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Supplementary Material

Appendix I: Proof of the Asymptotic Properties.

In this appendix, we will first define some notation and then sketch the proofs for the three

theorems given in the main text. Let X1(t)n×p1 = (X11(t), · · · , X1n(t))T , Z(t)n×(p2+p3) =

(Z1(t), · · · , Zn(t))T and for a given t,

f = diag[fε1(. |X1(t),F1t), · · · , fεn(. |Xn(t),Fnt)] ,

where fεi(. |Xi(t),Fit) denotes the conditional density function of εi(t). Define the varying

coefficient functional space S as

S = { s(x, t) = xT1 h(t) ≡
p1∑
j=1

x1j(t)hj(t) :

p1∑
j=1

E{x2
j (t)h

2
j (t)} <∞, x1j(t), hj(t) ∈ Hrj } .

Furthermore, let ζ(X1i, t) = XT
1i(t)h(t) ∈ S and define

ζ∗k(X1i, t) = arg inf
ζ∈S

n∑
i=1

E

{
[Zik(t)− ζ(X1i, t)]fεi(. |Xi(t),Fit)[Zik(t)− ζ(X1i, t)]

}
and ωk(X1i, t) = E(Zik(t)|X1i), where Zik(t) denotes the kth coordinate of Zi(t), k = 1, · · · , p2+

p3.

Note that

n∑
i=1

E

{
[Zik(t)− ζ(X1i, t)]fεi(. |Xi(t),Fit)[Zik(t)− ζ(X1i, t)]

}

=

n∑
i=1

E

{
[Zik(t)− ωk(X1i, t)]fεi(. |Xi(t),Fit)[Zik(t)− ωk(X1i, t)]

}
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+E

{
[ωk(X1i, t)− ζ(X1i, t)]fεi(. |Xi(t),Fit)[ωk(X1i, t)− ζ(X1i, t)]

}
.

It follows that the ζ∗k(X1i, t)’s are the projections of the ωk(X1i, t)’s onto the varying coefficient

functional space S. That is, ζ∗k(X1i, t) ∈ S and it is the function whose distance with ωk(X1i, t)

is shortest among all the functions in S. Let ζ∗(X1i, t) = (ζ∗1 (X1i, t), · · · , ζ∗(p2+p3)(X1i, t)). Then

Z∗∗i (t) = Zi(t)− ζ∗(X1i, t) is orthogonal to the varying coefficient space S and hence the inner

product E{Z∗∗i (t)XT
1i(t)} between Z∗∗i (t) and X1i(t) is equal to 0. That is, ζ∗k(X1i, t) have no

effect on the asymptotic distribution of θ̂.

The following notation is needed for the asymptotic variance of the proposed QR estimators

and penalized estimators for parametric coefficients. Define

P ∗n =
1

n

n∑
i=1

{∫ t0

0

[
s̄(2)(t; γ0)

s(0)(t; γ0)
− s̄(1)(t; γ0)s(1)(t; γ0)

(s(0)(t; γ0))2

]
dNi(t)

}
,

Ωn =
1

n

n∑
i=1

{∫ t0

0

[
s(2)(t; γ0)

s(0)(t; γ0)
− x̄⊗2(t; γ0)

]
dNi(t)

}
,

where

s(0)(t; γ) = E
{
ξi(t) exp(γTXi(t))

}
, s̄(1)(t; γ) = E

{
ξi(t)Z

∗∗
i (t) exp(γTXi(t))

}
,

z̄∗∗(t; γ) =
s̄(1)(t; γ)

s(0)(t; γ)
, Mi(t) = Ni(t)−

∫ t

0

ξi(s) exp(γTXi(s))dΛ0(t) ,

s̄(2)(t; γ) = E

{
ξi(t)Z

∗∗
i (t)XT

i (t) exp(γTXi(t))

}
,

and

h∗∗i (α, θ) =

∫ t0

0

Z∗∗i (t)
[
I(εi(t) ≤ 0)− τ

]
dNi(t) .

