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Abstract: Regression analysis of longitudinal data has been a popular topic in many

fields for long time. However, only limited research exists for the case where obser-

vation times may be informative and for quantile regression of longitudinal data. In

particular, to our knowledge, there does not exist any established method for quan-

tile regression of longitudinal data with informative observation times, the focus of

this paper. More specifically, we discuss this problem and present a semiparametric

partial linear model with time-varying coefficients. For estimation, B-splines are

used to approximate the time-varying coefficients and in addition to the estimation

approach, model checking and selection procedures are also provided. The latter

can be used to determine the covariates that indeed have time-varying effects on the

longitudinal process of interest. The proposed method can identify the underlying

true model structure and estimate the parameters simultaneously. Also we estab-

lish the convergence rate of the proposed estimators and the asymptotic normality

of the estimated time-independent regression parameters. For the assessment of the

finite sample performance of the proposed methods, an extensive simulation study

is conducted and suggests that they work well for practical situations. They are

applied to a set of longitudinal medical cost data on chronic heart failure patients

that motivated this study.

Key words and phrases: B-splines, group penalized model selection, informative

observation times, semiparametric time-varying coefficient model.

1. Introduction

Longitudinal data occur in many fields including epidemiological studies,

medical follow-up studies, and observational studies and extensive literature has

been established for their analysis (Diggle et al. (2013)). A typical feature of

longitudinal data is that study subjects are usually observed repeatedly at differ-

ent and irregular time points and for their analysis, a question that one needs to

pay attention is how these observation times are generated. A simple situation,

discussed the most in the literature, is that they can be treated as constants
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and thus one can perform some conditional analysis, see Fan and Li (2004), Fan,

Huang, and Li (2007), Fan and Wu (2008) etc. A more general situation is that

the mechanism behind the observation time may be different for different subjects

or that they depend on covariates. Among others, Lin and Ying (2001) discussed

this case and treated the observation times as realizations of some underlying

point processes, often referred to as observation processes. They modeled the

observation process by using the proportional rate model (Cook and Lawless

(2007)). In this case the longitudinal response process of interest is observed

only at the time points where the observation process jumps. We consider a

more complicated situation where the observation process may be informative,

as defined below (Sun et al. (2005); Sun, Sun, and Liu (2007)).

This paper was motivated by the analysis of medical cost data from a study

of chronic heart failure patients at the University of Virginia Health System.

The study consists of 1,475 patients, aged 60-89 years, who were first diagnosed

with heart failure and treated in 2004. For each patient, the observed information

includes the clinical visit or observation times in months, the medical cost for each

clinical visit and three baseline covariates: age, gender, and race. All patients

were followed until the end of the study, July, 2006, or their death and one main

objective of the study was to investigate the relationship between the medical

cost and the covariates. Preliminary studies indicated that the patient visiting

the hospital more often tends to pay more for each visit. Thus the observation

times contain some information about medical cost and are thus informative

about the response process of interest (Liu, Huang, and O’Quigley (2008)). It

has been shown that one can obtain biased or misleading results by ignoring

such information (Sun et al. (2005)). In addition to the informative observation

times, another common characteristic of medical cost data is that they are highly

skewed to the right.

Several approaches have been developed for regression analysis of longitudi-

nal data with informative observation times. For example, among others, Sun et

al. (2005) considered the problem and proposed a marginal model approach for

the analysis, while Sun, Sun, and Liu (2007) and Liang, Lu, and Ying (2009) de-

veloped some procedures that model the longitudinal process and the observation

process jointly through latent variables. Note that these methods and other ex-

isting approaches are based on mean regression and assume that covariate effects

are constant. Instead of mean regression, quantile regression is also often used for

the analysis of longitudinal data, and it is well-known that the latter is usually

more explicable and robust than the former when the data are skewed or con-

tain outliers. However, There is no established approach for quantile regression

analysis of longitudinal data with informative observation times.

To relax the restriction of constant covariate effects, time-varying co-

efficient models are often used (Sun, Sun, and Zhou (2013)). For example,
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Martinussen and Scheike (1999, 2000, 2001) and Sun and Wu (2005) consid-

ered some mean regression models with time-varying coefficients for the analysis

of longitudinal data, while Kim (2007) and Wang, Zhu, and Zhou (2009) gave

some time-varying coefficient models for quantile regression of longitudinal data.

On the last two references, the former employed multipolynomials spline to ap-

proximate the varying coefficient function and the latter made use of B spline

approximations. Under i.i.d sample, Kai, Li, and Zou (2011) considered the

quantile regression of varying coefficient partially linear model by using local lin-

ear approximation technique. It should be noted that all of the methods above

assume that observation times are noninformative. With the use of time-varying

coefficient models, a natural question is how to determine if a covariate has

time-varying or constant effect. To address this, in the case of mean regression,

a common method is to apply generalized likelihood ratio tests (Fan, Zhang,

and Zhang (2001)), while one can apply the rank score test for quantile regres-

sion (Kim (2007); Wei and He (2006)). Recently, the group penalized method

(Huang, Wei, and Ma (2012); Zhang, Cheng, and Liu (2011)) has attracted a lot

of attention because it can determine or select the model structure and estimate

parameters simultaneously.

We consider semiparametric quantile regression of longitudinal data in the

presence of informative observation times and time-varying coefficients or covari-

ate effects. In particular, a semiparametric partial linear time-varying coefficient

model is presented and the counting process is used to describe observation times

or processes. The framework allows the observation processes to depend on co-

variates. This has not been considered in the case of quantile regression. In

the proposed approach, we employ B-splines to approximate the time-varying

coefficients and develop some sieve-based estimating equations for estimation of

unknown parameters. Also a group penalized procedure is proposed to select the

covariates or assess the model structure, and the MM algorithm is used to deal

with the difficulties caused by the nonsmooth of the checking function in quantile

regression, as well as the penalty term.

The remainder of the paper is organized as follows. Section 2 introduces some

notation and the models to be used throughout the paper. Section 3 discusses

a sieve estimating procedure, and the asymptotic properties of the proposed es-

timators are established in Section 4. A model checking procedure is presented

in Section 4 for the assessment of the adequacy of the proposed models. In Sec-

tion 5, we consider the assessment of the nature of covariate effects or the model

structure and a group penalized-based model selection procedure is presented

with the use of the MM algorithm. In addition, the selection of interior knots

and penalty tuning parameter is discussed. Section 6 gives some results obtained
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from an extensive simulation study conducted to evaluate the finite sample per-

formance of the proposed methodology. In Section 7, we apply the methodology

to medical cost data, and some concluding remarks are given in Section 8.

