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Abstract: A strong orthogonal array of strength t can achieve uniformity on finer
grids when projected onto any g dimensions for any g less than t. It can be regarded
as a kind of uniform space-filling design. Meanwhile, orthogonality is also desir-
able for space-filling designs. In this paper, we construct strong orthogonal arrays
through ordinary orthogonal arrays, in a different fashion than do He and Tang
(2013). The resulting strong orthogonal arrays have comparable columns with that
of He and Tang (2013), and can achieve near or exact column-orthogonality in most
cases, and even 3-orthogonality when the ordinary orthogonal arrays have strength
no less than three. On the other hand, sliced space-filling designs are very useful
for computer experiments with both qualitative and quantitative factors, multiple
computer experiments, data pooling, and cross-validation procedures. Employing
the good space-filling property of strong orthogonal arrays, we further propose a
new kind of sliced space-filling design, called the sliced strong orthogonal array,
and provide two methods for constructing designs for which the resulting designs
and their slices also perform well in terms of both column-orthogonality and 3-
orthogonality.

Key words and phrases: Column-orthogonality, sliced space-filling design, strong
orthogonal array, 3-orthogonality.

1. Introduction

Latin hypercube designs (LHDs), proposed by McKay, Beckman, and Conover
(1979), are popular space-filling designs for computer experiments. An LHD of
n runs possesses n equally spaced levels. This is a desirable feature as the design
achieves the maximum stratification when projected onto any one dimension. It
is well known that orthogonality can be viewed as a stepping stone to space-
filling designs (Bingham, Sitter, and Tang (2009)). A large number of papers
have made efforts to find column-orthogonal LHDs, see e.g. Ye (1998), Steinberg
and Lin (2006), Cioppa and Lucas (2007), Bingham, Sitter, and Tang (2009),
Georgiou (2009), Lin, Mukerjee, and Tang (2009), Pang, Liu, and Lin (2009),
Sun, Liu, and Lin (2009, 2010), Lin et al. (2010), Georgiou and Stylianou (2011),
Sun, Pang, and Liu (2011), Ai, He, and Liu (2012), Yang and Liu (2012), Yin and
Liu (2013) and Georgiou and Efthimiou (2014). However, there is no guarantee
that the LHDs achieve uniformity when projected onto multi-dimensions.
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For computer experiments, it is not necessary that the run size equal the

number of levels at which each factor is observed. Recently, He and Tang (2013)

proposed a new class of arrays, called the strong orthogonal arrays (SOAs), and

constructed SOAs using generalized orthogonal arrays (GOAs). Although the

number of levels in an SOA is not always equal to the run size, an SOA of

strength t not only has equally spaced levels for each factor but also achieves

uniformity on finer grids when projected onto g dimensions for any g less than

t. Such a design is a space-filling design which can achieve uniformity when pro-

jected onto multi-dimensions. However, He and Tang (2013) did not discuss the

correlations among the columns of an SOA. As we know, in a regression model,

it is preferable to include orthogonal variables so that the estimates of the regres-

sion coefficients be uncorrelated. Steinberg and Lin (2006) also pointed out that,

the presence of highly correlated input factors can complicate the subsequent

data analysis and make it more difficult to identify the most important input

factors. In this paper, we propose methods to construct SOAs through ordinary

orthogonal arrays such that the proposed methods have more direct and simpler

mathematical forms than those of He and Tang (2013). Besides, the resulting

SOAs are evaluated in terms of orthogonality, and most of them achieve near or

exact column-orthogonality.

Sliced space-filling designs, proposed by Qian and Wu (2009), are intended

for computer experiments with qualitative and quantitative factors. They can

also be used for multiple computer experiments, data pooling, and cross-validation

procedures. Such a design is a special space-filling design that can be divided

into slices each of which is also a space-filling design. Inspired by this, we further

propose a special kind of sliced space-filling design, called the sliced SOA, where

each slice can be collapsed into an SOA. Methods are provided for constructing

sliced SOAs, and in some cases, not only the whole SOA, but also each slice can

be column-orthogonal.

The rest of this paper is organized as follows. Section 2 provides some

definitions and notation. The construction methods of SOAs are given in Section

3. Section 4 introduces two methods for constructing sliced SOAs. Some further

discussion and concluding remarks are given in the last section. All proofs are

deferred to the Appendix.

2. Definitions and Notation

Let D(n, s1 · · · sm) denote a design which has n runs and m factors with

s1, . . . , sm levels, respectively. For convenience, the levels of the jth column are

taken to be −(sj − 1),−(sj − 3), . . . , sj − 1 . A design D(n, s1 · · · sm) is called an

orthogonal array of strength t, denoted by OA(n,m, s1× · · ·× sm, t), if all possi-

ble level-combinations for any t columns occur with the same frequency. When
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all the sj ’s are equal to s, the array is symmetric and denoted by OA(n,m, s, t).

