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Supplementary Material

Appendix I: Proof of the Asymptotic Properties.

In this appendix, we will first define some notation and then sketch the proofs for the three
theorems given in the main text. Let X1(t)nxp, = (X11(8), +» X10()") Z()nx(potps) =
(Z1(t),- -, Zn(t))T and for a given t,

f= diag[fﬂ(' |X1(t)7]:1t)7 T 7f€n(' ‘Xn(t)v}—"t)} )

where fe,(.|X:(t), Fit) denotes the conditional density function of €;(t). Define the varying

coefficient functional space S as
S = {s(z,t)=21h lej ZE{CCJ (1)} < o0, w1;(t), h;(t) € Hrj }
Furthermore, let ¢(X14,t) = X% (t)h(t) € S and define
G, = g o3 B 120) = 060,01 1,00 Pzt = (3]

and wy (X14,t) = E(Zik(t)| X1:), where Z;(t) denotes the kth coordinate of Z;(t), k = 1,--- ,p2+
p3.
Note that

n

3 E{ (Zua(t) — C(Xrt D) s (1Xa(t), F) Zin (1) — C(Xoi, t)]}

1=1

= > B{120) ~ n (X, O C1X0). F) (1) — (a0

i=1
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n E{wxu,t) XK e (X8, Fi) o (i £) — <<Xu-,t>]} -

It follows that the (j;(X14,t)’s are the projections of the wi(X14,t)’s onto the varying coefficient
functional space S. That is, (;(X1:,¢) € S and it is the function whose distance with wg (X1, t)
is shortest among all the functions in S. Let (" (X1;,t) = ({1 (X14,1), -+, {(pytps) (X145 1)). Then
Z7*(t) = Zi(t) — ¢* (X1, t) is orthogonal to the varying coefficient space S and hence the inner
product E{Z;*(t)X{(t)} between Z;*(t) and X1,(t) is equal to 0. That is, ; (X1:,¢) have no
effect on the asymptotic distribution of 9.

The following notation is needed for the asymptotic variance of the proposed QR estimators

and penalized estimators for parametric coefficients. Define
LI ([ [ 5 (4: 7o) (8
SRS / 57t v0) 8 (t70)s 7 (870) AN (o)L
n= LJo L[s©(t) (s (t;70))?

where
SO t4) = BLE() exp(r T X ()}, 50 (1) = {a() **()exp(wTXiu))},
e 51 (t;)
£ (67) = S - Mi(t) = Nu(t) - / () exp(y” X ())dAo (1)
) (11y) = E{si@)z:*(t)x? (1) exp(vTXim)} 7
and

he* (o, 0) = /0 " 720 [1(e(t) < 0) — 7]dNi (1)

Furthermore, we define some notation which are useful in the derivation of the asymptotic

properties of the proposed estimation and model selection methods. Define

) = XX (K (8] 'Ky (O Z°(6) = [T - T(O)Z(1), H(t) =X ()EX(t),
Z°(t) = (Zi(t), - Za0)" X5() = Ho "(0Xu(t), <= Ha()9 + Hy (X1 (OFZ(1)6,

n ®2

V=23 Blhen 7 [ ° 200 - = () [ av) e | ! %0 = a0 | avo

i=1

IS (8 0) 5V E sV G0 v L nwe — [ 2 e _an,
= Z{/O [3(0)(75;70) )2 }le(t)}’hz( 79)*/0 Z () [1(ei(t) < 0) — 7]dNi(2),

n & (s (;70)
Q:jbz{ [ [%—-% o avi) ) 4, = ZE{ [ zwzT wnoxoFome ),

where 2*(t;7) = 3 (;7) /5% (t;7),5) (t; ) denotes the limit of S® (), k = 1,2,

SW(t;7) Z& t)exp(y" X, (1)), S (t; Zfz X7 (t) exp(y" Xi(t)).
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Also let A denote the limit of A,,.

Moreover, let Npj(e, F,p) and N(e, F,p) be the bracketing number and covering number
with respect to metric or semi-metric p of a function class F. Let < to indicate the function on
its left-hand side is bounded by a positive constant times the function on its right-hand side.