2. Notation and Models

Consider a longitudinal study that consists of n independent subjects. For

subject i, let Yi(t) denote the longitudinal process of interest and suppose that

there exist a p-dimensional vector of possibly time-dependent covariates, denoted

by Xi(t), and a follow-up time Ci, i = 1, . . . , n. Suppose that Yi(t) is observed

only at time points ti1 < ti2 < · · · < timi , where mi denotes the total number of

observations on the ith subject. Let Ni(t) =
∑mi

j=1 I(tij ≤ t) = N∗
i (min(t, Ci)),

where N∗
i (t) is the underlying counting or observation process that characterizes

the observation times. We assume that the covariate history {Xi(t) : 0 ≤ t ≤ Ci}
is observed for each subject.

To describe the effects of covariates on Yi(t) as well as N∗
i (t), let Fit =

{Ni(s), 0 ≤ s < t}, the observation history up to time t for the ith subject, i =

1, . . . , n. Suppose that we can write the covariates as Xi(t) = (XT
1i(t), X

T
2i(t))

T ,

where X1i(t) represents the covariates that may have time-varying effects on Yi(t)

and X2i(t) denotes the covariates that only have time-independent effects. For a

given quantile level τ ∈ (0, 1), we assume that Yi(t) satisfies the quantile partial

linear time-varying coefficient model

Yi(t) = αT (τ, t)X1i(t) + βT (τ)X2i(t) + ϱT (τ)H(Fit) + ϵi(τ, t). (2.1)

Here α(τ, t) is a p1-dimensional vector of time-varying coefficient, β(τ) is a p2-

dimensional vector of unknown regression parameters, ϱ(τ) is a p3-dimensional

vector of regression coefficients, H is a vector of known functions of the obser-

vation process up to time t−, and ϵi(τ, t) is random error whose τth quantile is

zero. The error term ϵi(τ, t) may be time-dependent. For simplicity, we suppress

the τ in α(τ, t), β(τ), ϱ(τ) and ϵi(τ, t) below.

The model at (2.1) has the longitudinal response process depending on the

covariates, and the history of the observation process. Similar models have been

used in Sun et al. (2005) among others. With respect to the function vector H

in (2.1), there are several possible choices. A simple and natural one is H(Fit) =

Ni(t−), which means that Fit affects the conditional quantile of the response

variable through the total number of observations. Another choice is H(Fit) =

(Ni(t−) − Ni(t − u)), that the number of the observations in the past u time

units contains relevant information about the response variable. In general, the

selection of H should be based on the problem of interest and the prior knowledge

about the possible relationship between the response process and the observation

process.
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For the observation process, we assume that N∗
i (t) is a nonhomogeneous

Poisson process satisfying the proportional rate model

E{ dN∗
i (t)|Xi(t) } = eγ

TXi(t) dΛ0(t) (2.2)

(Cook and Lawless (2007)), i = 1, . . . , n. Here γ is a vector of unknown regression

parameters and Λ0(t) is the unspecified baseline cumulative mean function of

N∗
i (t). We assume the follow-up time Ci depends on covariates Xi(t) in an

arbitrary fashion, but is independent of N∗
i (t) and Yi(t), given Xi(t) and Fit, in

the sense that

E{ dN∗
i (t)|Xi(t), Ci ≥ t } = E{ dN∗

i (t)|Xi(t) },
E{Yi(t)|Xi(t),Fit, Ci ≥ t } = E{Yi(t)|Xi(t),Fit }.

For simplicity, we restrict inference to a finite time interval [0, t0].

3. Estimation Procedure

In this section, we develop the estimation procedure for models (2.1) and

(2.2). Let Zi(t) = (XT
2i(t),H

T (Fit))
T , θ = (βT , ϱT )T and ξi(t) = I(Ci ≥ t) and

first assume that γ and Λ0(t) are known. Here if γ = 0, a natural approach for

estimating α and β is to minimize

1

n

n∑
i=1

∫ t0

0
ρτ (ϵi(t)) dNi(t) (3.1)

by following the quantile regression principle of Koenker and Bassett (1978),

where ρτ (ϵ) = ϵ × (τ − I(ϵ < 0)) is the checking function. It is easy to see that

this is equivalent to solving the estimating equation

1

n

n∑
i=1

∫ t0

0

(
Xi(t)

H(Fit)

)[
I(ϵi(t) ≤ 0)− τ

]
dNi(t) = op(n

−1/2). (3.2)

Motivated this, for γ ̸= 0, we can consider the function

gi(α, θ, γ,Λ0) =

∫ t0

0

(
X1i(t)

Zi(t)

)[
I(Yi(t)− αT (t)X1i(t)− θTZi(t) ≤ 0)dNi(t)

−τξi(t)e
γTXi(t)dΛ0(t)

]
(3.3)

and thus the estimating equation

Gn(α, θ, γ,Λ0) =
1

n

n∑
i=1

gi(α, θ, γ,Λ0) = 0.
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It is easy to show that E{gi(α0, θ0, γ,Λ0)} = 0 under models (2.1) and (2.2) and

the assumptions, and thus this estimating equation is unbiased.

It is almost impossible to solve this estimating equation directly due to the

dimension of α(t). To deal with this, we propose to first approximate α(t) by

B-splines (Schumarker (1981)). For this, for given integers l, m, and r = l +m,

let

Hrj = { g(·) : |g(l)(t1)− g(l)(t2)| ≤ cj |t1 − t2|m, for any 0 ≤ t1, t2,≤ t0 },

where cj is a finite positive constant, j = 1, . . . , p1. Take Hr =
∏p1

j=1 Hrj and

assume that the parameter space B for θ = (βT , ϱT )T is a compact subset of

Rp2+p3 . We assume that α(t) = (α1(t), . . . , αp1(t))
T belongs to Hr and thus the

whole parameter space is given by Θ = Hr × B.
Let Bn(·) = {b1(·), . . . , bkn+l+1(·)}T denote a set of B-spline basis functions

of order l + 1 with knots 0 = d0 < · · · < dkn < dkn+1 = t0 and satisfying

max1≤k≤kn |dk − dk+1| = O(n−v). By assumption, the αj(t)’s are the lth dif-

ferential functions. This suggests that one can approximate the jth component

αj(t) of α(t) by

αnj(t) =

kn+l+1∑
k=1

bk(t)ϑjk = BT
n (t)ϑj .

