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Application to Time Course Genomic Data”.

S1 Brief Summary

The following sections are presented in this document.

1. Brief Summary: A brief summary of the materials included in this document.

2. Additional Simulation Results. This section contains the following two subsections.

(a) Illustrations of model selection procedures for main simulations. This sub-
section contains Figures S1 to S5 which illustrate the optimum number of
clusters selected by various model selection methods for five simulated data
(SIM.K1, SIM.K5, SIM.K25, SIMBIO.A, and SIMBIO.B.

(b) A comparison between the mixture Gaussian distribution and mixture Langevin
distribution. We conducted a simulation study which illustrates the key dif-
ferences between Rd and S1.

3. Technical Details of Biological Data Analysis. We provide detailed information
about the biological data used in this study. We also describes the hypothesis
testing procedure and functional principal component analyses (fPCA) in two sub-
sections (Identifying Significant Genes and Functional Principal Component Analy-
sis). Table S1 summaries the number of identified significant genes for each subject;
Table S2 lists the proportion of variance explained by the first two eigen-functions
in fPCA. Figures S7 to S20 are included in this section to illustrate the optimum
number of clusters selected by various model selection methods.
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4. Functional Enrichment Analyses. We summarize the results of functional enrich-
ment analysis in this section. Tables S3, S4, and S5 lists all the significant pathways
identified in these analyses.

5. The Proof of the Main Theorem. This section contains the proofs of supporting
lemmas and the main theorem (Theorem 2.1). The latter part is organized in
subsection S5.1.

6. The Circular Shape of the First Two Functional Principal Components. We raised
an important question the main manuscript: Why do the principal component scat-
ter plots show circular pattern, and why is this pattern clearer for the symptomatic
subjects than the asymptomatic ones? We provide an answer to this question in
this section.
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(f) Results

Figure S1: Selecting the optimum K for SIM.K1 by different model selection criteria.
True number of clustersK = 1. The last panel (f) shows the results of running SK-means
algorithm with number of clusters determined by ICCC (K = 1).

S2 Additional Simulation Results

S2.1 Illustrations of model selection procedures for main simu-
lations
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(f) Results

Figure S2: Selecting the optimum K for SIM.K5 by different model selection criteria.
True number of clusters: K = 5. The last panel (f) shows the results of running SK-
means algorithm with number of clusters determined by ICCC (K = 5).
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(f) Results

Figure S3: Selecting the optimum K for SIM.K25 by different model selection criteria.
True number of clusters: K = 25. The last panel (f) shows the results of running
SK-means algorithm with number of clusters determined by ICCC (K = 27).
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Figure S4: Selecting the optimumK for SIMBIO.A by different model selection criteria.
True number of clusters: K = 5. The last panel (f) shows the results of running SK-
means algorithm with number of clusters determined by ICCC (K = 5).
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Figure S5: Selecting the optimum K for SIMBIO.B by different model selection criteria.
True number of clusters: K = 5. The last panel (f) shows the results of running SK-
means algorithm with number of clusters determined by ICCC (K = 5).
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S2.2 A comparison between the mixture Gaussian distribution
and mixture Langevin distribution

There are some important connections between the Langevin distribution and the Gaus-
sian distribution (Mardia and Jupp, 2000). The mean direction µk and the inverse of
the concentration parameter 1/κ of the one-dimensional Langevin distribution are the
analogy of the mean vector and the variance of the bivariate Gaussian distribution, re-
spectively. However, there are also significant differences between these two because the
geometry of S1 is fundamentally different from that of R2. First, the circular space S1

is curved and its curvature cannot be ignored for distributions that are not concentrated
in a very small arc. In addition, summation and scaling have to be adapted so that these
operators are well defined on S1. Two fundamental limiting theorems in mathematical
statistics, namely the law of large numbers and the central limit theorem on S1 are
formulated very differently than their counterparts on the Euclidean space.

Secondly, the circular space S1 is compact. This suggests that one cannot arbitrarily
“squeeze in” many clusters on S1 without making each cluster smaller (larger κ). The
following simple example highlights this difference. Suppose that one has a Gaussian
mixture model defined on R2 and a mixture Langevin model defined on S1. Both consists
ofK clusters with the same shape parameter (σ2 for Gaussian mixture and κ for Langevin
mixture) but distinct location parameters. In the Gaussian mixture case, one can always
spread the centers of these clusters on an equi-distance grid so the smallest distance
between two cluster centers is always greater than a constant, for example 5σ. In this
case all clusters are still distinguishable even for large K. However, the smallest distance
between the centers of two clusters on S1 must be less or equal to 2π

K . So when K
is large, the clusters are not distinguishable and the scatter plot would look like being
generated from a uniform distribution on S1, which is the least informative distribution
for clustering.

We conduct a simulation study to demonstrate the different geometric properties of
Langevin mixture distribution on S1 and bivariate Gaussian mixtures. The simulated
data are generated as follows.

Gauss.K4: n = 1, 000 observations on R2 drawn from a Gaussian mixture of four clus-
ters with equal size. The variance parameter is σ2 = 1 for all clusters; the cluster
centers lie on an equi-distance grid on R2 with unit length 5.

Gauss.K25: n = 1, 000 observations on R2 drawn from a Gaussian mixture with 25
clusters with equal size. Like Gauss.K4, the variance parameter is σ2 = 1 for all
clusters and the cluster centers lie on an equi-distance grid on R2 with unit length
5.