Here this orthogonality is called combinatorial orthogonality. If the inner prod-

uct of any two columns of a design D(n, s1 · · · sm) is zero, then this design

is called a column-orthogonal design. Further, a column-orthogonal design is

called 3-orthogonal (Bingham, Sitter, and Tang (2009)) if the sum of element-

wise products of any three columns (whether they are distinct or not) is zero. In

a first-order regression model, if the design is a column-orthogonal design, the

estimates of linear main effects are uncorrelated with each other. Sun, Pang, and

Liu (2011) pointed out that if the design is 3-orthogonal, then the estimates of

all linear main effects are uncorrected with the estimates of all second-order ef-

fects. This is desirable when fitting a first-order model with second-order effects

present.

The correlation between two vectors a = (a1, . . . , an)
T and b = (b1, . . . , bn)

T

is

ρ(a, b) =

∑n
i=1(ai − ā)(bi − b̄)√∑n

i=1(ai − ā)2
∑n

i=1(bi − b̄)2
,

where ā =
∑n

i=1 ai/n and b̄ =
∑n

i=1 bi/n. The correlation matrix of design

D with m columns is ρ(D) = (ρij(D))m×m, where ρij(D) is the correlation

between the ith and jth columns of D. Two commonly used measures for

evaluating the orthogonality of D are ρM (D) = maxi<j |ρij(D)| and ρ2(D) =

2
∑

i<j ρ
2
ij(D)/(m(m− 1)). If ā = b̄ = 0, ρ(a, b) reduces to

ρ̃(a, b) =

∑n
i=1 aibi√∑n

i=1 a
2
i

∑n
i=1 b

2
i

=
aT b√

aTa
√
bT b

with ρ̃(D), ρ̃M (D) and ρ̃2(D) defined similarly.

The concept of SOA with non-negative levels was proposed by He and Tang

(2013). Here we restate it with a slight modification to account for designs with

centered levels.

Definition 1. An n × m matrix with entries from st levels {−(st − 1),−(st −
3), . . . , st−1} is called a strong orthogonal array (SOA) of size n, m factors, and

strength t, denoted by SOA(n,m, st, t), if for any integer g with 1 ≤ g ≤ t, any

subarray of g columns can be collapsed into an OA(n, g, su1 ×· · ·×sug , g) for any

positive integers u1, . . . , ug with u1+ · · ·+ug = t, where collapsing into suj levels

is done using 2⌊(i+ st)/2st−uj⌋− suj +1, and ⌊x⌋ denotes the largest integer not
exceeding x.

From this definition, we know that an SOA of strength t achieves uniformity

on any g-dimensional finer grid for g less than t, i.e., it achieves stratification on
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su1 × · · · × sug grids in g dimensions. Since an SOA(n,m, st, t) can be collapsed

into an OA(n,m, s, t), we must have n = λst, where λ is called the index of the

SOA as well as the OA.

We now propose an SOA, termed the sliced SOA, that has something like

sliced space-filling designs. For st = ab, an SOA(λst,m, st, t) is called a sliced

SOA if it can be divided into b slices, each of which is a λa × m matrix that

can be collapsed into an SOA of size λa, m factors, and st/b levels. Obviously, a

sliced SOA is also a sliced space-filling design.

3. Construction of Strong Orthogonal Arrays Using Orthogonal

Arrays

In this section, we provide several methods for constructing SOAs using or-

thogonal arrays. We consider the construction of SOAs with even strength t

in Section 3.1. When t is even, the newly constructed SOAs can easily achieve

column-orthogonality, and even 3-orthogonality by sacrificing at most one col-

umn. In Section 3.2, SOAs of odd strength are constructed, where the column-

orthogonality can be achieved by sacrificing more columns than in the case of

even t. If we need more columns, SOAs achieving near column-orthogonality can

also be constructed.

3.1. Construction of SOA(n,m′, st, t)’s for even t

For m = kt+ q, where q is an integer with 0 ≤ q < t, let

V1 =


1 st−1

s st−2

...
...

st−2 s

st−1 1

 , R1(-s) =


V1 0t×2 · · · 0t×2

0t×2 V1 · · · 0t×2
...

...
. . .

...

0t×2 0t×2 · · · V1

0q×2 0q×2 · · · 0q×2

 ,

and R∗
1(-s) = (R1(-s), d), where V1 occurs k times in R1(-s), 0t×v denotes a t × v

matrix with all entries zero, and d = (1, s, . . . , st−q−1, 0, . . . , 0, st−q, . . . , st−1)T is

an m× 1 vector. Let R1 be an m× 2k matrix which consists of columns of R1(-s)

up to sign changes, and R∗
1 be an m× (2k+1) matrix which consists of columns

of R∗
1(-s) up to sign changes.