Let A denote the parameter space of ϑj and assume that it is a bounded subset

of Rkn+l+1. Take Hn
r =

∏p1
j=1Hn

rj and Θn = Hn
r × B, where

Hn
rj = {αnj : αnj(t) = BT

n (t)ϑj , ϑj ∈ Rkn+l+1, t ∈ [0, t0] }.

It is easy to see that {Θn ∈ Θ, n = 1, 2, . . .} is a sieve for the parameter

space Θ. Let X̃1i(t) = (X1i1(t)B
T
n (t), . . . , X1ip1(t)B

T
n (t))

T ∈ Rpkn , Z̃i(t) =

(X̃T
1i(t), Z

T
i (t))

T , and ϑ = (ϑT
1 , . . . , ϑ

T
p1)

T ∈ Rpkn , where pkn = p1(kn + l + 1).

Motivated by (3.3), it is natural to consider the sieve estimating function

gsi (ϑ, θ, γ,Λ0)

=

∫ t0

0
Z̃i(t)

[
I(Yi(t)− ϑT X̃1i(t)− θTZi(t) ≤ 0)dNi(t)− τξi(t)e

γTXi(t)dΛ0(t)

]
and therefore the sieve estimating equation

Gs
n(ϑ, θ, γ,Λ0) =

1

n

n∑
i=1

gsi (ϑ, θ, γ,Λ0) = 0 (3.4)

for estimation of ϑ and θ.
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In this, it has been assumed that both γ and Λ0(t) are known, not really
true. On the other hand, they can be easily estimated. Specifically, by following
Lin et al. (2000), one can estimate γ by solving the estimating equation

n∑
i=1

∫ t0

0
{Xi(t)− X̄(t; γ)}dNi(t) = 0.

Here X̄(t; γ) = S(1)(t; γ)/S(0)(t; γ) and

S(k)(t; γ) =
1

n

n∑
j=1

ξj(t)Xj(t)
⊗k exp(γTXj(t)),

k = 0, 1, 2, where a⊗2 = aaT for any vector a. Let γ̂ denote this estimator of γ.
Then we can estimate Λ0(t) by the Nelson-Aalen type estimator

Λ̂0(t) =
n∑

i=1

∫ t

0

dNi(u)

S(0)(t; γ̂)
.

By plugging γ̂ and Λ̂0(t) into (3.4), we obtain

Gs
n(ϑ, θ, γ̂, Λ̂0) =

1

n

n∑
i=1

gsi (ϑ, θ, γ̂, Λ̂0) = 0, (3.5)

which is asymptotically unbiased.
For large n and kn, the number of knots, solving of these estimating equations

is not easy due to the high dimension. Also the derivation of the asymptotic
properties of the resulting estimators would be difficult. To simplify, take ϵni(t) =
Yi(t)−αT

n (t)X1i(t)−θTZi(t). Then, since ϑ
T X̃1i(t) = αT

n (t)X1i(t) we can rewrite
Gs

n(ϑ, θ, γ̂, Λ̂0) as

Gs
n(ϑ, θ, γ̂, Λ̂0) =

1

n

n∑
i=1

∫ t0

0
Z̃i(t)

{[
I(ϵni(t) ≤ 0)− τ

]
dNi(t) + τdM̂i(t)

}
,

where M̂i(t) = Ni(t)−
∫ t
0 ξi(s) exp(γ̂

TXi(s)) dΛ̂0(t). Motivated by (3.1) and (3.2),
we propose to consider the sieve objective function

Ψn(αn, θ, γ̂, Λ̂0) =
1

n

n∑
i=1

∫ t0

0

{
ρτ (ϵni(t))dNi(t)− τϵni(t)dM̂i(t)

}
. (3.6)

Then solving (3.5) is equivalent to minimizing the objective function (3.6).
Define the estimators of α(t) and θ as

(α̂n(t), θ̂) = arg min
(αn,θ)∈Θn

Ψn(αn, θ, γ̂, Λ̂0).

For the determination of α̂n(t) and θ̂, one can employ the existing result about
M-estimators.



1444 XUERONG CHEN, JIANGUO SUN AND LEI LIU

4. Asymptotic Properties and Model Checking

In this section, we establish the asymptotic properties of α̂n(t) and θ̂ and dis-

cuss their variance estimation. In addition, a procedure is presented for checking

the appropriateness of the proposed models.

For any α(t), α̃(t) ∈ Hr, let

∥α− α̃∥2Hr
=

p1∑
j=1

∫ t0

0
[α(t)− α̃(t)]2 dt

and ρ(η, η̃) = (∥α − α̃∥2Hr
+ ∥θ − θ̃∥2)1/2 for any η = (α, θ), η̃ = (α̃, θ̃) ∈ Θ. Let

η̂n = (α̂n(t), θ̂) and η0 = (α0(t), θ0) denote the true values of η. Also take

A∗
n =

1

n

n∑
i=1

E

{∫ t0

0
Z∗∗⊗2
i (t)fϵi(0|Xi(t),Fit)dNi(t)

}
,

V ∗
n =

1

n

n∑
i=1

E

{
h∗∗i (α0, θ0) + τ

∫ t0

0

[
Z∗∗
i (t)− z̄∗∗(t; γ0)

]
dMi(t)

−τP ∗
nΩ

−1
n

∫ t0

0

[
Xi(t)− x̄(t; γ0)

]
dMi(t)

}⊗2

,

where such involved quantities as Z∗∗
i and h∗∗i (α0, θ0) are defined in the proof

that is available online.

To establish asymptotic properties, we need some regularity conditions. Sup-

pose that γ belongs to a compact parameter space Θ̃.

(A1) For some r ≥ 1, α0(t) ∈ Hr.

(A2) Both X(t) and H(·) have bounded total variation on [0, t0].

(A3) The density functions fϵi(. |Xi(t),Fit), i = 1, . . . , n of the random errors is

uniformly bounded away from zero and infinity.

