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Abstract: We consider the model selection problem in nonparametric regression.
The notion of functional sparsity is a generalization of parameter sparsity in para-
metric models. In particular, two types of sparsity are studied, global and local
sparsity. The goal is to produce a sparse estimate, that assigns zero values over
regions where the true underlying function is zero. Most classical smoothing tech-
niques yield consistent estimates with no sparsity. Here, a penalized least squares
procedure, based on a basis function approximation and the group bridge penalty
function, is proposed for simultaneous function estimation and zero subregion de-
tection. Asymptotic properties, including both consistency in estimation and spar-
sistency in model selection, of the procedure are established. The methodology is
illustrated through simulation studies and a case study.

Key words and phrases: Functional data analysis, group bridge, model selection,
smoothing.

1. Introduction

In many scientific problems, classical regression and nonparametric smooth-
ing techniques are implemented to model the relationship between the response
variable and predictor variables. For better interpretability, researchers and prac-
titioners are interested in identifying the predictor variables that are important
and necessary for such model. It is also of great interest, and is our major goal,
to identify information within each important predictor variable that actually
relates to the response variable.

For instance, in neuroscience, information communication between different
neurons, and hence between brain regions, is in the form of neuron spikes. Mod-
eling the causal relationship between input and output neurons will enhance our
understanding of brain cognitive functions. A key problem is to select the peri-
ods, within an observed time series from each input neuron, that are transformed
into the output signal. Another example arises in human physiology, where in-
terest is in modeling the functional relationship between the force exerted on an
object and time. For a specific task performed, it is critical to identify the time
point at which the force exerted deviates from the background force as such a
point is an indicator of human response time to this task. See Ramsay, Wang,
and Flanagan (1995) and Song et al. (2007b,a) for more details regarding these
applications.

http://dx.doi.org/10.5705/ss.2014.035
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Figure 1. Here, f1 is a function with global sparsity, while f2 and f3 possess
local sparsity.

Consider the standard univariate nonparametric regression model

Y = f(X) + ε, (1.1)

where Y is the response variable, X is the predictor variable and ε is the random

error term with mean 0 and finite variance. In applications, a random sample of

observations is obtained and denoted by (X1, Y1), . . . , (Xn, Yn). The conditional

mean, f(x) = E(Y |X = x), is usually assumed to be an unknown smooth func-

tion. Here, we further assume that f is sparse as defined in Tu et al. (2012), and

its zero region can be expressed as a finite union of subintervals. Those authors

described two types of sparsity: global and local sparsity. In particular, if f is

zero over its entire domain, it is called a function with global sparsity; if f is

zero only over part of its domain (union of sub-intervals), it is called a function

with local sparsity. When characterizing functional sparsity, singletons at which

f is zero are not considered. For illustration, three functions with sparsity are

shown in Figure 1. Here, f1 is a function with global sparsity, while f2 and f3
are functions possessing local sparsity. Global sparsity suggests that there is no

relationship between the predictor variable x and the response variable y. Local

sparsity provides a new, flexible choice of the interpretability regarding such re-

lationships: the response variable is pure noise when the predictor variable falls

into the zero region. We propose and study a new estimation procedure that

produces sparse and consistent estimates for functional relationships.

Nonparametric regression provides a class of powerful data-driven tools to ex-

plore the unknown relationship between response and predictor variables. There

are many smoothing techniques developed for estimating a nonparametric func-

tion f , such as kernel smoothing (e.g., Härdle (1990); Wand and Jones (1995)),

local polynomial regression (e.g., Fan and Gijbels (1996)), and spline smoothing

(e.g., Wahba (1990); Eubank (1999)). Most existing smoothing methods are able
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to provide consistent estimates of f . But these known procedures cannot pro-

duce sparse solutions. We aim to develop a new approach to detect both types of

sparsity. In particular, we would like to consistently produce zero estimates for

f when no relationship between the response variable and the predictor variable

is indicated.

Over the past several decades, sparsity for parametric regression models has

been well defined (e.g., Fan and Li (2001)) and broadly studied in the context of

variable selection. Among various variable selection procedures, regularization-

based methods owe their popularity to improved estimation performance. In

particular, they can achieve simultaneous model selection and parameter estima-

tion. Popular penalization methods include least absolute shrinkage and selection

operator (Lasso; Tibshirani (1996)), smoothly clipped absolute deviation (SCAD;

Fan and Li (2001)), and the adaptive Lasso (Zou (2006)). Various techniques for

group variable selection have been proposed. Yuan and Lin (2006) extended the

idea of Lasso, and proposed group Lasso for selecting groups of variables. Huang

et al. (2009) proposed a group bridge approach, which allows simultaneous vari-

able selection at both group and individual (within-group) levels.