Lang.K4 n = 1, 000 observations on S1 drawn from a Langevin mixture of four clus-

ters with equal size. The concentration parameter is κ =
100

π2
; the angular cluster

centers lie on an equi-distance grid on S1. The choice of κ is based on this con-
sideration. When K = 4, the smallest between-cluster angular distance is π/2. To
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(c) Lang.K4
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(d) Lang.K25

Figure S6: A comparison of clustering Gaussian mixtures and Langevin mixtures. Red
crosses mark cluster centers. Total number of observations for each cluster: n = 1, 000.
For better visual effects, empirical circular density plots are overlaid on top of scatter
plots of Langevin mixtures.

match Gauss.K4 the variance parameter should be σ2 =
(

1
5

π

2

)2

=
π2

100
. Since

1/κ is the analogy of σ2, we choose κ =
100

π2
.

Lang.K25: Just like Lang.K4, except that it has 25 clusters with equal size centered
on an equi-distance grid on S1.

The results of this simulation is summarized in Figure S6. It is clear that when K
becomes large, the (empirical) density function generated from a mixture of Langevin
distributions is indistinguishable from the uniform distribution on S1. This example
highlights the compactness property of S1.
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S3 Technical Details of Biological Data Analysis

We applied the proposed ICCC model selection criterion and spherical K-means cluster
algorithm to a large scale time course microarray data (Huang et al., 2011). In this study,
a cohort of 17 healthy human volunteers received intranasal inoculation of influenza
H3N2/Wisconsin and 9 of these subjects developed mild to severe symptoms. A total
of m = 11, 961 gene expression profiles were measured on whole peripheral blood drawn
from all subjects at 16 time points. These time points cover a total of 132 hours of
observation, including one measurement taken 24 hours before inoculation and J = 15
time points at an interval of roughly 8 hours post inoculation (hpi) through 108 hpi.

Hybridization and microarray data collection was performed using the Human Genome
U133A 2.0 Array (Affymetrix, Santa Clara, CA). Data pre-processing was done using
the robust multi-array (RMA) method (Bolstad et al., 2003). More detailed technical
descriptions of these data can be found in Huang et al. (2011).

For convenience, we exclude the pre-inoculation measurement from our study. We
also exclude subjects 8, 13, and 17 due to missing time points. Gene-wise standardization
is applied before clustering analysis to ensure genes all have the same sample mean (zero)
and variance (one).

S3.1 Identifying Significant Genes

We conduct functional F -test (Ramsay and Silverman, 2002; Storey et al., 2005) to iden-
tify genes whose gene expressions change significantly for this study. The null hypothesis
of this testing problem is

H0,i : yi(t) = ci0, 0 6 t 6 108, i = 1, 2, . . . ,m, (S3.1)

where yi(t) represents the underlying true expression curve for the ith gene and the
constant ci0 represents the “normal level” of this gene, should the exposure to influenza
viruses has no effect to its expression.

In practice, we only observe a discrete and noisy representation of yi(t), i.e., wij =
yi(tj) + εij , for j = 1, 2, . . . , J time points. So yi(t) must be estimated. We can use

ŷ0
i (t) ≡ ĉi0 = 1

J

∑J
j=1 wij , the sample mean over J = 15 time points, as the estimate of

ci0 under H0,i. Since data has already been standardized, ĉi0 ≡ 0 for all genes.

Let SS0
i denote the residual sum of squares associated with the constant function

approximation of the observed data. Due to the standardized nature of data, we have

SS0
i :=

J∑
j=1

(wij − ĉi0)
2

:= (J − 1)σ̂2(wi) ≡ J − 1, for i = 1, 2, . . . ,m. (S3.2)

Under the alternative hypotheses, penalized B-splines are used to estimate yi(t) from
the noisy microarray observations (Storey et al., 2005). This amounts to the following
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representation

H1,i : yi(t) = ci +

L∑
l=1

cilβl(t), 0 6 t 6 108, i = 1, 2, . . . ,m, (S3.3)

where βl(t), l = 1, 2, . . . , L are B-spline basis. Generalized cross-validation (GCV) prin-
ciple is used for choosing the roughness penalty term. The estimated curves are denoted
simply by ŷi(t).

The following summary statistic is used for testing H0,i:

Fi =
SS0

i − SS1
i

SS1
i

=
J − 1

SS1
i

− 1, (S3.4)

where SS0
i and SS1

i are the residual sum of squares obtained from the null and alternative
hypothesis, respectively. The null distribution is generated by R = 5, 000 permutations
of time labels. The unadjusted p-value for testing H0,i is calculated by

pi =

R∑
r=1

# {r : F ri > Fi}
R

, (S3.5)

where F ri is the summary statistic associated with the ith gene in the rth permutation.

According to Equation (S3.4), a gene is significant if and only if SS1
i is small.

Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) is then applied to con-
trol the false discovery rate (FDR) at 0.05 level. Table S1 summarizes the number of
significant genes for each individual.

DEGs Symptoms
subject1 110 Symptomatic
subject2 22 Asymptomatic
subject3 3 Asymptomatic
subject4 13 Asymptomatic
subject5 1345 Symptomatic
subject6 532 Symptomatic
subject7 163 Symptomatic
subject9 64 Asymptomatic

subject10 2504 Symptomatic
subject11 1 Asymptomatic
subject12 199 Symptomatic
subject14 99 Asymptomatic
subject15 200 Symptomatic
subject16 35 Asymptomatic

Table S1: Numbers of significant genes for each individual. Subjects with the most and
least significant genes (10 and 11) are highlighted in the table.
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One clear message of Table S1 is that the seven patients with visible symptom
have much more significant genes on average compared with those without symptom.
Some asymptomatic subjects have very few significant genes (such as subjects 3 and 11)
which makes cluster analysis impossible. To facilitate cluster analysis, we use the most
significant 200 genes if less than 200 genes are selected.

S3.2 Functional Principal Component Analysis

Once the significant genes are selected, functional principal component analysis (fPCA) (Ram-
say and Silverman, 2002) is applied to ŷi(t), the estimated temporal curves under the
alternative hypothesis. Each ŷi(t) is then represented by ~s := (s1, s2, . . . , sP ), the first
P principal component scores for the subsequent cluster analysis.

