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Supplementary Material

This supplementary material includes proofs of the theoretical results and additional

discussion of our proposed method. The proofs of Lemma 1, Theorem 1 and Theorem 2

are given in Sections S1-S3, respectively. In Section S4, we provide additional discussion

on estimating globally and locally constant functions by modifying the proposed method.

Appendix

We first introduce some notation. For a real valued function f over an interval I,

‖f‖∞ = supx |f(x)|. Given two sequences of positive numbers, say αn and βn, if both

αn/βn and βn/αn are bounded, we denote it by αn ∼ βn.

In addition, we will use the following inequalities in the proofs:

(i) for any p-dimensional vector

‖γ‖2 ≤ ‖γ‖1 ≤ p1/2‖γ‖2; (S.1)

(ii) for any a > 0, b > 0, and α ∈ (0, 1),

|bα − aα| ≤ 2aα−1|b− a|; (S.2)

(iii) for any 0 ≤ a ≤ b and α ∈ (0, 1),

αbα−1(b− a) ≤ bα − aα. (S.3)

S1. Proof of Lemma 1

Proof of Lemma 1. Note that

‖f(x)−BT (x)γ0‖∞ ≤ ‖f(x)−B(x)Tγ∗‖∞ + ‖B(x)T (γ∗ − γ0)‖∞.
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By (3.1), the first term on the right hand side is of order M−rn . In addition, by the

properties of B-splines, we have that

‖B(x)T (γ∗ − γ0)‖∞ ≤ max
k
|γ∗k − γ0,k|,

where γ0 = (γ0,1, . . . , γ0,Ln)T . Since γ0 is a sparse modification of γ∗, if γ∗k 6= γ0,k for

some k, |γ∗k − γ0,k| = |γ∗k |, and there exists an index j, k − d ≤ j ≤ k, such that k ∈ Aj
and |f(x)| ≤ DM−rn for x ∈ [κj−1, κj ]. As a direct consequence of (3.1), B(x)Tγ∗ is of

order M−rn for x ∈ [κj−1, κj ]. In addition, by the local support property of B-splines, at

most d + 1 γ′s are non-zero in B(x)Tγ∗ for x ∈ [κj−1, κj ] and γ∗k is one of them. The

desired result immediately follows.

S2. Proof of Theorem 1

The following lemma will be used in the proof of Theorem 1. It is from Lemma A.3 of

Huang et al. (2004).

Lemma 2. If limn→∞Mn logMn/n = 0, there exists an interval [C1, C2] (0 < C1 <

C2 < ∞) such that all eigenvalues of (Mn/n)BTB fall in [C1, C2] with probability ap-

proaching 1 as n→∞.

Proof of Theorem 1. It can be seen that

‖f̂ − f‖22 ≤ 2‖B(x)T γ̂ −B(x)Tγ0‖22 + 2‖f(x)−B(x)Tγ0‖22.

By Lemma 1, ‖f(x) − B(x)Tγ0‖2 = O(M−rn ) = O(n−r/(2r+1)). By the properties of

B-spline basis functions, we have

‖B(x)T γ̂ −B(x)Tγ0‖22 ∼M−1n ‖γ̂ − γ0‖22.

Let γ̂ = γ0 + ηnv, where ηn is a scalar and v is a vector with ||v||2 = 1. Therefore, it is

sufficient to show that ηn = Op(Mnn
−1/2).

Denote Dn(v) = Qn(γ0 + ηnv) − Qn(γ0). In fact, Dn(v) can be expressed as the

sum of the following two quantities:

n−1
n∑
i=1

(
Yi −B(Xi)

T γ̂
)2 − n−1 n∑

i=1

(
Yi −B(Xi)

Tγ0
)2

and λn
∑Mn+1
j=1 ‖γ̂Aj

‖α1 − λn
∑Mn+1
j=1 ‖γ0,Aj

‖α1 , denoted by T1 and T2 respectively.
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Let ri = B(Xi)
Tγ0−f(Xi), r = (r1, . . . , rn)T , εi = Yi−f(Xi) and ε = (ε1, . . . , εn)T .

Straightforward calculation shows that

T1 =
1

n

n∑
i=1

(
εi − ri − ηnB(Xi)

Tv
)2 − 1

n

n∑
i=1

(εi − ri)2

=
η2n
n
vTBTBv − 2

ηn
n

(ε− r)TBv.

