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Supplementary Material

This supplementary appendix provides additional numerical summaries for the spa-
tial blockwise empirical likelihood (SBEL) method as well as proofs of some distributional
results from the main manuscript. In the following, Section S.1.1 contains a further table
and figure supporting the simulation studies of Section 5 of the main manuscript, while
Section S.1.2 has additional material regarding block selection for the data example given
in Section 6 of the main manuscript. Proofs remaining from the manuscript are given in
Section S.2 to follow. Section S.2.1 provides a proof of Lemma 2(d) from the appendix
of the main manuscript, used in part to establish Theorem 1 there (regarding the chi-
square limit of the log-SBEL ratio). In Section S.2.2, we establish Theorem 2 involving
distributional results for the SBEL method based maximum EL estimation. Equation
numbers (1)-(4) and (A.1)-(A.3) refer to the main manuscript, and any further equations
are then subsequently enumerated in the following, as needed. A reference section at the
end of this supplementary appendix contains citations appearing here.

S.1 Supporting Numerical Material

S.1.1 Additional Simulation Studies

Table 1 summarizes empirical coverage probabilities for additional simulation

work, as described in Section 5.1 of the main manuscript, regarding confidence

intervals for the SBEL and other interval methods. Figure 1 provides additional

empirical power curves for SBEL goodness-of-fit tests of normality, as described in

Section 5.2 of the main manuscript, for 24×24 sampling regions in the simulation

design.

S.1.2 Additional Material for Data Example

This section describes the block b selection approach used for the SBEL

method in Section 6 of the main manuscript for fitting a spatial regression model.

That is, to choose a block size b, we used the “minimal volatility” technique of

Politis, Romano and Wolf (1999, Sec. 9.3.2). While heuristic, this block selection
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Table 1: Empirical coverage of 90% intervals for the mean over spatial dependence values
r = 1/3, 3 and various methods: SBEL with chi-square calibration (ELC), SBEL with
bootstrap-based calibration (ELB), normal approximation (Nor), and block bootstrap
(Boot)

Uniform Sites Non-Uniform Sites
Method Method

Points Grid Size b ELC ELB Nor Boot ELC ELB Nor Boot

r = 3

n = 100

12× 12
2 43.4 50.3 38.0 39.5 31.6 38.4 31.7 33.6
4 57.9 70.5 47.7 47.6 40.5 48.5 31.5 32.6
6 64.8 81.3 46.8 46.8 41.0 55.0 23.0 23.5

24× 24
4 60.4 68.2 57.8 58.1 47.9 55.2 49.3 44.3
6 72.0 79.4 64.8 65.3 52.7 62.2 45.0 45.6
8 76.7 84.2 64.1 64.1 53.7 60.3 44.3 41.5

n = 900

12× 12
2 34.4 41.6 32.3 33.4 29.3 35.7 26.0 26.1
4 56.6 69.5 46.2 48.3 36.6 47.7 29.1 29.4
6 61.6 79.2 42.7 42.2 38.9 54.7 24.3 20.8

24× 24
4 54.6 66.6 52.1 52.3 43.5 54.1 41.6 42.3
6 65.3 78.5 59.1 59.5 48.8 59.6 43.2 38.9
8 71.6 84.1 62.7 61.8 50.6 59.6 39.0 42.0

r = 1
3

n = 100

12× 12
2 87.9 89.0 84.0 83.4 80.5 81.6 83.0 76.8
4 91.7 91.2 81.6 83.5 78.3 76.6 70.2 67.4
6 90.7 91.4 77.7 72.2 69.6 70.3 50.7 44.9

24× 24
4 91.2 91.8 89.7 85.8 87.5 86.0 83.8 84.0
6 92.3 92.3 84.9 85.9 87.8 85.1 81.0 78.2
8 92.8 91.0 85.9 82.8 85.3 79.6 75.0 69.7

n = 900

12× 12
2 82.9 85.0 83.4 79.6 75.3 79.8 73.2 71.4
4 89.6 91.2 80.4 83.3 74.2 74.9 65.4 60.7
6 88.6 91.5 75.6 73.1 63.5 65.2 42.8 47.6