The fPCA serves the following purposes: 1. it transforms the functional objects
into multivariate principal component scores so standard cluster analysis tools can be
applied without modification; 2. it finds the most parsimonious basis representation of
ŷi(t), which by construction are vectors in the L-dimensional functional linear space.

Table S2 summarizes the proportion of total variance explained by the first two
principal components. It is clear that these two PCs account for most of total variance
for all subjects.

PC1 PC2 Both
subject1 75.99 23.02 99.00
subject2 60.81 36.93 97.74
subject3 85.90 12.57 98.47
subject4 78.49 19.79 98.27
subject5 90.04 9.21 99.24
subject6 76.95 22.20 99.15
subject7 88.21 11.04 99.25
subject9 84.69 14.19 98.88

subject10 89.07 9.97 99.04
subject11 67.50 26.66 94.15
subject12 77.41 21.94 99.34
subject14 85.96 13.37 99.33
subject15 92.44 5.58 98.02
subject16 83.52 15.79 99.30

Table S2: Percentage of total variance explained by the first two principal components.

For each subject we make a scatter plots of (si1, si2), the first two principal compo-
nent scores of each gene.
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(a) Scatter plot
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Figure S7: Plots of model selection procedures for subject 1 (Symptomatic). Number of
clusters estimated by ICCC: K = 2.
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Figure S8: Plots of model selection procedures for subject 2 (Asymptomatic). Number
of clusters estimated by ICCC: K = 3.
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Figure S9: Plots of model selection procedures for subject 3 (Asymptomatic). Number
of clusters estimated by ICCC: K = 2.
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(a) Scatter plot
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Figure S10: Plots of model selection procedures for subject 4 (Asymptomatic). Number
of clusters estimated by ICCC: K = 3.
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(a) Scatter plot
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Figure S11: Plots of model selection procedures for subject 5 (Symptomatic). Number
of clusters estimated by ICCC: K = 2.
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Figure S12: Plots of model selection procedures for subject 6 (Symptomatic). Number
of clusters estimated by ICCC: K = 2.
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Figure S13: Plots of model selection procedures for subject 7 (Symptomatic). Number
of clusters estimated by ICCC: K = 3.
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Figure S14: Plots of model selection procedures for subject 9 (Asymptomatic). Number
of clusters estimated by ICCC: K = 1.
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Figure S15: Plots of model selection procedures for subject 10 (Symptomatic). Number
of clusters estimated by ICCC: K = 2.
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(a) Scatter plot
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Figure S16: Plots of model selection procedures for subject 11 (Asymptomatic). Number
of clusters estimated by ICCC: K = 1.
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(a) Scatter plot
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Figure S17: Plots of model selection procedures for subject 12 (Symptomatic). Number
of clusters estimated by ICCC: K = 3.
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(a) Scatter plot
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Figure S18: Plots of model selection procedures for subject 14 (Asymptomatic). Number
of clusters estimated by ICCC: K = 2.
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(a) Scatter plot
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Figure S19: Plots of model selection procedures for subject 15 (Symptomatic). Number
of clusters estimated by ICCC: K = 8.
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(a) Scatter plot
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Figure S20: Plots of model selection procedures for subject 16 (Asymptomatic). Number
of clusters estimated by ICCC: K = 2.
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S4 Functional Enrichment Analyses

We conduct functional enrichment analyses on the classified gene clusters by DAVID Huang
et al. (2009). Specifically, for each subject, we identified the enriched functions and path-
way annotations of each cluster in Gene Ontology Ashburner (2000), KEGG Ogata et al.
(1999) and REACTOME Joshi-Tope et al. (2005) curated pathway databases. The Bon-
ferroni multiple testing procedure is selected to control the familywise error rate at level
0.05.

For Subject 10 (Symptomatic), its 2,504 DEGs are divided into two clusters based
on ICCC, GAP, and MR. A total of 118 significant pathways are identified and these
results are summarized in Table S3. For Subject 2 (Asymptomatic), ICCC divides its
DEGs (200 most significant genes) into three clusters (same as MR) but GAP groups
them into one cluster. For Subject 11 (Asymptomatic), ICCC integrates all DEGs (200
most significant genes) into one cluster but both GAP and MR divide them into two
clusters. Based on ICCC, we identified six significant pathways from Subject 2 (K = 3)
and four significant pathways from Subject 11 (K = 1). These results are summarized in
Table S4. Based on the alternative model selection criteria, we identified three significant
pathways from Subject 2 (K = 1, GAP) and four significant pathways from Subject 11
(K = 2, GAP/MR). These results are summarized in Table S5.

Term Name Adj.pval Cluster
GO:0006955 immune response 0.00000 cluster2
GO:0016568 chromatin modification 0.00000 cluster1
GO:0006325 chromatin organization 0.00000 cluster1
GO:0051276 chromosome organization 0.00000 cluster1
REACT 578 apoptosis 0.00000 cluster2
GO:0006952 defense response 0.00000 cluster2
GO:0009615 response to virus 0.00000 cluster2
REACT 6850 cdc20 0.00000 cluster2
GO:0045321 leukocyte activation 0.00000 cluster1
REACT 13635 regulation of activated pak-2p34 by proteasome

mediated degradation
0.00001 cluster2

REACT 11045 signaling by wnt 0.00001 cluster2
REACT 9035 apc/c 0.00001 cluster2
GO:0051443 positive regulation of ubiquitin-protein ligase ac-

tivity
0.00001 cluster2

GO:0043123 positive regulation of i-kappab kinase/nf-kappab
cascade

0.00001 cluster2

hsa04666 fc gamma r-mediated phagocytosis 0.00001 cluster1
GO:0051351 positive regulation of ligase activity 0.00002 cluster2
hsa04640 hematopoietic cell lineage 0.00002 cluster1
GO:0051437 positive regulation of ubiquitin-protein ligase ac-

tivity during mitotic cell cycle
0.00003 cluster2

GO:0051439 regulation of ubiquitin-protein ligase activity
during mitotic cell cycle