Theorem 1. Suppose A is an OA(n,m, s, t) with m = kt+ q and 0 ≤ q < t, and

R1 and R∗
1 are as defined above. Then

(i) for 0 ≤ q < t/2, B = AR1 is an SOA(n, 2k, st, t);

(ii) for t/2 ≤ q < t, B = AR∗
1 is an SOA(n, 2k + 1, st, t).
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Remark 1. From Theorem 1, we can use an orthogonal array and a matrix R1

or R∗
1 to construct an SOA with even strength. He and Tang (2013) pointed

out that the existence of an SOA is equivalent to that of a GOA (see their

definition of a GOA), and provided a method for constructing an SOA using a

GOA. Essentially, the construction of SOAs in Theorem 1 is also achieved with

some construction of GOAs. Take m = kt,R1 = R1(-s), for example, and let

u1 = (1, s, . . . , st−1)T , P = diag{(It, Nt), . . . , (It, Nt)}, and Q = diag{u1, . . . , u1},

where It is the identity matrix of order t, Nt is the back diagonal identity matrix

of order t, (It, Nt) occurs k times in P , and u1 occurs 2k times in Q. Then R1

can be decomposed as R1 = PQ. So the construction process can be done in two

steps. With A = (a1, . . . , akt),

C=AP=((a1, . . . , at), (at, . . . , a1), (at+1, . . . , a2t), . . . , (akt, akt−1, . . . , a(k−1)t+1))

is a GOA(n, 2k, s, t). Then CQ is an SOA. This process is similar to that of He

and Tang (2013) in the framework of OAs to GOAs to SOAs. Here, Theorem

1 constructs SOAs in one step, since, in this way, for mathematical forms and

proofs it is more direct; for orthogonality, we want to discuss this through R.

In the following, we give matrices like R1 straightforwardly, instead of giving

matrices such as P and Q.

Lemma 1 (Sun, Pang, and Liu (2011)). Suppose A is an n × m matrix with

1TnA = 01×m and ATA = cIm, where 1n denotes an n× 1 vector with all entries

one and c is a constant. Let D = AT , where T is a matrix with m rows. Then

(i) if T is a column-orthogonal matrix, D is a column-orthogonal matrix;

(ii) ρ(D) = ρ̃(T ), ρM (D) = ρ̃M (T ) and ρ2(D) = ρ̃2(T ); and

(iii) if A is a 3-orthogonal design, the estimates of all linear main effects of D are

uncorrelated with the estimates of all quadratic effects and bilinear interac-

tions. Furthermore, if T is a column-orthogonal matrix, D is a 3-orthogonal

matrix.

Accordingly, when 0 ≤ q < t/2 , if R1 is a column-orthogonal matrix, then

the SOA B = AR1 is a column-orthogonal SOA. When t/2 ≤ q < t, we know that

no matter how one changes the signs of the elements of d, d cannot be orthogonal

to the first column of R∗
1. In this case, in order to get a column-orthogonal SOA,
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we remove the last column of R∗
1 to use R1 instead. Let

V2 =

(
1 s · · · st/2−1 st/2 · · · st−1

st−1 st−2 · · · st/2 −st/2−1 · · · −1

)T

, and

R2 =


V2 0t×2 · · · 0t×2

0t×2 V2 · · · 0t×2
...

...
. . .

...

0t×2 0t×2 · · · V2

0q×2 0q×2 · · · 0q×2

 , (3.1)

where V2 occurs k times in R2.

Theorem 2. Suppose A is an OA(n,m, s, t) with m = kt+ q and 0 ≤ q < t, and

R2 is as defined in (3.1). Then B = AR2 is a column-orthogonal SOA(n, 2k, st, t).

Furthermore, B is a 3-orthogonal SOA if t ≥ 3.

Remark 2. For the case of even t, if an OA(n,m, s, t) exists, we can construct an

ordinary SOA by Theorem 1. The number of columns m′ can also be expressed as

⌊2m/t⌋, which is the same as that of He and Tang (2013). According to Lemma

1, the correlation matrix of the resulting SOA in Theorem 1 is ρ̃(R1) or ρ̃(R∗
1),

which can be calculated more easily than directly using the SOA. It follows from

Theorem 2 that we can construct a column-orthogonal SOA. When 0 ≤ q < t/2,

the SOA has the same number of columns as the one constructed by Theorem 1,

and when t/2 ≤ q < t, the number of columns is only one less than that of the

SOA, by Theorem 1.

Example 1. Suppose A is an OA(8, 7, 2, 2),

R2 =



1 2 0 0 0 0

2 −1 0 0 0 0

0 0 1 2 0 0

0 0 2 −1 0 0

0 0 0 0 1 2

0 0 0 0 2 −1

0 0 0 0 0 0


, and R∗

1 =



1 2 0 0 0 0 1

2 −1 0 0 0 0 0

0 0 1 2 0 0 0

0 0 2 −1 0 0 0

0 0 0 0 1 2 0

0 0 0 0 2 −1 0

0 0 0 0 0 0 2


.

Here R2 is a column-orthogonal matrix, ρ̃1,7(R
∗
1) = ρ̃7,1(R

∗
1) = 0.2, ρ̃2,7(R

∗
1) =

ρ̃7,2(R
∗
1) = 0.4, and other elements of ρ̃(R∗

1) are all zero. Then B = AR∗
1 is an

ordinary SOA(8, 7, 4, 2), and C = AR2, formed by the first six columns of B, is a

column-orthogonal SOA(8, 6, 4, 2). Besides, ρ1,7(B) = ρ7,1(B) = 0.2, ρ2,7(B) =

ρ7,2(B) = 0.4, and other elements of ρ(B) are all zero. The OA(8, 7, 2, 2) and

SOA(8, 7, 4, 2) are listed in Table 1.
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Table 1. The OA(8, 7, 2, 2) and SOA(8, 7, 4, 2) in Example 1.