Note that, as a direct consequence of Lemma 2, we have that, with probability approach-

ing 1,
Mn

n
vTBTBv ≥ C1.

Moreover, by Cauchy-Schwarz inequality, we have

sup
||v||2=1

{(ε− r)TBv}2 ≤ (ε− r)TBBT (ε− r).

In addition, by the independence of ε and r, we have

E(ε− r)TBBT (ε− r) = EεTBBTε+ ErTBBTr. (S.4)

For the first term in (S.4), we have

EεTBBTε = σ2
Ln∑
k=1

n∑
i=1

E
{
Bk(Xi)

2
}
≤ σ2

Ln∑
k=1

n∑
i=1

E {Bk(Xi)} = O(n).

Recall that, by Lemma 1, ri are of the order O(M−rn ). So, for the second term in (S.4),

we have

ErTBBTr =

Ln∑
k=1

 n∑
i=1

E
{
r2iBk(Xi)

2
}

+
∑
i 6=i′

E {riri′Bk(Xi)Bk(Xi′)}


=

Ln∑
k=1

 n∑
i=1

E
{
r2iBk(Xi)

2
}

+
∑
i 6=i′

E {riBk(Xi)}E {ri′Bk(Xi′)}


≤

Ln∑
k=1

 n∑
i=1

C2
0M

−2r
n E

{
Bk(Xi)

2
}

+
∑
i 6=i′

C2
0M

−2r
n E {Bk(Xi)}E {Bk(Xi′)}


≤

Ln∑
k=1

 n∑
i=1

C2
0M

−2r
n E {Bk(Xi)}+

∑
i 6=i′

C2
0M

−2r
n E {Bk(Xi)}E {Bk(Xi′)}


= O(MnnM

−2r
n M−1n ) +O(Mnn

2M−2rn M−2n ) = O(n).

Back to (S.4), we have

E(ε− r)TBBT (ε− r) = O(n).
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Therefore, applying Markov inequality yields that

(ε− r)TBBT (ε− r) = Op(n).

Thus, T1 ≥ C1M
−1
n η2n − ηnOp(n−1/2).

Next, we will deal with the quantity T2. Note the fact that ‖γ0,Aj‖1 > 0 for j ∈ A3

and ‖γ0,Aj‖1 = 0 for j ∈ A1 ∪ A2. Moreover, by (S.1) and (S.2), we have

−T2 = λn

Mn+1∑
j=1

(
‖γ0,Aj

‖α1 − ‖γ̂Aj
‖α1
)
≤ λn

∑
j∈A3

(
‖γ0,Aj

‖α1 − ‖γ̂Aj
‖α1
)

≤ 2λn
∑
j∈A3

‖γ0,Aj‖α−11 ‖γ̂Aj − γ0,Aj‖1

≤ 2λn
∑
j∈A3

‖γ0,Aj
‖α−11 (d+ 1)1/2‖γ̂Aj

− γ0,Aj
‖2.

In addition, by Cauchy-Schwarz inequality, we have

−T2 ≤ 2λn(d+ 1)1/2

∑
j∈A3

‖γ0,Aj
‖2α−21

1/2∑
j∈A3

‖γ̂Aj
− γ0,Aj

‖22

1/2

= Op(λnηnαn).

By the minimality of γ̂, Dn(v) = Qn(γ̂)−Qn(γ0) = T1 + T2 ≤ 0. Therefore,

0 ≥ η2n
Mn

C1 − ηnOp(n−1/2)−Op(λnηnαn)

with probability approaching 1, which implies that ηn = Op{Mnn
−1/2 + λnMnαn}.

When λnαn = O(n−1/2), we have ηn = Op(Mnn
−1/2). This completes the proof.

S3. Proof of Theorem 2

Proof of Theorem 2. Let γ̂∗ be a vector defined by

γ̂∗k =

{
0, k ∈ B1
γ̂k, k ∈ B2 = {1, . . . , Ln} − B1

Hence, γ̂∗Aj
= 0, for all j ∈ A1 ∪ A2.

