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Abstract: Common pre-processing procedures for time course microarray analysis

such as standardization and gene filtering based on the functional F -test, often

result in directional data that lie on a sphere Sd−1. While there have been some

efforts in designing spherical clustering algorithms, few researchers have developed

methods for selecting the number of clusters for spherical cluster analysis. In this

paper, we focus on circular data on S1 and propose a novel information-based cri-

terion ICCC (information criterion for circular clustering) to determine the number

of clusters when clustering circular data. This new criterion, ICCC, is based on

a finite mixture model of Langevin distributions and is derived from the asymp-

totic properties of the maximum likelihood of the Langevin mixture distribution.

Through the study of both simulated data and a large set of time course microar-

ray data, we demonstrate that the ICCC criterion provides better estimates of the

number of clusters than such existing methods: AIC, BIC, the Gap criterion, and

the Maitra-Ramler criterion.

Key words and phrases: Circular statistics, clustering, information criterion, Langevin

distribution, mixture model, model selection.

1. Introduction

It is well known that the immune response to viral (such as influenza) infec-

tion involves the activation, co-expression, and interaction of many genes. The

emergence of large-scale time course gene expression data on influenza infection

(Huang et al. (2011); Pommerenke et al. (2012)) presents an opportunity for re-

searchers to understand how mammalian immune systems control the influenza

infection. Although time course data are well studied in statistics, the “large p,

small n” nature of these data presents a unique challenge. As an example, the

data used in Huang et al. (2011) are collected from a cohort of 17 healthy human

volunteers who received intranasal inoculation of influenza H3N2/Wisconsin. A

total of m = 11, 961 gene expression profiles were measured on whole peripheral

blood drawn from each subject at 15-16 time points after inoculation, covering

108-132 hours.
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There are two notable features about these data: for each subject, the tem-

poral patterns of gene expressions can be grouped into several well-separated

clusters; the heterogeneity of these temporal patterns between subjects is sub-

stantial. This high-level of between-subject variation was reported but not stud-

ied in detail in Huang et al. (2011). In this study, we focus on examining the

subject-specific features of immune response. Specifically, we identify significant

genes and cluster them into co-expressed modules for each subject. We then

analyze the between-subject differences at the gene- and module-levels. A good

cluster analysis is a critical step in this study.

Clustering analysis has been applied to microarray gene expression data since

the dawn of microarray technologies (Eisen et al. (1998); Tavazoie et al. (1999)).

As is typical, we apply such standard microarray pre-processing procedures as

background correction, normalization, summarization, and logarithmic transfor-

mation prior to the statistical analysis. Since our aim is to produce functionally

related gene groups (Eisen et al. (1998); Dortet-Bernadet and Wicker (2008)), a

gene-wise standardization procedure (z-transformation) is applied before clus-

tering analysis to ensure that every gene has mean 0 and variance 1 in the

time direction. Although the between-gene correlation is invariant under this

standardization, it has a profound impact on the clustering analysis because it

alters the geometry of the sample space. The standardized gene expressions now

reside in SJ−2, a sphere of dimension J − 2, where J is the number of time

points. Furthermore, the significance test we used in this study, as well as such

other tests as t-tests or the ANOVA F -test, selects significant genes with high

signal-to-noise ratio. This implies that the top two functional principal compo-

nents (FPCs, Ramsay and Silverman (2002)) scores of significant genes reside

in a one-dimensional sub-manifold, S1 ⊂ SJ−2, approximately (see Section S6

of Supplementary Materials for more details). In other words, the standardized

temporal gene expressions in our study can be considered as circular data that

are essentially the measurement of directions.

Most classical clustering algorithms, such as the K-means algorithm and a

multitude of its variants (MacQueen (1967); Tavazoie et al. (1999)) are designed

for classifying a set of observations on the Euclidean space, and are known to

perform poorly for circular/spherical data (Strehl, Ghosh, and Mooney (2000)).

In recent years there has been increased interest in designing clustering algo-

rithms specifically for spherical data (Banerjee et al. (2006); Dortet-Bernadet and

Wicker (2008); Maitra and Ramler (2010)). One of the most popular methods

is the spherical K-means (SK-means) clustering algorithm (Dhillon and Modha

(2001); Banerjee et al. (2006); Maitra and Ramler (2010)), which replaces the

Euclidean distance used in the K-means algorithm by the within-cluster cosine

similarity that is more relevant for spherical data. It has been shown that the
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K-means method is equivalent to a model-based probabilistic clustering algo-

rithm, namely the Gaussian mixture model with isotropic and equal covariance

structure (Celeux and Govaert, 1993). Likewise, the SK-means method has a

probabilistic interpretation based on a finite mixture of Langevin distributions

(a.k.a. von Mises-Fisher distribution) on Sd−1, the (d − 1)-dimensional sphere

embedded in Rd (Banerjee et al. (2006); Maitra and Ramler (2010)).