Furthermore, we define some notation which are useful in the derivation of the asymptotic

properties of the proposed estimation and model selection methods. Define

Π(t) = X̃1(t)[X̃
T
1 (t)fX̃1(t)]−1X̃

T
1 (t)f, Z∗(t) = [I −Π(t)]Z(t), H2

n(t) = X̃
T

(t)fX̃(t),

Z∗(t) = (Z∗1 (t), · · · , Z∗n(t))T , X∗1i(t) = H−1
n (t)X̃1i(t), ς = Hn(t)ϑ+H−1

n (t)X̃
T
1 (t)fZ(t)θ,

Vn =
1

n

n∑
i=1

E

{
hi(α0, θ0) + τ

∫ t0

0

[
Z∗i (t)− z̄∗(t; γ0)

]
dMi(t)− τPnΩ−1

n

∫ t0

0

[
Xi(t)− x̄(t; γ0)

]
dMi(t)

}⊗2

,

Pn =
1

n

n∑
i=1

{∫ t0

0

[
s̃(2)(t; γ0)

s(0)(t; γ0)
− s̃(1)(t; γ0)s(1)(t; γ0)

(s(0)(t; γ0))2

]
dNi(t)

}
, hi(α, θ) =

∫ t0

0

Z∗i (t)
[
I(εi(t) ≤ 0)− τ

]
dNi(t),

Ωn =
1

n

n∑
i=1

{∫ t0

0

[
s(2)(t; γ0)

s(0)(t; γ0)
− x̄⊗2(t; γ0)

]
dNi(t)

}
, An =

1

n

n∑
i=1

E

{∫ t0

0

Z∗i (t)Z∗Ti (t)fε(0|Xi(t),Fit)dNi(t)
}
,

where z̄∗(t; γ) = s̃(1)(t; γ)/s(0)(t; γ),s̃(k)(t; γ) denotes the limit of S̃(k)(t; γ), k = 1, 2,

S̃(1)(t; γ) =
1

n

n∑
i=1

ξi(t)Z
∗
i (t) exp(γTXi(t)), S̃

(2)(t; γ) =
1

n

n∑
i=1

ξi(t)Z
∗
i (t)XT

i (t) exp(γTXi(t)).
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Also let Ā denote the limit of Ān.

Moreover, let N[ ](ε,F , ρ) and N(ε,F , ρ) be the bracketing number and covering number

with respect to metric or semi-metric ρ of a function class F . Let . to indicate the function on

its left-hand side is bounded by a positive constant times the function on its right-hand side.

Under condition (A1) and by the Corollary 6.21 of Schumaker (1981), there exists a spline

approximation αnj0(t) = BTn (t)ϑj0 to αj0(t) such that

sup
t∈[0,t0]

∣∣αj0(t)− αnj0(t)
∣∣ = O(k−rn ), j = 1, 2, · · · , p1, (12)

where αnj0(t) = BTn (t)ϑj0. Set αn0(t) = (αn10(t), · · · , αnp10(t))T , ηn0 = (αn0, θ0).

To give the proofs, we need some more notation. Let εni(ς, θ, t) = Yi(t)−ςTX∗1i(t)−θTZ∗i (t)

and ς = Hn(t)ϑ0 +H−1
n (t)X̃

T
1 (t)fZ(t)θ0, Define

ψi(α, θ, γ,Λ0) =

∫ t0

0

{
ρτ (εi(t))dNi(t)− τ

[
εi(t)dNi(t)− εi(t)ξi(t)eγ

TXi(t)dΛ0(t)

]}
,

mi(ς, θ, γ,Λ0) =

∫ t0

0

Z∗i (t)

{[
I(εni(ς, θ, t) ≤ 0)− τ

]
dNi(t) + τ

[
dNi(t)− ξi(t)eγ

TXi(t)dΛ0(t)

]}
,

m∗i (α, θ, γ,Λ0) =

∫ t0

0

Z∗∗i (t)

{[
I(εi(t) ≤ 0)− τ

]
dNi(t) + τ

[
dNi(t)− ξi(t)eγ

TXi(t)dΛ0(t)

]}
,

Ψ(α, θ, γ,Λ0) = EΨn(α, θ, γ,Λ0), Ms
n(ς, θ, γ,Λ0) =

1

n

n∑
i=1

mi(ς, θ, γ,Λ0),

Ms(ς, θ, γ,Λ0) = EMs
n(ς, θ, γ,Λ0),M∗n(α, θ, γ,Λ0) =

1

n

n∑
i=1

m∗i (α, θ, γ,Λ0),

and

I1 = Ms
n(ς, θ, γ̂, Λ̂0)−Ms(ς, θ, γ0,Λ0(t))−Ms

n(ς0, θ0, γ̂, Λ̂0(t)) +Ms(ς0, θ0, γ0,Λ0(t)),

I2 = Ms
n(ς, θ, γ̂, Λ̂0)−Ms

n(ς, θ, γ0,Λ0(t))−Ms
n(ς0, θ0, γ̂, Λ̂0(t)) +Ms

n(ς0, θ0, γ0,Λ0(t)),

I3 = Ms
n(ς, θ, γ0,Λ0)−Ms(ς, θ, γ0,Λ0(t))−Ms

n(ς0, θ0, γ0,Λ0(t)) +Ms(ς0, θ0, γ0,Λ0(t)).

Now we are ready to describe the proofs.