0.00006 cluster2
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GO:0051438 regulation of ubiquitin-protein ligase activity 0.00006 cluster2
GO:0043122 regulation of i-kappab kinase/nf-kappab cascade 0.00006 cluster2
GO:0051436 negative regulation of ubiquitin-protein ligase

activity during mitotic cell cycle
0.00007 cluster2

GO:0031145 anaphase-promoting complex-dependent protea-
somal ubiquitin-dependent protein catabolic
process

0.00007 cluster2

REACT 383 dna replication 0.00007 cluster2
GO:0007242 intracellular signaling cascade 0.00010 cluster1
GO:0001775 cell activation 0.00010 cluster1
GO:0051352 negative regulation of ligase activity 0.00012 cluster2
GO:0051444 negative regulation of ubiquitin-protein ligase

activity
0.00012 cluster2

hsa05010 alzheimer’s disease 0.00012 cluster2
GO:0031397 negative regulation of protein ubiquitination 0.00013 cluster2
GO:0051340 regulation of ligase activity 0.00013 cluster2
GO:0030097 hemopoiesis 0.00013 cluster1
GO:0051056 regulation of small gtpase mediated signal trans-

duction
0.00015 cluster1

GO:0031401 positive regulation of protein modification pro-
cess

0.00018 cluster2

GO:0016569 covalent chromatin modification 0.00021 cluster1
GO:0031398 positive regulation of protein ubiquitination 0.00025 cluster2
GO:0044093 positive regulation of molecular function 0.00027 cluster2
GO:0016570 histone modification 0.00034 cluster1
GO:0007010 cytoskeleton organization 0.00035 cluster1
GO:0046649 lymphocyte activation 0.00037 cluster1
hsa04662 b cell receptor signaling pathway 0.00040 cluster1
GO:0010740 positive regulation of protein kinase cascade 0.00042 cluster2
GO:0048534 hemopoietic or lymphoid organ development 0.00042 cluster1
hsa03050 proteasome 0.00045 cluster2
GO:0051186 cofactor metabolic process 0.00051 cluster2
GO:0032270 positive regulation of cellular protein metabolic

process
0.00058 cluster2

GO:0031400 negative regulation of protein modification pro-
cess

0.00060 cluster2

GO:0051247 positive regulation of protein metabolic process 0.00062 cluster2
GO:0006954 inflammatory response 0.00089 cluster2
GO:0045087 innate immune response 0.00090 cluster2
GO:0043065 positive regulation of apoptosis 0.00099 cluster2
GO:0022900 electron transport chain 0.00101 cluster2
hsa04070 phosphatidylinositol signaling system 0.00122 cluster1
GO:0002684 positive regulation of immune system process 0.00125 cluster1
GO:0043068 positive regulation of programmed cell death 0.00125 cluster2
GO:0031396 regulation of protein ubiquitination 0.00140 cluster2
GO:0006917 induction of apoptosis 0.00143 cluster2



Information Criterion for Circular Clustering S29

GO:0010942 positive regulation of cell death 0.00146 cluster2
GO:0012502 induction of programmed cell death 0.00156 cluster2
GO:0051248 negative regulation of protein metabolic process 0.00182 cluster2
GO:0002521 leukocyte differentiation 0.00182 cluster1
GO:0032269 negative regulation of cellular protein metabolic

process
0.00236 cluster2

GO:0042110 t cell activation 0.00251 cluster1
GO:0002520 immune system development 0.00273 cluster1
hsa04660 t cell receptor signaling pathway 0.00275 cluster1
hsa04664 fc epsilon ri signaling pathway 0.00298 cluster1
GO:0016071 mrna metabolic process 0.00400 cluster1
GO:0042981 regulation of apoptosis 0.00436 cluster2
hsa04722 neurotrophin signaling pathway 0.00468 cluster1
GO:0030217 t cell differentiation 0.00469 cluster1
hsa04670 leukocyte transendothelial migration 0.00507 cluster1
GO:0030098 lymphocyte differentiation 0.00512 cluster1
hsa04130 snare interactions in vesicular transport 0.00518 cluster2
GO:0009611 response to wounding 0.00529 cluster2
REACT 6185 hiv infection 0.00539 cluster2
GO:0043085 positive regulation of catalytic activity 0.00567 cluster2
GO:0031399 regulation of protein modification process 0.00583 cluster2
GO:0048584 positive regulation of response to stimulus 0.00632 cluster2
GO:0043067 regulation of programmed cell death 0.00642 cluster2
GO:0008219 cell death 0.00710 cluster2
GO:0010941 regulation of cell death 0.00761 cluster2
GO:0032680 regulation of tumor necrosis factor production 0.00788 cluster2
GO:0010498 proteasomal protein catabolic process 0.00801 cluster2
GO:0043161 proteasomal ubiquitin-dependent protein