Under condition (A1) and by the Corollary 6.21 of Schumaker (1981), there exists a spline
approximation amjo(t) = BE (£)9,0 to ayo(t) such that

sup ’Oéj()(t) - a"jo(t)| = O(k;r),] =12 y P1, (12)
t€[0,t0]
where Ocnj()(t) = Bz:(t)’l?jo. Set Otno(t) = (Otnlo(t)7 e ,(Jénpl()(t))T7’r]no = (Ocn0790).

To give the proofs, we need some more notation. Let en;(s,0,t) = Yi(t)—¢T X7, (t)—07 Z; (¢)
and ¢ = H, (t)do + H; ' ()X, (t)fZ(t)0o, Define

w0200 = [ Lo (a@an0 - r[a0an o - awswe ™ Van) |
mi(s, 0,7, Ao) = /0 K Z; (t){ |:I(6m~(§7 0,t) <0)— T} dN;(t) + 7 {dNi(t) - & (t)e”TXi(t)dAo(t)] }

mi (o, 0,7,Ao) = /0 K Z:*(t){ {I(ei(t) <0)— T} dN;(t) + 1 {dNi(t) — &(t)e”TXi(t)dAg(t)} }

s 1 ¢
\Il(a797 Y, AO) = E\Pn(a797 Y, A0)7 Mn(<7 97 Y, AO) = ﬁ Zmi(g79171A0)1
=1
s . . 1~ .
M (gv 97 Y AO) = EMn(§707’77A0)7Mn(avevf%AO) = E Zmz (a707’77A0)7
=1
and
L = M(s,0,7,Ao) — M*(s,8,70, Ao(t)) — M2 (S0, 00,7, No(£)) + M (s0, 80,70, Ao (1)),
IQ = Mfz(§7 97’/%30) _M:,(ga ea’YO:AO(t)) _Mfl(gove(%:% Ko(t))+Mfl(§0700,’YO,AO(t)),
[3 = M2(<7€7’Y()5A0)7MS(<70’707A0(t))7Mfl(g07005,707A0(t))+MS(<O7005’YO’AO(t))'

Now we are ready to describe the proofs.
Proof of Theorem 1. By Corollary 3.2.3 of Van der Vaart and Wellner (1996), we just only

need to verity conditions of it hold, then we have p(f, — n0) = 0p(1), where 7, = (Qn, 0) is the
sieve estimator, and 19 = (ao, o) is the true parameter. Let’s verify the first condition of it

hold. For all € > 0, we have

inf \Ij(oln,97’70,A0) _\Ij(a07907707A0)
M E€On,p(Nn,Mno)>e
= inf [¥(an, 0,70, Ao) — ¥(ano, b0, 70, Ao)] + [¥(ano, 0o, Y0, Ao) — ¥(v0, 00,70, Ao)]
M EOn,p(Nn,Mno)>e
= J1+ Ja.

Denote €n0i(t)) = Yi(t) — alo(t)X1:(t) — 08 Zi(t), then by (2), independence between censoring
d t),

time C; and N; (¢),Yi(t) after given X;(t), Fit, as well as the identity p,(z — y) — p-(z) =
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y{I(z <0)—7}+ foy{I(x < z) — I(x < 0)}dz, denote A;(t) = (nn — nno)(XlTi(t), ZiT(t))T7 we
have

n

J1 = inf 1

N €On,p(Mn,Mmo)>e N =

E{ /Oto {pr(ﬁm(t)) - Pr(enOi(t))}dNi(t)}

_ inf / K E{ [(nn — o) (XE(8), 28 ()T ((eni (1) < 0) r)} -

N €On,p(NMn Mno) e
A (t))
/ |:I(€n0¢(t) S a) — I(Gn()i(t) S 0):| da}dNi(t)
0

) 11 ¢
= inf —=
N €On,p(Mn,Mno)>e 2N =

E{ [ .zt ®2fq<Ai<t>|xi<t>,fﬁ>dm<t>}

1
><p(17n,77n0)2 > Che” > 0.