24× 24
4 90.3 91.3 87.5 86.2 84.1 84.2 79.8 79.6
6 91.1 89.9 87.3 86.5 82.5 81.7 78.3 73.1
8 94.2 93.4 83.6 84.0 81.7 77.3 67.4 64.3
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Figure 1: Empirical power functions for SBEL goodness-of-fit tests of normality using
three sets of estimating functions and block sizes b = 4, 6, and 8 on a 24 × 24 region,
sample size n = 100, and uniform and non-uniform locations; data are marginally normal,
log-normal, t2, t20, χ2

1, and χ2
20.
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Figure 2: Lengths of 90% CIs by block size for longitude (left) and latitude (right)
regression parameters

approach is motivated by the principle that approximately correct block sizes for

inference may be characterized by confidence regions/intervals with stable behav-

ior as a function of b. By creating SBEL intervals over a range of b, an adequate

block length can be chosen by visual inspection. To illustrate, Figure 2 displays

lengths of 90% confidence intervals (CIs) for the longitude and latitude regression

parameters as a function of b, where CIs for individual parameters are found by

profiling the SBEL log-ratio statistic as with parametric likelihood. These plots

suggest a block size b of about 27 where CI lengths exhibit stability.

S.2 Supplementary Proofs

In the following, we use notation developed in the appendix of the main manuscript

and the proof of Theorem 1 there.

S.2.1 Proof of Lemma 2(d)

We need to establish that, under Assumptions A1-A4, P·|X(Rn(θ0) > 0) → 1

as n → w.p.1 (PX). Note that Rn(θ0) > 0 if 0r is interior to the convex hull

of {An(i; θ0) : i ∈ In} (cf. (A.1)), so that it suffices to show that the P·|X -

probability of this latter event converges to 1 (a.s. PX). For a given integer

` ≥ 1, consider an arbitrary integer vector k ∈ Zd such that ‖k‖1 ≤ `. By

Theorem 3.2 of Lahiri (2003), under the mixing/moments assumptions and by
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the continuity/positivity of the probability density f(·) of X1, it holds that bk ∈
In eventually and (λn/b)

d/2An(bk; θ0)
d−→ Z̃ ∼ N(0r, Σ̃∞) a.s. (PX), where

Σ̃∞ ≡ cσ(0)/f(0) + Σ0 is positive definite. Hence, for a given ` ≥ 1,

∆n,` ≡ max
k∈Zd,‖k‖1≤`

sup
a∈S

sup
y∈R

∣∣∣P·|X ((λn/b)
d/2a′An(bk; θ0) ≤ y

)
− P (a′Z̃ ≤ y)

∣∣∣→ 0

holds a.s. (PX) by Poyla’s theorem on half-planes, where S = {a ∈ Rr : ‖a‖ = 1}
is the Rd unit sphere. By the above, for a given ε > 0, one may choose ε1 > 0 to

make the averages

∆1n,` ≡ sup
a∈S

1

L

∑
k∈Zd,‖k‖1≤`

P·|X

(
(λn/b)

d/2|a′An(bk; θ0)| < ε1

)
< ε

and

∆2n,` ≡ sup
a∈S

1

L

∑
k∈Zd,‖k‖1≤`

P·|X

(
(λn/b)

d/2‖An(bk; θ0)‖ ≥ ε−1
1

)
< ε

eventually (a.s. PX), where L ≡ (2`+1)d = |{k ∈ Zd : ‖k‖1 ≤ `}|. Next define an

empirical distribution F̂n,`(a) = L−1
∑

k∈Zd,‖k‖1≤` I[(λn/b)
d/2a′An(bk; θ0) < 0]

for a ∈ S. As S is compact, this can be covered with a finite collection of open

balls of radius ε21 around points a1, . . . , at ∈ S (where t depends on ε1). For