(A4) E[maxi,t∈[0,t0] ∥Z∗
i (t)∥2] < ∞.

(A5) The eigenvalues of A and V (the limits of A∗
n and V ∗

n ) are bounded away

from infinity and zero for sufficiently large n.

(A6) {Ni(·), Xi(·), ξi(·)}, i = 1, 2, . . . , n are i.i.d..

(A7) P (Ci ≥ t0) > 0, i = 1, 2, . . . , n.

(A8) Ni(t0), i = 1, 2, . . . , n are bounded by a constant.
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(A9) The following matrix is positive definite:

E

{∫ t0

0

[
Xi(t)− x̄(t; γ0)

]⊗2

ξi(t) exp(γ
T
0 Xi(t))dΛ0(t)

}
.

Condition (A1) holds if α0(·) has a bounded rth order derivative on [0, t0]

and is commonly used in the spline-based literature. Condition (A2) is common

in the literature on time-varying covariate effect models, while (A3) is a standard

assumption used in quantile regression. Condition (A5) is needed to ensure that

the asymptotic covariance of θ̂ exists, and (A6)−(A9) are required for the deriva-

tion of the asymptotic normality and weak convergence of γ̂ and Λ̂0(t). Similar

conditions have been used in Lin et al. (2000) among others.

Theorem 1. If (A1)− (A3) and (A6)− (A9) hold, and kn → ∞ and kn/n → 0

as n → ∞, r ≥ 1, then ρ(η̂n, η0) = Op((kn/n)
1/2 + k−r

n ). For kn ≍ n1/(2r+1), we

have ρ(η̂n, η0) = Op(n
−r/(2r+1)).

Theorem 2. If (A1)−(A9) hold, and kn → ∞, k2n/n → 0, nk−4r
n → 0 as n → ∞,

r ≥ 1, then
√
n(θ̂ − θ0)

D−→ N(0,Σ), where Σ = A−1V A−1.

The proofs of these theorems are sketched in the supplementary material.

Theorem 1 tells us that α̂n(t) is consistent, and can achieve the optimal con-

vergence rate in the usual nonparametric regression setting (Stone (1980)). To

use the results, we need to estimate the covariance matrix Σ and, for this, we

propose a bootstrap procedure.

Let B denote an integer and select B random samples each of size n with

replacement from (Yi(t), X1i(t), Zi(t), Ci), i = 1, 2, . . . , n. Let the j-th boot-

strapped sample be (Y
(j)
i (t), X

(j)
1i (t), Z

(j)
i (t), C

(j)
i ), i = 1, 2, . . . , n, j = 1, 2, . . . , B,

and with corresponding observation time points t
(j)
i1 < t

(j)
i2 < · · · < t

(j)

im
(j)
i

. Then

N
(j)
i (t) =

∑m
(j)
i

k=1 I(t
(j)
ik ≤ t). Let (α̂

(j)
n (t), θ̂(j)) be the minimizer of the boot-

strapped objective function

1

n

n∑
i=1

∫ t0

0

{
ρτ (ϵ

(j)
ni (t))dN

(j)
i (t)− τϵ

(j)
ni (t)dM̂

(j)
i (t)

}
.

Here, ϵ
(j)
ni (t) and M̂

(j)
i (t) are defined as ϵni(t) and M̂i(t), but based on the j-th

bootstrapped sample and the resulting estimators γ̂(j) and Λ̂
(j)
0 (t). Then one

can use the empirical variance of {α̂(1)
n (t), θ̂(1), . . . , α̂

(B)
n (t), θ̂(B)} to estimate the

asymptotic variance of α̂n(t) and θ̂. By Cheng and Huang (2010), the resulting

estimators are consistent and thus can be used to make inference on α(t) and θ.
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For this method, the question of the adequacy of models (2.1) and (2.2)

arises. For model (2.2), one can directly employ the approach given in Lin et al.

(2000). To check model (2.1), similar to Chen, Wei, and Parzen (2004) and Sun

et al. (2012), we propose to consider the cumulative sums of residuals

Lτ (u, x1, z) =
1√
n

n∑
i=1

∫ u

0
I(Xi1 ≤ x1, Zi ≤ z)

[
I(ϵ̂ni(t) ≤ 0) dNi(t)

−τξi(t)e
γ̂TXi(t)dΛ̂0(t)

]
,

where ϵ̂ni(t) = Yi(t)− α̂T
n (t)X1i(t) − θ̂TZi(t), and the event I(Xi1 ≤ x1, Zi ≤ z)

means that each component of X1i and Zi is no larger than the corresponding

component of x1 and z. We show in Appendix II of the supplementary material

that the null distribution of Lτ (u, x1, z) can be approximated by a zero-mean

Gaussian process

L̃τ (u, x1, z) =
1√
n

n∑
i=1

L̂1i(u) +
1√
n

n∑
i=1

L̂2i(u)−
1√
n

n∑
i=1

L̂3i(u),

where L̂ki, k = 1, 2, 3, are obtained by replacing the unknown quantities in Lki,

defined in technical proof supplementary material, with their estimators.

It is difficult to estimate the null distribution analytically. To handle this

problem, using a resampling approach similar to that used in Cheng, Wei, and

Ying (1997) and Sun et al. (2012) one can approximate the null distribution of

Lτ (u, x1, z) by the conditional distribution of L̂τ (u, x1, z), where

L̂τ (u, x1, z) =
1√
n

n∑
i=1

L̂1i(u)Ui +
1√
n

n∑
i=1

L̂2i(u)Ui −
1√
n

n∑
i=1

L̂3i(u)Ui

with the Ui’s being a random sample from the standard normal distribution.

In reality, one can obtain a large number of realizations from L̂τ (u, x1, z) by

repeatedly generating (U1, . . . , Un) while fixing the observation data. An unusual

pattern of Lτ (u, x1, z) comparied to L̂τ (u, x1, z) would suggest a lack-of-fit of

model (2.1). Since Lτ (t, x1, z) is expected to fluctuate randomly around 0 under

model (2.1), a formal lack-of-fit test could also be constructed based on the

supremum statistic sup0≤u≤t0,x1,z |Lτ (u, x1, z)|. The p-value of this test can be

obtained by comparing the observed value of sup0≤u≤t0,x1,z |Lτ (u, x1, z)| to a large
number of realizations of L̂τ (u, x1, z).