Similarly, let eoi(t) = Yi(t) — of (t)X1:(t) — 63 Zi(t), then
Bo= LISV RL T X204 (01X, Fu)dNi() Ylano — aoll,
2n p 0

Hence, inf, ce, ptnn,nmo)>e ¥ (@n, 0,7, Ao) — ¥(ao,00,70,Ao) > 0. Thus, first condition of
Corollary 3.2.3 of Van der Vaart and Wellner (1996) is satisfied. Let us verify the last con-
dition J3 =: lim, sup, cq, [P, (e, 0,7, Ko) — U(a, 0,70, A0)| = 0p(1) also hold. Note that

Js < lim sup |\I/n(ozn,9,’y\,7\o)—‘I’n(an,o,’YovAON

n N €EOn

+lim sup |Un(an,0,70,M0) — ¥(an,0,7,Ao)|
" €O,

+lim sup “Il(an707'}/07[\0) - \IJ(OZ,Q,’Y(),A()”
" €O,

=: Js1 + Js2 + Js3,
Hence, it’s sufficient to prove that Js, = op(1),k = 1,2,3. For J31, we have

1< [lo 5T ~ 1w [t T
= / eni(&(t)e M Ddho(t) — =D / eni(8)E:()e XM an ()|,
i=170 nisJo

n -«

Js1 =lim sup 7
™ Mn €Oy

By Fatou lemma, Martingale Central Limit Theorem, the Continuous Mapping Theorem and
13 = 7o0ll = Op(n™2),Ao(t) — Ao(t) = Op(n~2)(see Lin et al. (2000)), it easy to obtain Js; =
Op(n~%) = 0,(1).

In order to prove Js2 = 0p(1), we just need to verify the class & = {9 (an, 0,7, Ao),nn €
©,} is Euclidean class for it’s envelope function max{sup, ce, 4.20%i(an,0,7,A0),0}. By
Euclidean properties of classes &1 = {&(t)eni(t) exp(va X; ), € On,t € [0,t0]},E11 =
{ei(an,0),an € Hr}, E12 = {ei(an,0),0 € B}, {I(ein(t) < 0)}, Lemma 5 in Sherman (1994)
and Lemma 2.14 in Pakes and Pollard (1989), it is easy to see that classes & is Euclidean class.

Hence, we have J32 = 0,(1) immediately.
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It is easy to see that Ja3 = O(kn2") = 0,(1) because

B{ [ [prtento) = prtestp)av}|

= im0 S 5{ [ XE O 0T OX00) 407 ZOI0, FN 0 o — o

™ Np €Oy

n

lim sup lz

Nn€On M 1]

P
w
I

Thus, all conditions of Corollary 3.2.3 of Van der Vaart and Wellner (1996) are satisfied, so we
have (7, 10) = 0p(1).

In the following part, we verify the condition of Theorem 3.2.5 of Van der Vaart and
Wellner (1996) to derive the convergence rate. Firstly, in the proof of consistency part, we have
already shown that W(an, 0,70, Ao) — ¥(ao, 0,70, Ao) > Cp?*(1n,m0). Consider the function

classes

Ens = {Wilan, 0,70, M) — Pi(ano, 0o, 70, Ao), p(1,Mm0) < 6},
Ens = {Wilom,0,70,A0) — vi(ano, 00,70, Ao), lam — anollan < 63,
Ens = {i(an, 0,7, Ao) — i(ano, 00,70, Mo), |6 — 6| < 5},
&1 = {I(ei(an,0)(t) <0), |lan — anollny < 3},
& = Aei(an, 0)®)I(ei(an, 0)(t) <0), [lan — anollnun < 6},
En = {I(ei(an,0)(t) <0), 0 — 6ol < 6},
& = Aei(an, 0)(t)(ei(an,0)(t) < 0), 0 — bol| < 6}

Similar to Zhang et al. (2010), we can obtain that Ny (e, &11, [|.||3,.) S (/€)% , Npj (g, E12, ||.]) S
(6/€)®2FP3) | similarly, we could derive that Nij(e, &1, [|.|ln,.) < (6/&)”’% Nij(e, &2, ) S
(6/€)P2FP3) hence, it is easy to get that Njj(e, &, ||.]12,) < (6/€)%Pkn, Nij(e, Ea, |||)) S (5/)*P2FPa),
By the Lemma 9.25 of Kosorok (2008) and the monotone property of N( ) Ao(t) it’s not difficult