Standard model selection methods such as AIC and BIC have been widely

used to determine the number of clusters K (Bozdogan and Sclove (1984); Fra-

ley and Raftery (1998)). However, in practice we often observe systematically

overestimated numbers of clusters when using both AIC and BIC. In a recent

study of clustering time course gene expression data, we found that the first two

FPCs of the standardized gene expression trajectories followed a circular distri-

bution (see Figures S6, S15, and Section S6 of the Supplementary Materials for

more details). Applying the SK-means algorithm to cluster these two FPCs, we

observed that BIC kept decreasing until it failed to converge, at which point K

exceeded 300. The failure of using BIC to select K in clustering spherical data

has also been documented in Dortet-Bernadet and Wicker (2008).

Other methods for estimating the number of clusters include the Gap crite-

rion (GAP) proposed by Tibshirani, Walther, and Hastie (2001). Although the

theoretical derivation of GAP is based on the K-means method, the principle

is flexible enough to be applicable to any clustering algorithms. The Gap crite-

rion compares the change in within-cluster dispersion to that expected under an

appropriate reference null distribution. Since the null distribution can be very

complex and/or involve nuisance parameters, the authors recommended using

the resampling method, which poses a significant computational burden. Maitra

and Ramler (2010) developed a criterion (MR) specifically for the SK-means

clustering algorithm based on the largest relative change in the locally optimized

objective functions. This method is computationally efficient, but it is ad hoc

and lacks theoretical justification.

We propose a new information criterion for selecting the number of clus-

ters based on the likelihood of Langevin mixture distribution. We focus on the

circular model (on S1) to derive the new criterion, dubbed ICCC (information

criterion for circular clustering), from the asymptotic properties of the maximum

likelihood of the Langevin mixture distribution. ICCC measures the difference

between the observed maximum log-likelihood and its expectation under the

uniform distribution on S1. It can be considered as an extension of the Gap

criterion by using the log-likelihood of Langevin mixture distribution as the dis-

persion measure and the circular uniform distribution as the null distribution.

But there are also significant differences between these two criteria. First, ICCC

has an analytic formula and does not need to resort to a resampling method, so
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the computational cost is minimum compared to that of GAP. In addition, GAP

is a stepwise procedure, so it may be trapped by a local maximum, leading to

an underestimated number of clusters. Our new criterion is a global procedure

and is superior to GAP in the performance of estimating the correct number

of clusters, especially when the clusters are not well separated. This is further

illustrated with simulation studies in Section 3 and an application to time course

gene expression data from Huang et al. (2011) in Section 4. We summarize the

conclusions and possible extensions of our method in Section 5. Proof of the

main theorem and other auxiliary materials can be found in the Supplementary

Materials.

2. Methods

2.1. The spherical K-means clustering algorithm

From this point on we focus on circular data on S1. We denote by Xn =

{xi}ni=1, xi ∈ S1 the set of circular observations. For xi and xi′ ∈ S1, their

similarity can be measured by cos θ(xi,xi′) = ⟨xi, xi′⟩, where θ(xi,xi′) is the

angle between xi and xi′ and ⟨·, ·⟩ is the inner product on R2. For a pre-specified

number of clusters K, the SK-means algorithm finds a set of class indicators

ζ = {ζi}ni=1 to maximize the within-cluster cosine similarity:

CS(ζ,µK ,Xn) =
n∑

i=1

K∑
k=1

1(ζi = k)⟨xi, µk⟩, (2.1)

where µK = {µk}Kk=1 and µk is the spherical center of the kth cluster, µk =

∥
∑n

i=1 1(ζi = k)xi∥−1 ·
∑n

i=1 1(ζi = k)xi.