Recently, nonparametric estimation of functions with global sparsity has at-

tracted attention. The usual first step is to approximate the unknown function

by a set of basis functions, e.g., polynomial splines. See Huang (2003) for more

detailed discussion on asymptotic theory for polynomial spline regression. Then,

the nonparametric estimation problem for functions with global sparsity can be

solved through various regularized methods developed for linear regression mod-

els. For instance, Wang, Li and Huang (2008) proposed a regularized estimation

procedure for variable selection that combines basis function approximations and

the group SCAD penalty. The proposed procedure can simultaneously select

significant variables with time-varying effects and estimate the nonzero smooth

coefficient functions. Huang, Horowitz and Wei (2010) proposed an adaptive

group Lasso method for nonparametric additive models. Tu et al. (2012) fur-

ther generalized the group bridge approach (Huang et al. (2009)), and proposed

a sparse functional dynamic Multiple-Input-Single-Output model for analyzing

neuron spike data. These methods perform quite well in identifying functions

with global sparsity, and hence assign zero to those functions. The key to such

satisfactory performance is the fact that the zero function lies in the linear space

spanned by the basis functions, and corresponds to the zero vector of coefficients.

For functions with local sparsity, the situation is rather complicated. James,

Wang, and Zhu (2009) have done pioneering work here in a functional linear

model. They used a simple grid basis to approximate the nonparametric func-

tion, and implemented the Dantzig selector (Candes and Tao (2007); Bickel,

Ritov, and Tsybakov (2009); James, Radchenko, and Lv (2009)) to determine
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whether or not the nonparametric function and its dth derivative are zero at

each of the grid points. Zhou, Wang, and Wang (2013) have pointed out that

this approach tends to yield estimates with large variation over nonzero region

when the number of knots increases. Moreover, Zhou, Wang, and Wang (2013)

improved this approach, and proposed a two-stage procedure. An initial estima-

tor was obtained by the Dantzig selector, and a refinement procedure using a

group SCAD approach was proposed.

In this paper, we propose a new one-step penalized procedure which is ca-

pable of simultaneous function estimation and sparse subregion detection. In

particular, we take advantage of the local support property of B-spline basis

functions, and propose an innovative overlapping group assignment of the vector

coefficients. Our estimation procedure can be carried out by a well-developed

algorithm proposed by Huang et al. (2009), and it is computationally tractable.

We establish the asymptotic properties of our proposed method under standard

smoothness assumptions. We prove that, under mild regularity conditions, our

resulting penalized function estimate converges to the true underlying function

at the optimal rate of convergence (Stone (1982)).

The rest of this paper is organized as follows. In Section 2, we introduce a

regularized estimation procedure using both the basis expansion and the group

bridge penalty, and discuss some practical issues, such as computation, tuning

parameter selection, variance estimation. Asymptotic properties, including the

consistency in estimation and sparsistency in model selection, are given in Section

3. In Section 4, we present several Monte Carlo simulation studies to evaluate

the performance of the proposed procedure. Section 5 provides a data example.

Conclusion and discussion are given in Section 6. Proofs and additional discussion

are in the online supplement.

2. Methodology

2.1. Polynomial spline approximation and functional sparsity

Without loss of generality, we assume that the domain of f(x) is [0, 1]. Poly-

nomial splines are piecewise polynomials with the pieces joined smoothly at a set

of interior knot points. In this paper, we adopt the B-spline basis functions due

to their stable numerical properties. Details about spline functions can be found

in de Boor (1978) and Schumaker (1981).

For B-splines, we partition the interval [0, 1] into Mn + 1 subintervals by

Mn interior knot points 0 < κ1 < · · · < κMn < 1, where Mn is allowed to

increase with the sample size n. In addition, let κ0 = 0 and κMn+1 = 1. The

corresponding B-spline basis functions are denoted by B1(x), . . . , BMn+d+1(x),

where d is the degree of polynomial pieces. Each B-spline basis function has a

local support and, for any adjacent knots κj−1 and κj (1 ≤ j ≤ Mn + 1), except
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for d + 1 basis functions Bj(x), . . . , Bj+d(x), the basis functions vanish on the

interval [κj−1, κj ].

Let G be the linear space of spline functions on [0, 1] spanned by the B-

spline basis functions {Bk(x) : k = 1, . . . ,Mn + d + 1}. Suppose that f(x) can

be approximated by an element in G as

f(x) ≈
Ln∑
k=1

γkBk(x), (2.1)

where Ln = Mn+d+1. In the special case that f ∈ G, the approximation can be

replaced with equality. The functional sparsity of f , including both global and

local sparsities, can be fully characterized through the sparsity of its coefficient

vector, the parametric representation of f in the linear space G. Thus the zero

function corresponds to the zero vector of coefficients of dimension Ln. Moreover,

if f(x) = 0 for x ∈ [κj−1, κj ], then γj = · · · = γj+d = 0.

