, β)

{
= Lpp

1−(ϑ+r)2/(4r), if r > ϑ,

∼ p1−ϑ, if 0 < r < ϑ.

Combining this with Theorem 2 (which is for more general Ω), we conclude that

when Ω = Ip, HT achieves the minimax Hamming distance, up to a multi-log(p)

factor; so it achieves the optimal phase diagram for recovery as in Section 2.3−2.4.
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Remark 4. The ideal choice of q in (3.4) depends on (ϑ, r) and it is hard to

set them in a data-driven fashion. A convenient choice of q is q = 1, corre-

sponding to the universal threshold t∗p =
√
2 log(p) Wasserman (2006). When

r > ρ∗exact(ϑ; Ip), this threshold leads to Hammp(β̂
HT
t∗p

, β) ≤ C(log(p))−1/2 (and

so exact recovery is achieved).

Remark 5. When a method yields exact recovery with overwhelming proba-

bility, we say that it has the Oracle Property, a well-known notion in the vari-

able selection literature Fan and Li (2001). In such a framework, we are using

P (sgn(β̂) ̸= sgn(β)) as the measure of loss. Seemingly, such a measure is only

appropriate for Rare/Strong signals. When signals are Rare and Weak, exact

recovery is usually impossible, and the Hamming distance is a more appropriate

measure of loss.

3.3. Applications

HC (and its variants) has found applications in GWAS and DNA Copy Num-

ber Variation (CNV), where the genetic effects are believed to be rare and weak.

Parkhomenko et al. (2009) used HC to detect modest genetic effects in a genome-

wide study of rheumatoid arthritis. Sabatti et al. (2008) used HC to quantify

the strength of the overall genetic signals for each of the nine traits of interest.

De la Cruz et at. (2010) used HC to test whether there are associated markers

in a given set of markers, with applications to Crohn’s disease. Jeng, Cai, and

Li (2010, 2013) proposed a variant of HC called Proportion Adaptive Segment

Selection (PASS), which can be viewed as a two-way screening process (across

different SNPs and across different subjects), simultaneously dealing with the

rare genetic effects and rare genomic variation. See also He and Wu (2011);

Martin et al. (2009); Mukherjee, Pillai, and Lin (2013); Roeder and Wasserman

(2009); Wu et al. (2012).

HC has also found applications in modern experiments in Cosmology and

Astronomy—another important source of rare and weak signals. Jin et al.

(2005) and Cayon, Jin, and Treaster (2004) (see also Cayon et al. (2006)) ap-

plied HC to standardized wavelet coefficients of Wilkinson Microwave Anisotropy

Probe (WMAP), addressing the problem nonGaussianity detection in the Cos-

mic Microwave Background (CMB). Compared to the widely used kurtosis-

based non-Gaussianity detector, HC showed superior power and sensitivity, and

pointed to the cold spot centered at galactic coordinate (longitude, latitude) =

(207.8◦,−56.3◦) (see Vielva (2010) for more discussions). Pires et al. (2009)

applied many nonGaussianity detectors to gravitational weak lensing data and

showed that HC is competitive, being more specifically focused on excess of ob-

servations in the tails of the distribution. Bennett et al. (2012) applied the HC
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ideas to the problem of Gravitational Wave detection for a monochromatic peri-

odic source in a binary system. They use a modified form of HC which offers a

noticeable increase in the detection power, and yet is robust.

HC has also been applied to disease surveillance for early detection of disease

outbreak and local anomaly detection in a graph McFowland, Speakman, and

Neill (2013); Saligrama and Zhao (2012), where it is found to have competitive

powers.

3.4. Connections and extensions

In model (2.7)−(2.8), the noise entries are iid from a distribution F that

is known as N(0, 1). Delaigle, Hall, and Jin (2011) address the more realistic

setting where F is unknown and is probably nonGaussian. They consider a two

group model (a control group and a case group) and compute P -values for each

individual feature using bootstrapped Student’s t-scores (see also Greenshtein

and Park (2012); Liu and Shao (2013)).

The testing problem (2.7)−(2.8) is a special case of the problem of testing

H
(p)
0 ofXi

iid∼ F versusH
(p)
1 ofXi

iid∼ (1−ϵ)F+ϵG, where ϵ ∈ (0, 1) is small, F and

G are distinct distributions, and (ϵ, F,G) may depend on p. Cai, Jeng, and Jin

(2011) considers the case where F = N(0, 1) and G = N(τ, σ2); see also Bogdan

et al. (2011). Park and Ghosh (2010) gave a nice review on large-scale multiple

testing with a detailed discussion on HC. Cai and Wu (2014) consider the exten-

sion where F = N(0, 1) and G is a Gaussian location mixture, and Arias-Castro

and Wang (2013) investigate the case where F is unknown but symmetric. In a

closely related setting, Laurent, Marteau, and Maugis-Rabusseau (2013) consider

the problem of testing whether the samples Xi are iid from a single normal, or

a mixture of two normals with different (but unknown) means. Addario-Berry

et al. (2010) and Arias-Castro, Candes, and Durand (2011) consider a setting

similar to (2.7)−(2.8) but where the signals are structured, forming clusters in

(unknown) geometric shapes; the work is closely related to that in (Hall and Jin,

2010, Section 6).

Gayraud and Ingster (2011) show that HC statistic continues to be successful

in detecting very sparse mixtures in a functional setting. Haupt, Castro, and

Nowak (2008); Haupt et al. (2010) consider the setting where adaptive sample

scheme is available so that we can do inference and collect data in an alternating

order.