Proof of Theorem 1. By Corollary 3.2.3 of Van der Vaart and Wellner (1996), we just only

need to verity conditions of it hold, then we have ρ(η̂n − η0) = op(1), where η̂n = (α̂n, θ̂) is the

sieve estimator, and η0 = (α0, θ0) is the true parameter. Let’s verify the first condition of it

hold. For all ε > 0, we have

inf
ηn∈Θn,ρ(ηn,ηn0)≥ε

Ψ(αn, θ, γ0,Λ0)−Ψ(α0, θ0, γ0,Λ0)

= inf
ηn∈Θn,ρ(ηn,ηn0)≥ε

[Ψ(αn, θ, γ0,Λ0)−Ψ(αn0, θ0, γ0,Λ0)] + [Ψ(αn0, θ0, γ0,Λ0)−Ψ(α0, θ0, γ0,Λ0)]

=: J1 + J2.

Denote εn0i(t)) = Yi(t)− αTn0(t)X1i(t)− θT0 Zi(t), then by (2), independence between censoring

time Ci and N∗i (t), Yi(t) after given Xi(t),Fit, as well as the identity ρτ (x − y) − ρτ (x) =
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y{I(x ≤ 0) − τ} +
∫ y

0
{I(x ≤ z) − I(x ≤ 0)}dz, denote ∆i(t) = (ηn − ηn0)(XT

1i(t), Z
T
i (t))T , we

have

J1 = inf
ηn∈Θn,ρ(ηn,ηn0)≥ε

1

n

n∑
i=1

E

{∫ t0

0

[
ρτ (εni(t))− ρτ (εn0i(t))

]
dNi(t)

}
= inf

ηn∈Θn,ρ(ηn,ηn0)≥ε

∫ t0

0

E

{[
(ηn − ηn0)(XT

1i(t), Z
T
i (t))T

(
I(εn0i(t) ≤ 0)− τ

)]
+∫ ∆i(t))

0

[
I(εn0i(t) ≤ a)− I(εn0i(t) ≤ 0)

]
da

}
dNi(t)

= inf
ηn∈Θn,ρ(ηn,ηn0)≥ε

1

2

1

n

n∑
i=1

E

{∫ t0

0

(XT
1i(t), Z

T
i (t))T⊗2fεi(∆i(t)|Xi(t),Fit)dNi(t)

}
×ρ(ηn, ηn0)2 ≥ C1ε

2 > 0.

Similarly, let ε0i(t) = Yi(t)− αT0 (t)X1i(t)− θT0 Zi(t), then

J2 =
1

2

1

n

n∑
i=1

E

{∫ t0

0

X⊗2
1i (t)fεi(0|Xi(t),Fit)dNi(t)

}
‖αn0 − α0‖2Hr

.

Hence, infηn∈Θn,ρ(ηn,ηn0)≥ε Ψ(αn, θ, γ0,Λ0) − Ψ(α0, θ0, γ0,Λ0) > 0. Thus, first condition of

Corollary 3.2.3 of Van der Vaart and Wellner (1996) is satisfied. Let us verify the last con-

dition J3 =: limn supηn∈Θn
|Ψn(αn, θ, γ̂, Λ̂0)−Ψ(α, θ, γ0,Λ0)| = op(1) also hold. Note that

J3 ≤ lim
n

sup
ηn∈Θn

|Ψn(αn, θ, γ̂, Λ̂0)−Ψn(αn, θ, γ0,Λ0)|

+ lim
n

sup
ηn∈Θn

|Ψn(αn, θ, γ0,Λ0)−Ψ(αn, θ, γ0,Λ0)|

+ lim
n

sup
ηn∈Θn

|Ψ(αn, θ, γ0,Λ0)−Ψ(α, θ, γ0,Λ0)|

=: J31 + J32 + J33,

Hence, it’s sufficient to prove that J3k = op(1), k = 1, 2, 3. For J31, we have

J31 = lim
n

sup
ηn∈Θn

τ

∣∣∣∣ 1n
n∑
i=1

∫ t0

0

εni(t)ξi(t)e
γ̂TXi(t)dΛ̂0(t)− 1

n

n∑
i=1

∫ t0

0

εni(t)ξi(t)e
γT0 Xi(t)dΛ0(t)

∣∣∣∣.
By Fatou lemma, Martingale Central Limit Theorem, the Continuous Mapping Theorem and

‖γ̂ − γ0‖ = Op(n
− 1

2 ), Λ̂0(t) − Λ0(t) = Op(n
− 1

2 )(see Lin et al. (2000)), it easy to obtain J31 =

Op(n
− 1

2 ) = op(1).