For f not in the linear space G, an accurate approximation is attainable for

a sufficiently large sample (Schumaker (1981)). A natural question is whether

such an approximant carries all necessary information regarding the sparsity of

the true function f(x). As will be shown in Lemma 1, there exists a function

f0 in G which provides an accurate approximation and also satisfies that, if

f(x) = 0 for x ∈ [κj−1, κj ], so is f0(x). Consequently, the sparsity of f can be

partially inferred through the sparsity of f0, which can be represented by the

parametric sparsity of the coefficient vector of the B-spline representation of f0.

This observation motivates our proposed penalized estimation procedure.

2.2. Penalized estimation procedure

The parameters in (2.1) can be estimated by minimizing the (un-penalized)

least squares criterion

1

n

n∑
i=1

(
Yi −

Ln∑
k=1

γkBk(Xi)
)2

=
1

n
∥Y −Bγ∥22, (2.2)

where B(x) =
(
B1(x), · · · , BLn(x)

)T
is a vector of B-spline basis functions, γ =

(γ1, · · · , γLn)
T is a vector of coefficients, B is the matrix (B(X1), · · · ,B(Xn))

T ,

and Y = (Y1, . . . , Yn)
T is the response vector. The resulting estimated function

is consistent. For more details about the rate of convergence of the least squares

estimate, see Stone (1985), Huang (2001), and references therein.

Now suppose that f(x) is sparse either locally or globally. We introduce

a regularization term in addition to the least squares criterion (2.2), so that
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the resulting estimated function is correspondingly sparse. We adopt the group

bridge penalty (Huang et al. (2009)) and the penalized least squares criterion

Qn(γ) =
1

n
∥y −Bγ∥22 + λn

Mn+1∑
j=1

∥γAj∥α1 , (2.3)

where 0 < α < 1, λn is a regularization parameter, Aj = {j, j + 1, . . . j + d},
γAj = (γk, k ∈ Aj)

T and ∥γAj∥1 = |γj | + · · · + |γj+d|. Let γ̂ be a minimizer of

Qn(γ) in (2.3). The corresponding penalized estimator of f(x) is f̂(x) = B(x)T γ̂.

In classical linear regression model, Huang et al. (2009) pointed out that, if α = 1,

the group bridge penalty is the L1 penalty and can only be used for individual

variable selection. They also pointed out that, if 0 < α < 1, the group bridge

penalty can be used for variable selection at both between-group and within-

group levels simultaneously.

An alternative regularization term is the group Lasso penalty. However, the

groups Aj in (2.3) overlap under our setting. Neither the original group Lasso

(Yuan and Lin (2006)) nor the sparse group Lasso (Friedman, Hastie, and Tib-

shirani (2010); Simon et al. (2013)) can be applied to this problem because they

were designed for non-overlapping groups. The group Lasso with overlapping

groups has also been studied; see Jacob, Obozinski, and Vert (2009) and Liu

and Ye (2010) for more details. Recently, Percival (2012) pointed out that the

group Lasso method with overlapping groups may not be able to recover the true

sparsity structure. In this paper, we include the group Lasso with overlapping

groups as a competing method. Our simulation results support the theoretical

findings of Percival (2012).

2.3. Computational aspects

Minimization of (2.3) is rather difficult since the group bridge penalty is not

a convex function for 0 < α < 1. Here, we follow the iterative algorithm proposed

by Huang et al. (2009) to find the minimizer for (2.3). It is outlined below.

1. Obtain an initial value of γ, denoted by γ(0).

2. For a given choice of λn, compute τn = λ
1/(1−α)
n αα/(1−α)(1− α).

3. For s = 1, 2, . . . , compute

γ(s) = argmin
γ

1

n
∥y −Bγ∥22 +

Mn+1∑
j=1

(
θ
(s)
j

)1−1/α
∥γAj∥1, (2.4)

where

θ
(s)
j =

(
1− α

ατn

)α

∥γ(s−1)
Aj

∥α1 , j = 1, . . . ,Mn + 1.
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4. Stop with convergence.

Huang et al. (2009) further pointed out that this algorithm always converges to

a local minimizer depending on the initial value γ(0). A natural first choice for

the initial γ(0) is the ordinary least squares estimator of (2.2). Step 3 can be

carried out by the LARS algorithm (Efron et al. (2004)).