catabolic process
0.00801 cluster2

GO:0050778 positive regulation of immune response 0.00845 cluster2
REACT 1538 cell cycle checkpoints 0.00861 cluster2
GO:0016265 death 0.00913 cluster2
hsa04142 lysosome 0.00999 cluster2
GO:0030036 actin cytoskeleton organization 0.01225 cluster1
REACT 6900 signaling in immune system 0.01262 cluster2
GO:0010033 response to organic substance 0.01485 cluster2
GO:0016044 membrane organization 0.01602 cluster2
GO:0001819 positive regulation of cytokine production 0.01619 cluster2
GO:0002263 cell activation during immune response 0.01645 cluster1
GO:0002366 leukocyte activation during immune response 0.01645 cluster1
hsa04012 erbb signaling pathway 0.01726 cluster1
hsa05220 chronic myeloid leukemia 0.01845 cluster1
hsa00190 oxidative phosphorylation 0.01964 cluster2
GO:0006468 protein amino acid phosphorylation 0.01973 cluster1
REACT 71 gene expression 0.02076 cluster1
REACT 125 processing of capped intron-containing pre-mrna 0.02122 cluster1
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GO:0016192 vesicle-mediated transport 0.02166 cluster2
hsa05221 acute myeloid leukemia 0.02187 cluster1
GO:0001817 regulation of cytokine production 0.02338 cluster2
REACT 152 cell cycle, mitotic 0.02366 cluster2
hsa05215 prostate cancer 0.02439 cluster1
GO:0007015 actin filament organization 0.02479 cluster1
GO:0007265 ras protein signal transduction 0.02516 cluster1
GO:0007049 cell cycle 0.02761 cluster1
GO:0046578 regulation of ras protein signal transduction 0.02914 cluster1
hsa05223 non-small cell lung cancer 0.03243 cluster1
REACT 604 hemostasis 0.03701 cluster1
GO:0032675 regulation of interleukin-6 production 0.04054 cluster2
hsa05012 parkinson’s disease 0.04090 cluster2
GO:0043086 negative regulation of catalytic activity 0.04256 cluster2
GO:0006357 regulation of transcription from rna polymerase

ii promoter
0.04257 cluster1

GO:0032755 positive regulation of interleukin-6 production 0.04398 cluster2
GO:0010557 positive regulation of macromolecule biosyn-

thetic process
0.04791 cluster1

Table S3: Gene set enrichment analysis results. Subject 10 (Symptomatic). Number of
clusters: K = 2 (ICCC, GAP, MR).

Term Name Adj.pval Subject Cluster
GO:0009615 response to virus 0.00000 subject2 cluster1
GO:0006955 immune response 0.00000 subject2 cluster1
GO:0007156 homophilic cell adhesion 0.00000 subject11 cluster1
GO:0016337 cell-cell adhesion 0.00002 subject11 cluster1
GO:0007155 cell adhesion 0.00146 subject11 cluster1
GO:0022610 biological adhesion 0.00150 subject11 cluster1
hsa04622 rig-i-like receptor signaling pathway 0.00175 subject2 cluster1
GO:0042742 defense response to bacterium 0.00416 subject2 cluster3
GO:0009617 response to bacterium 0.00893 subject2 cluster3
REACT 152 cell cycle, mitotic 0.03241 subject2 cluster3

Table S4: Gene set enrichment analysis results. Subjects 2 and 11 (Asymptomatic).
Number of clusters: K = 3 (ICCC) for Subject 2, K = 1 (ICCC) for Subject 11.

One clear message from the above analyses is that the enriched pathways from
the symptomatic subject (Subject 10) contain much richer information about immune
response than that from the two asymptomatic subjects (Subjects 2, 11), which is as
predicted and in accordance with Huang et al. (2011). The biological implication is
that the development of influenza symptom is driven by a complex biological procedure
which is characterized by the mobilization of many pathways. The difference in these
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Term Name Adj.pval Subject Cluster
GO:0006955 immune response 0.00000 subject2 cluster1
GO:0009615 response to virus 0.00000 subject2 cluster1
GO:0007156 homophilic cell adhesion 0.00000 subject11 cluster2
GO:0016337 cell-cell adhesion 0.00006 subject11 cluster2
GO:0007155 cell adhesion 0.00050 subject11 cluster2
GO:0022610 biological adhesion 0.00051 subject11 cluster2
GO:0006952 defense response 0.00216 subject2 cluster1

Table S5: Gene set enrichment analysis results. Subjects 2 and 11 (Asymptomatic).
Number of clusters: K = 1 (GAP) for Subject 2, K = 2 (GAP, MR) for Subject 11.

functional enrichments implies the specificity of biological processes of asymptomatic
and symptomatic subjects.

From the data-driven point of view, it suggests that stronger immune-response to
influenza infection is accompanied by clearer circular cluster pattern. This observation
is also confirmed in the circular cluster analysis of the other subjects used in this study.
Among the 10 significant pathways identified from Subjects 2 and 11, three are also
identified from Subject 10: a) GO:0009615 (response to virus); b) GO:0006955 (immune
response); c) REACT 152 (Cell Cycle, Mitotic). All of them have good reasons to
be expressed in both symptomatic and asymptomatic subjects. The more interesting
results lie in the pathways that are activated in Subjects 2 and 11, but not in Subject
10. One of these pathways is hsa04622 (RIG-I-like receptor signaling pathway), which is
responsible for making proteins (RIG-I, MDA5, and LGP2) that are vital for the synthesis
of type I interferon and other inflammatory cytokines upon recognition of viral nucleic
acids. The lack of the activation of this pathway in Subject 10 is conspicuous. Other
differences can be related to either cell adhesion (GO:0007156; GO:0016337; GO:0007155;
GO:0022610) or bacterium responses (GO:0042742; GO:0009617). Further studies are
needed to understand the biological implications of these pathways.

Next, we use Tables S4 and S5 to compare ICCC with GAP and MR criteria. For
Subject 2, six functional terms are enriched based on ICCC/MR (K = 3) and only
three are enriched based on GAP (K = 1). Among them two pathways, GO:0009615
(response to virus) and GO:0006955 (immune response), are the same. GO:0042742
(defense response to bacterium) was identified based on ICCC/MR, which is more specific
than GO:0006952 (defense response) identified based on GAP. Three important pathways
are enriched by the ICCC/MR approach only: GO:0009617 (response to bacterium),
REACT 152 (cell cycle, mitotic), and hsa04622 (RIG-I-like receptor signaling pathway).
As mentioned before, pathway hsa04622 may play an important role in differentiating
the symptomatic and asymptomatic subjects.