In order to prove J32 = op(1), we just need to verify the class E2 = {ψi(αn, θ, γ,Λ0), ηn ∈
Θn} is Euclidean class for it’s envelope function max{supηn∈Θn,ψi 6=0 ψi(αn, θ, γ,Λ0), 0}. By

Euclidean properties of classes E1 = {ξi(t)εni(t) exp(γT0 Xi(t)), ηn ∈ Θn, t ∈ [0, t0]}, E11 =

{εi(αn, θ), αn ∈ Hnr }, E12 = {εi(αn, θ), θ ∈ B}, {I(εin(t) ≤ 0)}, Lemma 5 in Sherman (1994)

and Lemma 2.14 in Pakes and Pollard (1989), it is easy to see that classes E2 is Euclidean class.

Hence, we have J32 = op(1) immediately.
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It is easy to see that J33 = O(k−2r
n ) = op(1) because

J33 = lim
n

sup
ηn∈Θn

1

n

n∑
i=1

∣∣∣∣E{∫ t0

0

[
ρτ (εni(t))− ρτ (εi(t))

]
dNi(t)

}∣∣∣∣
= lim

n
sup

ηn∈Θn

1

2n

n∑
i=1

E

{∫ t0

0

X⊗2
1i (t)fYi|Xi,Fit

(αT (t)X1i(t) + θTZi(t)|Xi(t),Fit)dNi(t)
}
‖αn − α‖2Hr

.

Thus, all conditions of Corollary 3.2.3 of Van der Vaart and Wellner (1996) are satisfied, so we

have ρ(η̂n, η0) = op(1).

In the following part, we verify the condition of Theorem 3.2.5 of Van der Vaart and

Wellner (1996) to derive the convergence rate. Firstly, in the proof of consistency part, we have

already shown that Ψ(αn, θ, γ0,Λ0) − Ψ(α0, θ0, γ0,Λ0) ≥ Cρ2(ηn, η0). Consider the function

classes

En,δ = {ψi(αn, θ, γ0,Λ0)− ψi(αn0, θ0, γ0,Λ0), ρ(η, ηn0) ≤ δ},

E1
n,δ = {ψi(αn, θ, γ0,Λ0)− ψi(αn0, θ0, γ0,Λ0), ‖αn − αn0‖Hn

r
≤ δ},

E2
n,δ = {ψi(αn, θ, γ0,Λ0)− ψi(αn0, θ0, γ0,Λ0), ‖θ − θ0‖ ≤ δ},

E31 = {I(εi(αn, θ)(t) ≤ 0), ‖αn − αn0‖Hn
r
≤ δ},

E3 = {εi(αn, θ)(t)I(εi(αn, θ)(t) ≤ 0), ‖αn − αn0‖Hn
r
≤ δ},

E41 = {I(εi(αn, θ)(t) ≤ 0), ‖θ − θ0‖ ≤ δ},

E4 = {εi(αn, θ)(t)I(εi(αn, θ)(t) ≤ 0), ‖θ − θ0‖ ≤ δ}.

Similar to Zhang et al. (2010), we can obtain thatN[ ](ε, E11, ‖.‖Hr ) . (δ/ε)pkn , N[ ](ε, E12, ‖.‖) .
(δ/ε)(p2+p3), similarly, we could derive that N[ ](ε, E31, ‖.‖Hr ) . (δ/ε)pkn , N[ ](ε, E32, ‖.‖) .

(δ/ε)(p2+p3), hence, it is easy to get thatN[ ](ε, E3, ‖.‖Hr ) . (δ/ε)2pkn , N[ ](ε, E4, ‖.‖) . (δ/ε)2(p2+p3).

By the Lemma 9.25 of Kosorok (2008) and the monotone property of N(t),Λ0(t) it’s not difficult

to get that logN[ ](ε, E1
n,δ, ‖.‖Hr ) . pkn log(δ/ε), logN[ ](ε, E2

n,δ, ‖.‖) . (p2 + p3) log(δ/ε). And

this lead to logN[ ](ε, En,δ, ρ) . [pkn +(p2 +p3)] log(δ/ε) � pkn log(δ/ε), in which � means both

sides of it have same order. Hence, the bracketing integral J[ ](δ0, En,δ, ρ) of function class En,δ
satisfies

J[ ](δ0, En,δ, ρ) =

∫ δ

0

√
1 + logN[ ](ε, En,δ, ρ)dε .

∫ δ

0

√
1 + pkn log(δ/ε)dε . p

1/2
kn
δ.