The choice of tuning parameters is crucial as it determines the performance

of the proposed method. First, a sequence of knots needs to be selected for

the B-spline basis. For simplicity, we use equally spaced knots and only select

Mn, the number of interior knots. Similar to Huang, Wu, and Zhou (2004),

we use K-fold cross-validation to select Mn. Then, an optimal λn, the tuning

parameter that determines the sparsity of the resulting estimated function, needs

to be selected. Since the number of coefficients Ln increases with n, we adopt

a Bayesian information criterion (BIC) type procedure used in Huang, Horowitz

and Wei (2010) to select λn:

BIC = log
{∥y −Bγ̂∥22

n

}
+ df · log(n)

n
+ ν · df · log(Ln)

n
, (2.5)

where 0 ≤ ν ≤ 1 is a constant and df is the total number of coefficients estimated

as nonzero. Here we use ν = 0.5 as suggested in Huang, Horowitz and Wei (2010).

2.4. Variance estimation

Consider the asymptotic variance of the proposed estimator. Let C be the

set of indexes of selected coefficients and γ̂C(λn) be the nonzero components of

γ̂ given λn. By (2.4) and the Karush-Kuhn-Tucker condition, we have

γ̂C(λn) = {BT
λn
Bλn +

n

2
Wλn}−1BT

λn
y,

whereBλn is the sub-matrix ofB by selecting the corresponding columns indexed

by C for the given λn, and Wλn is the diagonal matrix with diagonal elements

∑
j:Aj∋k

θ̂
(1−1/α)
j

|γ̂k|
, γ̂k ̸= 0.

Therefore, the asymptotic variance of γ̂C(λn), defined as avar{γ̂C(λn)}, can be

approximated by

{BT
λn
Bλn +

n

2
Wλn}−1BT

λn
Bλn{BT

λn
Bλn +

n

2
Wλn}−1σ̂2,

where σ̂2 = ∥y −Bγ̂∥22/n. As f̂(x) = B(x)T γ̂, the asymptotic variance of f̂(x)

is

BT
λn
(x)avar{γ̂C(λn)}Bλn(x), (2.6)
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where Bλn(x) is the sub-vector of B(x) on selecting the corresponding entries

indexed by C for the given λn.

3. Large Sample Properties

We show that the proposed estimator still converges to the true function

at the optimal rate. Moreover, the proposed estimator correctly identifies the

sparse pieces of the true function with probability converging to one under certain

regularity conditions.

Let Hr be the collection of functions defined on [0, 1] whose δth derivative

satisfies the Hölder condition of order ζ with r ≡ δ + ζ: there exists a constant

C such that |f (δ)(x1)− f (δ)(x2)| ≤ C|x1 − x2|ζ for any 0 ≤ x1, x2 ≤ 1. We need

an assumption

(A.1) f ∈ Hr for some r ≥ 2.

In the same notation, if (A.1) holds, there is a vector of dimension Ln,

γ∗ = (γ∗1 , . . . , γ
∗
Ln

)T , so that the approximation error of f∗(x) to f(x) is, for a

constant C∗,

∥f(x)− f∗(x)∥∞ ≤ C∗M−r
n , (3.1)

(Schumaker (1981)). This spline approximant, as well as the vector of coefficients

γ∗, may not possess any sparsity.

We introduce a sparse modification of f∗(x) in G, denoted by f0(x) =

B(x)Tγ0. For convenience, we partition {1, . . . ,Mn + 1} into the sets

A1 = {j : f(x) = 0, x ∈ [κj−1, κj ]} ,

A2 =

{
j : 0 < max

x∈[κj−1,κj ]
|f(x)| ≤ DM−r

n for some D and D > C

}
,

A3 = {1, . . . ,Mn + 1} − A1 ∪ A2.

Except for some singleton zeros of f(x), we have∪
j∈A1

[κj−1, κj ] ⊂ {x : f(x) = 0} ⊂
∪

j∈A1∪A2

[κj−1, κj ].

It can be seen that
∪

j∈A1
[κj−1, κj ] and

∪
j∈A1∪A2

[κj−1, κj ] provide a lower and

an upper bound of the zero region of f . Here,
∪

j∈A2
[κj−1, κj ] is a transition area

which connects the zero region and nonzero region; if f is globally sparse, A2 and

A3 are empty sets. If f has local sparsity, it can be shown that the total number

of elements in A2 is of order o(Mn). Consequently, the length of
∪

j∈A2
[κj−1, κj ]

converges to zero as n goes to infinity.