5. Model Selection Procedure

In practice, one may not know which of the covariates of interest have time-

varying or time-independent effects. To address this, we present a selection
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procedure developed based on the group smoothly clipped absolute deviation

(SCAD) penalized method (Fan and Li (2001)). Let pλ(b) denote the SCAD

penalty function for b > 0, with

p′λ(b) = λ

{
I(b ≤ λ) +

(aλ− ∥ϑ̄j∗∥)+
(a− 1)λ

I(b > λ)

}
,

where a > 2 and λ > 0 are tuning parameters. This penalty function is symmetric

around the origin.

We first assume that both Xi(t) and H(Fit) in model (2.1) have time-varying

effects and in this case, model (2.1) has the form

Yi(t) = αT (t)X1i(t) + βT (t)X2i(t) + ϱT (t)H(Fit) + ϵi(t). (5.1)

Let B̄n(·) = ABn(·) = {1, B̄2n(·)} = {1, b̄2(·), . . . , b̄kn+l+1(·)}T . As before, we

approximate αj(t), βj(t), and ϱj(t) by

αj(t) ≈ ϑ̄j1 +

kn+l+1∑
k=2

b̄k(t)ϑ̄jk = ϑ̄j1 + B̄T
2n(t)ϑ̄j∗ = B̄T

n (t)ϑ̄j , j = 1, . . . , p1,

βj(t) ≈ ϑ̄j1 + B̄T
2n(t)ϑ̄j∗ = B̄T

n (t)ϑ̄j , j = p1 + 1, . . . , p2,

ϱj(t) ≈ ϑ̄j1 + B̄T
2n(t)ϑ̄j∗ = B̄T

n (t)ϑ̄j , j = p2 + 1, . . . , p3,

respectively, where ϑ̄j∗ ∈ Rkn+l and ϑ̄j = (ϑ̄j1, ϑ̄
T
j∗)

T . Here { ϑ̄j1, j = 1, . . . , p =

p1 + p2 + p3 } correspond to the constant part of the coefficients, while { ϑ̄j∗, j =

1, . . . , p } correspond to the time-varying part.

Let ϑ̄ = (ϑ̄T
1 , . . . , ϑ̄

T
p )

T and Xi(t) = [X1i1(t)B̄
T
n (t), . . . , X1ip1(t)B̄

T
n (t),

X2i1(t)B̄
T
n (t), . . . , X2ip2(t)B̄

T
n (t),H1(Fit)B̄

T
n (t), . . . , Hp3(Fit)B̄

T
n (t)]

T . For j =

1, . . . , p, if ∥ϑ̄j∗∥ = (ϑ̄T
j∗ϑ̄j∗)

1/2 = 0, the jth covariate only has constant or

time-independent effect, otherwise, it has time-varying effect. Let ϵ̄ni(t) =

Yi(t)− ϑ̄TXi(t). We consider the penalized loss function

ΨP
n (ϑ̄, γ̂, Λ̂0) =

n∑
i=1

∫ t0

0

{
ρτ (ϵ̄ni(t))dNi(t)− τ ϵ̄ni(t)dM̂i(t)

}
+ n

p∑
j=1

pλ(∥ϑ̄j∗∥).

(5.2)

Without loss of generality, assume that α0(t) is the vector of the time-varying

coefficients and θ0(t) = (β0(t)
T , ϱ0(t)

T )T = (βT
0 , ϱ

T
0 )

T = θ0, the vector of constant

coefficients. Let the ̂̄ϑj ’s denote the values of the ϑ̄j ’s that minimize the loss

function. Then αj(t) and θ can be estimated by α̂P
nj(t) = B̄T

n (t)
̂̄ϑj and θ̂P =

(̂̄ϑ(p1+1)1, . . . ,
̂̄ϑp21,

̂̄ϑ(p2+1)1, . . . ,
̂̄ϑp1)

T , respectively.

To establish the asymptotic properties of α̂P
n (t) and θ̂P , let η̂Pn = (α̂P

n (t), θ̂
P )

and take
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An =
1

n

n∑
i=1

E

{∫ t0

0
Xi(t)X T

i (t)fϵ(0|Xi(t),Fit)dNi(t)

}
.

We need a condition, to ensure that the asymptotic variance of θ̂P exists.

(Ã5) The eigenvalues of A, Ā and V are bounded away from infinity and zero for

sufficiently large n.

Theorem 3. Assume the conditions (A1)− (A4), (Ã5) and (A6)− (A9) hold. If

kn → ∞, k2n/n → 0, nk−4r
n → 0, λ = λn → 0, and λn/((kn/n)

1/2 + k−r
n ) → ∞ as

n → ∞, r ≥ 1, then

(a) θ̂P is a constant vector with probability approaching 1;

(b) ρ(η̂Pn , η0) = Op((kn/n)
1/2 + k−r

n );

(c)
√
n(θ̂P − θ0)

D−→ N(0,Σ), where Σ is as in Theorem 2.

The proof is sketched in the supplementary material. The objective function

at (10) has three terms inside the summation and its minimization not straight-

forward in general. We suggest an iterative method that replaces two terms by

smoother surrogate functions. After its kth iteration, let ϑ̄k denote the minimizer

obtained from the kth step objective function, and ε1 and ε2 be the perturbation

constants defined in the MM algorithms of quantile regression (Hunter and Lange

(2000)) and variable selection (Hunter and Li (2005)), respectively. Take

Qε(ϑ̄|ϑ̄k) =
n∑

i=1

∫ t0

0
ζετ (ϵ̄ni(t)|ϵ̄kni(t))dNi(t), ζ

ε
τ (ϵ̄n|ϵ̄kn) =

1

4

[ (ϵ̄n)
2

ε+ |ϵ̄kn|
+(4τ−2)ϵ̄n+c

]
and for a scaler b,

Φε2(b|bk) = pλ,ε2(|bk|) +
(b2 − bk2)p′λ(|b|+)

2(ε2 + |bk|)
,

pλ,ε2(|bk|) = pλ(|bk|)− ε2

∫ |bk|

0

p′λ(t)

ε2 + t
dt.