Hence, by Lemma 3.4.2 of Van der Vaart and Wellner (1996), we have

E

(
sup

ρ(ηn,ηn0)<δ

|
√
n(Ψn −Ψ)(αn, θ, γ0,Λ0)−

√
n(Ψn −Ψ)(αn0, θ0, γ0,Λ0)|

)

. J[ ](δ, En,δ, ρ)

(
1 +

J[ ](δ, En,δ, ρ)

δ2
√
n

M

)
. p

1/2
kn
δ

(
1 +

p
1/2
kn
δ

δ2
√
n
M

)
= O(p

1/2
kn
δ).

Moreover, denote J4 =: Ψn(αn, θ, γ̂, Λ̂0)−Ψn(αn, θ, γ0,Λ0)]−
√
n[Ψn(αn0, θ0, γ̂, Λ̂0)−Ψn(αn0, θ, γ0,Λ0),
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by using similar method which used to prove the result about J31, we have

E

(
sup

ρ(ηn,ηn0)<δ

∣∣√nJ4

∣∣)
= E

(
sup

ρ(ηn,ηn0)<δ

∣∣∣∣ τ√n
n∑
i=1

∫ t0

0

[εni(t)− εn0i(t)]ξi(t)e
γ̂TXi(t)dΛ̂0(t)

−
∫ t0

0

[εni(t)− εn0i(t)]ξi(t)e
γT0 Xi(t)dΛ0(t)

∣∣∣∣) = o(1).

Hence it means that the key function φn(δ) in Theorem 3.2.5 of Van der Vaart and Wellner

(1996) is given by φn(δ) = p
1/2
kn
δ, by Theorem 3.2.5 of Van der Vaart and Wellner (1996)

and let rn = (n/kn)1/2, we could get ρ(η̂n, ηn0) = (kn/n)1/2. By (12), it is easy to get that

ρ(η̂n, η0) = (kn/n)1/2 + k−rn . When kn � n1/(2r+1), ρ(η̂n, η0) = Op(n
−r/(2r+1)). This complete

the proof of Theorem 1.

For the proof of Theorem 2, we first give three lemmas needed.

Lemma 1. Assume that (A1)− (A4) and (A6)− (A9) hold, kn →∞, nk−(4r)
n → 0 as n→∞,

then

J5 =:Ms
n(ς, θ, γ̂, Λ̂0)−M∗n(α, θ, γ̂, Λ̂0) = op(n

−1/2).

By Lemma 1, it easy to see that the asymptotic distribution of θ̂ will not change if Z∗i (t)

are replaced by Z∗∗i (t) under the assumption of Theorem 2; the latter enjoy independence and

are easier to handle mathematically. In order to simplify notation, we simply prove Theorem 2

by treating Z∗i (t), i = 1, · · · , n are independent.

Lemma 2. Assume that (A1) − (A4) hold, kn → ∞, k2
n/n → 0, nk

−(4r)
n → 0 as n → ∞ and

r ≥ 1, then for all positive values εn = O(
√
kn/n),

sup
ρ(ηn,ηn0)≤εn

{I1} = op(n
− 1

2 ).

Lemma 3. Assume that (A1)− (A4) hold, then we have

A∗n −An = op(1), V ∗n − Vn = op(1) and P ∗n − Pn = op(1).

Proof of Theorem 2. Define

Ψn(ς, θ, γ̂, Λ̂0) =
1

n

n∑
i=1

∫ t0

0

{
ρτ (εni(ς, θ, t))dNi(t)− τ

[
εni(ς, θ, t)dNi(t)

−εni(ς, θ, t)ξi(t)eγ̂
TXi(t)dΛ̂0(t)

]}
,

it is easy to see that minimize Ψn(αn, θ, γ̂, Λ̂0) respect to αn, θ is equivalent to minimize

Ψn(ς, θ, γ̂, Λ̂0) respect to ς, θ because ςTX∗1i(t) + θTZ∗i (t) = αTn (t)X1i(t) + θTZi(t). Note that

Z∗(t) is orthogonal to X̃1(t) and hence also orthogonal to X∗1(t), in order to get the asymptotic
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normality of θ̂, it is sufficient to consider the estimating equation Ms
n(ς, θ, γ̂, Λ̂0) = op(n

−1/2),

in fact, it is correspond to the sub-gradient of Ψn(ς, θ, γ̂, Λ̂0) respect to θ.