OA(8, 7, 2, 2) SOA(8, 7, 4, 2)∗

−1 −1 −1 −1 −1 −1 −1 −3 −1 −3 −1 −3 −1 −3
1 −1 −1 1 −1 1 1 −1 3 1 −3 1 −3 3
1 1 −1 −1 1 −1 1 3 1 −3 −1 −1 3 3
1 1 1 −1 −1 1 −1 3 1 −1 3 1 −3 −1

−1 1 1 1 −1 −1 1 1 −3 3 1 −3 −1 1
1 −1 1 1 1 −1 −1 −1 3 3 1 −1 3 −1

−1 1 −1 1 1 1 −1 1 −3 1 −3 3 1 −3
−1 −1 1 −1 1 1 1 −3 −1 −1 3 3 1 1
∗ The first six columns form a column-orthogonal SOA(8, 6, 4, 2)

Example 2. Suppose A is an OA(64, 8, 2, 4), and

R2 =


1 2 4 8 0 0 0 0

8 4 −2 −1 0 0 0 0

0 0 0 0 1 2 4 8

0 0 0 0 8 4 −2 −1


T

.

Here R2 is a column-orthogonal matrix, and B = AR2 is a 3-orthogonal SOA(64,
4, 16, 4).

3.2. Construction of SOA(n,m′, st, t)’s for odd t

For m− 1 = k(t− 1) + q, where q is an integer with 0 ≤ q < t− 1, let

V3 =

(
1 s · · · s(t−3)/2 s(t+1)/2 · · · st−1

st−1 st−2 · · · s(t+1)/2 s(t−3)/2 · · · 1

)T

,

R3(-s) =



s(t−1)/21T2 s(t−1)/21T2 · · · s(t−1)/21T2
V3 0(t−1)×2 · · · 0(t−1)×2

0(t−1)×2 V3 · · · 0(t−1)×2
...

...
. . .

...

0(t−1)×2 0(t−1)×2 · · · V3

0q×2 0q×2 · · · 0q×2


, and R∗

3(-s) = (R3(-s), d),

where V3 occurs k times in R3(-s), and d is an m× 1 vector with

d=


(s(t−1)/2, 1, s, . . . , s(t−3)/2, 0, . . . , 0, s(t+1)/2, . . . , st−1)T , for q = t−1

2 ;

(s(t−1)/2, 1, s, . . . , st−q−2, 0, . . . , 0, st−q−1, . . . ,

s(t−3)/2, s(t+1)/2, . . . , st−1)T , for t−1
2 <q<t−1.

Let R3 be anm×2k matrix which consists of columns of R3(-s) up to sign changes,
and R∗

3 be an m× (2k+1) matrix which consists of columns of R∗
3(-s) up to sign

changes.
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Theorem 3. Suppose A is an OA(n,m, s, t) with m − 1 = k(t − 1) + q and

0 ≤ q < t− 1, and R3 and R∗
3 are as defined above. Then

(i) for 0 ≤ q < (t− 1)/2, B = AR3 is an SOA(n, 2k, st, t);

(ii) for (t− 1)/2 ≤ q < t− 1, B = AR∗
3 is an SOA(n, 2k + 1, st, t).

According to Lemma 1, in order to obtain a column-orthogonal SOA by

Theorem 3, R3 or R∗
3 needs to be a column-orthogonal matrix. However, R3 and

R∗
3 cannot be orthogonal. We propose a new matrix R4 that ensures a column-

orthogonal SOA. The number of columns of R4 is usually less than that of R3,

the price we pay for the orthogonality.

For m = k(t+ 1) + q, where q is an integer with 0 ≤ q < t+ 1, let

V4 =

(
1 s · · · s(t−3)/2 s(t−1)/2 s(t+1)/2 · · · st−1 0

st−1 st−2 · · · s(t+1)/2 0 −s(t−3)/2 · · · −1 s(t−1)/2

)T

,

R4 =


V4 0(t+1)×2 · · · 0(t+1)×2

0(t+1)×2 V4 · · · 0(t+1)×2
...

...
. . .

...

0(t+1)×2 0(t+1)×2 · · · V4

0q×2 0q×2 · · · 0q×2

 , and R∗
4 = (R4, d), (3.2)

where V4 occurs k times in R4, and d = (0, . . . , 0, 1, s, . . . , st−1)T (for q = t) is

an m × 1 vector. It is easy to see that both R4 and R∗
4 are column-orthogonal

matrices.

Theorem 4. Suppose A is an OA(n,m, s, t) with m = k(t+ 1) + q and 0 ≤ q <

t+ 1, and R4 and R∗
4 are as defined in (3.2). Then

(i) for q < t, B = AR4 is a column-orthogonal SOA(n, 2k, st, t), and B is a

3-orthogonal SOA if t ≥ 3;

(ii) for q = t, B = AR∗
4 is a column-orthogonal SOA(n, 2k+ 1, st, t), and B is a

3-orthogonal SOA if t ≥ 3.