A sparse modification of γ∗ can be defined as γ0 = (γ0,1, . . . , γ0,Ln)
T with

γ0,k = γ∗kI{k ̸∈ B1}, where B1 =
∪

j∈A1∪A2
Aj . The resulting spline approximant,
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f0(x) = B(x)Tγ0, reasonably preserves the sparsity of the function f(x). In fact,

f0(x) can be treated as a direct target of the estimation function f̂(x). This

suggests the decomposition

f̂(x)− f(x) = (f̂(x)− f0(x)) + (f0(x)− f(x)),

where f̂(x) − f0(x) and f0(x) − f(x) are the estimation error and the approxi-

mation error respectively.

Lemma 1. Under (A.1), there exists a constant C0 such that

∥f(x)− f0(x)∥∞ ≤ C0M
−r
n .

Theorem 1 (Convergence). Suppose that (A.1) holds, as does

(A.2) {X1, . . . , Xn} is a random sample from a continuous density, fX(x) on

[0,1], where fX(x) are uniformly bounded away from 0 and infinity.

If Mn ∼ n1/(2r+1) and

(A.3) λnαn = O(n−1/2), with αn =
(∑

j∈A3
∥γ0,Aj∥

2α−2
1

)1/2
,

then ∥f̂ − f∥2 = Op

(
n−r/(2r+1)

)
.

The rate of convergence of our proposed function estimate is the same as

the optimal rate of convergence for nonparametric regression (Stone (1982)). If

f(x) = 0 for all x ∈ [0, 1], then A2 and A3 are empty sets, and (A.3) holds for

all λn. On the other hand, if f(x) ̸= 0 for all x, then A1 and A2 are empty

and αn = O(M
1/2
n ). Thus, we have λn = O(n−(r+1)/(2r+1)). In general, if f(x)

possesses local sparsity and deviates from zero slowly, it requires a small λn to

ensure the consistency of the resulting estimates.

Theorem 2 states that our proposed penalized least squares method will

yield a sparse solution which is consistent with the sparsity of the true unknown

function. That is, if f(x) = 0, x ∈ [κi, κj ], then our proposed method can recover

such local sparsity with probability approaching 1.

Theorem 2 (Sparsistency). Suppose the assumptions of Theorem 1 and (A.4)

hold, where

(A.4) λnn
(2−α)/2Mα−1

n → ∞.

With probability approaching 1, we have (γ̂Aj : j ∈ A1 ∪ A2) = 0.

As a direct consequence of Theorem 2, if x ∈
∪

j∈A1
[κj−1, κj ], our proposed

procedure yields an estimate f̂(x) = 0 with large probability. Moreover, if f(x) =

0 for all x, it can be seen that the resulting estimator is also globally sparse.

If a function f(x) has local sparsity, A2 is nonempty, and
∪

j∈A2
[κj−1, κj ] is
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identified as zero with large probability. Therefore, the penalized least squares

estimate tends to yield a slightly more sparse function than the true function

f . This occurs since, over the region
∪

j∈A2
[κj−1, κj ], the magnitude of f(x)

is comparable with the approximation error and is indistinguishable from zero.

This is not crucial since the total length of the transition region
∪

j∈A2
[κj−1, κj ]

tends to zero as n goes to infinity.

4. Simulation Studies

To evaluate the finite sample performance of the proposed procedure, we

conducted three Monte Carlo simulation studies. In all numerical examples, we

compared the proposed procedure (denoted as Proposed) with the un-penalized

B-spline smoothing (denoted as Un-Pen) and the penalized B-splines with differ-

ent penalties: the ordinary L1 penalty (denoted as Lasso), the adaptive Lasso

penalty (denoted as aLasso), the SCAD penalty (denoted as SCAD), and the

group Lasso penalty (denoted as gLasso) with the grouping structure defined

at (2.3). The group Lasso with overlapping groups is implemented by using the

SLEP package (Liu, Ji, and Ye (2009)). Methods proposed by James, Wang, and

Zhu (2009) and Zhou, Wang, and Wang (2013), originally developed for func-

tional linear models, might be modified and extended to our problem, but this

is not our main focus, and their methods are excluded from our comparisons.

In each example, a Monte Carlo experiment was conducted. For each of the

500 iterations, a data set with n observations was generated from the model

y = f(x) + σϵ,

with ϵ standard normal. We considered sample sizes n = 200 and n = 400

with noise levels σ = 0.2 and σ = 0.5. As commonly adopted, we used cubic

splines and set the bridge parameter as α = 0.5 in all numerical examples. In

each iteration, a 10-fold cross validation was used to select the number of knots,

which were used in all competing methods. The regularization parameters were

selected by the BIC procedure (2.5).