The probabilistic interpretation of the SK-means method is provided as fol-

lows. Suppose xi ∈ S1 is generated from a one-dimensional Langevin distribution

with density function

f(x|µζi , κ) = c−1(κ)eκ⟨x, µζi
⟩ =

eκ⟨x, µζi
⟩

2πI0(κ)
, (2.2)

where µζi is the mean direction, κ is the concentration parameter, and I0(·) is the
first kind of the modified Bessel function of order 0. When κ = 0, the Langevin

distribution degenerates to the uniform distribution on S1.

The joint log-likelihood of n independent observations can be written as

logL(µK , κ
∣∣Xn,K) = −n (log(2π) + log I0(κ)) +

=κ·CS(µK ,Xn)︷ ︸︸ ︷
κ

n∑
i=1

K∑
k=1

1(ζi = k)⟨xi, µk⟩ .

(2.3)
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From (2.3), it is apparent that maximizing logL is equivalent to maximizing (2.1).

In fact, it has been shown by Banerjee et al. (2006) that the solution of SK-means

problem is the maximum likelihood estimate (MLE) of a mixture model based

on Langevin distributions with K different angular centers but the same disper-

sion parameter. This deep connection enables us to derive information-theoretic

criteria to select K for the SK-means algorithm based on the asymptotics of the

maximum likelihood.

2.2. A new information criterion for circular cluster analysis

In this section, we study the asymptotic properties of the log-likelihood func-

tion (2.3) under the uniform distribution on S1 and use it to build a new model

selection criterion.

Since the SK-means clustering has a probabilistic interpretation, ideally we

should follow the derivation of the AIC formula to find an unbiased estimator of

DKL(P
∗, P̂ (K)), the Kullback-Leibler divergence between P ∗, the true model,

and P̂ (K), the model estimated by the maximum likelihood method with K

clusters. However, this approach is quite challenging because the true distribution

P ∗ is unknown and many asymptotic techniques Akaike employed in his seminal

work (Akaike (1973)) do not work due to the differences between Rd and S1.1

We adopt an alternative approach to construct the new criterion ICCC based

on the asymptotic property of the maximum likelihood L̂n(K) under the null

hypothesis.

Since S1 is the compact Lie group of rotations of R2, a good cluster analysis

should be equivariant under these rotations. From this point of view, the circu-

lar uniform distribution, which is the Haar measure of S1, serves as a natural

candidate for the null distribution on S1. We denote this null hypothesis by H0.

This distribution is simple and free of nuisance parameter. As a comparison, the

symmetry group of Rd is the Euclidean group Ed and it contains the translational

group Td as a subgroup; Td is not compact so no probability measure is invariant

under Td, and there is no “natural” null distribution on Rd. This explains why

a resampling method is needed to compute the Gap statistic for the K-means

clustering algorithm.

Our main theorem states the asymptotic behavior of log L̂n(K) under H0.

Theorem 1. Under H0, for a given large K, the observed maximum likelihood

converges to a constant G(K) with the approximation

1

n
log L̂n(K)

a.s.−−→ G(K) ≈ logK − 1

2
− 1

2
log

2π3

3
. (2.4)

1For those who are interested in this topic, we conducted a simulation study which illustrates the
key differences between Rd and S1 in Section 2.2 of Supplementary Materials.
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Corollary 1. For large K and n, we have

1

n
E
(
log L̂n(K)

∣∣∣H0

)
≈ logK +Const. (2.5)

The proof of Theorem 1 can be found in Section S5 of the Supplementary

Materials.

Based on (2.4) and (2.5), the penalty term must be n logK to “offset” the

artificial gain of log L̂n(K) when K is large. Therefore, we propose a new model

selection criterion ICCC (information criterion for circular clustering):

ICCC(K) = −2 log L̂n(K) + 2n logK. (2.6)

Equation (2.6) measures the difference between the maximum log-likelihood of

the observed data and its expectation under the null hypothesis. ICCC differs

from the Gap criterion proposed by Tibshirani, Walther, and Hastie (2001) in

several ways. First, we use L̂n(K) instead of the within-cluster cosine similar-

ity as the similarity measure. Second, instead of using a resampling method to

approximate E
(
log L̂n(K)|H0

)
, the expected within-cluster dispersion under the

null hypothesis, we provide an analytical formula, that is computationally effi-

cient. Third, GAP is a stepwise procedure and ICCC is a global optimization

method. The optimal number of clusters by Gap is the smallest K such that

Gap(K) ≥ Gap(K+1)−SK+1, where SK is the standard deviation of log L̂n(K)

under H0. As pointed by Tibshirani, Walther, and Hastie (2001), the Gap statis-

tic is good at identifying well-separated clusters, in which case one expects to

observe a sharp increase in Gap(K) when reaching the optimal K. However, if

some clusters are not well separated, the Gap statistic may be trapped in local

maximum and underestimate the number of clusters. Since ICCC requires min-

imum computations, we are able to find the global maximum of ICCC(K) and

therefore improve the likelihood of selecting the correct K.