At the (k + 1)th iteration, we consider the surrogate objective function

Ψ̃(k+1),P
n (ϑ̄, γ̂, Λ̂0|ϑ̄k)

= Qε1(ϑ̄|ϑ̄k)− 1

n

n∑
i=1

∫ t0

0
τ ϵ̄ni(t)dM̂i(t) +

p∑
j=1

Φε2

(
∥ϑ̄j∗∥

∣∣ ∥ϑ̄k
j∗∥

)
. (5.3)

This function is smooth and can be minimized by using Newton’s method. This,

one can obtain the penalized estimator and select the model structure at the

same time.
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To implement this procedure, one needs to choose the number of interior

knots kn and the tuning parameter λ. We suggest two-step procedure based on

the BIC. For fixed kn, we take λkn to be the minimizer of

BIC1(λ) = log

( n∑
i=1

∫ t0

0

{
ρτ (̂ϵ̄ni(t, kn))dNi(t)− τ̂̄ϵni(t, kn)dM̂i(t)

})
+
log(n/kn)

(n/kn)
Vλ +

log n

n
Cλ.

Here, ̂̄ϵni(t, kn) = Yi(t) − ̂̄ϑT
(kn)Xi(t), with ̂̄ϑ(kn) denoting the minimizer of

(10) based on given kn, while Vλ and Cλ are, respectively, the numbers of time-

varying coefficients and constant coefficient selected by minimizing the penalized

loss function with tuning parameter λ. Once λkn is obtained, we choose kn as

the minimizer of

BIC2(k) = log

( n∑
i=1

∫ t0

0

{
ρτ (̂ϵ̄ni(t, λk))dNi(t)− τ̂̄ϵni(t, λk)dM̂i(t)

})
+
log n

n
{Vλk

(k + l + 1) + Cλk
}.

Here ̂̄ϵni(t, λk) = Yi(t)− ̂̄ϑT
(λk)Xi(t) with

̂̄ϑ(λk) denoting the penalized quantile

regression estimator obtained by minimizing penalized objective function (5.2)

with the tuning parameter λkn , and Vλ and Cλ are as above corresponding to

λkn . For the tuning parameter a, we use a = 3.7 following the suggestion of Fan

and Li (2001).

6. A Simulation Study

In this section we present some results obtained from a simulation study

conducted to evaluate the finite sample performance of the proposed procedures.

We took the model

Yi(t) = α1(t) + α2(t)Xi1 + β1Xi2 + β2Xi3 + ϱNi(t−) + (1 + σXi1)ϵi(t)

for the longitudinal response of interest, i = 1, 2, . . . , n. We took α1(t) = sin(2t)+

1, α2(t) = t2 − t+ 1, β1 = −1, β2 = 1, and ϱ = 1.5, and generated Xi1, Xi2, and

Xi3 from the standard normal distribution, the uniform distribution over interval

(0,1), and the Bernoulli distribution with success probability 0.5, respectively.

Then, the τth conditional quantile of Yi(t) is

Qτ (Yi(t)|Xi, Ni(t−)) = α1(τ, t)+α2(τ, t)Xi1+β1(τ)Xi2+β2(τ)Xi3+ϱ(τ)Ni(t−),
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Figure 1. (Case I) The estimated coefficient functions for three quantiles:
τ=0.25 (red dotted curve), τ=0.50 (blue dashed dotted curve) and τ=0.75
(green dashed curve). The black solid curve represents the true curve. The
blue dash curves are 95% point-wise confidence bands.

Figure 2. (Case II) The estimated coefficient functions for three quantiles:
τ=0.25 (red dotted curve), τ=0.50 (blue dashed dotted curve) and τ=0.75
(green dashed curve). The black solid curve represents the true curve. The
blue dash curves are 95% point-wise confidence bands.
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Table 1. Estimation results on time-independent effects.

τ = 0.25 τ = 0.5 τ = 0.75

Case β̂1 β̂2 ϱ̂ β̂1 β̂2 ϱ̂ β̂1 β̂2 ϱ̂

I

Bias -0.0028 0.0285 0.0103 0.0253 0.0220 0.0126 0.0248 0.0370 0.0169
SD 0.5317 0.2902 0.0661 0.4760 0.2691 0.0606 0.5207 0.2916 0.0724
SE 0.5229 0.3019 0.0623 0.4846 0.2802 0.0611 0.4992 0.2958 0.0670
CP 0.9300 0.9580 0.9300 0.9420 0.9520 0.9380 0.9360 0.9340 0.9260

II

Bias 0.0007 0.0121 0.0050 0.0150 0.0120 0.0078 0.0104 0.0267 0.0100
SD 0.2480 0.1315 0.0368 0.2202 0.1221 0.0340 0.2493 0.1395 0.0408
SE 0.2689 0.1538 0.0356 0.2468 0.1407 0.0347 0.2608 0.1520 0.0388
CP 0.9580 0.9700 0.9440 0.9760 0.9660 0.9380 0.9640 0.9620 0.9360

Table 2. The frequency table for the selection of time-varying coefficients.

Case I Case II
n kn τ α1 α2 β1 β2 ϱ α1 α2 β1 β2 ϱ

50

0.25 500 500 0 0 135 500 500 0 0 101
2 0.5 500 500 0 0 120 500 500 0 0 122

0.75 500 500 0 3 103 500 500 0 0 95
0.25 500 500 0 3 139 500 500 0 0 113

4 0.5 500 500 1 2 119 500 500 0 0 124
0.75 500 500 0 11 109 500 500 0 2 91

100

0.25 500 500 0 0 13 500 500 0 0 4
2 0.5 500 500 0 0 10 500 500 0 0 7

0.75 500 500 0 3 20 500 500 0 0 9
0.25 500 500 0 0 18 500 500 0 0 5

4 0.5 500 500 0 0 21 500 500 0 0 11
0.75 500 500 0 0 21 500 500 0 0 13

where α1(τ, t) = α1(t) +Q(τ), α2(τ, t) = α2(t) + σQ(τ), β1(τ) = β1, β2(τ) = β2,

and ϱ(τ) = ϱ, and Q(τ) denotes the τth quantile of ϵi.