a ∈ S, there exists ai such that ‖ai − a‖ < ε21 so that

|F̂n,`(a)−1/2| ≤ |F̂n,`(a)−F̂n,`(ai)|+|F̂n,`(ai)−1/2| ≤ T (i)
1n,`+T2n,`+|F̂n,`(ai)−1/2|

using bounds on indicator functions, where

T
(i)
1n,` = L−1

∑
k∈Zd,‖k‖1≤`

I[(λn/b)d/2|a′iAn(bk; θ0)| < ε1], i = 1, . . . , t,

T2n,` = L−1
∑

k∈Zd,‖k‖1≤`

I[(λn/b)d/2‖An(bk; θ0)‖ ≥ ε−1
1 ].

Hence, for T3n,` =
∑t

i=1 |F̂n,`(ai) − E·|X{F̂n,`(ai)}| and T4n,` =
∑t

i=1 |T
(i)
1n,` −

E·|X{T
(i)
1n,`}|, we have

E·|X

{
sup
a∈S
|F̂n,`(a)− 1/2|

}
≤

4∑
j=2

E·|X{Tjn,`}+ max
1≤i≤m

E·|X{T
(i)
1n,`}+ ∆n,`.

Note that max1≤i≤m E·|X{T
(i)
1n,`} ≤ ∆1n,` < ε, E·|X{T2n,`} ≤ ∆2n,` < ε and

∆n,` < ε eventually for a given choice of ` (a.s. PX). Also, it holds by Jensen’s
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inequality that

E·|X{T3n,`} ≤
t∑
i=1

[
E·|X |{F̂n,`(ai)} − E·|X{F̂n,`(ai)}|2

]1/2

≤

(
1 + 4

∞∑
k=1

k−τ1

)1/2

L−1/2t

using the standard covariance bound

|Cov·|X{I[(λn/b)d/2a′iAn(bk1; θ0) < 0], I[(λn/b)d/2a′iAn(bk2; θ0) < 0]}|
≤ 4α(d[b,k1,k2], bd), d[b,k1,k2] ≡ inf{‖x1 − x2‖ : xi ∈ Bn(bki), i = 1, 2}

for bounded random variables (cf. Athreya and Lahiri (2006, Corollary 16.2.4(ii)))

to show

E·|X |{F̂n,`(ai)}−E·|X{F̂n,`(ai)}|2 ≤
1

L

(
1 +

∑̀
k=1

4α(kb; b)

)
≤ 1

L

(
1 + 4

∞∑
k=1

k−τ1

)

a.s. (PX) under Assumption A1; likewise, E·|X{T4n,`} ≤ (1 + 4
∑∞

k=1 k
−τ1)

1/2
L−1/2t.

Since t depends on ε1 and ` is arbitrary, we may choose ` (i.e. L = (2` + 1)d)

so that E·|X{T3n,`} + E·|X{T4n,`} < ε (a.s. (PX)). Hence, we may pick ` and

ε ∈ (0, 1/16) so that P·|X(supa∈S |F̂n,`(a) − 1/2| > 1/4) ≤ 16ε holds for all

large n (a.s. (PX)). Note that the event supa∈S |F̂n,`(a) − 1/2| ≤ 1/4 implies

infa∈S F̂n,`(a) ≥ 1/4 which further implies that 0r lies in the interior of the

convex hull of {An(i; θ0) : i ∈ In}; this last event implies Rn(θ0) > 0 and

hence P·|X(Rn(θ0) > 0) ≥ 1 − 16ε holds for any arbitrary ε > 0 (a.s. (PX)).