HC can also be viewed as a measure for goodness-of-fit. Jager and Wellner

(2007) introduced a new family of goodness-of-fit tests based on the ϕ-divergence,

including HC as a special case. Wellner and Koltchinskii (2003) further inves-

tigated the Berk-Jones statistic, which is closely related to HC, and derive its

limiting distribution. In Jager and Wellner (2004), they further investigated the
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limiting distribution of a class of weighted Kolmogorov statistics, including HC

as a especial case. The pontogram of Kendall (1980) is an instance of HC, applied

to a special set of P -values.

3.5. Comparison with FDR-controlling methods

Benjamini and Hochberg’s (1995) FDR-controlling procedure (BH’s proce-

dure) is a recent innovation in multiple testing. Consider p (component) null hy-

pothesesH1, . . . , Hp, where for eachHi, we have obtained a P -value πi, 1 ≤ i ≤ p.

Let π(1) < · · ·π(p) be the sorted P -values, and let Ri = π(i)/(i/p). For any pre-

selected FDR control parameter 0 < q < 1, letting iFDR
q be the largest index

such that Ri ≤ q, BH’s procedure rejects all iFDR
q (component) nulls that have

the smallest P -values. The procedure is shown to control the FDR at level q if

the P -values are independent.

While both HC and BH’s procedure are multiple testing ideas in the sparse

signal settings (we say πi contains a signal if Hi is false and a noise otherwise),

the scientific goals are very different. The goal of BH’s procedure is to tell

which (component) nulls are true and which are false, and the goal of HC is to

decide whether all component null are true or a small fraction of them is untrue.

The difference in scientific goals dictates that the success of BH’s procedure

needs stronger signals than that of HC. In many Rare/Weak settings, while BH’s

procedure still controls the FDR, it yields very few discoveries. In this case, a

more reasonable goal is to test whether any signals exist without demanding that

we properly identify them all; this is what HC is specifically designed for.

While both methods use P -values for inference, they normalize P -values in

very different ways. HC normalizes them by HCp,i=
√
p[i/p−π(i)]/

√
π(i)(1−π(i),

and BH’s procedure uses the normalization of Ri = π(i)/(i/p). If our goal is

global testing, the former is a better choice. For example, if for some i we have

pπ(i) ≫ 1, then it could happen that Ri ∼ 1 but HCp,i ≫ 1 (so HCp,i provides

strong evidence against the joint null, but Ri fails to do so).

HC is also intimately connected to the problem of constructing confidence

bands for the False Discovery Proportion (FDP). See Cai, Jin, and Low (2007);

De Una-Alvarez (2012); Ge and Li (2012). Motivated by a study of Kuiper Belt

Objects (KBO) (e.g., Meinshausen and Rice (2006)), Cai, Jin, and Low (2007)

develop HC into an estimator for the proportion of non-null effects, a problem

that has attracted substantial attention in the area of large-scale multiple testing

in the past decade. The literature along this line connects to Benjamini and

Hochberg (1995) on controlling FDR, as well as to Efron (2004) on controlling

the local FDR in gene microarray studies.
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4. Detecting and Recovering Signals in Colored Noise

In this section, we extend the discussions in Section 3 to the case of Ω ̸= Ip.

We propose Innovated Higher Criticism (IHC) for signal detection and Graphlet

Screening (GS) for signal recovery. IHC and GS can be viewed as Ω-aware Higher

Criticism and Ω-aware Hard Thresholding, respectively.

4.1. Innovated higher criticism and its optimality in signal detection

We revisit the testing problem (2.7)−(2.8), where

Y = β + z, z ∼ N(0,Σ). (4.1)

HC is a method of combining P -values which is shown to be successful when

Σ = Ip. We are interested in adapting HC for a general sparse precision matrix

Ω, and there are three perceivable ways of combining the P -values.

In the first one, we obtain individual P -values marginally in a brute-force

fashion: πi = P (|N(0, 1)| ≥ |Yi|/(Σ(i, i))1/2). We call the HC applied to these

P -values the Brute-force HC (BHC). BHC neglects the correlation structure, so

we expect there is room for improvement.

For an alternative, denoting the unique square root of Ω by Ω1/2, it is tempt-

ing to use the Whitened Transformation Y 7→ Ω1/2Y ∼ N(Ω1/2β, Ip), so that the

noise is whitened. We then obtain individual P -values by πi = P (|N(0, 1)| ≥
|(Ω1/2Y )i|), 1 ≤ i ≤ p. We call the resultant HC the Whitened HC.

Our proposal is Innovated HC (IHC). Underlying IHC is the idea to find a

transformation Y 7→MY =Mβ +Mz (M =Mp,p, may depend on Ω) for

• Preserving sparsity, i.e., making most entries of the vector Mβ zero. This is

important since the strength of HC lies in detecting very sparse signals.

• Simultaneously maximizing SNR, i.e., maximizing the Signal-to-Noise Ratio

(SNR) for all i at which βi ̸= 0, where SNR is defined by (Mβ)i/
√

(MΣM ′)(i, i)

(noting that MY ∼ N(Mβ,MΣM ′)).

The best choice turns out to beM = Ω, corresponding to the so-called Innovated

Transformation (IT): Y 7→ ΩY ∼ N(Ωβ,Ω). This is related to the notion of

innovation in time series literature and so the name of Innovated Transformation.

Section 1.2 of Fan, Jin, and Yao (2013) discusses why M = Ω is the best choice.