For Subject 11, the enriched terms based on ICCC (K = 1) are exactly the same as
those based on GAP/MR (K = 2). It shows that ICCC provides an identical but more
parsimonious model than GAP and MR in this case.
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S5 The Proof of the Main Theorem

In this sections, we denote the probability space of infinite sequences of circular data by
(Ω,F∞, P ), where Ω =

∏∞
i=1 S

1, F∞ is the infinite product σ-algebra, and P is the infi-
nite product probability measure of the uniform distribution on S1. A set of circular data
can be considered as Xn(ω) := {xi(ω)}ni=1, ω ∈ Ω. Without loss of generality, we assume
that the circular centers are indexed in the anti-clockwise direction, i.e. θ(µk+1) > θ(µk),
for k = 1, 2, . . . ,K − 1. Denote αk = θ(µk, µk+1), the angle between µk and µk+1. For
convenience, we allow k, the index of clusters, to “wrap around” after it is smaller than
1 or greater than K, i.e. µ̂0 ≡ µ̂k and µ̂K+1 ≡ µ̂1.

Lemma S5.1 (Midpoint rule). If the circular centers (denoted as µK) are given, the
kth circular cluster defined by this rule maximizes the within-cluster cosine similarity

Ck(µK) :=
[
θ(µk)− θ(µk)− θ(µk−1)

2
, θ(µk) +

θ(µk+1)− θ(µk)

2

)
. (S5.6)

Note that for the special case K = 2, µk−1 ≡ µk+1 for k = 1, 2.

Proof. By definition, Ck(µK) covers the region from the midpoint of θ(µk−1) and θ(µk)
to the midpoint of θ(µk) and θ(µk+1). So for every x ∈ Ck, the nearest (in angular
distance) circular cluster center is µk. Thus 〈x, µk〉 > 〈x, µk′〉, for k′ 6= k. In other
words, changing the cluster membership of any observations will decrease the within-
cluster cosine similarity.

From Lemma S5.1, we can rewrite (2.1) as

CS(µK ,Xn) =

n∑
i=1

K∑
k=1

1Ck(µK)(θ(xi))〈xi, µk〉, (S5.7)

where Ck = [(θ(µk) + θ(µk−1))/2, (θ(µk) + θ(µk+1))/2). This indicates that ζ and µK
are essentially equivalent.

Let CS∗(K,Xn) = supµK∈Ω CS(µK ,Xn) be the maximum cosine similarity. By
Equation (2.3),

1

n
log L̂n(K) = − log 2π − log I0(κ̂) + κ̂

CS∗(K,Xn)

n
. (S5.8)

Therefore, in order to study the asymptotic property of log L̂n(K) we must first under-
stand the asymptotic properties of CS∗(K,Xn) and κ̂.

Define a real valued function C(µK ,x) : Ω× S1 → R1:

C(µK ,x) =

K∑
k=1

〈µk, x〉 · 1Ck(µK)(θ(x)) = max
k

cos (θ(µk,x)) .

This function is the cosine similarity of x to its nearest cluster center and it serves as
the “building block” of the within-cluster cosine similarity function (S5.7). It is easy to
show that C(µK ,x) is absolutely continuous for both µK and x.
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Lemma S5.2. Under H0, for a given K,

1

n

n∑
i=1

C(µK ,xi)
a.s.−→ EC(µK ,x) =

1

2π

K∑
k=1

αk sin
αk
2
. (S5.9)

Proof. The first part is just the strong law of large numbers applied to a bounded con-
tinuous random variable. Denote arck = [θ(µk), θ(µk+1)), arc−k =

[
θ(µk), θ(µk) + αk

2

)
and arc+

k =
[
θ(µk) + αk

2 , θ(µk+1)
)
. The second part is computed as follows.

EC(µK ,x) =

K∑
k=1

E
(
〈µk, x〉

∣∣∣θ(x) ∈ arck

)
P (θ(x) ∈ arck)

=

K∑
k=1

1

αk

(∫
arc−k

cos(θ − θ(µk))dθ +

∫
arc+k

cos(θ(µ
k+1

)− θ)dθ

)
αk
2π

=
1

π

K∑
k=1

∫ αk
2

0

cos θdθ =
1

π

K∑
k=1

sin
αk
2
.

Lemma S5.3. EC(µK ,x) is maximized when µK forms an equi-distant grid on S1,
namely αk−1 = αk = 2π/K for all k = 1, 2, . . . ,K. Consequently,

max
µK

EC(µK ,x) =
K

π
sin

π

K
.

Proof. Since EC(µK ,x) = 1
π
∑K
k=1 sin αk2 is continuous and the setA =

{
α : αk ∈ R+,

∑K
k=1 αk = 2π

}
is compact, there exists an α∗ ∈ A which maximizes this function. It suffices to show
that none of the uneven grid can maximize EC. To prove this, we show that for every
uneven grid µK , there exists a grid µ′K such that EC(µ′K ,x) > EC(µK ,x).

Assume that µK forms an uneven grid of S1, there must exist a k∗, such that
αk∗−1 6= αk∗ . Without loss of generality, we may assume α1 6= α2. Now define µ′2 to be
the circular midpoint between µ1 and µ3 so that α′1 = α′2 = θ(µ1, µ3)/2 = (α1 + α2)/2
and let µ′K = (µ1, µ

′
2, µ3, . . . , µk).