(Note if 0r is not in the interior as claimed, then there exists a∗ ∈ S such that

a′∗An(i; θ0) ≥ 0 holds for all i ∈ In by the separating/supporting hyperplane

theorem; however, F̂n,`(a∗) ≥ 1/4 entails that there exists a k ∈ Zd, ‖k‖1 ≤ `,

such that a′∗An(bk; θ0) < 0 and bk ∈ In, which is a contradiction.) �

S.2.2 Proof of Theorem 2 on Maximum EL Estimation

To establish Theorem 2, we first require a preliminary result in Lemma 3. Define

Dn(θ0) =
∑

i∈In λ
−d/2
n ∂An(i; θ0)/∂θ for

λ−d/2n ∂An(i; θ0)/∂θ = n−1b−d
n∑
j=1

∂g(Z(sj); θ0)/∂θI(sj ∈ Bn(i)), i ∈ In,

and let D(θ0) = E{∂g(Z(0); θ0)/∂θ}.
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Lemma 3 Under the assumptions of Theorem 2, the following hold a.s. (PX):

(a) Dn(θ0)→ D(θ0) in P·|X-probability;

(b) (log n)2bdλ
−d/2
n maxi∈In ‖∂An(i; θ0)/∂θ‖ → 0 in P·|X-probability;

(c) λ
−d/2
n E·|X

{∑
i∈In ‖∂An(i; θ0)/∂θ‖

}
= O(1) in P·|X-probability.

(d) maxi∈In |{sj : 1 ≤ j ≤ n, sj ∈ Bn(i)}| = O(bdmn) in P·|X-probability.

Proof of Lemma 3. Lemma 3(a) follows by showing

E·|X{‖Dn(θ0)−D(θ0)‖} → 0 a.s. (PX),

Note that by Lemma 1(i) with k = 1 (under the mixing/moment assumptions)
and Jensen’s inequality

E·|X{‖Dn(θ0)− E·|XDn(θ0)‖}

≤

|In|∑
i∈In

λ−dn ‖∂An(i; θ0)/∂θ − E·|X{∂An(i; θ0)/∂θ‖2}

1/2

= O(λd/2n n−1b−d/2mn) = o(1)

(a.s. (PX)) and (similarly to the proof of Lemma 2(a)) ‖E·|X{Dn(θ0)}−D(θ0)‖ =
O(b/λn) = o(1); this establishes the result.

Lemma 3(d) follows from the fact that

PX

(
max

j∈Zd,i∈In

n∑
i=1

I(λnXi ∈ {j + (0, 1]d} ∩Bn(i)) > Cmn infinitely often

)
= 0

(S.1)
holds for some C > 0 (cf. Lahiri and Zhu (2006, p. 1809)).

To show Lemma 3(b), we bound

E·|X

{
max
i∈In
‖∂An(i; θ0)/∂θ‖

}
≤ e1n + e2n

where e1n ≡ maxi∈In ‖E·|X{∂An(i; θ0)/∂θ}‖ = O(λ
d/2
n b−dn−1bdmn) a.s. (PX) by

Lemma 3(d) and, by Jensen’s inequality and Lemma 1(i) (with k = 1),

e2n ≡

∑
i∈In

E·|X
{
‖∂An(i; θ0)/∂θ − E·|X{∂An(i; θ0)/∂θ}‖2

}1/2

= O
[
λd/2n n−1b−d(λdnm

2
nb
d)1/2

]
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a.s. (PX). Hence, (log n)2bdλ
−d/2
n E·|X{maxi∈In ‖∂An(i; θ0)/∂θ‖} = O((log n)2λ

d/2
n bd/2n−1mn) =

o(1) a.s. (PX).

For Lemma 3(c), note λ
d/2
n
∑

i∈In ‖∂An(i; θ0)/∂θ‖ ≤ n−1
∑n

i=1 ‖∂g(Z(si); θ0)/∂θ‖
so that λ

d/2
n E·|X{‖

∑
i∈In ∂An(i; θ0)/∂θ‖} ≤ E·|X{‖∂g(Z(0); θ0)/∂θ‖} a.s. (PX).