Now, first, IT preserves the sparsity of β, due to the sparsity of Ω given

in (2.3). Second, for most i at which βi ̸= 0, among the three choices of M ,

M = Ip (corresponding to model (4.1)), M = Ω1/2, and M = Ω, the SNR are

(Σ(i, i))−1/2βi, ((Ω
1/2)(i, i))βi, and βi, respectively, where in the last term, we

have used the assumption of Ω(i, i) = 1 (see Hall and Jin (2010) for the insight

underlying these results and proofs, where the key is to combine the sparsity of
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Ω and the ARW model of β). Since Σ(i, i)−1/2 ≤ (Ω1/2)(i, i) ≤ 1 is always true,

IT has the largest SNR, simultaneously at all i such that βi ̸= 0.

It is particularly interesting that, while WT yields uncorrelated noise, it does

not yield the largest possible SNR, so WT is not the best choice. For the current

setting, where signals are Rare and Weak and Ω is sparse, the advantage of larger

SNR out-weights the disadvantage of sparse correlations among the noise, so we

prefer IHC to WHC. Similarly, we prefer WHC to BHC.

Example 1. Suppose Ω is block-wise diagonal and satisfies Ω(i, j) = 1{i =

j} + h0 · 1{|i − j| = 1, max{i, j} is even}, −1 < h0 < 1, 1 ≤ i, j ≤ p. For all

1 ≤ i ≤ p, (Σ(i, i))−1/2 =
√

1− h20 and (Ω1/2)(i, i) = (1/2)[
√
1 + h0 +

√
1− h0],

and so (Σ(i, i))−1/2 ≤ (Ω1/2)(i, i) ≤ 1; IT yields larger SNR than that of WT,

and WT yields larger SNR than that of model (4.1).

Remark 6. At the heart of IHC is entry-wise thresholding applied to the vector

ΩY . This is equivalent to Univariate Screening (US) Fan and Lv (2008); Genovese

et al. (2012). In detail, we can rewrite model (2.1) as a regression model W ∼
N(Xβ, Ip), with W = Ω1/2Y and X = Ω1/2. US thresholds the vector X ′W

entry-wise; here X ′W = ΩY .

Similarly, IHC consists of three steps (the last two are the same as in OHC).

• Obtain two-sided P -values by πi = P (|N(0, 1)| ≥ |(ΩY )i|), 1 ≤ i ≤ p.

• Sort P -values: π(1) < π(2) < · · · < π(p).

• Innovated Higher Criticism statistic is then IHC∗
p = max{1≤i≤p/2} IHCp,i,

where IHCp,i =
√
p[(i/p)− π(i)]/

√
π(i)(1− π(i)).

Consider the IHC test where we reject H
(p)
0 if and only if IHC∗

p ≥
d∗p(Ω)h(p, α), where d∗p(Ω) satisfies (2.3) and h(p, α) satisfies (3.1). Then,

P
H

(p)
0

(reject H
(p)
0 ) ≤ α. The next result extends Theorem 3 from Ω = Ip to more

general Ω.

Theorem 4. Fix (ϑ, r) in the phase space. As p→ ∞, if r > ρ∗(ϑ) and α = αp

tends to 0 slowly enough, then the power of the IHC-test tends to 1. If r < ρ∗(ϑ),

then for any test, the sum of Type I and Type II testing errors tends to 1.

Combining this with Theorem 1, for any (ϑ, r) in the Region of Detectable,

IHC provides an asymptotically full power test, so it achieves the optimal phase

diagram for detection given in Section 2.3.

The proof of Theorem 4 has two new ingredients, additional to that of The-

orem 3. The first one is Lemma 1 in Section 2.1. The second one is the sim-

ilarity between β and Ωβ: The most interesting region for signal detection is
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1/2 < ϑ < 1 Donoho and Jin (2004). For ϑ in this range, ϵp ≪ 1/
√
p; so β has

about pϵp nonzeros all equal to τp, Ωβ has . d∗p(Ω) · pϵp nonzeros, where about

pϵp of them equal τp and all others do not exceed τp in magnitude. Since d∗p(Ω)

does not exceed a multi-log(p) term, we do not expect any difference between

the detection boundary of Ω and that of Ip; both are r = ρ∗(ϑ).

4.2. Graphlet screening and its optimality in variable selection

For signal recovery, we rewrite model (2.1) as the linear regression model

W ∼ N(Xβ, Ip), W ≡ Ω1/2Y, X ≡ Ω1/2. (4.2)

In Section 1.1, we have mentioned that (a) Univariate Screening (US) is a popular

approach to variable selection but faces the challenge of “signal cancellation”,

and (b) Exhaustive Multivariate Screening (EMS) may help alleviate the effects

of “signal cancellation” but is both inefficient and computationally infeasible (it

includes too many subsets for screening and needs signals stronger than necessary

for successful screening).

Our proposal is to use Graphlet Screening (GS). We recognize that in EMS

many subsets of variables can be safely skipped for screening. The key innovation

of GS is to use a sparse graph to guide the screening. With the same notations

as those in Section 1.1, we let G = (V,E) be the graph where V = {1, . . . , p} and

there is an edge between nodes i and j if and only if Ω(i, j) ̸= 0. Let A(m0) =

{all connected subgraphs of G with size ≤ m0}. GS only applies χ2-screening to

those subsets in A(m0). When Ω = Ip, GS reduces to Hard Thresholding, so it

can be viewed as an Ω-aware Hard Thresholding.

By a well-known result in graph theory (see Jin, Zhang, and Zhang (2014)

and references therein),

|A(m0)| ≤ Cp(ed∗p(G))m0 , (4.3)

where d∗p(G) is the maximum degree of G. By the definition and (2.3), d∗p(G) =
d∗p(Ω), and does not exceed a multi-log(p) term. As a result, GS has a much

smaller computational cost than that of EMS (in fact, it is only larger than

that of US by a multi-log(p) factor for fixed m0), and also requires much weaker

signals than EMS does for successful screening.