For the random error terms ϵi’s, we considered Cases I and II. In Case I,

they were the standard normal distribution with setting σ = 0, in Case II, we

took σ = 1 and generated them from N(0, 0.25). With respect to the observation

process, model (2.2) was set to have the form

E{ dN∗
i (t)|Xi } = λ0(t) e

γ1Xi1+γ2Xi2+γ3Xi3 dt

over the interval [0, π] with γ1 = 0.5, γ2 = −0.25, γ3 = 1, and λ0(t) = 2t. For the

follow-up time, we took Ci = π ≈ 3.14 and used 500 resamples for the variance

estimation. The results given are based on 500 replication.

Table 1 presents the results obtained based on the simulated data on estima-

tion of three constant regression coefficients with n = 100, for both random error

cases, and at the 0.25th, 0.5th, and 0.75th quantiles, respectively. Our focus
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Table 3. IMSE and MSE of penalized estimators and oracle estimators for Case I.

Penalized estimator Oracle estimator

n τ α1 α2 β̂1 β̂2 ϱ̂ α1 α2 β̂1 β̂2 ϱ̂
kn = 2

50
0.25 0.4078 0.4250 0.5358 0.1703 0.0453 0.3994 0.4229 0.5367 0.1704 0.0070
0.5 0.2800 0.4327 0.4321 0.1430 0.0562 0.2726 0.4239 0.4302 0.1416 0.0062
0.75 0.3694 0.8284 0.4372 0.1632 0.2058 0.3672 0.8204 0.4378 0.1618 0.0081

100
0.25 0.1404 0.2164 0.2021 0.0712 0.0064 0.1395 0.2160 0.2027 0.0714 0.0038
0.5 0.1319 0.2077 0.1889 0.0663 0.0053 0.1316 0.2078 0.1883 0.0663 0.0038
0.75 0.1583 0.3305 0.2272 0.0762 0.0100 0.1581 0.3294 0.2272 0.0763 0.0053

kn = 4

50
0.25 0.4330 0.6023 0.5154 0.1651 0.1404 0.4184 0.5905 0.5173 0.1616 0.0069
0.5 0.3236 0.6896 0.4291 0.1409 0.1752 0.3107 0.6780 0.4268 0.1399 0.0063
0.75 0.7519 2.0085 0.4268 0.1858 1.3341 0.5770 1.6219 0.4198 0.1592 0.0086

100
0.25 0.1516 0.2456 0.2004 0.0696 0.0068 0.1504 0.2442 0.2012 0.0693 0.0037
0.5 0.1449 0.2498 0.1902 0.0656 0.0155 0.1440 0.2509 0.1898 0.0655 0.0037
0.75 0.1817 0.4669 0.2261 0.0766 0.0223 0.1810 0.4650 0.2270 0.0765 0.0052

Table 4. IMSE and MSE of penalized estimators and oracle estimators for Case II.

Penalized estimator Oracle estimator

n τ α1 α2 β̂1 β̂2 ϱ̂ α1 α2 β̂1 β̂2 ϱ̂
kn = 2

50
0.25 0.0864 0.4506 0.1464 0.0421 0.0103 0.0846 0.4485 0.1481 0.0424 0.0023
0.5 0.0708 0.1443 0.1025 0.0342 0.0158 0.0692 0.1472 0.1022 0.0345 0.0021
0.75 0.1168 0.6097 0.1185 0.0429 0.0245 0.1035 0.5995 0.1177 0.0425 0.0029

100
0.25 0.0355 0.4191 0.0500 0.0160 0.0013 0.0355 0.4181 0.0502 0.0161 0.0011
0.5 0.0316 0.0666 0.0418 0.0142 0.0013 0.0315 0.0675 0.0419 0.0141 0.0011
0.75 0.0421 0.4628 0.0550 0.0175 0.0027 0.0416 0.4622 0.0548 0.0176 0.0017

kn = 4

50
0.25 0.0951 0.5317 0.1436 0.0413 0.0308 0.0913 0.5285 0.1434 0.0411 0.0023
0.5 0.0835 0.2037 0.1017 0.0345 0.0554 0.0792 0.1994 0.1016 0.0343 0.0022
0.75 0.2223 0.9308 0.1174 0.0428 1.1055 0.2071 0.9236 0.1177 0.0425 0.0031

100
0.25 0.0380 0.4491 0.0486 0.0156 0.0016 0.0380 0.4498 0.0487 0.0156 0.0011
0.5 0.0346 0.0712 0.0425 0.0138 0.0021 0.0344 0.0717 0.0425 0.0138 0.0011
0.75 0.0486 0.4767 0.0544 0.0172 0.0056 0.0482 0.4760 0.0546 0.0172 0.0017

here is to evaluate the performance of the proposed estimation procedure and

for this, we assumed that the true model structure is known. Here we used the

cubic B-spline and the number of knots was kn = 4, the largest integer smaller

than n1/3 with n = 100. In addition, the 0.2th, 0.4th, 0.6th and 0.8th quantiles

of the observation times were used as the knots. The results in the table include

the averages of the estimated biases, the sample standard deviations of the es-

timates (SD), the averages of the estimated standard errors (SE), and the 95%
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empirical coverage probabilities (CP). The corresponding estimated time-varying

coefficients for Cases I and II are given in Figures 1 and 2, respectively, along

with their 95% point-wise confidence bands.

In each part of Figures 1 and 2, there are three curves or estimates given by

α1(t) = α̂1(τ, t) − Q(τ) or α2(t) = α̂2(τ, t) − σQ(τ) for three different τ values.

Thus, three estimates of the same function rather than estimates of three different

functions α̂1(τ, t) or α̂2(τ, t). These results indicate that the proposed estimation

procedure appear to work reasonably well. This is especially the case for the

time-independent regression parameters as the estimators seem to be unbiased

and the variance estimation is close to the sample variance. Table 1 also suggests

that the covariate effects at the median can be more readily estimated than those

at the 0.25th and 0.75th quantiles.

We considered the performance of the model selection procedure given in

Section 5. For this, we assumed that the true model structure is unknown and

considered two criteria: the number of times a coefficient is selected to be time-

varying, and the integrated mean squared error (IMSE) for the penalized es-

timators of time-varying coefficients or the mean squared error (MSE) for the

penalized estimators of constant coefficients. The IMSE of α̂nj(t) is taken as

IMSE{α̂nj(t)} =
1

100

100∑
k=1

{ α̂nj(tk)− αj(tk) }2,

where t1 < · · · < t100 are equally spaced time points over [0, 3.14], j = 1, 2.