π
(
EC(µ′,x)− EC(µ,x)

)
= 2 sin

α1 + α2

4
− sin

α1

2
+ sin

α2

2

= 2 sin
α1 + α2

4

(
1− cos

α1 − α2

4

)
Since α1, α2 ∈ (0, 2π] and α1 6= α2, we have α1 − α2

4 ∈ (0, π/2). So cos α1 − α2
4 < 1,

which completes the proof.

Note that Lemma S5.3 states that under EC is maximized when µK forms an even
grid. It does not say anything about the position of this grid, which is equivalent to the
location of µ1. In fact, EC is invariant under rotation. So under H0, the location of µ1

is highly unstable for different n.
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Theorem S5.4. Under H0, for a given K,

1

n
CS∗(K,Xn)

a.s.−→ K

π
sin

π

K
. (S5.10)

Proof. Combining Lemmas S5.2 and S5.3, and together with the fact that C(µK ,x) is
absolutely continuous for both µK and x, we have

1

n
CS∗(K,Xn) = sup

µK

1

n

n∑
i=1

C(µK ,xn)
a.s.−→ sup

µK

EC(µK ,x) =
K

π
sin

π

K
.

Theorem S5.4 states that under H0, as n→∞, the optimal clustering of Xn is given
when µK forms an equidistant grid on S1. For given n, K, and a set of cluster center
estimates µ̂K = {µ̂k}Kk=1 obtained by maximizing (S5.7), the dispersion parameter can
be estimated by solving

I1(κ)

I0(κ)
= Re :=

√√√√ n

n−K

( 1

K

K∑
k=1

‖ȳk‖2 −
K

n

)
, (S5.11)

where I0(x) and I1(x) are the first kind of the modified Bessel function of order 0 and

1, respectively and ȳk =
(∑n

i=1 1Ck(µ̂K)(θ(xi))
)−1∑n

i=1 xi1Ck(µ̂K)(θ(xi)) (Mardia and
Jupp (2000)).

The statistic Re used in Equation (S5.11) has the following asymptotic property.

Lemma S5.5. Under H0, for a given K,

Re =

√√√√ n

n−K

(
1

K

K∑
k=1

‖ȳk‖2 −
K

n

)
a.s.−−→ K

π
sin

π

K
.

Proof. For a given set of estimates µ̂K = {µ̂k}Kk=1, denote α̂k = θ(µ̂k, µ̂k+1), the angle
between µ̂k and µ̂k+1. By the strong law of large numbers and the continuous mapping
theorem, we have

ȳk|µ̂K
a.s.−−→ E (x|x ∈ Ck(µ̂K)) =

2

α̂k−1 + α̂k

(∫
Ck(µ̂K)

cos θdθ∫
Ck(µ̂K)

sin θdθ

)

=
2

α̂k−1 + α̂k

 sin
(
θ(µ̂k) + α̂k

2

)
− sin

(
θ(µ̂k)− α̂k−1

2

)
− cos

(
θ(µ̂k) + α̂k

2

)
+ cos

(
θ(µ̂k)− α̂k−1

2

)
 ,

‖ȳk|µ̂K‖2
a.s.−−→ ‖E (x|x ∈ Ck(µ̂K)) ‖2 =

(
2

α̂k−1 + α̂k

)2(
2− 2 cos

(
α̂k−1 + α̂k

2

))
=

(
4

α̂k−1 + α̂k
sin

α̂k−1 + α̂k
4

)2

.

(S5.12)
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By Lemma S5.3, α̂k → 2π
K . So,

‖ȳk‖2
a.s.−−→

(
K

π
sin

π

K

)2

.

Since K � n, R2
e and 1

K
∑K
k=1 ‖ȳk‖2 share the same asymptotic property.

When Re is small (it can only happen when K = 1 and the observations roughly
follow the uniform distribution), we obtain κ̂ by solving (S5.11) with the function
uniroot() in R. For most practical cases (K ≥ 2 or K = 1 with non-uniform observa-
tions), Re is close to 1. In this case, directly solving (S5.11) can be slow and numerically
unstable. So we adopt the approximation formula proposed by Watamori (1995):

κ̂ ≈ 1

Re(1−Re)(3−Re)
. (S5.13)

Equation (S5.13) provides a closed form representation of κ̂ which facilitates the
derivation of its asymptotic property.

Theorem S5.6. Under H0, for large K,

κ̂
a.s.−−→

(
K

π
sin

π

K

(
1− K

π
sin

π

K

)(
3− K

π
sin

π

K

))−1

≈ 3K2

π2
. (S5.14)

Proof. When K is large, π
K ≈ 0. Using the Taylor expansion, we have K

π sin π
K ≈

1− π2

6K2 . By Lemma S5.5, we have

κ̂ =
1

Re(1−Re)(3−Re)
a.s.−−→

(
K

π
sin

π

K

(
1− K

π
sin

π

K

)(
3− K

π
sin

π

K

))−1

≈ 3K2

π2
.

Corollary S5.7. Under H0, for a given K,

log I0(κ̂)
a.s.−−→ 3K2

π2
− logK − 1

2
log

6

π
.

Proof. This corollary is a direct consequence of the Taylor expansion of I0(κ) provided
in Abramowitz and Stegun (1964):

I0(κ) ≈ eκ√
2πκ

(
1 +

1

8κ
+O(κ−2)

)
, log I0(κ) ≈ κ− log 2πκ

2
+O(κ−1). (S5.15)
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S5.1 The Proof of Theorem 2.1

Proof. According to Equation (S5.8), Theorem 2.1 can be derived from Theorem S5.4,
Theorem S5.6, and Corollary S5.7 immediately if log L̂n(K) is a bounded random vari-
able.