Remark 7. GS is a flexible idea and can be adapted to many different set-

tings, where the implementation may vary from occurrence to occurrence. It is

a screening method and it has been applied to variable selection Jin, Zhang, and

Zhang (2014); Ke, Jin, and Fan (2014), which includes model (4.2) as a special

case. It can also be viewed as a way to evaluate the combined significance of (a

small number of) features, so it can be used for feature ranking; see Section 5 for

more discussion.
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We now describe how to apply GS to model (4.2) for signal recovery. List

all elements in A(m0) in the order of sizes, with ties broken lexicographically,

I1, I2, . . . , IN , N ≡ |A(m0)|. Our proposal is a two-step procedure, containing

a Screen step and Clean step. Fix positive tuning parameters (u, v, q). In the

Screen step, initialize with S0 = ∅. For i = 1, . . . , N , letting Si−1 be the set of

all retained indices up to stage i− 1, we update Si−1 by

Si =

{
Si−1 ∪ Ii, if ∥P IiW∥2 − ∥P Ii∩Si−1W∥2 ≥ 2q log(p),

Si−1, otherwise

where for any I ⊂ {1, . . . , p}, P I is the projection matrix from Rn to {xj : j ∈ I}.
The set of all retained nodes in the Screen step is then SN .

In the Clean step, we set β̂gsj = 0 for j /∈ SN . For j ∈ SN , we let GSN

be the subgraph of G formed by restricting all nodes to SN . There is a natural

decomposition of GSN
into components (maximum connected subgraphs): GSN

=

GSN ,1∪GSN ,2∪. . .∪GSN ,L. We estimate {βj : j ∈ GSN ,ℓ}, 1 ≤ ℓ ≤ L, by minimizing

∥P GSN,ℓ(W −
∑

j∈GSN,ℓ
βjxj)∥2+u2

∑
j∈GSN,ℓ

|βj |0, subject to the constraint that

either βj = 0 or |βj | ≥ v. Putting these together gives the final estimate, denoted

by β̂ = β̂gs(m0, u, v, q).

Theorem 5. Fix (m0, ϑ, r) such that 1 < r/ϑ < 3+2
√
2 ≈ 5.828 and m0 ≥ (r−

ϑ)2/(4ϑr). Suppose (2.2)−(2.3) hold, ∥Ω−1∥ ≤ C, and max1≤i≤p
∑p

j=1 |Ω(i, j)|γ

≤ C, for some constants γ ∈ (0, 1) and C > 0. Suppose |Ω(i, j)| ≤ 4
√
2 − 5 ≈

0.6569 for all 1 ≤ i, j ≤ p, i ̸= j. If we set the tuning parameters (u, v, q) in GS

by u =
√

2ϑ log(p), v =
√

2r log(p) and q an appropriately small constant, then

as p→ ∞, hp(β̂
gs, β) ≤ LpHamm∗

p(ϑ, r; Ω) = Lpp
1−(ϑ+r)2/(4r) + o(1).

Here Hamm∗
p(ϑ, r; Ω) is the minimax Hamming distance as in (2.10). For all

Ω considered in Theorem 5, GS achieves the optimal phase diagram for recovery

(see Section 2.3). Theorem 5 is a special case of the results in Jin, Zhang,

and Zhang (2014); see Section 2.6 there for the proof. The conditions on r/ϑ

and on the off-diagonals of Ω are not necessary for the optimality of GS. In

fact, hp(β̂
gs, β) ≤ LpHamm∗

p(ϑ, r; Ω) + o(1) holds in much broader settings, but

Hamm∗
p(ϑ, r; Ω) may not have such a simple expression. See more discussions in

Jin, Zhang, and Zhang (2014) about the asymptotic minimaxity of GS in more

general settings.

Remark 8. The tuning parameterm0 is usually chosen subject to computational

capacity. The choice of q is relatively flexible, as long as it falls into certain ranges.

The choice of u is harder, but the best u is a function of ϵp; in some settings

(e.g., Cai, Jin, and Low (2007)), we can estimate ϵp consistently, and we know
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how to choose the best u. For these reasons, we essentially have only one tuning

parameter v, which is connected to the tuning parameter in the subset selection

and that of the lasso; see Jin, Zhang, and Zhang (2014).

4.3. Phase diagrams (colored noise)

The optimal phase diagram for general Ω consists of four subregions sepa-

rated by three curves r = ρ∗(ϑ), r = ϑ and r = ρ∗exact(ϑ; Ω); ρ
∗
exact(ϑ; Ω) may

depend on the off-diagonals of Ω in a complicated way, but we always have

ρ∗exact(ϑ; Ω) ≥ ρ∗exact(ϑ; Ip), since Ω = Ip is the easiest case for exact recovery

under our normalization Ω(i, i) = 1.

For Ω satisfying conditions of Theorem 5 and (ϑ, r) such that 1 < r/ϑ < 3+

2
√
2, the minimax Hamming distance for Ω has the same convergence rate as that

for the case of Ω = Ip. Note that in the phase space, the curve r = ρ∗exact(ϑ; Ip)

and the line r/ϑ = 3 + 2
√
2 intersect at the point (ϑ, r) = (1/2, (3 + 2

√
2)/2).

Therefore, ρ∗exact(ϑ; Ω) = ρ∗exact(ϑ; Ip), for all 1/2 < ϑ < 1. Consequently, the

right half of the curve r = ρ∗exact(ϑ; Ω) coincides with the right half of the curve

r = ρ∗exact(ϑ; Ip); see Jin, Zhang, and Zhang (2014) for discussion on general Ω.