Table 2 gives the frequencies that each of the five coefficients was selected to

be time-varying, the results on the IMSE or MSE are in Tables 3 and 4. Here we

considered both random error cases with n = 50 and 100. To save the computer

burden, we took kn = 2 or 4 and given kn, the parameter λ was selected by using

the BIC criterion given in Section 5. We tried several other values for kn and

obtained similar results. In Tables 3 and 4, for comparison, we calculated the

IMSE or MSE for the estimators given by the estimation procedure proposed in

Section 3 assuming that the true model structure is known, referred to as the

oracle estimator. One can see from Table 2 that the selection is almost always

correct for the first four parameters even with n = 50 and the selection for the

last parameter dramatically improved from n = 50 to n = 100.

With respect to the IMSE and MSE, they decrease as the sample size in-

creases, as expected, and grow closer.

7. An Application

We applied the proposed methodology to the monthly medical cost data

discussed earlier. The study involved 1,475 patients whose age were 60 years or
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Table 5. Estimation of time-independent effects for medical cost data.

τ = 0.25 τ = 0.5
age gender race age gender race

Estimate -0.3474 0.1424 -0.3228 -0.5272 0.2382 -0.4220
SE 0.0089 0.1106 0.1354 0.0098 0.1336 0.1560

τ = 0.75 observation process
age gender race age gender race

Estimate -1.5100 0.1696 -1.3145 -0.0030 0.0411 0.0072
SE 0.0228 0.3483 0.6047 0.0026 0.0408 0.0445

above and who had the first diagnosed heart failure in 2004. For each patient, the

observed information includes clinical visit or observation time point (in months)

and the corresponding monthly medical cost as well as the baseline covariates

of gender, race, and age. The follow-up time was either July 31, 2006, the end

of the study, or their death. The median of the medical cost was $350, while

the mean was $2670. Cost was highly skewed to the right. As discussed earlier,

it appears that the observation process contains relevant information about the

cost (Liu, Huang, and O’Quigley (2008); Sun et al. (2012)). The main objective

here is to estimate the trajectory of the medial cost and its relationship with the

three baseline covariates.

Let Yi(t) denote the cubic root of the medical cost at month t for patient i,

i = 1, . . ., 1,475. We used the cubic root is used here to avoid large response values

but still keep the skewness of the data. For patient i, let X0i = 1 for the intercept

term, X1i be centered age, X2i = 1 if the patient is male and 0 otherwise, and

X3i = 1 if the patient is white and 0 otherwise. We assume that Yi(t) can be

described by model (2.1) with H(Fit) = Ni(t−). Thus, medical cost depends

on the observation process through the total number of the medical visits. In

the analysis, we assumed that all coefficients in model (2.1) are time-varying

coefficients and applied the model selection procedure of Section 6 with kn and

the penalized tuning parameter λ selected by the BIC procedures. This means

the terms corresponding to the intercept X0i and the observation process Ni(t−)

with time-varying effects, while the three baseline covariates have constant effects.

Table 5 presents the estimates of three constant coefficients; the results indi-

cate that two of the three baseline covariates, age and race, had significant effects

on the monthly medical cost. In particular, the cost tends to get smaller as the

patient gets older, which may be because their treatments are less aggressive.

The difference between genders is not significant. The three covariates did not

have significant effects on the observation process.

Figure 3 gives the estimates of the two time-varying coefficients at the quan-

tiles τ = 0.25, 0.5, and 0.75 and their 95% point-wise confidence bands, the three

estimates have similar shapes for the effects corresponding to the intercept and
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Figure 3. The estimated coefficient functions (solid curves) and their 95%
point-wise confidence bands(dash curves) for the medical cost data and at
three quantiles: τ=0.25 , τ=0.5 and τ=0.75.

the observation process. Parts (a), (c) and (e) of the figure indicate that given

other factors, medical cost starts high, and then decreases, staying stable after

about 15 months. This is to be expected. From the observation process point

of view, parts (b), (d) and (f) of the figure tell us that the relationship between

medical cost and the process is complicated at the beginning and, as expected,

higher numbers of visits means higher costs. After about 5 to 15 months, the
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effect of the number of medical visits seems to decrease to nonsignificance.

To check the adequacy of model (2.1) for the problem here, we applied

the model checking procedure described in Section 5 and obtained the supre-

mum test statistic sup0≤u≤t0,x1,z |Lτ (u, x1, z)| = 11.4651, 20.2721, 28.7268 at τ =

0.25, 0.5, 0.75, respectively. These correspond to p-values of 0.4103, 0.4906 and

0.4472 and indicate that the model (2.1) fits the data well.

8. Concluding Remarks

The key difference between the estimation procedure given in Section 3 and

the model selection procedure of Section 5 is the use of the SCAD penalty function

in the latter. In practice, if the covariates with time-varying effects are known,

one can directly apply the estimation procedure, otherwise, one may want to

employ the model selection procedure first. One could apply such other penalty

functions as the LASSO (Tibshirani (1996, 1997)) or SELO (Dicker, Huang, and

Lin (2012)) and develop the corresponding model selection procedure.

Model (2.1) is a conditional model with respect to the observation process;

alternatively one could model the longitudinal process Yi(t) and the observation

process N∗
i (t) jointly through the use of some latent variables or processes (Sun,

Sun, and Zhou (2013)). For the observation process model (2.2), it was supposed

that covariates have only constant effects. One might also allow some covariates

to have time-varying effects and it is apparent that, in this case, a different

method is needed for estimation of the model.

In model (2.1), we have assumed that the effect of observation processes is

time-independent. For this situation, as pointed out by a reviewer, a question of

interest is what effect one would expect to see on estimation of other parameters

by treating ρ(t) as time-independent. We conducted a simulation study and the

numerical results suggest that the effect depends on the shape of ρ(t). In general,

it tends to reduce the variances of the estimators but increase the biases.

Another assumption is that the follow-up time Ci is independent of both Yi(t)

and N∗
i (t) given covariates. Thus we say Ci is informative about Yi(t) or N

∗
i (t)

and one possibility is that Ci is generated by a dependent terminal event such as

death. A large literature exists for the situation where Ci is informative about

Yi(t) in the context of longitudinal data analysis or about N∗
i (t) in the context

of recurrent event data analysis. A common approach then is joint modeling.

There seems to be no established method in the context of quantile regression.
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