3. Simulation Studies

Five sets of simulation studies (SIM.K1, SIM.K5, SIM.K25, SIMBIO.A,

and SIMBIO.B), were conducted to compare the performance of ICCC and sev-

eral other popular model selection methods in the context of circular clustering.

Each simulated data in SIM.K1, SIM.K5, and SIM.K25 contains 1,000

observations, denoted by xi := (xi1, xi2), i = 1, . . . , 1,000, where the xi were

generated by adding bivariate Gaussian noise on the circular observations from

Langevin distribution on S1:

xi = Rvi + ϵi, vi ∼ M(µζi , κ), ϵi ∼ MVN
(
0, σ2

ϵ I2×2

)
. (3.1)
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Here M(µζi , κ) refers to the Langevin distribution with angular center µζi and

concentration parameter κ, and R is the radius of the circle. Without loss of

generality, we took R = 1 for all simulations. These simulated data were stan-

dardized to have mean 0 and variance 1 for each gene.

The parameters used for the three studies were as follows.

SIM.K1: vi ∼ M(0, 0) = Unif(S1), σ2
ϵ = 0.12, so all observations in this data

set belonged to one uninformative cluster.

SIM.K5: 1,000 observations were divided into K = 5 clusters with angular cen-

ters (θ(µ1), . . . , θ(µ5)) = (30◦,−30◦, 150◦, 180◦, 200◦) and cluster sizes

(n1, . . . , n5) = (130, 250, 200, 220, 200), respectively. The concentra-

tion parameter for each cluster was κ = (20/π)2 and the variance of

Gaussian noise was σ2
ϵ = 0.12.

SIM.K25: 1,000 observations were divided into K = 25 clusters with each nk =

40, k = 1, . . . , 25. The angular centers of these clusters formed an

equi-distant grid on S1, namely θ(µk) = 2kπ/25, for k = 1, . . . , 25.

The concentration parameter for each cluster was κ = (100/π)2 and

the variance of Gaussian noise was σ2
ϵ = 0.052.

Scatter plots of the simulated data under these scenarios are shown in Figure

1. SIM.K5 represents a typical clustering problem that commonly arises in

applications. There are a few clearly visible clusters, such as the well-separated

left and right clusters and the two clusters on the right, while some clusters are

hard to be separated visually, such as the three clusters on the left. In SIM.K25,

we chose a small σ2
ϵ so that the neighboring clusters were still distinguishable

when K is large. This represents a “large K and small noise” structure.

The simulation studies SIMBIO.A, and SIMBIO.B were designed to match

the time course microarray data (see Section 4 for more details). These data were

generated by imposing random signals on five true cluster mean curves. The ran-

dom signals were generated based on Subject 11 because the scatter plot of this

subject (Figure 4(c)) resembles one uninformative cluster. More specifically, we

first generated the expression levels wij for i = 1, . . . , 200 genes and j = 1, . . . , 15

time points according to the model

wij = Mk(i)(tj) + zi(tj) + εij . (3.2)

Here k(i) represents the cluster to which the ith gene belongs. We divided 200

genes into five clusters, each containing 40 genes. Mk(i)(tj) was the value of

true mean curve of the kth cluster measured at time tj , zi(tj) was a random

continuous temporal function, and the εij ∼ N(0, σ2
ε) were i.i.d. random noise.

To best match the data, we randomly selected five genes from Subject 11

and used their smoothed temporal expression curves (yk(t), k = 1, 2, . . . , 5) to
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Figure 1. Circular density plots of simulated data. Red crosses represent
the circular centers of the clusters. Empirical circular density functions are
shown for better visual effects.

construct cluster mean curves. To ensure the signal-to-noise ratio was large

enough for clustering analysis (none of these five randomly selected genes is

significant in Subject 11), we tookMk(t) = c·yk(t), where c = 2.0 for SIMBIO.A

and c = 1.6 for SIMBIO.B. zi(tj) was generated by randomly sampling (without

replacement) from 200 smoothed temporal expression curves. We used the sample

variance of the residuals from nonparametric smoothing of Subject 11 as the

variance of random noise, σ2
ε = 0.75. These data were standardized to have

mean 0 and variance 1 for each gene.