By the orthogonality of Z∗(t) and X∗1(t), let I5 =: Ms(ς, θ, γ0,Λ0) −Ms(ς0, θ0, γ0,Λ0),

then for ρ(ηn, ηn0) = op(1), we also have ‖θ − θ0‖ = op(1), ‖ς − ς0‖ = op(1), then

I5 = E

{∫ t0

0

Z∗i (t)

[(
FYi|X,Fit

(ςTX∗1i(t) + θTZ∗i (t))− FYi|Xi,Fit
(ςT0 X

∗
1i(t) + θT0 Z

∗
i (t))

)
dNi(t)

]}

=
1

n

n∑
i=1

E

{∫ t0

0

Z∗i (t)

[(
fε(0|Xi(t),Fit)Z∗Ti (t)(θ − θ0)

+fε(0|Xi(t),Fit)X∗T1i (t)(ς − ς0)

)
dNi(t)

]}
+Op(ρ

2(ηn, ηn0))

=
1

n

n∑
i=1

E

{∫ t0

0

Z∗i (t)Z∗Ti (t)fε(0|Xi(t),Fit)dNi(t)
}

(θ − θ0) +Op(ρ
2(ηn, ηn0))

= An(θ − θ0) +Op(ρ
2(ηn, ηn0)).

Note that when r ≥ 1, by the convergence rate which given by Theorem 1, we have ρ2(ηn, ηn0) =

op(n
−1/2). By Lemma 2, above equation, when r > 1, we have

Ms
n(ς̂ , θ̂, γ̂, Λ̂0) = Ms

n(ς0, θ0, γ̂, Λ̂0) +Ms(ς̂ , θ̂, γ0,Λ0)−Ms(ς0, θ0, γ0,Λ0)

+Ms
n(ς̂ , θ̂, γ̂, Λ̂0)−Ms(ς̂ , θ̂, γ0,Λ0(t))−Ms

n(ς0, θ0, γ̂, Λ̂0(t))

+Ms(ς0, θ0, γ0,Λ0(t))

= Ms
n(ς0, θ0, γ̂, Λ̂0) +An(θ̂ − θ0) + op(n

−1/2),

it is easy to get that

θ − θ0 = −A−1
n Ms

n(ς0, θ0, γ̂, Λ̂0) + op(n
−1/2).

On the other hand, it easy to get that 1
n

∑n
i=1[hi(αn0, θ0) − hi(α0, θ0)] = op(n

−1/2). By (A4),

we have

Ms
n(ς0, θ0, γ̂, Λ̂0)

=
1

n

n∑
i=1

hi(αn0, θ0) + τ
1

n

n∑
i=1

∫ t0

0

[
Z∗i (t)− S̃(1)(t; γ̂)

S(0)(t; γ̂)

]
dNi(t)

=
1

n

n∑
i=1

hi(α0, θ0) + τ
1

n

n∑
i=1

∫ t0

0

{
Z∗i (t)− Z̄∗(t; γ0)

}
dMi(t)

−τPnΩ−1
n

1

n

n∑
i=1

∫ t0

0

{
Xi(t)− X̄(t; γ0)

}
dMi(t) + op(n

−1/2).

By functional central limit theorem, it is easy to get that

√
nMs

n(αn0, θ0, γ̂, Λ̂0)
D−→ N(0, V ),
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Hence, we have
√
n(θ̂ − θ0)

D−→ N(0, A−1V A−1). This completes the proof of the theorem.

For the proof of Theorem 3, we need more notation and two more lemmas.

Let ϑ̄
(1)
0 , ϑ̄

(1)
∗0 , ϑ̄

(2)
∗0 denote the true values of

ϑ̄(1) = (ϑ̄11, · · · , ϑ̄p1)T , ϑ̄(1)
∗ = (ϑ̄T1∗, · · · , ϑ̄Tp1∗)

T , ϑ̄(2)
∗ = (ϑ̄Tp1+1∗, · · · , ϑ̄Tp∗)T .

It is easy to see that ϑ̄
(2)
∗0 = 0, where 0 is a vector which element are 0 and has same dimension

with ϑ̄
(2)
∗ . Denote ε̄n0i(t) = Yi(t)− ϑ̄T0 Xi(t),

Un(u) =

n∑
i=1

∫ t0

0

{
ρτ
(
ε̄n0i(t)− uTXi(t)/

√
n/kn

)
dNi(t)− τ

(
ε̄n0i(t)− uTXi(t)/

√
n/kn

)
dM̂i(t)

}

−
n∑
i=1

∫ t0

0

{
ρτ
(
ε̄n0i(t)

)
dNi(t)− τ

(
ε̄n0i(t)

)
dM̂i(t)

}
.

Lemma 4. Assume that (A3)(Ã5), (A6)− (A9) hold, then for any fixed u, we have

Un(u) =
1

2
uT Ānu + uTGsn(ϑ0, θ0, γ̂, Λ̂0) + op(1).