�

Proof of Theorem 2. As in the proof of Theorem 1, there exists A ∈ F with

P (A) = 1, on the common probability space (Ω,F , P ), such that all events

in Lemma 2(a)-(d) and Lemma 3 hold simultaneously conditioned on X1 ≡
X1(ω),X2 ≡ X2(ω), . . . for any ω ∈ A. For simplicity, we again fix ω ∈ A

throughout the proof and consider distributional convergence conditioned on a

given sequence {Xn(ω)}; then P·|X is the only probability measure needed in the

proof and we let op(·) and Op(·) denote probabilistic order notation as usual in

P·|X -probability.

Set Θn = {θ ∈ Θ : λ
d/2
n ‖θ − θ0‖ ≤ log n}, ∂Θn = {θ ∈ Θ : λ

d/2
n ‖θ −

θ0‖ = log n}, and νθ = max{1, λn‖θ − θ0‖}. For An(i; θ), i ∈ In, in (A.1),

recall An(θ) =
∑

i∈In An(i; θ) and define Σ̂n(θ) = bd
∑

i∈In An(i; θ)An(i; θ)′ and

Zn(θ) = maxi∈In ‖An(i; θ)‖ for θ ∈ Θ. We collect some preliminary results in

(S.2), (S.3) and (S.4) below. Note that νθ ≤ log n and ‖θ − θ0‖ ≤ (log n)λ
−d/2
n

for θ ∈ Θn. Hence,

sup
θ∈Θn

νθb
dZn(θ) ≤ sup

θ∈Θn

(log n)bdZn(θ) = op(1) (S.2)

follows using the differentiability of g(·; θ) in θ along with the Lipschitz condition

(with parameter γ > 0) on ∂g(·; θ)/∂θ in θ to show

sup
θ∈Θn

(log n)bdZn(θ) ≤ (log n)bdZn(θ0) + (log n)2bdλ−d/2n max
i∈In
‖∂An(i; θ0)/∂θ‖

+O((log n)bdλd/2n n−1b−dbdmn(log nλ−d/2n )1+γ) = op(1)

using Lemma 2(b), Lemma 3(b) and (d) with the Lipschitz condition. Also,

for Jn(θ0) = λ
−d/2
n

∑
i∈In ‖∂An(i; θ0)/∂θ‖, it holds that Jn(θ0) = Op(1) by

Lemma 3(c) so that

sup
θ∈Θn

‖An(θ)‖/νθ ≤ ‖An(θ0)‖+ Jn(θ0) sup
θ∈Θn

ν−1
θ λd/2n ‖θ − θ0‖

+O(|In|λd/2n b−dn−1bdmn[λ−d/2n log n]1+γ)

= Op(1) (S.3)
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by Lemma 2(a) and Lemma 3(d). Finally, note that

sup
θ∈Θn

‖Σ̂n(θ)−Σ∞‖ ≤ sup
θ∈Θn

‖Σ̂n(θ0)−Σ∞‖+ sup
θ∈Θn

‖Σ̂n(θ)−Σ̂n(θ0)‖ = op(1) (S.4)

by Lemma 2(c) along with

sup
θ∈Θn

‖Σ̂n(θ)− Σ̂n(θ0)‖

≤ bd sup
θ∈Θn

Zn(θ) sup
θ∈Θn

∑
i∈In

‖An(i; θ)−An(i; θ0)‖

≤ op((log n)−1) sup
θ∈Θn

[
Jn(θ0)λd/2n ‖θ − θ0‖+ λd/2n n−1b−dλdnb

dmn‖θ − θ0‖1+γ
]

= op((log n)−1)[Op(log n) + o(1)] = op(1)

by (S.2), Jn(θ0) = Op(1) and Lemma 3(d) with the Lipschitz condition.