By Theorems 1−2 and Theorems 4−5, the optimal phase diagram for detec-

tion is achieved by IHC, and the optimal phase diagram for recovery is achieved

by GS for a wide range of Ω, including but are not limited to those satisfying the

conditions of Theorem 5. See Jin, Zhang, and Zhang (2014) for details.

4.4. An example, and comparisons with L0/L1-penalization methods

In general, it is hard to derive an explicit form for r = ρ∗exact(ϑ; Ω) for the

whole range of ϑ. Still, examples for some Ω ̸= Ip would shed light on how this

curve depends on the off-diagonal entries of Ω.

We revisit Example 1 in Section 4.1, where Ω is block-wise diagonal, and

each diagonal block is the 2×2 matrix with 1 on the diagonals and h0 on the off-

diagonals. It was shown in Jin, Zhang, and Zhang (2014) that Hamm∗
p(ϑ, r,Ω) =

Lpp
1−c(ϑ,r;h0), where

c(ϑ, r;h0) = min

{
(ϑ+ r)2

4r
, ϑ+

(1− |h0|)
2

r, 2ϑ+
{[(1− h20)r − ϑ]+}2

4(1− h20)r

}
. (4.4)

The curve ρ∗exact(ϑ; Ω) is then the solution of c(ϑ, r;h0) = 1, which depends on

h0. The top left panel of Figure 2 displays the phase diagram for h0 = 0.5.

Somewhat surprisingly, even for very simple Ω such as the block-wise diago-

nal example above and even when the tuning parameters are ideally set, subset

selection (L0-penalization) and the lasso have non-optimal phase diagrams; in

particular, their Region of Exactly Recoverable is smaller than that of GS. Fig-

ure 2 shows phase diagrams associated with GS, L0/L1-penalization methods for
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Figure 2. Phase diagrams (block-wise diagonal example, h0 = 0.5). From
left to right: GS, L0, and L1-penalization method. Note that the first two
subregions described in Section 2.3 are combined into Region of Not Recov-
erable, for convenience.

the block-wise diagonal example, where the tuning parameters are set ideally

to minimize the Hamming distance; see Ji and Jin (2011) and Jin, Zhang, and

Zhang (2014). Given the non-optimality of L0/L1-penalization methods in such

a simple Ω, we do not expect that for more general Ω they could be optimal.

We must note that the optimality of L0/L1-penalization methods in the lit-

erature are largely limited to settings, different from here, where they usually

have Rare/Strong signals (i.e., somewhere above the curve r = ρ∗exact(ϑ,Ω)) in

Figure 1), and either L2-loss or P (sgn(β̂) ̸= sgn(β)) is frequently used as the mea-

sure of loss. However, L2-loss is more appropriate for prediction setting, not for

variable selection, and P (sgn(β̂) ̸= sgn(β)) is more appropriate for Rare/Strong

signals, not for Rare/Weak signals where it is merely impossible to fully recover

the support of β. Since L0-penalization method is the target of many penaliza-

tion methods, including the lasso, SCAD Fan and Li (2001), MC+ Zhang (2010),

we should not expect these penalization methods to be optimal as well.

Remark 9. Ke, Jin, and Fan (2014) studied a more complicate setting than that

in Theorem 5 or that in Jin, Zhang, and Zhang (2014), where the Gram matrix is

not sparse but is sparsifiable. They derived the phase diagrams for a case that Ω is

the correlation matrix of a long-memory time series and for a change-point model.

The change-point model is a special case of model (4.2) where X is an upper

triangular matrix of 1’s (therefore, Xβ is piece-wise constant). For the change-

point model, the phase space partitions into only 2 regions, separated by the curve

r = ρ∗,cpexact(ϑ), where ρ
∗,cp
exact(ϑ) = max{4(1−ϑ), (4−10ϑ)+2

√
[(2− 5ϑ)2 − ϑ2]+}.
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4.5. Connections to the literature

Model (4.1) is closely related to the linear model W ∼ N(Xβ, In), where

the Innovated Transformation reduces to that of W 7→ X ′W . Arias-Castro,

Candes, and Durand (2011) applied HC to X ′W for signal detection, which is

similar to IHC. Ingster, Tsybakov, and Verzelen (2010) considered a case that

W ∼ N(Xβ, σ2In) where σ is unknown and Xi
iid∼ N(0, (1/n)Ip). They proposed

a modified IT,W 7→ ∥W∥−1X ′W , to adapt to the unknown σ. Mukherjee, Pillai,

and Lin (2013) considered the binary-response logistic regression. They proposed

HC-like statistics for signal detection and exposed interesting dependence of the

detection boundary on the design matrix.

Another related setting is with data as iid samples Y1, · · · , Yn of N(β,Σ).

This reduces to model (4.1), noting that (1/
√
n)

∑n
i=1 Yi ∼ N(β,Σ) is the vector

of sufficient statistics of β. When the data are nonGaussian, Zhong, Chen, and

Xu (2013) proposed an “Lγ-thresholding test” which takes BHC as a special case

of γ = 0.

GS, as a method to improve US, is different from the Iterative Sure Indepen-

dence Screening (ISIS) Fan and Lv (2008); Fan, Samworth, and Wu (2009). ISIS

first applies US to select a small set of variables M1. In the second step, for each

j /∈M1, it runs a least-square algorithm on the model M1 ∪ {j} and records the

coefficient of j. These coefficients are then used to rank variables and expandM1

to a set M2. This procedure runs iteratively. ISIS alleviates ‘signal cancellation’

between variables in M1 and those in {1, · · · , p}\M1, but unlike GS, it does not

deal with ‘signal cancellation’ among variables in {1, · · · , p}\M1.