The performance of estimator f̂(·) was assessed via several different mea-

sures. The overall fitting performance was measured by the square root of average

squared errors (RASE)

RASE =

{
1

ngrid

ngrid∑
k=1

[
f̂(xk)− f(xk)

]2}1/2

,

where {xk, k = 1, . . . , ngrid} are the grid points at which the estimated function

f̂ was evaluated. In our simulation, we set ngrid = 200 with grid points evenly

distributed over the interval. The mean and the standard deviation of RASE



FUNCTIONAL SPARSITY: GLOBAL VERSUS LOCAL 1347

Table 1. Simulation results for Example 1. The mean and standard devia-
tion (in parentheses) of RASE, the average percentage of true zero intervals
that were correctly identified (CZ) and the percentage that the estimated
functions were zero over the entire domain (GZ) are reported.

n = 200 n = 400
RASE CZ(%) GZ(%) RASE CZ(%) GZ(%)

σ = 0.2
Un-Pen 0.037 (0.014) 0.00 0.00 0.026 (0.010) 0.00 0.00
Lasso 0.001 (0.005) 97.49 97.00 0.000 (0.003) 98.52 98.00
aLasso 0.002 (0.008) 95.86 94.40 0.001 (0.004) 97.88 96.40
SCAD 0.003 (0.011) 95.13 93.20 0.002 (0.008) 96.23 94.00
gLasso 0.000 (0.004) 98.90 98.60 0.000 (0.003) 99.15 98.80
Proposed 0.002 (0.007) 97.48 95.80 0.001 (0.005) 98.29 96.20

σ = 0.5
Un-Pen 0.092 (0.034) 0.00 0.00 0.065 (0.025) 0.00 0.00
Lasso 0.003 (0.015) 96.72 95.80 0.001 (0.008) 98.49 97.40
aLasso 0.005 (0.020) 95.89 94.60 0.002 (0.010) 98.51 97.40
SCAD 0.007 (0.028) 94.92 93.20 0.003 (0.015) 97.54 95.80
gLasso 0.002 (0.013) 98.00 97.20 0.001 (0.007) 98.95 98.00
Proposed 0.004 (0.018) 97.57 96.00 0.002 (0.011) 98.12 96.60

over the 500 replications are reported. To assess the performance of local sparsity

detection, we used two numerical measures: the average percentage of true zero

intervals correctly identified (CZ) and the average percentage of nonzero intervals

falsely identified as zeros (FZ).

Example 1. To examine the performance of global sparsity detection, we took

f to be the zero function. In this example, FZ is not reported because there are

no false zeros. Instead, the percentage that the estimated functions were zero

over the entire domain (GZ) is reported as an assessment of the performance of

global sparsity detection.

The results of 500 Monte Carlo iterations are summarized in Table 1. It can

be seen that all penalized estimators have comparable performance of fitting and

detecting both global sparsity and local sparsity in this example. Here SCAD

has larger average RASE and lower CZ and GZ compared to the other penalized

estimators.

Example 2. Here the true f was the smooth function depicted in the center

panel of Figure 1. This function lives in the linear space spanned by cubic B-

splines with 9 interior knots. Let {Bk(x)}13k=1 be a set of cubic B-spline basis

functions with 9 equally spaced interior knots, and let

b = [−1, 3, 0, 0, 0, 0, 0,−1.5, 0, 0, 0, 0,−2]T
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Table 2. Simulation results for Example 2. The mean and standard deviation
(in parentheses) of RASE, the average percentage of true zero intervals that
were correctly identified (CZ) and the average percentage of nonzero intervals
that were falsely identified as zeros (FZ) are reported.

n = 200 n = 400
RASE CZ(%) FZ(%) RASE CZ(%) FZ(%)

σ = 0.2
Un-Pen 0.062 (0.019) 0.00 0.00 0.041 (0.010) 0.00 0.00
Lasso 0.070 (0.029) 25.00 0.00 0.046 (0.016) 20.65 0.00
aLasso 0.048 (0.028) 89.20 0.13 0.029 (0.016) 91.63 0.08
SCAD 0.046 (0.028) 93.02 0.12 0.028 (0.016) 94.02 0.09
gLasso 0.070 (0.029) 23.67 0.00 0.046 (0.016) 20.12 0.00
Proposed 0.045 (0.025) 94.02 0.12 0.028 (0.015) 95.60 0.08

σ = 0.5
Un-Pen 0.153 (0.047) 0.00 0.00 0.103 (0.024) 0.00 0.00
Lasso 0.175 (0.059) 46.40 1.12 0.121 (0.039) 37.62 0.16
aLasso 0.138 (0.056) 85.97 1.21 0.090 (0.039) 89.83 0.59
SCAD 0.127 (0.059) 95.20 1.70 0.078 (0.037) 96.77 0.72
gLasso 0.174 (0.059) 44.72 1.15 0.122 (0.039) 37.23 0.13
Proposed 0.114 (0.052) 96.13 1.35 0.075 (0.030) 96.75 0.45

be the vector of coefficients. With f(x) =
∑13

k=1 bkBk(x), f is zero on both

[0.2, 0.4] and [0.8, 0.9].