Example 3. Suppose A is an OA(16, 8, 2, 3). Let

R∗
3 =



2 −2 2 −2 2 −2 2

1 −4 0 0 0 0 −1

4 1 0 0 0 0 0

0 0 1 4 0 0 0

0 0 4 1 0 0 0

0 0 0 0 1 −4 0

0 0 0 0 4 1 0

0 0 0 0 0 0 4


, and R4 =



1 4 0 0

2 0 0 0

4 −1 0 0

0 2 0 0

0 0 1 4

0 0 2 0

0 0 4 −1

0 0 0 2


.
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Table 2. The OA(16, 8, 2, 3), SOA(16, 7, 8, 3) and 3-orthogonal SOA(16, 4, 8, 3)
in Example 3.

OA(16, 8, 2, 3) SOA(16, 7, 8, 3) SOA(16, 4, 8, 3)
−1 −1 −1 −1 −1 −1 −1 −1 −7 5 −7 −3 −7 5 −5 −7 −5 −7 −5
−1 1 −1 1 −1 1 −1 1 −5 −3 −5 5 −5 −3 1 −3 −1 −3 −1
−1 −1 1 1 −1 −1 1 1 1 7 −5 5 1 7 3 1 −3 1 −3
−1 1 1 −1 −1 1 1 −1 3 −1 −7 −3 3 −1 −7 5 −7 5 −7
−1 −1 −1 −1 1 1 1 1 −7 5 1 −1 3 −1 3 −7 −5 7 5
−1 1 −1 1 1 −1 1 −1 −5 −3 3 7 1 7 −7 −3 −1 3 1
−1 −1 1 1 1 1 −1 −1 1 7 3 7 −5 −3 −5 1 −3 −1 3
−1 1 1 −1 1 −1 −1 1 3 −1 1 −1 −7 5 1 5 −7 −5 7
1 1 1 1 1 1 1 1 7 −5 7 3 7 −5 5 7 5 7 5
1 −1 1 −1 1 −1 1 −1 5 3 5 −5 5 3 −1 3 1 3 1
1 1 −1 −1 1 1 −1 −1 −1 −7 5 −5 −1 −7 −3 −1 3 −1 3
1 −1 −1 1 1 −1 −1 1 −3 1 7 3 −3 1 7 −5 7 −5 7
1 1 1 1 −1 −1 −1 −1 7 −5 −1 1 −3 1 −3 7 5 −7 −5
1 −1 1 −1 −1 1 −1 1 5 3 −3 −7 −1 −7 7 3 1 −3 −1
1 1 −1 −1 −1 −1 1 1 −1 −7 −3 −7 5 3 5 −1 3 1 −3
1 −1 −1 1 −1 1 1 −1 −3 1 −1 1 7 −5 −1 −5 7 5 −7

Then R4 is a column-orthogonal matrix, and

ρ̃(R∗
3) =



1 −0.1905 0.1905 −0.1905 0.1905 −0.1905 0.1429

−0.1905 1 −0.1905 0.1905 −0.1905 0.1905 0

0.1905 −0.1905 1 0.1905 0.1905 −0.1905 0.1905

−0.1905 0.1905 0.1905 1 −0.1905 0.1905 −0.1905

0.1905 −0.1905 0.1905 −0.1905 1 −0.1905 0.1905

−0.1905 0.1905 −0.1905 0.1905 −0.1905 1 −0.1905

0.1429 0 0.1905 −0.1905 0.1905 −0.1905 1


.

Based on Theorem 3(ii), B = AR∗
3 is an ordinary SOA(16, 7, 8, 3) with a cor-

relation matrix ρ(B) = ρ̃(R∗
3) and, from Lemma 1(iii), we can know that the

estimates of all linear main effects of B are uncorrelated with the estimates of

all quadratic effects and bilinear interactions. Based on Theorem 4(i), C = AR4

is a 3-orthogonal SOA(16, 4, 8, 3). Both designs achieve stratifications on 2 × 4

and 4 × 2 grids in any two-dimensional projection, and achieve a stratification

on a 2 × 2 × 2 grid in any three-dimensional projection. The OA(16, 8, 2, 3),

SOA(16, 7, 8, 3), and 3-orthogonal SOA(16, 4, 8, 3) are listed in Table 2.
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Figure 1. The binary projection of the first two columns of the
SOA(64, 5, 64, 3) in Example 4.

Example 4. Suppose A is an OA(64, 6, 4, 3), and

R∗
3 =



4 −4 4 −4 4

1 −16 0 0 −1

16 1 0 0 0

0 0 1 16 0

0 0 16 1 0

0 0 0 0 16


.

Let B = AR∗
3, then it can be calculated that ρM (B) = ρ̃M (R∗

3) = 0.0586, and

ρ2(B) = ρ̃2(R∗
3) = 0.00305. We can see that B is a nearly column-orthogonal

SOA(64, 5, 64, 3), which is obviously a nearly column-orthogonal LHD with 64

runs and 5 factors. The estimates of all linear main effects of B are uncorrelated

with the estimates of all quadratic effects and bilinear interactions. Furthermore,

it achieves stratifications on 16 × 4 and 4 × 16 grids in any two-dimensional

projection, and achieves a stratification on a 4×4×4 grid in any three-dimensional

projection. The binary projection of the first two columns of this design is

displayed in Figure 1. Design B is given in Table 3.