GS is closely related to LARS Efron et al. (2004) and the forward-backward

greedy algorithm Zhang (2011) in utilizing local graphic structure of variables.

The Screen step of GS is a step-wise forward algorithm and the Clean step is a

backward algorithm.

5. Stylized Applications

HC and GS are flexible ideas that can be adapted to a broad set of problems

and settings. In this section, we outline some potential applications.

5.1. Higher criticism for estimating the bandwidth of a matrix

The HC idea, although still in its early stage of development, is seeing in-

creasing interest both in practice and in theory. In Section 3.3−3.4, we have

reviewed applications and extensions of HC in many different settings. In this

section, we illustrate a new application of HC.

Consider samples Xi ∈ Rp from a Gaussian distribution: Xi
iid∼ N(0,Σ),

1 ≤ i ≤ n. The Gaussian assumption is not critical and is only for simplicity. In
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many applications, with the Linkage Disequilibrium (LD) matrix being an iconic

example, Σ is unknown but is banded; denote the bandwidth by b = b(Σ) so that

b is the smallest integer such that Σ(i, j) = 0 for all i, j with |i− j| ≥ b+ 1.

We adapt HC to estimate b(Σ). HC can also be adapted to test whether

b(Σ) ≤ k0 or b(Σ) > k0 for a given small integer k0; the discussion is simi-

lar so we omit it to save space. Let the empirical covariance matrix be Sn =

(1/n)
∑n

i=1XiX
′
i. For 1 ≤ k ≤ p − 1, let ξ(k) and ξ̂(k) be the (p − k) × 1 vec-

tors formed by the k-th (upper) off-diagonal of Σ and Sn, respectively: ξ
(k) =

(Σ(1, 1 + k), . . . ,Σ(p − k, p))′, ξ̂(k) = (Sn(1, 1 + k), . . . , Sn(p − k, p))′. We con-

sider a Rare/Weak setting where each ξ(k) has a small fraction of nonzeros, and

each nonzero is relatively small. For any i, j such that Σ(i, j) = 0, we have that

approximately,
√
nSn(i, j) ∼ N(0, 1).

We propose the following HC estimator for b(Σ). Fix an integer b0 (a rela-

tively small but conservative upper bound for b(Σ)) and a level α ∈ (0, 1).

• For k = 1, . . . , b0, apply HC
+
p in (1.2) to ξ̂(k), where the P -value associated

with the i-th entry of ξ̂(k) is given by P (|N(0, 1)| ≥
√
nξ̂

(k)
i ), 1 ≤ i ≤ p − k.

Denote the resultant HC scores be HC(1), . . . ,HC(b0), correspondingly.

• Estimate b(Σ) by b̂HC = max{1 ≤ k ≤ b0 : HC
(k) ≥ h+(p, α/b0)}.

Here h+(p, α) is as in Remark 2 which can be computed by simulations.

We conducted a small-scale simulation, where (p, n, b(Σ), b0, α) = (5000,

200, 2, 10, 0.05). For k = 1, 2, and fixed (ϵ, τ), we generated the entries of ξ(k)

randomly from (1 − ϵ)ν0 + ϵντ . We then applied the above procedure and re-

peatd the whole simulation processes independently for 200 times, and recorded

the error rates (the fraction of simulations where b̂HC ̸= b(Σ)). We investigated

six combinations of (ϵ, τ): (0.01, 0.175), (0.01, 0.2), (0.01, 0.225), (0.005, 0.225),

(0.005, 0.25), and (0.01, 0.275); the corresponding error rates of b̂HC were 6.5%,

0.5%, 0%, 8.5%, 3%, and 2%.

Remark 10. The choice of h+(p, α/b0) is from Bonferroni correction. It is ac-

ceptable for relatively small b0. For large b0, we may need to adjust the threshold,

say, with the FDR-controlling method in Benjamini and Hochberg (1995).

5.2. Ranking features by graphlet screening

Consider the linear regression model of Section 1.1:

W = Xβ + z, X = Xn,p = [x1, x2, . . . , xp], z ∼ N(0, In), (5.1)

with assumptions on Ω and β in Section 2. We are interested in ranking the

features so to have a competitive Receiver Operating Curve (ROC).
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Figure 3. ROC curves associated with features ranking by US (blue) and
GS (red). Signal cancellation is severe on the left and GS offers a significant
improvement. It is not severe on the right so GS is comparable to US; see
Section 5.2 for details.

We propose to rank the features by GS. Fix a threshold δ > 0. Similar

to that in Section 1.1, let G∗,δ = (V,E) be the graph where V = {1, . . . , p}
and there is an edge between i and j if and only if |G(i, j)| ≥ δ; since G is

approximately sparse, G∗,δ is sparse in that the maximum degree is small, given

an appropriate choice of δ. Fixing m0 > 1, let A∗,δ(m0) = A∗,δ(m0, G) =

{all connected subgraphs of G∗,δ with size ≤ m0}. Similarly to (4.3), |A∗,δ(m0)|
≤ Cp(ed∗p)

m0 , where d∗p = d∗p(δ,G) is the maximal degree of G∗,δ. Our procedure

consists of the following steps.

• For each I ∈ A∗,δ(m0), compute a P -value as π(I) = P (χ2
|I|(0) > ∥P IY ∥2).

• Let πgsj = minI∈A∗,δ(m0){π
(I)}, for 1 ≤ j ≤ p.

• Rank the significance of feature j according to πgsj .

Here P I is the projection from Rn to {xj : j ∈ I}. The procedure is related to

the hierarchical variable selection procedures Meinshausen (2008) but differs in

significant ways.