According to the Karush-Kuhn-Tucker conditions, if γ̂k 6= 0, we have that

0 = − 2

n

n∑
i=1

Bk(Xi)

Yi − Ln∑
j=1

γ̂jBj(Xi)

+ αλn
∑

j:k∈Aj

‖γ̂Aj
‖α−11 sgn(γ̂k).
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Multiplying γ̂k − γ̂∗k on both sides yields that

2

n

n∑
i=1

Bk(Xi)

Yi − Ln∑
j=1

γ̂jBj(Xi)

 (γ̂k − γ̂∗k) = αλn
∑

j:k∈Aj

‖γ̂Aj
‖α−11 |γ̂k|I{k ∈ B1}.

Thus, summing up all k in B1 on both sides, we have

2

n

∑
k∈B1

n∑
i=1

Bk(xi)

Yi − Ln∑
j=1

γ̂jBj(xi)

 (γ̂k − γ̂∗k)

= αλn
∑
k∈B1

|γ̂k|
∑

j:k∈Aj

‖γ̂Aj
‖α−11

= αλn

Mn+1∑
j=1

‖γ̂Aj
‖α−11

(
‖γ̂Aj

‖1 − ‖γ̂∗Aj
‖1
)
.

That is,

2

n
(Y −Bγ̂)TB (γ̂ − γ̂∗) = αλn

Mn+1∑
j=1

‖γ̂Aj
‖α−11

(
‖γ̂Aj

‖1 − ‖γ̂∗Aj
‖1
)
.

Using the inequality (S.3), we have

2

n

∣∣(Y −Bγ̂)TB (γ̂ − γ̂∗)
∣∣ ≤ αλn ∑

j∈A1∪A2

‖γ̂Aj‖α1 + λn
∑
j∈A3

(
‖γ̂Aj‖α1 − ‖γ̂∗Aj

‖α1
)
.

Moreover, by the minimality of γ̂, we have

1

n

(
‖Y −Bγ̂‖22 − ‖Y −Bγ̂∗‖22

)
≤ λn

Mn+1∑
j=1

‖γ̂∗‖α1 − λn
Mn+1∑
j=1

‖γ̂‖α1 .

Combining the above two equations, we have

2

n

∣∣(Y −Bγ̂)TB (γ̂ − γ̂∗)
∣∣+ (1− α)λn

∑
j∈A1∪A2

‖γ̂Aj‖α1

≤ λn

Mn+1∑
j=1

‖γ̂‖α1 − λn
Mn+1∑
j=1

‖γ̂∗‖α1

≤ 1

n

(
‖Y −Bγ̂∗‖22 − ‖Y −Bγ̂‖22

)
=

1

n
‖B(γ̂ − γ̂∗)‖22 +

2

n
(Y −Bγ̂)TB (γ̂ − γ̂∗) .

Thus, we have

(1− α)λn
∑

j∈A1∪A2

‖γ̂Aj
‖α1 ≤

1

n
‖B(γ̂ − γ̂∗)‖22 ≤ C2M

−1
n ‖γ̂ − γ̂∗‖22 ≤ C2M

−1
n ‖γ̂ − γ0‖22.



S6 HAONAN WANG AND BO KAI

It can be seen that

∑
j∈A1∪A2

‖γ̂Aj‖α1 ≥

 ∑
j∈A1∪A2

‖γ̂Aj‖1

α

≥ ‖γ̂ − γ̂∗‖α1 .

Finally, if ‖γ̂ − γ̂∗‖2 > 0,

(1− α)λn ≤ C2M
−1
n ‖γ̂ − γ̂∗‖2−α2 = Op(1)(n−1+α/2M1−α

n ).

Thus, we have

P (‖γ̂ − γ̂∗‖2 > 0) ≤ P
{

λn

n−1+α/2M1−α
n

≤ Op(1)

}
→ 0.

S4. Additional Discussion on Estimating Globally and Locally Constant Func-

tions

In the main paper, our research interest centers on detecting global sparsity and local

sparsity in nonparametric regression models. Here, we take a closer look at the problem

of nonparametric estimation of functions that are constant over the entire domain or

part of the domain. In fact, this can be tackled in a similar fashion as our proposed

method.