We used the estimated percentage of signal, psig = σ̂2
M/(σ̂2

M + σ̂2
z + σ2

ε), to

quantify the signal to noise ratio for these time course data. Here σ̂2
M and σ̂2

z are

the mean sample variance of Mk(i)(tj) and zi(tj), respectively. For SIMBIO.A,

pAsig = 0.721. For SIMBIO.B, pBsig = 0.624. Next, we applied functional principal

component analysis (fPCA, Ramsay and Silverman (2002)) to the data. Each

gene was represented by the first two FPCs, s⃗i = (si1, si2). Due to the nature

of fPCA, the percentage of variance explained by the first two eigen-functions

depends on the penalty (smoothing) parameter used in fPCA and is usually much

higher than the corresponding multivariate PCA. In SIMBIO.A, the penalty
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Figure 2. (a)−(e): Spaghetti plots of five clusters. Solid curves in the middle
represent Mk(t), true cluster mean curves. (f): FPC scores of these genes.
These scores are coded in the same colors of cluster mean curves to which
they belong. Empirical circular density functions are shown for better visual
effects. Data used: SIMBIO.A.

parameter determined by the GCV principle was λ = 10, 000, and the first two

eigen-functions explained 99.3% of total variance. In SIMBIO.B, we manually

set λ = 10, and the first two eigen-functions only explained 74.8 % of total

variance. These data are illustrated by Figures 2 and 3, respectively. From these

figures, it is clear that SIMBIO.B has weaker signals and is more difficult to

cluster than SIMBIO.A.

We used the SK-means algorithm implemented in the R package skmeans

(Hornik, Feinerer, and Kober (2012)) to cluster the simulated data. This package

implements a genetic algorithm patterned after the genetic k-means algorithm

described in Krishna and Murty (1999). ICCC and several existing model selec-

tion procedures, including AIC, BIC, GAP and MR, were used to determine the

optimal number of clusters K. The upper limit of clusters was set to be 20 for

SIM.K1 and SIM.K5 and 40 for SIM.K25. Each simulation was repeated for

100 times.

The MR criterion chooses K to maximize

MR(K) =
Obj(K + 1)

Obj(K)
− Obj(K)

Obj(K − 1)
, (3.3)
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Figure 3. (a)−(e): Spaghetti plots of five clusters. Solid curves in the middle
represent Mk(t), true cluster mean curves. (f): FPC scores of these genes.
These scores are coded in the same colors of cluster mean curves to which
they belong. Empirical circular density functions are shown for better visual
effects. Data used: SIMBIO.B.

where Obj(K) = n − CS(µK ,Xn). As a special case, Obj(0) is set to be 2n,

the expected value of Obj(0) under the uniform distribution on S1. The Gap

statistic is

Gap(K) = E (logObj(K)|H0)− log Ôbj(K), (3.4)

where Ôbj(K) = n−CS(µ̂K ,Xn). The optimal number of clusters is the smallest

K such that

Gap(K) ≥ Gap(K + 1)− SK+1, (3.5)

where SK = σ̂ (logObj(K)|H0) and H0 is the uniform distribution on S1.

The results are reported in Table 1. Graphical illustrations of each model

selection methods for one simulated dataset and the results of SK-means cluster

analysis can be found in Figures S1 to S5 of the Supplementary Materials.

From Table 1, we can see that ICCC is better than other criteria under all

simulation scenarios in terms of mean square error (MSE). The classical infor-

mation criteria AIC and BIC failed; they selected the upper limits of clusters

invariably, even for the uninformative case SIM.K1. We think that this is be-

cause these methods are not designed for circular cluster analysis.
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Table 1. Mean and root mean square error (in parenthesis) of the estimated
number of clusters. The first column shows the true number of clusters.
Number of repetitions: 100.