Lemma 5. (Sparsity) Assume that
√
n/knλ→∞ as λ→∞, then for any ϑ̄(1), ϑ̄

(1)
∗ satisfying

‖ϑ̄(1) − ϑ̄(1)
0 ‖ = Op(

√
kn/n), ‖ϑ̄(1)

∗ − ϑ̄(1)
∗0 ‖ = Op(

√
kn/n) and any constant c̄ we have

ΨP
n

(
(ϑ̄(1)T , (ϑ̄(1)T

∗ ,0T )T , γ̂, Λ̂0

)
= min
‖ϑ̄(2)

∗ ‖≤c̄(kn/n)1/2
ΨP
n

(
(ϑ̄(1)T , (ϑ̄(1)T

∗ , ϑ̄(2)T
∗ ))T , γ̂, Λ̂0

)
.

Proof of Theorem 3. We will first prove the conclusion (b) of Theorem 3.

(I) Proof of (b): Similar to Fan and Li (2001), to prove (b), it is enough to show that for

any given δ > 0, there exist a large constant C such that

P

{
inf
‖u‖=C

ΨP
n

(
ϑ̄0 + u/

√
n/kn, γ̂, Λ̂0

)
> ΨP

n

(
ϑ̄0, γ̂, Λ̂0

)}
≥ 1− δ, (13)

which implies that with probability 1 − δ there exists a local minimum in the ball {ϑ̄T0 +

u/
√
n/kn : ‖u‖ ≤ C}, namely there exists a local minimizer such that ‖̂̄ϑ− ̂̄ϑ0‖ = Op(

√
kn/n).

It means that ρ(η̂Pn , η0) = Op((kn/n)1/2 + k−rn ), which is exactly what we want to prove.

Note that, when n is enough large, n
∑p1
j=1[pλ(‖ϑ̄j∗0 +uj∗/

√
n/kn‖)−pλ(‖ϑ̄j∗0‖)] = 0 uni-

formly in any compact set because SCAD penalty is flat when coefficient lager than aλn, λn → 0.

By Lemma 4, we have

ΨP
n

(
ϑ̄0 + u/

√
n/kn, γ̂, Λ̂0

)
−ΨP

n

(
ϑ̄0, γ̂, Λ̂0

)
= Un(u) + n

p∑
j=1

[
pλ(‖ϑ̄j∗0 + uj∗/

√
n/kn‖)− pλ(‖ϑ̄j∗0‖)

]

≥ Un(u) + n

p1∑
j=1

[
pλ(‖ϑ̄j∗0 + uj∗/

√
n/kn‖)− pλ(‖ϑ̄j∗0‖)

]
=

1

2
uT Ānu + uTGsn(ϑ0, θ0, γ̂, Λ̂0) + op(1).
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By Convexity Lemma(Lemma 2 of Wu and Liu (2009)), this equation hold uniformly on any

compact set. It’s easy to see that, when C is sufficiently large, ΨP
n

(
ϑ̄T0 + u/

√
n/kn, γ̂, Λ̂0

)
−

ΨP
n

(
ϑ̄T0 , γ̂, Λ̂0

)
is dominated by the quadratic term on the right hand side of above equation.

By condition (Ã5), (13) holds. The proof of (b) is completed.

(II) Proof of (a): Similar to Fan and Li (2001), by Lemma 5, (a) holds.

(III) Proof of (c): By (a), it means that ̂̄ϑj∗ = 0, j = 1, · · · , p1. Therefore, with probability

approaching 1, we have

ΨP
n

(̂̄ϑ, γ̂, Λ̂0

)
= ΨP

n

(
(̂ϑ̄

(1)T

, (̂̄ϑ(1)T

∗ ,0T )T , γ̂, Λ̂0

)
= nΨn(α̂Pn , θ̂

P , γ̂, Λ̂0) + n

p1∑
j=1

pλ(‖̂̄ϑj∗‖) .
Note that the penalty term doesn’t depend on θ̂P . Hence the asymptotic normality of θ̂P

is determined by Ψn(α̂Pn , θ̂
P , γ̂, Λ̂0). Similar to the proof of Theorem 2, we could obtain the

conclusion and this complete the proof of Theorem 3.

Appendix II: Proof of Weak Convergence of L(u, x1, z).