Continue to let G be the linear space of spline functions on [0, 1] spanned by the

B-spline basis functions {Bk(x) : k = 1, . . . , Ln}. Here Ln = Mn + d + 1, where Mn

is the number of equally-spaced interior knot points and d is the degree of polynomial

pieces. For any f ∈ G, we have f(x) =
∑Ln

k=1 γkBk(x). If f(x) = c, x ∈ [κj−1, κj ], for

some constant c, as a consequence of local support property of B-splines, we have

γjBj(x) + · · ·+ γj+dBj+d(x) = c.

By properties of B-spline basis functions and the fact

Bj(x) + · · ·+Bj+d(x) = 1, for x ∈ [κj−1, κj ],

we have γj = · · · = γj+d = c.

From above discussion, it can be seen that, in order to identify the “flatness” on

an interval [κj−1, κj ], it is essential to confirm the equality of the group of coefficients,

{γj , . . . , γj+d}. This observation motivates the following penalty function

Mn+1∑
j=1

p(γAj
), (S.5)
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where Aj = {j, j + 1, . . . j + d} and

p(γAj ) = (|γj+1 − γj |+ · · ·+ |γj+d − γj+d−1|)α (S.6)

with 0 < α < 1. Moreover, the penalized least squares criterion can be written as

Qn(γ) =
1

n
‖y −Bγ‖22 + λn

Mn+1∑
j=1

p(γAj ), (S.7)

where y, B and γ are defined in Equation (2.2) of the main paper.

Note that, if we define ξ0 = γ1 and ξk = γk+1 − γk for k = 1, . . . , Ln − 1, we have
ξ0

ξ1
...

ξLn−1

 =


1 0 · · · 0

−1 1 · · · 0
...

...
. . .

...

0 0 · · · 1




γ1

γ2
...

γLn

 , Uγ.

For our convenience, denote ξ = (ξ1, . . . , ξLn−1)T . Applying this transformation to (S.7)

yields

Qn(ξ) =
1

n

∥∥∥∥∥y −BU−1
(
ξ0

ξ

)∥∥∥∥∥
2

2

+ λn

Mn+1∑
j=1

||ξA∗j ||
α
1 , (S.8)

where A∗j = {j, j + 1, . . . , j + d − 1} and ξA∗j denotes the sub-vector of coefficients

(ξj , . . . , ξj+d−1)T .

In addition, we can consider the following transformed basis functions,

C(x) ≡


C1(x)

C2(x)
...

CLn
(x)

 =


1 1 · · · 1

0 1 · · · 1
...

...
. . .

...

0 0 · · · 1




B1(x)

B2(x)
...

BLn
(x)

 .

We have C(x) = (UT )−1B(x). Let C = (C(X1), . . . ,C(Xn))T , and we have C =

BU−1. We further note that C1(x) = 1, and thus, the entries of the first column of C

are 1. Moreover, C can be partitioned as

C = (1n,C1).

Using the transformed basis functions, the penalized criterion (S.8) can be rewritten as

Qn(ξ) =
1

n
‖y − ξ01n −C1ξ‖22 + λn

Mn+1∑
j=1

||ξA∗j ||
α
1 , (S.9)
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which is similar to our proposed penalized criterion as expressed in Equation (2.3) of

the main paper. Note that, replacing ξ0 by its unpenalized least squares estimate,

minimization of (S.9) can be carried out by our proposed algorithm in Section 2.3.

Finally, we provide an alternative view of the penalty function in (S.6). Note that,

detecting the “flatness” of a smooth function f(x) can be viewed as the problem of

detecting global and local sparsities of its first derivative f ′(x). Consider a linear com-

bination of B-spline basis functions, say f(x) =
∑Ln

k=1 γkBk(x). Its first derivative can

be written as a linear combination, with coefficients γi − γi−1, of rescaled B-spline basis

functions of degree d− 1; see de Boor (1978) for more details. As discussed in our main

paper, the functional sparsity of f ′(x) can be inferred by those coefficeints through the

group bridge penalty, i.e., Equation (S.6).

References

de Boor, C. (1978), A Practical Guide to Splines, Springer, New York.

Huang, J. Z., Wu, C. O. & Zhou, L. (2004), ‘Polynomial spline estimation and inference

for varying coefficient models with longitudinal data’, Statistica Sinica 14, 763–788.