True K
Estimates

AIC BIC ICCC GAP MR
SIM.K1 1 20 (19) 20 (19) 1 (0) 1.18 ( 0.4) 2.77 (2.8)
SIM.K5 5 19.98 (15.0) 19.97 (15.0) 4.98 (0.1) 2 ( 3) 2.07 (3.0)
SIM.K25 25 39.92 (14.9) 39.90 (14.9) 26.81 (2.2) 1 (24) 26.39 (2.2)
SIMBIO.A 5 10 ( 5) 10 ( 5) 5.2 (0.45) 4.35 ( 1.45) 4.76 (1.29)
SIMBIO.B 5 10 ( 5) 10 ( 5) 5.09 (0.48) 2.26 ( 2.82) 4.79 (1.03)

GAP works well for SIM.K1 but underestimates K for the other two cases,

probably due to the stepwise nature of this procedure. Judging from Figures S2(d)

and S3(d) in the Supplementary Materials, the Gap statistic is maximized at

K = 5 and K = 27 for SIM.K5 and SIM.K25, respectively. So a “global” GAP

that selects the global maximum of the Gap statistic would work much better

than its stepwise counterpart for these two scenarios. However, this global GAP

criterion would overestimate the number of clusters for SIM.K1. In fact, the

sample mean of K (averaged over 100 repetitions) selected by the global GAP

for SIM.K1 is 15.93, indicating that the global GAP is useless in this case.

MR worked very well for SIM.K25 but it overestimated K for SIM.K1 and

underestimated K for SIM.K5. Strictly speaking, MR(K) is only well defined

for K ≥ 2. When K = 1, MR(1) depends on Obj(0) ≡ 2n, which is prespecified

and may not be reliable in practice. This explains why MR worked poorly for

SIM.K1; this limitation is also well documented in Maitra and Ramler (2010).

Moreover, MR is based on the ratio of the within-cluster similarity for consecutive

K’s. In SIM.K5, there are large changes in the within-cluster similarity when

K increases from 1 to 2 and also from 2 to 3, but the changes are not prominent

whenK increases from 4 to 5 because the left three clusters are not well separated

(see Figure S2(e) in Supplementary Materials). So MR tended to select a smaller

number of clusters in SIM.K5.

In SIMBIO.A and SIMBIO.B, AIC and BIC failed again. ICCC and

MR worked well in both cases; GAP worked well in SIMBIO.A but underesti-

mated K for SIMBIO.B, in which the percentage of signal was smaller. In both

cases, ICCC performs better than MR and GAP in terms of MSE, but its advan-

tage was less than in the previous simulation studies because SIMBIO.A and

SIMBIO.B were generated by resampling the time course microarray data, so

the distribution of the first two FPCs (Figures 2(f) and 3(f)) follow the Langevin

distribution only approximately. Since ICCC is derived from the Langevin dis-

tribution, the fact that it outperformed GAP and MR, neither of which depends

on the parametric assumptions of the underlying distribution, shows that ICCC
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is robust to certain deviations from the Langevin model. Overall, it was the best

method for estimating the number of clusters in all five simulation examples.

4. Analysis of Human Influenza Challenge Data

We illustrate the proposed ICCC model selection criterion with an applica-

tion to the time course microarray data in Huang et al. (2011). In this study,

a cohort of 17 healthy human volunteers received intranasal inoculation of in-

fluenza H3N2/Wisconsin and 9 of them developed mild to severe symptoms. A

total of m = 11, 961 gene expression profiles were measured on whole peripheral

blood drawn from each subject at J = 15 time points after inoculation, covering

about 108 hours. For the ith gene, we consider the expression measurements wij

as noisy observations of the underlying true expression curve yi(t) as

wij = yi(tj) + ϵij , i = 1, . . . ,m, j = 1, . . . , J, (4.1)

where tj is the jth time point and the ϵij are the noisy signals. The measurements

are standardized to have mean 0 and variance 1 for each gene.

We first applied penalized B-splines to estimate ŷi(t) from the noisy mi-

croarray observations and conducted functional F -test (Storey et al. (2005)) to

identify differentially expressed genes. The multiple testing adjustment proce-

dure proposed by Benjamini and Hochberg (1995) was then used to control the

false discovery rate (FDR) at 0.05 level. When less than 200 genes were selected

as significant, we included 200 top-ranked genes in the subsequent clustering

analysis.

For the sake of clarity, we only present the results of three representative sub-

jects: Subject 2 (asymptomatic, 22 significant genes, and 178 other top-ranked

genes), Subject 10 (symptomatic, with 2,504 significant genes), and Subject 11

(asymptomatic, 1 significant gene, and 199 other top-ranked genes) in the main

text. More technical details and the cluster analysis results of other subjects can

be found in Section S3 of Supplementary Materials.

We applied fPCA to the selected genes for each subject. The first two func-

tional principal components (FPCs) were chosen, explaining 97.74%, 99.04%, and

94.15% of the total variation for Subjects 2, 10, and 11, respectively. Each gene

was represented by the first two FPCs, s⃗i = (si1, si2).