We next show the log-EL ratio `n(θ) = −2b−d logRn(θ) exists finitely on Θn

and is continuously differentiable. This implies a sequence of minimums θ̂n of

`n(θ) exists on Θn (i.e., θ̂n is a maximizer of Rn(θ)) and we show additionally

that θ̂n 6∈ ∂Θn and ∂`n(θ)/∂θ = 0p at θ = θ̂n. Define functions

Q1n(θ, t) =
∑
i∈In

An(i; θ)

1 + t′An(i; θ)
, Q2n(θ, t) = b−d

∑
i∈In

(
∂An(i; θ)/∂θ

)′
t

1 + t′An(i; θ)
, (S.5)

on Θ× Rr. It can be shown that

P·|X (Rn(θ) > 0 holds for any θ ∈ Θn)→ 1. (S.6)

(To see this, we modify the proof of Lemma 2(d). For a given integer ` ≥ 1,

define F̂n,`(a, θ) ≡ L−1
∑

k∈Zd,‖k‖1≤` I[(λn/b)
d/2a′An(bk; θ) < 0] for a ∈ S =

{u ∈ Rr : ‖u‖ = 1}, θ ∈ Θ and L = (2` + 1)d. In the notation of the proof

of Lemma 2(d), note that F̂n,`(a) = F̂n,`(a, θ0) there and, for a given ε > 0,

we may pick ` so that P·|X(supa∈S |F̂n,`(a, θ0) − 1/2| > 1/12) < ε for all large

n. Additionally, by the same argument, we can choose an ε2 > 0 and large `

so that, for Wn,`,ε2 ≡ supa∈S L
−1
∑

k∈Zd,‖k‖1≤` I[(λn/b)
d/2|a′An(bk; θ)| < ε2], it

holds that P·|X(Wn,`,ε2 > 1/12) < ε for all large n. Finally, it holds by the

differentiability of the estimating function in θ that, for a given `,

Zn,` ≡ sup
θ∈Θn

(λn/b)
1/2 max{‖An(bk; θ)−An(bk; θ0)‖ : k ∈ Zd, ‖k‖1 ≤ `}

= Op(λ
d/2
n b−d/2λd/2n n−1b−d[bdmnλ

−d/2
n log n]) = op(1)
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so that P·|X(Zn,` > ε2/12) < ε for all large n. Then, bounding the difference of
summed indicator functions as

sup
θ∈Θn

sup
a∈S
|F̂n,`(a, θ)− 1/2| ≤ sup

a∈S
|F̂n,`(a, θ0)− 1/2|+Wn,`,ε2 + ε−1

2 Zn,`,

we can pick ` so that P·|X(supθ∈Θn
supa∈S |F̂n,`(a, θ) − 1/2| > 1/4) < 3ε for all

large n. When supθ∈Θn
supa∈S |F̂n,`(a, θ)− 1/2| ≤ 1/4 holds, then it follows that

Rn(θ) > 0 for each θ ∈ Θn by the supporting/separating hyperplane theorem as
in the proof of Lemma 2(d). Hence, P·|X(Rn(θ) > 0, any θ ∈ Θn) ≥ 1 − 3ε for
any arbitrary ε.)

As in the proof of Lemma 2(d), when the event in the probably state-
ment (S.6) holds, then for any θ ∈ Θn, we may write Rn(θ) =

∏
i∈In(1 +

γθ,i)
−1 > 0 where γi,θ = t′n,θAn(i; θ) for a Lagrange multiplier t̃n,θ ∈ Rd such

that Q1n(θ, tn,θ) = 0r; the relationship between t̃n,θ and the Lagrange multiplier

tn,θ defining (3.3) is t̃n,θ = λ
−d/2
n ntn,θ. Hence, by the positive definiteness of Σ∞

under Assumption A4 and (S.4), Σ̂n(θ) is positive definite and Σ̂n(θ)−1 exists
uniformly in θ ∈ Θn; this also implies that for each fixed θ ∈ Θn, ∂Q1n(θ, t)/∂t
is negative definitive for t ∈ {u ∈ Rr : 1 + u′An(i; θ) ≥ 1/|In|, i ∈ In} so that,
by implicit function theorem using Q1n(θ, t̃n,θ) = 0r, t̃n,θ is a continuously dif-
ferentiable function of θ on Θn and the function `n(θ) = −2b−d logRn(θ) is as
well (e.g., Qin and Lawless (1994, p. 304-305)). Hence, with large probability as
n→∞, the minimizer of `n(θ) exists on Θn.