The results of 500 Monte Carlo iterations are summarized in Table 2. The

Lasso and the group Lasso estimators performed poorly in terms of the average

percentage of correctly estimated zero intervals (CZ), which suggests that they

are too conservative for local sparsity detection. The adaptive Lasso, SCAD,

and the proposed estimator performed similarly. The proposed estimator out-

performed the adaptive Lasso in terms of CZ and outperformed SCAD in terms

of FZ, especially at the high noise level, and had the best overall performance.

To examine the performance of the asymptotic variance formula (2.6), the

asymptotic and empirical standard deviations based on 500 replications are shown

in Figure 2. In particular, the estimated function was evaluated at 200 grid points

during each replication. The (pointwise) standard deviations of the estimated

functions, shown in thick black line type, can be regarded as the true standard

deviations. The estimated standard deviations in 500 replications are shown in

gray color. The asymptotic variance formula performs quite well under all four

settings.

Example 3. Here the true f was not from any linear space spanned by B-spline

basis functions. We took

f(x) = g
(
x;

9

2
,
1

4
,
2

3

)
+ g

(
x; 8,

3

5
,
1

3

)
,
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Figure 2. Empirical (black) and asymptotic (gray) pointwise standard devi-
ations of the estimated functions.

where g(x; a, b, c) = c · (sin(aπ(x − b) − π/2) + 1) · I(b < x < b + 2/a), I(·)
the indicator function. This is f3 in the right panel of Figure 1. It is zero over

[0, 0.25] and [0.85, 1].

A summary of the simulation results from 500 iterations is given in Table 3.

We have similar observations from Table 3: for local sparsity detection, the Lasso

and the group Lasso estimators perform the worst; the adaptive Lasso estimator

is better than Lasso and gLasso, but is still not as good as the proposed one;

SCAD has competitive local sparsity detection capacity with the proposed one,

but its false zeros rate is higher, especially under the high noise settings. Overall,

the proposed estimator has the best performance.

5. Data Example

We applied our proposed procedure to the pinch force data set studied in

Ramsay, Wang, and Flanagan (1995) and Ramsay and Silverman (2005). The

data were collected by R. Flanagan at the MRC Applied Psychology Unit, Cam-
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Table 3. Simulation results for Example 3. The mean and standard deviation
(in parentheses) of RASE, the average percentage of true zero intervals that
were correctly identified (CZ) and the average percentage of nonzero intervals
that were falsely identified as zeros (FZ) are reported.

n = 200 n = 400
RASE CZ(%) FZ(%) RASE CZ(%) FZ(%)

σ = 0.2
Un-Pen 0.065 (0.021) 0.00 0.00 0.043 (0.009) 0.00 0.00
Lasso 0.054 (0.014) 75.99 0.00 0.039 (0.008) 78.95 0.00
aLasso 0.049 (0.015) 88.59 0.00 0.035 (0.008) 89.32 0.00
SCAD 0.049 (0.017) 91.58 0.00 0.035 (0.008) 89.84 0.00
gLasso 0.055 (0.014) 74.94 0.00 0.040 (0.009) 78.66 0.00
Proposed 0.048 (0.013) 93.15 0.00 0.035 (0.008) 91.17 0.00

σ = 0.5
Un-Pen 0.158 (0.046) 0.00 0.00 0.107 (0.022) 0.00 0.00
Lasso 0.119 (0.037) 79.90 0.07 0.084 (0.023) 81.41 0.00
aLasso 0.118 (0.042) 84.67 0.38 0.080 (0.028) 90.99 0.06
SCAD 0.122 (0.056) 90.16 0.58 0.077 (0.029) 95.57 0.08
gLasso 0.118 (0.035) 76.90 0.15 0.084 (0.023) 79.28 0.00
Proposed 0.107 (0.035) 94.65 0.35 0.076 (0.023) 95.50 0.04

bridge: twenty records of the force exerted on an object over time. A scatterplot

of the data is displayed in Figure 3(a). Our interest here is to estimate the overall

mean function. It can be seen that the curve is possibly sparse near both tails,

expected given the nature of this experiment.