Theorem 4 ensures that the constructed SOA is column-orthogonal, but it

usually has many fewer columns than the one in Theorem 3. To obtain an SOA

with more columns, its orthogonality is discussed below.
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Table 3. The nearly column-orthogonal SOA(64, 5, 64, 3) in Example 4.

Run 1 2 3 4 5 Run 1 2 3 4 5
1 −63 57 −63 −39 −57 33 −47 41 −11 11 55
2 −31 59 −29 −5 −25 34 −15 43 −41 41 23
3 1 61 5 29 7 35 17 45 49 −49 −9
4 33 63 39 63 39 36 49 47 19 −19 −41
5 −61 25 3 −3 37 37 −45 9 55 47 −43
6 −29 27 33 −33 5 38 −13 11 21 13 −11
7 3 29 −57 57 −27 39 19 13 −13 −21 21
8 35 31 −27 27 −59 40 51 15 −47 −55 53
9 −59 −7 37 31 −29 41 −43 −23 17 −51 19
10 −27 −5 7 61 −61 42 −11 −21 51 −17 51
11 5 −3 −31 −37 35 43 21 −19 −43 9 −45
12 37 −1 −61 −7 3 44 53 −17 −9 43 −13
13 −57 −39 −25 59 1 45 −41 −55 −45 −23 −15
14 −25 −37 −59 25 33 46 −9 −53 −15 −53 −47
15 7 −35 35 −1 −63 47 23 −51 23 45 49
16 39 −33 1 −35 −31 48 55 −49 53 15 17
17 −55 49 43 −9 15 49 −39 33 31 37 −1
18 −23 51 9 −43 47 50 −7 35 61 7 −33
19 9 53 −17 51 −49 51 25 37 −37 −31 63
20 41 55 −51 17 −17 52 57 39 −7 −61 31
21 −53 7 −23 −45 −19 53 −37 1 −35 1 29
22 −21 19 −53 −15 −51 54 −5 3 −1 35 61
23 11 21 45 23 45 55 27 5 25 −59 −35
24 43 23 15 53 13 56 59 7 59 −25 −3
25 −51 −15 −49 49 43 57 −35 −31 −5 −29 −37
26 −19 −13 −19 19 11 58 −3 −29 −39 −63 −5
27 13 −11 11 −11 −21 59 29 −27 63 39 27
28 45 −9 41 −41 −53 60 61 −25 29 5 59
29 −49 −47 13 21 −55 61 −33 −63 57 −57 57
30 −17 −45 47 55 −23 62 −1 −61 27 −27 25
31 15 −43 −55 −47 9 63 31 −59 −3 3 −7
32 47 −41 −21 −13 41 64 63 −57 −33 33 −39

For m− 1 = k(t− 1) + q, where q is an integer with 0 ≤ q < t− 1, let

V5 =

(
1 s · · · s(t−3)/2 s(t+1)/2 · · · st−1

st−1 st−2 · · · s(t+1)/2 −s(t−3)/2 · · · −1

)T

, and

R5 =



s(t−1)/21T2 s(t−1)/21T2 · · · s(t−1)/21T2
V5 0(t−1)×2 · · · 0(t−1)×2

0(t−1)×2 V5 · · · 0(t−1)×2
...

...
. . .

...

0(t−1)×2 0(t−1)×2 · · · V5

0q×2 0q×2 · · · 0q×2


, (3.3)
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Table 4. The values of st−1(s2 − 1)/(s2t − 1) for s = 2, . . . , 9 and t = 3, 5.
t s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8 s = 9
3 0.1905 0.0989 0.0586 0.0384 0.0270 0.0200 0.0154 0.0122
5 0.0469 0.0110 0.0037 0.0015 0.0008 0.0004 0.0002 0.0002

where V5 occurs k times in R5.

Theorem 5. Suppose A is an OA(n,m, s, t) with m − 1 = k(t − 1) + q and

0 ≤ q < t−1, and R5 is as defined in (3.3). Then B = AR5 is an SOA(n, 2k, st, t)

with ρij(B) = st−1(s2 − 1)/(s2t − 1) for any i ̸= j, strictly decreasing with respect

to s and t.

Some values of st−1(s2− 1)/(s2t− 1) are shown in Table 4. From Theorem 5

and Table 4, we know that the SOAs constructed by Theorem 5 perform well in

terms of the near column-orthogonality except for the case of s = 2 and t = 3.

Remark 3.

(i) For the case of odd t, if an OA(n,m, s, t) exists, we can construct an ordi-

nary SOA by Theorem 3. The number of columns m′ can be expressed as

⌊2(m− 1)/(t− 1)⌋, which is the same as that of He and Tang (2013). It fol-

lows from Theorem 4 that we can construct a column-orthogonal SOA with

the number of columns many fewer than that of the SOA constructed by

Theorem 3. However, Theorem 5 ensures that for given parameters n,m, s

and t, from the SOAs by Theorem 3, we can find nearly column-orthogonal

SOAs by sacrificing at most one column.