Now expanding Q1n(θ, t̃n,θ) = 0r for θ ∈ Θn, we can repeat the same essential
argument in the proof of Theorem 1 based on (A.2) to find

ν−1
θ ‖An(θ)‖ ≥

‖ν−1
θ b−dt̃n,θ‖v′n,θΣ̂n(θ)vn,θ

1 + [νθbdnZn(θ)]‖ν−1
θ b−dt̃n,θ‖

,

for t̃n,θ = ‖t̃n,θ‖vn,θ, vn,θ ∈ Rr, ‖vn,θ‖ = 1; from this and (S.2)-(S.4), we have
supθ∈Θn

ν−1
θ b−d‖t̃n,θ‖ = Op(1). Then, analogously to the proof of Theorem 1

again, we may expand Q1n(θ, t̃n,θ) = 0r to yield b−dt̃n,θ = Σ̂n(θ)−1[An(θ)+βn(θ)]
for θ ∈ Θn where

sup
θ∈Θn

ν−1
θ ‖βn(θ)‖ ≤ sup

θ∈Θn

ν−1
θ Zn(θ)‖t̃n,θ‖2b−dtrace[Σ̂n(θ)]/(1−‖t̃n,θ‖Zn(θ)) = op(1).

Using now these orders of ‖βn(θ)‖, ‖t̃n,θ‖ and Zn(θ) with arguments as in the
proof of Theorem 1, we may then expand `n(θ) uniformly in θ ∈ Θn as

sup
θ∈Θn

ν−2
θ |`n(θ)−An(θ)′Σ̂n(θ)−1An(θ)|

≤ Op

(
sup
θ∈Θn

ν−2
θ

[
βn(θ)′Σ̂n(θ)βn(θ) +

2b−2dZn(θ)‖t̃n,θ‖3trace[Σ̂n(θ)]

(1− Zθ‖t̃θ‖)3

])
= op(1),
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so that, using (S.3)-(S.4),

sup
θ∈Θn

ν−2
θ |`n(θ)−An(θ)′Σ−1

∞ An(θ)| = op(1)

follows. For each θ ∈ Θn, we write An(θ) = An(θ0) + Dn(θ0)λ
d/2
n (θ − θ0) +

En(θ) for Dn(θ0) =
∑

i∈In λ
−d/2
n ∂An(i; θ0)/∂θ and a remainder En(θ) satis-

fying supθ∈Θn
‖En(θ)‖ = Op(λ

d/2
n b−dn−1λdnb

dmn(log λ
−d/2
n )1+γ) = op(1). By

Lemma 3(a), Dn(θ0) = D(θ0) + op(1) so that, by (S.3), it now follows that

sup
θ∈Θn

ν−2
θ

∣∣∣`n(θ)−[
An(θ0) +D(θ0)λd/2n (θ − θ0)

]′
Σ−1
∞
[
An(θ0) +D(θ0)λd/2n (θ − θ0)

]∣∣∣
= op(1). (S.7)

For θ = uλ
−d/2
n log n+ θ0 ∈ ∂Θn, with some u ∈ Rr, ‖u‖ = 1, we have νθ = log n

so that from (S.7) we find that `n(θ) ≥ (σ∗/2)(log n)2 holds uniformly in θ ∈ ∂Θn

with arbitrarily large probability when n is large, where σ∗ denotes the smallest

eigenvalue of positive definite D(θ0)′Σ−1
∞ D(θ0). At the same time, by Theorem 1,

we have `n(θ0) = Op(1). Hence, with probability approaching 1, the minimum θ̂n
of `n(θ) on Θn cannot be an element of ∂Θn. Hence, θ̂n must satisfy θ̂n ∈ Θn\∂Θn

and 0r = Q1n(θ̂n, t̃n,θ̂n) in addition to

0p = 2−1∂`n(θ)/∂θ|θ=θ̂n = Q2n(θ̂n, t̃n,θ̂n)

by the differentiability of `n(θ), for Q1n(·, ·), Q2n(·, ·) from (S.5).