0 get that log Ny, (&, EL5 |I7,) < e, 10g(5/2), log Ny (=, €25, |.1) < (p2 + pa) log(3/c). And
this lead to log Njj(e, Enss p) S [Prn + (D2 +p3)]log(0/€) <X pr, log(d/e), in which < means both
sides of it have same order. Hence, the bracketing integral Jq (00, &n,s, p) of function class &, 5

satisfies

J1(00,Ens, p) = /\/l—i—logN €€n5pds</ \/1+pkwlog§/sds<p1/2

Hence, by Lemma 3.4.2 of Van der Vaart and Wellner (1996), we have

E( sup V(T — 0) (0 0,790, Ao) — V(T — wano,eo,vo,Aon)

p(1n,Mn0) <8

J((5, En.s, P06
S I, m,p)(l + “(Tﬁ‘s’”M) S p1/26(1 + 657@ = O(p;/?9).

Moreover, denote Jy =: U, (atn, 6,7, No) =V (tn, 0,70, Ao)]— /72 [ W0 (atno, B0, 3, Ao )= (atnos 0,70, o),
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by using similar method which used to prove the result about Js31, we have

E( sup |\/HJ4|)

P(Nn,Mn0) <6

T ~ to 5T x. -~
- E< sup | —— / [€ni(t) — €n0i(®)]&: (1)) X1 dAo(t)
P(1MnMn0) <8 \/ﬁ; 0

~ / Y lenit) — cnni )0 X@'“’dAdt)D = o(1)-

Hence it means that the key function ¢, () in Theorem 3.2.5 of Van der Vaart and Wellner
(1996) is given by ¢n(d) = p,lc{fé, by Theorem 3.2.5 of Van der Vaart and Wellner (1996)
and let 7, = (n/kn)?, we could get p(7jn,mmo) = (kn/n)*/2. By (12), it is easy to get that
2Ty m0) = (kn /)% 4+ k7. When ky,, < n'/ ™D p(5,,m0) = Op(n~"/ ™1, This complete
the proof of Theorem 1. O

For the proof of Theorem 2, we first give three lemmas needed.

Lemma 1. Assume that (A1) — (As) and (As) — (Ag) hold, kn — 0o, nk, *™ = 0 as n — oo,
then

Js = M (5,0,7, Ao) — M3 (e, 0,7, Ao) = 0,(n™'/?).

By Lemma 1, it easy to see that the asymptotic distribution of 0 will not change if Z7 (t)
are replaced by Z;*(¢) under the assumption of Theorem 2; the latter enjoy independence and
are easier to handle mathematically. In order to simplify notation, we simply prove Theorem 2
by treating Z; (t),7 = 1,--- ,n are independent.

Lemma 2. Assume that (A1) — (A4) hold, kn — 00,k2/n — 0,nkn, *” — 0 as n — oo and
r > 1, then for all positive values en, = O(\/kn/n),

_1
s (L} =op(n}).
P Mno)<en
Lemma 3. Assume that (A1) — (A4) hold, then we have

Ay — An =o0,(1), Vi =V, =0p(1) and P; — P, = 0p(1).
Proof of Theorem 2. Define
~ 1o~ [
U, (5,0,7,Ao) = gZ/ {pT(em(g,G,t))dNi(t) fT[eni(g,G,t)dNi(t)
i=170
—€ni (§7 0, t)gl (t)eaTXi(t)dKO(t)] }’
it is easy to see that minimize ¥, (an,0,7, IA\O) respect to an,f is equivalent to minimize

W, (s,0,7, Ao) respect to ¢, 0 because <7 X5;(t) + 07 Z7(t) = o (t)X1:(t) + 67 Zi(t). Note that
Z*(t) is orthogonal to X (t) and hence also orthogonal to X7 (), in order to get the asymptotic
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normality of 4/9\, it is sufficient to consider the estimating equation M, (s, 9,7, IA\O) = op(nflm)7
in fact, it is correspond to the sub-gradient of ¥,(s, 0,7, ZAXO) respect to 6.