(ii) If λ = 1, where λ is the index of the orthogonal array, then the resulting SOA

is an LHD. In particular, according to Theorems 2 and 4, we can construct

column-orthogonal LHDs, even 3-orthogonal LHDs and, according to Theo-

rem 5, we can construct nearly column-orthogonal LHDs. Furthermore, the

LHDs achieve uniformity on finer grids when projected onto g dimensions for

any g less than t, see Example 4 for example.

(iii)According to Lemma 1(ii) and Theorems 1 and 3, we can obtain nearly

column-orthogonal SOAs by changing the signs of the elements in matrices

R1, R
∗
1, R3 and R∗

3.

4. Construction of Sliced Strong Orthogonal Arrays

For n = λst, let A be an OA(n,m+ 1, s, t), and aj be the jth column of A,

j = 1, . . . ,m + 1. For any l = 1, . . . ,m + 1, we obtain an n × m matrix Bl by

permuting the rows of A in an increasing order of the elements in al and then

omitting al. It is easy to see that Bl is an OA(n,m, s, t) that can be divided into

s slices, and each slice is an OA(n/s,m, s, t − 1). According to the number of
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columns and strength of Bl, we get the corresponding matrix Ri or R∗
i used in

Theorem 1, 2, 3, 4 or 5, where the number of columns of Ri or R
∗
i is denoted by

m′. Then sliced SOAs can be produced as follows.

Theorem 6. For any B ∈ {B1, . . . , Bm+1} constructed above, let R be the cor-

responding matrix Ri or R∗
i used in one of Theorems 1–5. Then

(i) C = BR is a sliced SOA(n,m′, st, t) with s slices, and each slice is an

SOA(n/s, m′, st−1, t − 1) when collapsed into st−1 levels, where m′ is the

number of columns of R; when t ≥ 4, the estimates of all linear main effects

of each slice are uncorrelated with the estimates of all quadratic effects and

bilinear interactions of the slice;

(ii) if R is column-orthogonal, each slice of C is column-orthogonal when t ≥ 3,

and 3-orthogonal when t ≥ 4.

For any SOA(n,m + 1, st, t) with n = λst, denoted by A, let aj be the jth

column, j = 1, . . . ,m+1. Collapse aj into an s-level column, denoted by bj , and

obtain an n×m matrix Cj by permuting the rows of (bj , a1, . . . , aj−1, aj+1, . . . ,

am+1) in an increasing order of the elements in bj , and then omitting bj .

Corollary 1. Any C ∈ {C1, . . . , Cm+1}, constructed above, is a sliced SOA(n,

m, st, t) with s slices, and each slice is an SOA(n/s,m, st−1, t−1) when collapsed

into st−1 levels. Furthermore, if the SOA(n,m+ 1, st, t) A is obtained from one

of Theorems 1–5 in Section 3, and A is column-orthogonal, then each slice of C

is also column-orthogonal when t ≥ 3.

Thus if we want to get sliced SOAs with low correlations, we can use the

SOAs of Section 3 for the construction. The numbers of columns of the sliced

SOAs with the same run size and strength constructed from the OA and SOA

may be different.

Example 5. Suppose A is the OA(16, 8, 2, 3) of Table 2. Omit its first column

and denote the resulting design by B. Let

R∗
3 =



2 −2 2 −2 2 −2

1 4 0 0 0 0

4 1 0 0 0 0

0 0 1 4 0 0

0 0 4 1 0 0

0 0 0 0 1 4

0 0 0 0 4 1


, and R4 =



1 4 0

2 0 0

4 −1 0

0 2 0

0 0 1

0 0 2

0 0 4


.

It is easy to see that R4 is a column-orthogonal matrix. Then C = BR∗
3 is a

sliced SOA(16, 6, 8, 3) with two slices, D = BR4 is a column-orthogonal sliced
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Table 5. The sliced SOA(16, 6, 8, 3) and column-orthogonal sliced
SOA(16, 3, 8, 3) in Example 5.

SOA(16, 6, 8, 3) SOA(16, 3, 8, 3)
−7 −3 −7 −3 −7 −3 −7 −5 −7
5 −5 5 −5 5 −5 3 1 3
3 7 −7 −3 3 7 5 −7 5

−1 1 5 −5 −1 1 −1 3 −1
−7 −3 3 7 3 7 −7 −1 7
5 −5 −1 1 −1 1 3 5 −3
3 7 3 7 −7 −3 5 −3 −5

−1 1 −1 1 5 −5 −1 7 1
7 3 7 3 7 3 7 5 7

−5 5 −5 5 −5 5 −3 −1 −3
−3 −7 7 3 −3 −7 −5 7 −5
1 −1 −5 5 1 −1 1 −3 1
7 3 −3 −7 −3 −7 7 1 −7

−5 5 1 −1 1 −1 −3 −5 3
−3 −7 −3 −7 7 3 −5 3 5
1 −1 1 −1 −5 5 1 −7 −1

SOA(16, 3, 8, 3) with two slices, and each slice of D is also a column-orthogonal

design. The designs C and D are shown in Table 5.

From the SOA(16, 7, 8, 3) and column-orthogonal SOA(16, 4, 8, 3) in Table 2,

we can get a sliced SOA(16, 6, 8, 3) with two slices and a column-orthogonal sliced

SOA(16, 3, 8, 3) with two slices (each slice is also a column-orthogonal design)

by permuting the rows of the SOA(16, 7, 8, 3) and SOA(16, 4, 8, 3) according to

their first columns and then omitting them, respectively.