The scatter plots of the first two FPCs for these subjects are displayed in

Figure 4. The scatter plots of Subjects 2 and 10 exhibit circular patterns and this

pattern is much more pronounced in Subject 10 (symptomatic) than Subject 2

(asymptomatic). The scatter plot of Subject 11 does not follow a circular pattern,

but we can consider it as an example for the uniformly distributed data on S1. We

also observe that all symptomatic subjects and most asymptomatic subjects have

circular shaped principal component scores, but generally the circular patterns
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(a) Subject 2, Asymptomatic. (b) subject 10, Symptomatic. (c) subject 11, Asymptomatic.

Figure 4. Scatter plots of the first two principal component scores for Sub-
jects 2, 10, and 11. Empirical circular densities are shown for better visual
effects. Reasonable numbers of clusters (by visual examination): K = 3 for
Subject 2, K = 2 for Subject 10, and K = 1 for Subject 11.

are much clearer for the symptomatic subjects than those of the asymptomatic

ones (see Figures S7 to S20 in Supplementary Material). A natural question

arises: Why do the principal component scatter plots show circular pattern, and

why is this pattern clearer for the symptomatic subjects than the asymptomatic

ones? The answer to this question is surprisingly nontrivial and we defer the

related discussions to Section S6 of Supplementary Materials.

We applied the SK-means algorithm to cluster the first two FPCs for these

three subjects. The new criterion ICCC, together with AIC, BIC, GAP, and MR

are used to select the number of clusters. The results of each model selection

method are displayed in Figures S8, S15, and S16 of the Supplementary Materials,

respectively. As in the simulation studies, AIC and BIC kept decreasing and

failed to perform model selection for these subjects. We focus on the comparison

between GAP, MR, and ICCC.

For Subject 2, both MR and ICCC selected K = 3 but GAP selected K = 1.

If we use the global GAP criterion, it also selects K = 3. It is clear from

Figure 4(a) that K = 3 is more reasonable than K = 1. For Subject 10, ICCC,

GAP (both the stepwise and global versions), and MR all selected two clusters,

which is in accordance with visual examination of Figure 4(b). This means that

for very well defined clusters, all three criteria worked well. For Subject 11,

ICCC selected K = 1 but GAP (both the stepwise and global versions) and MR

selected K = 2. Judging from Figure 4(c), all points appear to lie on a large

cluster, so we believe that K = 1 is a more reasonable choice.

Finally, we conducted functional enrichment analyses on the classified gene

clusters by DAVID (Huang, Sherman, and Lempicki (2009)). Specifically, for

each subject, we identified the enriched functions and pathway annotations of

each cluster in Gene Ontology (Ashburner et al. (2000)), KEGG (Ogata et al.

(1999)) and REACTOME (Joshi-Tope et al. (2005)) curated pathway databases.
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The Bonferroni multiple testing procedure was applied to control the familywise

error rate at level 0.05.

For Subject 10 (Symptomatic), a total of 118 significant pathways (see Ta-

ble S3 the Supplementary Materials) were identified based on ICCC, GAP, and

MR. For Subjects 2 and 11 (Asymptomatic), only ten significant pathways (Ta-

ble S4 in the Supplementary Material) were identified based on ICCC and seven

significant pathways (Table S5 in the Supplementary Material) were identified

based on the alternative model selection criteria. The results from Subject 10

contained much richer information about immune response than that from the

asymptomatic subjects, which is as predicted and in accordance with Huang et al.

(2011). The biological implication is that the development of influenza symptom

is driven by a complex biological procedure characterized by the mobilization of

many pathways.

Overall, the clusters determined by ICCC provide clearer decomposition, and

related genes are grouped in pathways with more specific immune responses func-

tions. For example, for Subject 2, GO:0042742 (defense response to bacterium)

was identified based on ICCC/MR, which is more specific than GO:0006952 (de-

fense response) identified based on GAP. Three important pathways were en-

riched by the ICCC/MR approach only. Among them the most interesting one

is hsa04622 (RIG-I-like receptor signaling pathway) because it was not enriched

in the symptomatic subject (Subject 10). This pathway is responsible for mak-

ing proteins (RIG-I, MDA5, and LGP2) that are vital for the synthesis of type

I interferon and other inflammatory cytokines upon recognition of viral nucleic

acids. The lack of the activation of this pathway in Subject 10 is conspicuous.