By the orthogonality of Z*(t) and Xj(t), let Is =: M°®(s, 0,70, Ao) — M?(s0, 00,70, Ao),
then for p(nn,nmo) = 0p(1), we also have [|6 — o|| = 0p(1), ||s — so|| = 0p(1), then

ro= 6 [ 220)| (Foeom X000 + 07 20 0) = Py, 6 X0+ 03 22 0) )avico)] |

_ iZ p{ [ 2] (rop0. 7027 (00 - )

+ (01X, (1), Fa) X1 T (£) (s — <0)> dNi(t)} } + Op(#" (1, 1o0)
:%EF{A%mmﬂmmmmEMM@W—w+%WWWW
= Au(0 = 00) + Op(p* (s o))

Note that when r > 1, by the convergence rate which given by Theorem 1, we have p2 (NryMmo) =

0p(n"1/?). By Lemma 2, above equation, when r > 1, we have

M (©0,7,80) = M; (0,007, Ro) + M (0,70, Ao) = M* (<o, 00,70, Ao)
FMEE,0,7, Ro) — M®(S,0, 70, Ao(t)) — M:,(c0, 00,7, Ao (t))
+M* (<0, 60,70, Ao (t))
= Mi(%,@o,;}/\, Ko) + An(é\_ 60) 4 Op(n_1/2)7

it is easy to get that
6 — 60 = — A M (<0, 00,7, Ro) + 0p(n~"/%).

On the other hand, it easy to get that = 3" [hi(ano,80) — hi(ao,00)] = 0p(n"Y?). By (Aa4),

we have

Mfl(§07 907”)/\7 KO)

1< 1w [P, . S (t;7)
= ﬁ;hi(ano,eo)—&—rgg/o {Zi(t)—is(o)(tﬁ)}d]vi(t)

_ iih"(o‘o’ao)”ii/oto {ZZ(t)—Z*(t;fyo)}dMi(t)
fTPnQ;I% i/ﬂt {Xi(t) _ X 'yo)}dMi(t) +op(n~1/?),

By functional central limit theorem, it is easy to get that

VMG (ano, 60,7, Ao) = N(0,V),
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Hence, we have \/77(5— 0o) EN N(0, A7'VA™'). This completes the proof of the theorem. [

For the proof of Theorem 3, we need more notation and two more lemmas.
Let 15(()1), 5%), 155? denote the true values of

Y = @Dy, 0,07, 9W = (9T, 0%

p1*

T 32 3T \T
) 19( ) = (19171-&-1*"" vﬁp*) :
It is easy to see that 19%) = 0, where 0 is a vector which element are 0 and has same dimension

with 9%, Denote &n0:(t) = Y;(t) — 93 X;(¢),

Up(u) = Z/OO {pq—(gn()i(t)*UTXi(t)/\/n/k‘n)dNi(t)*T(En()z( —u’ X (t)/\/n/kn )dM }
_Z/OO {pT(EROi(t))dNi(t) —r(@nm(t))dj\/%(t)}.

Lemma 4. Assume that (A3)(As), (As) — (Ag) hold, then for any fized u, we have
1 - s ~
Un(u) = iuTAnu +u” G (90, 600,7, Mo) + 0p(1).
Lemma 5. (Sparsity) Assume that \/n/kn\ — 00 as A — oo, then for any 9D 90 satisfying
[0 — 15(()1)H = Op(y/kn/n), Hﬁiw — 1§%>|| = Op(y/kn/n) and any constant ¢ we have

\1,713((5(1”7 (5£1)T7 OT)Tﬁ7 Ko) - min WS((,&(DT7 (ngﬁl)TJgiQ)T))T’a’ Xo).
1982 || <a(kn /n)1/2

Proof of Theorem 8. We will first prove the conclusion (b) of Theorem 3.
(I) Proof of (b): Similar to Fan and Li (2001), to prove (b), it is enough to show that for

any given ¢ > 0, there exist a large constant C such that
P{ . inf WF (G + u/v/1n/kn, 7, Ao) > \Iff(q%ﬁ,f\o)} >1-34, (13)

which implies that with probability 1 — § there exists a local minimum in the ball {ﬁ{ +
u/+/n/ky : ||ul| < C}, namely there exists a local minimizer such that H$ — 50H = Op(\/kn/n).
It means that p(7%,10) = Op((kn/n)*/? + k’*’") which is exactly what we want to prove.

Note that, when n is enough large, n Y%L [px([|;0 +ujs/v/n/knl]) = A1 9;40]])] = 0 uni-
formly in any compact set because SCAD penalty is flat when coefficient lager than aA,, A, — 0.