Since both 1
nCS∗ and κ̂ are bounded, we only need to show that log I0(κ̂) is bounded

according to equation (S5.8). It is well known that I0(x) is an increasing function and
I0(0) = 1 (Abramowitz and Stegun, 1964). So 0 < log I0(κ̂) ≤ log I0(max(κ̂)), which
completes the proof.
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S6 The Circular Shape of the First Two Functional
Principal Components

For simplicity of presentation, we assume (t1, t2, . . . , tJ) form an even-grid on [0, T ] with
step ∆t = T

J . As in Equation (S3.1), the null hypothesis of testing differentially expressed
genes can be defined as

H0,i : yi(t) = ci0, t ∈ [0, T ], i = 1, 2, . . . ,m, (S6.16)

where the constant ci0 represents the “normal level” of the ith gene not affected by the
exposure to influenza viruses. Again, the following F -statistic is used for testing H0,i:

Fi =
SS0

i − SS1
i

SS1
i

, (S6.17)

where SS0
i =

∑J
j=1(wij− ĉi0)2 and SS0

i =
∑J
j=1(wij− ŷi(tj))2, and ĉi0 and ŷi(t) are the

estimated gene expression profiles under the null and alternative hypothesis, respectively.

A reasonable way to estimate ci0 would be ĉi0 = w̄i, the sample mean of wi =
(wi1, . . . , wiJ). Since the expression measurements are standardized, we have SS0

i =∑J
j=1 w

2
ij = (J − 1)σ̂2(wi) = J − 1. Let LS1 ⊂ RJ be the 1-dimensional linear subspace

spanned by vector 1 := (1, 1, . . . , 1), LS⊥1 be the (J − 1)-dimensional linear subspace
orthogonal to LS1, SJ−1 be the standard sphere embedded in RJ and SJ−2 be the
standard sphere in LS⊥1 . Simple algebra shows that

wi√
J − 1

∈ SJ−1 ∩ LS⊥1
∼= SJ−2. (S6.18)

Define step functions hi(t) =
∑J−1
j=1 wij1[tj ,tj+1)(t) and ĥi(t) =

∑J−1
j=1 ŷi(tj)1[tj ,tj+1)(t),

t ∈ [0, T ]. Clearly,

‖hi(t)− ĥi(t)‖22 = ∆t

J−1∑
j=1

(wij − ŷi(tj))2 6 ∆t · SS1
i . (S6.19)

According to (S6.17), we know that SS1
i is small for significant genes. So for significant

genes, when the number of time point J is large, we have

‖hi(t)− ŷi(t)‖22 6 ‖hi(t)− ĥi(t)‖22 + ‖ĥi(t)− ŷi(t)‖22

6 ∆t · SS1
i +

∫ T

0

(
ĥi(t)− ŷi(t)

)2

dt ≈ 0,
(S6.20)

indicating that ‖ŷi(t)‖22 ≈ ‖hi(t)‖2, t ∈ [0, T ].

By definition, the squared L2-norm of hi(t) is

‖hi(t)‖22 :=

∫ tJ

t1

J−1∑
j=1

wij1[tj ,tj+1)(t)

2

dt = ∆t

J−1∑
j=1

w2
ij =

tJ − t1
J

(
‖wi‖2 − w2

iJ

)
.
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(b) Probe: 1005 at.

Figure S21: An illustration of step-function approximation of the fitted curve. Note that
by construction, the last time point (wiJ , marked as a circle in the figure) is not used in
the step function. The Euclidean norm of both pre-processed expressions is ‖wi‖ =

√
14.

The L2-norm of the step function (‖hi(t)‖2) and the fitted curves (‖ŷi(t)‖2), as well as
the Euclidean length of the two principal components (

√
s2
i1 + s2

i2) are listed as follows:

a) Probe 10062 at: ‖hi(t)‖2 = 9.83, ‖ŷi(t)‖2 = 8.32,
√
s2
i1 + s2

i2 = 8.29.

b) Probe 1005 at: ‖hi(t)‖2 = 9.01, ‖ŷi(t)‖2 = 8.68,
√
s2
i1 + s2

i2 = 8.67.

If J is large and w2
i,j are not concentrated in the last time point, i.e. w2

iJ � ‖wi‖2, we

can approximate w2
iJ by ‖wi‖

2

J . Applying this approximation to the real data in Section
4, we have

‖hi(t)‖22 ≈
tJ − t1
J

(
‖wi‖2 −

‖wi‖2

J

)
=

(J − 1)(tJ − t1)

J2
‖wi‖2 =

142 · 108

152
.

Therefore, in our example,

‖ŷi(t)‖2 ≈ ‖hi(t)‖2 ≈
√

142 · 108

152
≈ 9.70, (S6.21)

which is a constant for all significant genes.

The first two functional principal components of subjects 2 and 10 explained 97.74%
and 99.04% of the total variation, respectively. By (S6.21), we have

√
s2
i1 + s2

i2 ≈
‖ŷi(t)‖2 ≈ 9.70 for all significant genes. This explains the circular shape of the scatter
plots of FPCs in Figure 5.4. These calculations are illustrated by Figure S21. The data
used in this figure are the standardized expression levels of two typical significant gene
(probe IDs: 10062 at and 1005 at) sampled from Subject 10. We see that

√
s2
i1 + s2

i2

are roughly the same for both genes.

The reason for the phenomenon that the FPCs of subject 10 show a more pronounced
circular pattern than those of subjects 2 and 11 is largely related to the difference in
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the noise levels of these subjects. We observe that the gene expressions of subject 10
(symptomatic) have smaller noises than those of subjects 2 and 11 (asymptomatic),
which implies that on average, SS1

i are relatively larger for subjects 2 and 11. So the
approximation (S6.20) is not as good for these two subjects. This also explains why we
detect much fewer significant genes for subjects 2 and 11 than subject 10.
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