We conducted a small-scale numerical study, where (n, p, ϵ) = (500, 1,000,

0.05). Let Σ be a p × p blockwise diagonal matrix with size-2 blocks, each

block with diagonals 1 and off-diagonals h0. Given (h0, τ), we first generated

(β2j−1, β2j)
iid∼ (1 − ϵ)ν(0,0) + (ϵ/2)ν(τ,τ) + (ϵ/2)ν(τ,0), for j = 1, · · · , p/2, where

νa is a point mass at a for any a ∈ R2. Next, we generated Xi
iid∼ N(β, (1/n)Σ),

for i = 1, · · · , n. We applied both US and GS (taking m0 = 2) to rank features.

Figure 3 displays the corresponding ROC curves, obtained from averaging 200

independent repetitions. We investigated the cases (h0, τ) = (−0.8, 4), (0.8, 1.5).

In the first case, signal cancellation is severe and GS significantly outperforms

US; in the second case, GS has a similar performance as US.
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Feature ranking is of interest in many high dimensional problems including,

but are not limited to, (a) large-scale multiple testing, where it is of interest to

develop methods that control the FDR while maximizing the power of multiple

tests, (b) cancer classification where it is desirable to select a small fraction of

features for the trained classification decision Donoho and Jin (2008, 2009); Jin

(2009), and spectral clustering where it is desirable to perform a dimension reduc-

tion before we apply Principle Component Analysis (PCA) Jin and Wang (2014).

As GS provides a better strategy in feature ranking than US, it is potentially

useful in attacking all of these problems.

6. Feature Selection by Higher Criticism for Classification

Among many uses of Higher Criticism, one of particular interest is setting

thresholds for feature selection in classification. Consider a two-class classifica-

tion setting where (Y (i), ℓi), 1 ≤ i ≤ n, are measurements from two different

classes. Here, Y (i) ∈ Rp are the feature vectors and ℓi ∈ {−1, 1} are the class

labels. We assume the classes are equally likely, so that after a standardizing

transformation, Y (i) ∼ N(ℓi · µ,Σ), with µ ∈ Rp the contrast mean vector and

Σ the p× p covariance matrix; such an assumption is only for simplicity in pre-

sentations. Given a fresh feature vector Y , the primary interest is to predict the

associated class label ℓ ∈ {−1, 1}.
For simplicity, we assume Σ is known and Ω = Σ−1 is sparse. The case Σ

is unknown (but Ω is sparse) is discussed in Fan, Jin, and Yao (2013). Fisher’s

linear discriminant analysis (LDA) is a classical approach to classification. Let

w = (w1, w2, . . . , wp)
′ be a p× 1 feature weight vector. For a fresh feature vector

Y = (Y1, · · · , Yp)′, Fisher’s LDA takes the form L(Y ) =
∑p

i=1wiYi, and classifies

ℓ = ±1 according to L(Y ) ≷ 0. When (Σ, µ) is known, it is known that the

optimal weight vector satisfies w ∝ Ωµ.

To adapt Fisher’s LDA to the current setting, the key is to estimate µ. We are

primarily interested in the Rare/Weak setting where only a small fraction of the

entries of µ is nonzero and the nonzero entries are individually small. Define the

feature z-vector Z = (1/
√
n)

∑n
i=1(ℓi ·Y (i)) ∼ N(

√
nµ,Σ). A standard approach

to estimating µ is by some sort of thresholding scheme. For any t > 0, denote by

ηt(z) the clipping thresholding function ηt(z) = sgn(z)1{|z| ≥ t} Donoho and Jin

(2008); Fan, Jin, and Yao (2013). Our proposal is to use Innovated Thresholding

which thresholds ΩZ coordinate-wise:

µ̂ITt,i = ηt((ΩZ)i), 1 ≤ i ≤ p. (6.1)

One could also use Brute-force Thresholding which thresholds Z coordinate-wise,

or Whitened Thresholding which thresholds Ω1/2Z coordinate-wise. However,
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these schemes are inferior to Innovated Thresholding, for Innovated Transforma-

tion yields largest Signal-to-Noise Ratio (Section 4.1). In (6.1), we use the clip-

ping thresholding rule. One could also use hard-thresholding or soft-thresholding,

but the difference is usually not significant; see Donoho and Jin (2008); Fan, Jin,

and Yao (2013).

We now modify Fisher’s LDA. Letting LIT
t (Y ; Ω) = (µ̂ITt )′ΩY , where µ̂ITt =

(µ̂ITt,1 , µ̂
IT
t,2 , . . . , µ̂

IT
t,p)

′, we classify ℓ as ±1 according to LIT
t (Y ; Ω) ≷ 0. This con-

nects to the modified HC in Zhong, Chen, and Xu (2013), but the focus there is

on signal detection.

An important issue is how to set the threshold t. We propose Higher Criti-

cism Threshold (HCT), a variant of OHC.

1. Calculate (two-sided) P -values πi = P{|N(0, 1)| ≥ |(ΩZ)i|}, 1 ≤ i ≤ p.

2. Sort the P -values into ascending order: π(1) < π(2) < . . . < π(p).

3. Define the Higher Criticism feature scores by

HC(i;π(i)) =
√
p

i/p− π(i)√
(i/p)(1− i/p)

, 1 ≤ i ≤ p. (6.2)

For a tuning parameter α0 ∈ (0, 1/2], let îHC=argmax{1≤i≤α0·p}{HC(i;π(i))}.
The HCT is then t̂HC

p = t̂HC
p (Z1, Z2, . . . , Zp;α0) = |Z |̂iHC .