We next establish the asymptotic normality of θ̂n in Theorem 2(i). From the

above arguments, we may solve Q1n(θ̂n, t̃n,θ̂n) = 0r for b−dt̃n,θ̂n = Σ̂−1

θ̂n
[An(θ̂n) +

βn(θ̂n)] or

b−dt̃n,θ̂n = Σ̂n(θ̂n)−1[An(θ̂n) + βn(θ̂n)] (S.8)

= Σ−1
∞
[
An(θ0) +D(θ0)λd/2n (θ̂n − θ0)

]
+ op(νθ̂n).

From λ
−d/2
n Q2n(θ̂n, t̃n,θ̂n) = 0p, we have that

0p = λ−d/2n b−d
∑
i∈In

(
∂An(i; θ̂n)/∂θ

)′
t̃n,θ̂n

1 + t̃′
n,θ̂n

An(i; θ̂n)
(S.9)

= Dn(θ0)′b−dn t̃n,θ̂n +Op(Cn)

= D(θ0)′b−dt̃n,θ̂n + op(‖b−dt̃n,θ̂n‖)
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by Lemma 3(a) and

‖Cn‖ ≤
‖t̃n,θ̂n‖

2Zn(θ̂n)b−d

1− ‖t̃n,θ̂n‖Zn(θ̂n)
[Jn(θ0) +Op(b

−dn−1λdnb
dmn(λ−d/2n log n)1+γ)]

= op(‖b−dt̃n,θ̂n‖).

Now letting δn = ‖b−dt̃n,θ̂n‖+ νθ̂n , from (S.8) and (S.9), we may write[
Σ∞ −D(θ0)

D(θ0)′ 0p×p

](
b−dn t̃n,θ̂n

λ
d/2
n (θ̂n − θ0)

)
=

[
An(θ0) + op(δn)

op(δn)

]
,

[
Σ∞ −D(θ0)

D(θ0)′ 0p×p

]−1

=

[
U(θ0) Σ−1

∞ D(θ0)V (θ0)

−V (θ0)D(θ0)′Σ−1
∞ V (θ0)

]

for V (θ0), U(θ0) defined in Theorem 2. By Lemma 2(a), An(θ0)
d−→ N(0r,Σ∞)

holds so it follows that δn = Op(1) and the limiting distribution of θ̂n is given by(
b−dn t̃n,θ̂n

λ
d/2
n (θ̂n − θ0)

)
=

[
U(θ0)

−V (θ0)D(θ0)′Σ−1
∞

]
An(θ0) + op(1) (S.10)

d−→ N

((
0r
0p

)
,

[
U(θ0) 0

0 V (θ0)

])
The proof of Theorem 2(i) is complete, recalling t̃n,θ̂n = λ

−d/2
n ntn,θ̂n .

To prove parts (ii) and (iii) of Theorem 2, let PP = Σ
−1/2
∞ D(θ0)V (θ0)D(θ0)′Σ

−1/2
∞

denote the projection matrix corresponding to the columns of Σ
−1/2
∞ D(θ0) and let

Ir×r denote the r×r identity matrix. Using (S.7) along with ‖θ̂n−θ0‖ = Op(λ
−d/2
n )

by (S.10) and νθ0 = 1 in (S.7), we write

`n(θ̂n) = [Σ−1/2
∞ An(θ0)]′(Ir×r − PP )[Σ−1/2

∞ An(θ0)] + op(1),

`n(θ0) = [Σ−1/2
∞ An(θ0)]′[Σ−1/2

∞ An(θ0)] + op(1).

The chi-square limit distributions for `(θ0)− `n(θ̂n) and `n(θ̂n) in Theorem 2(ii)

and (iii), respectively, now follow by Lemma 2(a) as PP , Ir×r − PP are orthog-

onal idempotent matrices with ranks p, r − p. �
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