We fit the overall mean curve using Un-Pen, Lasso, aLasso, SCAD, gLasso,

and Proposed. The number of interior knot points (M = 20) was selected by

10-fold cross-validation. The regularization parameters were selected by the BIC

procedure (2.5). The fitted curves are depicted in Figure 3(b). Overall, the fitted

mean curves from all methods were close to each other. A zoomed-in view in Fig-

ure 3(c) highlights the difference (around 0.145 seconds) in local sparsity among

the fitted curves. The proposed procedure yields a more sparse fit, as desired

over both tails, while the other five methods fail to produce sparse estimated

curves. Figure 3(d) shows the fitted curve from the proposed method (solid line)

with one pointwise standard deviation (dashed line) above and below.

Table 4 provides the estimated coefficients from the methods. It can be

seen that Lasso and gLasso yield almost the same estimated coefficients (after

rounding), which have least sparsity among the penalized methods. aLasso and

SCAD produce more zeros in their estimated coefficients, but they only detect

sparsity on the left tail, not on the right one, while the proposed method is the

one that detects sparsity on both tails.
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Figure 3. Data example. (a) A scatterplot of the original pinch force data.
(b) Fitted mean curves from six competing methods: un-penalized method,
Lasso, adaptive Lasso, SCAD, group Lasso and the proposed method. (c) A
zoomed-in view of the fitted curves, as shown in (b), around 0.145 seconds.
(d) The fitted mean curve from the proposed method (solid line) with one
pointwise standard deviation above and below (dashed lines).

6. Conclusion and Discussion

We study the problem of sparse estimation in nonparametric regression, both

global and local. We propose a one-step penalized least squares procedure, based

on the basis function approximation and the group bridge penalty, for simul-

taneous functional estimation and model selection. We establish consistency in

estimation and sparsistency in model selection of our proposed estimator. In

simulation studies and a data example, we compare the proposed estimator with

the un-penalized one and other alternatives. The results show that the proposed

estimator performs the best among all, in terms of sparsity detection as well as

the overall fitting to the true curve.
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Table 4. Estimated coefficients for the pinch force data. Our proposed
method can identify local sparsity near both tails.

γ̂ Un-Pen Lasso aLasso SCAD gLasso Proposed
γ̂1 -0.09 0 0 0 0 0
γ̂2 -0.06 0 0 0 0 0
γ̂3 -0.05 -0.09 0 0 -0.09 0
γ̂4 -0.12 0 0 0 0 0
γ̂5 0.60 0.48 0.48 0.52 0.48 0.46
γ̂6 5.89 5.92 5.96 5.94 5.92 5.96
γ̂7 9.08 9.02 9.04 9.05 9.02 9.03
γ̂8 8.41 8.40 8.43 8.43 8.40 8.43
γ̂9 6.51 6.47 6.49 6.50 6.47 6.48
γ̂10 3.81 3.80 3.83 3.82 3.80 3.83
γ̂11 2.05 2.01 2.02 2.05 2.01 2.00
γ̂12 0.91 0.92 0.96 0.93 0.92 0.96
γ̂13 0.29 0.22 0.19 0.27 0.22 0.15
γ̂14 -0.04 0 0 0 0 0
γ̂15 -0.13 -0.11 -0.07 -0.21 -0.11 0
γ̂16 -0.13 -0.11 -0.06 0 -0.11 0
γ̂17 -0.16 -0.14 -0.15 -0.27 -0.14 0
γ̂18 -0.10 -0.08 0 0 -0.08 0
γ̂19 -0.16 -0.14 -0.14 -0.19 -0.14 0
γ̂20 -0.13 -0.11 -0.09 -0.17 -0.10 0
γ̂21 -0.11 -0.09 0 0 -0.09 0
γ̂22 -0.17 -0.14 -0.17 -0.30 -0.14 0
γ̂23 -0.12 -0.06 0 0 -0.06 0
γ̂24 -0.13 -0.04 0 0 -0.04 0

The proposed method can be extended to other regression models that con-

tain nonparametric components, such as nonparametric additive models, varying

coefficient models, semiparametric models, and even functional linear models. A

reviewer noted that our proposed method can also be extended to estimate glob-

ally or locally constant functions by modifying the choice of penalty function. If

a function f(x) ∈ G (the linear space of spline functions) is a constant between

two adjacent knots, say [κj−1, κj ], we have γj = · · · = γj+d. This suggests that

we can group the coefficients {γj , . . . , γj+d} and detect their equality. Corre-

spondingly, we can modify the group penalty by replacing the L1-norm ∥γAj∥1
by |γj+1 − γj | + · · · + |γj+d − γj+d−1|. From a computational aspect, after a

transformation of the B-spline basis functions, the optimization can be solved

using a similar algorithm as we proposed in Section 2.3. Detailed discussion is

provided in the online supplement.
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