By Lemma 4, we have
Wy, (Do + u/v/n/kn,7, Ao) = 7 (90,7, Ao)

- +nz [px ([F500 + g/ v/ Rnll) — p( Hﬁg*ou)}

v

+nz [ 13520 + w5/l = (19501

- %UTAnu+uTszo,eoﬁ, Ao) + 0p(1).
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By Convexity Lemma(Lemma 2 of Wu and Liu (2009)), this equation hold uniformly on any
compact set. It’s easy to see that, when C' is sufficiently large, ¥Z (1§0T +u/\/n/kn,7, /AXO) -
\I/P(190 s Ao) is dominated by the quadratic term on the right hand side of above equation.
By condition (As), (13) holds. The proof of (b) is completed.

(II) Proof of (a): Similar to Fan and Li (2001), by Lemma 5, (a) holds.

(III) Proof of (c): By (a), it means that 5]‘* =0,j=1,---,p1. Therefore, with probability

approaching 1, we have

P/ o~ P ~(1)T ~(1)T TNT o~ = P P ~ D1 ~
\Ijn (19777 0) = \I/n ((19 7(19* ,0 ) a’YaAO) = nan(anve 777A0) +nzp>\(||19j*‘|)

j=1

Note that the penalty term doesn’t depend on 9”. Hence the asymptotic normality of o
is determined by ¥, (an,ep,& Ao) Similar to the proof of Theorem 2, we could obtain the
conclusion and this complete the proof of Theorem 3.

Appendix II: Proof of Weak Convergence of L(u,z1, z).

Define Iy = Ly (an,0) — L(an,0) — Ln(cno, 00) + L{ano, 6o),

li(om,0) = /OuI(X“ < a1, Zi < 2)[I(eni(t) < 0) — 7] dNi(t), Ln(an, 0 Zz (o, 0
L(an,0) = ELu(on,0), 539 Z@ Xj1 <21, Z; < 2)exp(y" X;(t)),
§O(y) = %i&“)“ Xj1 < 1,75 < 2)X(0) exp(y7 X,(0),
si(omo,0) = / X (O[T (eni(t) < 0) = 7]dNi(1), SV (¢ Z& t)exp(y" X;(t)),
S = LD G OXA0X] (o0 (0),
and
b rll_{/ ot~ o
- ([ T o)

/  H(Xa < a0, 2 < XD, <0|Xz-<t>7fit>dm<t>},
(0]

®
Il

S|

™
=
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where é<k)(t;’y), §<k)(t; ) are the limits of §(k>(t;'y) and S’<k)(t; ) respectively, for k = 1,2. We

also need the following lemma.

Lemma 6. Assume that (A1) — (A4) hold, kn — 00, k2/n — 0,nkn ™ — 0 as n — oo and
r > 1, then for all positive values en, = O(\/kn/n),

1
sup  {Li} = op(n?).
P(Mn,Mno)<en
Proof of weak convergence of L(u,x1,7Z). By some calculation, Lemma 6 and Taylor

expansion, we have

L (u T1,%

A 503
= Z (Xin <21, Zi < 2)[{(€ni(t) <0) — 7]+ 7 I(Xilﬁxl,ZiSZ)—m

S (4.5
= Vn[Ln(ano,00) + L(an,0) — L(ano, o)) IZ/ [ X <mxi,Z; <z)— #%)

SO (¢

I _ _
= & > [ti(@0,60) — Bni Brg si(ao,00) — Bu2 Ay hi(eo, 00)]
=1

_’_T\/lﬁiz";{/ou |:I(Xi1 <m,Z;i <z)— i;;g%]d]wi(t)

s [ [xaw - S aano) - st [ 20 - = w s
—7(Py — Bu1Bya Py — Bpa Ay P! L Z/ { - X(t; 'yo)}dMi(t)+op(1)

=: %Zﬁh(u)ﬁ-%ZLm(u)—%Zﬁgz(u)—‘rOp(l)

By the functional central limit theorem, £ (u, 1, 2z) converges in finite-dimensional distribution
to a zero-mean Gaussian process. Since any function of bounded variation can be written as the
difference of two increasing functions, the first terms of £1;(u), £2;(u) and L3;(u) are tight. And
other remaining terms do not involve u. Hence, £ (u,z1, 2) is tight and converges weakly to a
zero-mean Gaussian process which could be approximated by the zero-mean Gaussian process
ET(u, Z1,%).
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