In practice, we usually set α0 = 0.10; HCT is relatively insensitive to different

choices of α0. In (6.2), the denominator of the HC objective function is different

from that of OHC we used for testing problems (2.7)−(2.8), although in a similar

spirit. See Donoho and Jin (2009) for explanations.

Once the threshold is decided, the associated Fisher’s LDA is

LIT
HC(Y ; Ω) = (µ̂ITHC)

′ΩY, where µ̂ITHC = µ̂ITt
∣∣
t=t̂HC

p
. (6.3)

The HCT trained classification rule classifies ℓ = ±1 according to LIT
HC(Y ) ≷ 0.

Remark 11. The classification problem is closely connected to the testing prob-

lem (2.7)−(2.8) in Sections 3−4. For illustration, assume Ω = Ip and
√
nµj

iid∼
(1− ϵ)ν0 + ϵντ . Given a test feature Y ∼ N(ℓ · µ, Ip), the classification problem

can be viewed as the problem of testing H
(p)
0 of Y ∼ N(−µ, Ip) against H(p)

1 of

Y ∼ N(µ, Ip). Although this is very similar to that of (2.7)−(2.8), there is a

major difference. In (2.7)−(2.8), we have no other information than the prior

distribution on µ, so all features are equally likely to be useful. In the classifica-

tion problem, however, the training z-vector Z ∼ N(
√
nµ, Ip) contains additional

information about µ; for feature i, 1 ≤ i ≤ p, the posterior probability that it is

a useful feature is given by P (µi ̸= 0|Z) = ϵeτZi−τ2/2/[(1−ϵ)+ϵeτZi−τ2/2], which

≈ 1 if Zi is large and positive and ≈ 0 if Zi is large and negative. Seemingly,
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Figure 4. Left: r = ρ∗θ(ϑ) for θ = 0, 0.2, 0.4. Right: enlargement the region
bounded by grey dashed lines in the left panel; in the yellow region, it is
not only possible to have successful classifications, but is also possible to
separate useful features from useless ones.

the posterior distribution contains much more information on inference than the

prior distribution does. This also suggests (one-sided) clipping hard thresholding,

similar to that suggested by Fisher’s LDA.

6.1. Phase diagram for classification

We first introduce the ARW model for classification. We model the contrast

mean vector µ by
√
nµi

iid∼ (1−ϵ)ν0+ϵντ , 1 ≤ i ≤ p. Fix (ϑ, r, θ) such that r > 0,

0 < θ < 1 and 0 < ϑ < 1−θ. Similarly, we let ϵ = ϵp = p−ϑ, τ = τp =
√

2r log(p),

and n = np = pθ. It was noted in Jin (2009) and Fan, Jin, and Yao (2013) that

for any fixed θ ∈ (0, 1), the most interesting range for ϑ is 0 < ϑ < (1 − θ).

When ϑ > (1 − θ), for successful classification, we need τp ≫
√

log(p), but

this corresponds to the Rare/Strong regime, which is relatively easy, for we can

separate the nonzero entries of µ from zero ones by simple thresholding. For

ρ∗(·) as in (2.9), let ρ∗θ(ϑ) = (1− θ)ρ∗(ϑ/(1− θ)), 0 < ϑ < (1− θ). The following

theorem was proved in Fan, Jin, and Yao (2013).

Theorem 6. Fix (ϑ, θ, r) ∈ (0, 1)3 such that 0 < ϑ < (1 − θ). Suppose that

Ω = Σ−1 satisfies (2.2)−(2.3) and that the spectral norm of Σ is bounded by a

constant C > 0. If r > ρ∗θ(ϑ), then the classification error of the trained HCT

classification rule in (6.3) tends to 0 as p → ∞. If 0 < r < ρ∗θ(ϑ), then the

classification error of any trained classification rule is no less than 1/2 + o(1),

where o(1) → 0 as p→ ∞.

There is a similar phase diagram associated with the classification problem.
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• Region of Classifiable: {(ϑ, r) : 0 < ϑ < (1−θ), r > ρ∗θ(ϑ)}. In this region, the

HC threshold t̂HC
p satisfies t̂HC

p /tidealp → 1 in probability, where tidealp is the

ideal threshold that one would choose if the underlying parameters (ϑ, r,Ω)

are known. Also, the classification error of HCT-trained classification rule

tends to 0 as p→ ∞.

• Region of Unclassifiable: {(ϑ, r) : 0 < ϑ < (1 − θ), r < ρ∗θ(ϑ)}. In this

region, the classification error of any trained classification rule can not be

substantially smaller than 1/2.

See more discussion in Donoho and Jin (2008, 2009); Jin (2009). Ingster, Pouet,

and Tsybakov (2009) independently derived the classification boundary in a

broader setting, but they did not discuss HC. In Figure 4, we plot the phase

diagrams for θ = 0, 0.2, 0.4.

The advantage of HC is its optimality in the ARW model. Note that HCT

is a data-driven non-parametric statistic, the use of which does not require the

knowledge of the ARW parameters. HC is not tied to the idealized model we

discussed here, and can be useful for more general settings. See Donoho and Jin

(2008) for applications of HC to cancer classification with microarray data sets.

Our proposal of threshold choice by HC is very different from Benjamini-

Hochberg’s FDR-controlling method (or Efron’s local FDR approach), where the

philosophy is to control the feature FDR, the expected fraction of falsely selected

features out of all selected features, by a small number (e.g., 5%). However, this

is not necessarily the right strategy when signals are Rare/Weak. Donoho and Jin

(2009) identified a sub-region of Region of Classifiable where to obtain optimal

classification behavior, we must set the feature selection threshold very low so

that we include most of the useful features; but when we do this, we must include

many useless features and the feature FDR is approximately 1.
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