Define I4 = Ln(αn, θ)− L(αn, θ)− Ln(αn0, θ0) + L(αn0, θ0),

li(αn, θ) =

∫ u

0

I(Xi1 ≤ x1, Zi ≤ z)[I(εni(t) ≤ 0)− τ ] dNi(t), Ln(αn, θ) =
1

n

n∑
i=1

li(αn, θ),

L(αn, θ) = ELn(αn, θ), S̈
(1)(t; γ) =

1

n

n∑
j=1

ξi(t)I(Xj1 ≤ x1, Zj ≤ z) exp(γTXj(t)),

S̈(2)(t; γ) =
1

n

n∑
j=1

ξi(t)I(Xj1 ≤ x1, Zj ≤ z)Xj(t) exp(γTXj(t)),

si(αn0, θ) =

∫ t0

0

Xi1(t)[I(εni(t) ≤ 0)− τ ] dNi(t), Ṡ
(1)(t; γ) =

1

n

n∑
j=1

ξi(t)Xj1(t) exp(γTXj(t)),

Ṡ(2)(t; γ) =
1

n

n∑
j=1

ξi(t)Xj1(t)XT
j (t) exp(γTXj(t)),

and

P̈n =
1

n

n∑
i=1

{∫ t0

0

[
ṡ(2)(t; γ0)

s(0)(t; γ0)
− ṡ(1)(t; γ0)s(1)(t; γ0)

(s(0)(t; γ0))2

]
dNi(t)

}
,

P̃n =
1

n

n∑
i=1

{∫ t0

0

[
s̈(2)(t; γ0)

s(0)(t; γ0)
− s̈(1)(t; γ0)s(1)(t; γ0)

(s(0)(t; γ0))2

]
dNi(t)

}
,

Bn1 =
1

n

n∑
i=1

E

{∫ t0

0

I(Xi1 ≤ x1, Zi ≤ z)XT
1i(t)fεi(0|Xi(t),Fit)dNi(t)

}
,

Bn2 =
1

n

n∑
i=1

E

{∫ t0

0

I(Xi1 ≤ x1, Zi ≤ z)ZTi (t)fεi(0|Xi(t),Fit)dNi(t)
}
,

Bn3 =
1

n

n∑
i=1

E

{∫ t0

0

X⊗2
1i (t)fεi(0|Xi(t),Fit)dNi(t)

}
,
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where ṡ(k)(t; γ), s̈(k)(t; γ) are the limits of S̈(k)(t; γ) and S̈(k)(t; γ) respectively, for k = 1, 2. We

also need the following lemma.

Lemma 6. Assume that (A1) − (A4) hold, kn → ∞, k2
n/n → 0, nk

−(4r)
n → 0 as n → ∞ and

r ≥ 1, then for all positive values εn = O(
√
kn/n),

sup
ρ(ηn,ηn0)≤εn

{I4} = op(n
− 1

2 ).

Proof of weak convergence of L(u, x1, Z). By some calculation, Lemma 6 and Taylor

expansion, we have

Lτ (u, x1, z)

=
1√
n

n∑
i=1

∫ u

0

{
I(Xi1 ≤ x1, Zi ≤ z)[I(ε̂ni(t) ≤ 0)− τ ] + τ

[
I(Xi1 ≤ x1, Zi ≤ z)−

S̈(1)(t; γ̂)

S(0)(t; γ̂)

]}
dNi(t)

=
√
n[Ln(αn0, θ0) + L(αn, θ)− L(αn0, θ0)] + τ

1√
n

n∑
i=1

∫ u

0

[
I(Xi1 ≤ x1, Zi ≤ z)−

S̈(1)(t; γ̂)

S(0)(t; γ̂)

]}
dNi(t)

=
1√
n

n∑
i=1

[li(α0, θ0)−Bn1B
−1
n3 si(α0, θ0)−Bn2A

−1
n hi(α0, θ0)]

+τ
1√
n

n∑
i=1

{∫ u

0

[
I(Xi1 ≤ x1, Zi ≤ z)−

s̈(1)(t; γ0)

s(0)(t; γ0)

]
dMi(t)

−Bn1B
−1
n3

∫ t0

0

[
Xi1(t)− ṡ(1)(t; γ0)

s(0)(t; γ0)

]
dMi(t)−Bn2A

−1
n

∫ t0

0

[
Z∗i (t)− z̄∗(t; γ0)

]
dMi(t)

}
−τ(P̃n −Bn1B

−1
n3 P̈n −Bn2A

−1
n Pn)Ω−1

n
1√
n

n∑
i=1

∫ t0

0

{
Xi(t)− X̄(t; γ0)

}
dMi(t) + op(1)

=:
1√
n

n∑
i=1

L1i(u) +
1√
n

n∑
i=1

L2i(u)− 1√
n

n∑
i=1

L3i(u) + op(1).

By the functional central limit theorem, Lτ (u, x1, z) converges in finite-dimensional distribution

to a zero-mean Gaussian process. Since any function of bounded variation can be written as the

difference of two increasing functions, the first terms of L1i(u),L2i(u) and L3i(u) are tight. And

other remaining terms do not involve u. Hence, Lτ (u, x1, z) is tight and converges weakly to a

zero-mean Gaussian process which could be approximated by the zero-mean Gaussian process

L̃τ (u, x1, z).
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