For Subject 11, the enriched terms based on ICCC (K = 1) are exactly the same

as those based on GAP/MR (K = 2). ICCC provided an identical but more

parsimonious model than GAP and MR in this case. More discussions on these

analyses can be found in Section S4 of Supplementary Materials.

5. Discussion

Cluster analysis is a powerful tool to reduce the complexity of large, high-

dimensional data. Common pre-processing procedures employed in time course

microarray analysis, such as standardization and gene filtering based on the func-

tional F -test, often result in data that reside on a sphere. Such data are essen-

tially directional data, meaning that the direction of the data vector is relevant,

not its magnitude. Specialized cluster analysis method such as SK-means is

most appropriate for such data.

A crucial element of a good cluster analysis is a good estimate of the num-

ber of clusters K. While there has been a considerable literature on this when

clustering data on an Euclidean space, there has been very little work related
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to clustering spherical data. Classical model selection methods such as AIC and

BIC do not work properly for spherical data because they tend to under-penalize

the log-likelihood, as shown in our numerical examples. More specifically, AIC

and BIC, as well as many other model selection methods such as AICc (Hurvich

and Tsai (1989)) and MDL (minimum description length, Hansen and Yu (2001))

have the form

I = −2 log L̂n(K) + α(n)K, (5.1)

where α(n) is either of order O(1) (AIC, AICc, and MDL) or log n (BIC). The

penalty term of ICCC is of order n logK, which provides enough penalty for

circular cluster analysis.

One culprit for the under-performing of AIC and BIC is the mixture model

nature of SK-means. It has been known for a long time that the AIC/BIC

formula do not hold in theory for finite mixture models (McLachlan and Peel

(2000)) because regularity conditions do not hold for these models. Then too,

Rd and S1 have very different geometric properties which are reflected in the

fundamentally different probabilistic models for the K-means and SK-means

algorithms.

We have developed a novel model selection criterion to select K for cluster-

ing circular data, using the fact that the SK-means method is equivalent to a

generative model consisting of a mixture of the Langevin distribution. Dubbed

information criterion for circular clustering (ICCC), this criterion is derived from

the asymptotic property of the maximum likelihood of the Langevin mixture dis-

tribution. The computation of ICCC is quite easy, which enables the selection

of a globally optimal K. Through the study of simulated data and a time course

microarray data set, we show that ICCC produces better estimates of K than

such other existing methods as GAP and MR.

A natural next step is to extend ICCC to high-dimensional spheres (Sd−1,

d ≥ 3). This is not trivial. The derivation of ICCC depends on the “midpoint

rule” in Lemma S5.1 and the convergence results in Lemma S5.3 which basically

says that when n → ∞, the best clustering of points generated from uniform

distribution is an even partition of S1.

The partition of S1 determined by a set of pre-determined centers and the

midpoint rule has a clear analogy on Sd−1, namely the Dirichlet cells (or Voronoi

cells) of Sd−1. Although these cells have been studied in the community of com-

putational geometry for a long time (Okabe et al. (1992)), their large sample

properties under the uniform distribution of the centers are currently unknown.

The main difficulty is that there is no clear analogy of equi-distance partition

on higher dimensional spheres. Taking S2 as an example, it is not possible to

divide it into K polygons with exactly the same shape. Euler’s formula dictates
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that the vertices and edges of a partition of a sphere must satisfy certain con-

straints (Saff and Kuijlaars (1997)). For S2, empirical evidences suggest that for

large K, most Dirichlet cells are hexagons and a handful are pentagons (Saff and

Kuijlaars (1997)). To the best of our knowledge, there is no general theory for

the asymptotic behavior of Dirichlet cells for Sd−1.

A weak analogy of an equi-distance partition of S1 on S2 is a partition

such that the smallest distance between the centers of parts is maximized. This

is known as Tammes’s problem and is also a member of the packing problems

which are among the most active and challenging research areas in mathematics,

see Conway, Sloane, and Bannai (1999).

We believe that our work represents a starting point for developing the right

tools for mixture-model based cluster analysis on a manifold. Asymptotic prop-

erties of the likelihood function derived from manifold-valued models can be very

different from those derived from multivariate Gaussian distributions on Rn. We

expect our work on S1 can serve as a foundation for a unifying theory which is

applicable for higher-dimensional spheres, or even more general compact mani-

folds.
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