In this example, the ordinary sliced SOAs with the same run size and strength

constructed by the two methods have the same number of columns, and this is

also true for the two column-orthogonal sliced SOAs.

Example 6. Suppose A is an OA(128, 15, 2, 4). Permuting the rows of A in an

increasing order of the elements in the first column, and then omitting this col-

umn, we obtain a matrix, B, that is an OA(128, 14, 2, 4). According to Theorem

6, we can obtain a sliced SOA(128, 7, 16, 4) C = BR∗
1 with the R∗

1 of Theorem 1.

From the sameA and Theorem 1, we can first construct an SOA(128, 7, 16, 4),

and then obtain a sliced SOA(128, 6, 16, 4) according to Corollary 1. Here the

sliced SOA constructed directly from the OA has one more column than that

from the SOA.

Example 7. Suppose A is an OA(211, 32, 2, 4) and that the matrix B is obtained

as in Example 6. Then B is an OA(211, 31, 2, 4) and, by Theorem 6, C = BR2 is a

column-orthogonal sliced SOA(211, 14, 16, 4), where R2 is defined in (3.1). Using
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Theorem 2 and A, we can first construct a column-orthogonal SOA(211, 16, 16, 4),

and then a column-orthogonal sliced SOA(211, 15, 16, 4) using Corollary 1 that

has one more column than the one constructed by Theorem 6.

Remark 4. As in Theorem 6 and Corollary 1, for i = 1, . . . , t − 1, we can

construct sliced SOA(n,m, st, t)’s, each with st−i slices, so that each slice can be

collapsed into an SOA(n/st−i,m, si, i). Since from a practical point of view, the

run size of each slice is usually much larger than the number of slices, the sliced

SOAs constructed by Theorem 6 and Corollary 1 suffice.

5. Concluding Remarks

The SOA can be seen as a kind of space-filling design with relatively good

uniformity. We propose some methods to construct them. The methods are easy

to implement, and it is easy to evaluate the orthogonality of the constructions.

Let h(n, s, t) denote the largest m for which an SOA(n,m, st, t) exists, and

let f(n, s, t) denote the largest m for which an OA(n,m, s, t) exists. We know

that if there exists an SOA(n,m, st, t), then an OA(n,m, s, t) can be constructed

from it by level collapsing, so h(n, s, t) ≤ f(n, s, t). Remarks 2 and 3(i) imply

that

h(n, s, t) ≥

 ⌊2f(n,s,t)t ⌋, for even t;

⌊2(f(n,s,t)−1)
(t−1) ⌋, for odd t.

Thus for t = 2, h(n, s, 2) = f(n, s, 2), and for t = 3, f(n, s, 3) − 1 ≤ h(n, s, 3) ≤
f(n, s, 3), also obtained in He and Tang (2013).

Sliced space-filling designs have received much recent interest in computer

experiments. We propose a kind of sliced space-filling design, the sliced SOA.

Two methods are provided to construct such designs.
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Appendix: Proofs of Theorems

Lemma A.1. Let A = (a1, . . . , at) be an OA(st, t, s, t), dk = (dk1 , . . . , dkk)
T be

a vector of (sk−1, sk−2, . . . , s, 1)T up to sign changes, where k is a positive integer

with k ≤ t. Then
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(i) if
∑t

r=1 ardtr is collapsed into su levels, it is
∑u

r=1 sgn(dtr)ars
u−r, 1 ≤ u ≤

t− 1, and if
∑t

r=1 ars
t−r is collapsed into su levels, it is

∑u
r=1 ars

u−r;

(ii) for g ≤ t and u1 + · · ·+ ug = t,(
u1∑
r=1

ardu1r
,

u2∑
r=1

au1+rdu2r
, . . . ,

ug∑
r=1

a∑g−1
j=1 uj+r

dugr

)

is an OA(st, g, su1 × · · · × sug , g). In particular,(
u1∑
r=1

ars
u1−r,

u2∑
r=1

au1+rs
u2−r, . . . ,

ug∑
r=1

a∑g−1
j=1 uj+r

sug−r

)

is an OA(st, g, su1 × · · · × sug , g).

A.1. Proof of Lemma A.1

Without loss of generality, we only prove the case dk = (sk−1, sk−2, . . . ,

s, 1)T , where k ≤ t.

(i) Obviously,
∑t

r=1 ars
t−r yields st equally-spaced levels −(st−1),−(st−3), . . . ,

(st − 1). Then if
∑t

r=1 ars
t−r is collapsed into su levels, it is

2
⌊∑t

r=1 ars
t−r + st

2st−u

⌋
− su + 1

= 2
⌊∑u

r=1 ars
u−r + su

2
+

∑t
r=u+1 ars

t−r

2st−u

⌋
− su + 1

= 2
⌊∑u−1

r=1 ars
u−r + au + su − 1

2
+

1

2
+

∑t
r=u+1 ars

t−r

2st−u

⌋
− su + 1.

If s is odd (even), the elements of ar are even (odd), so the elements

of
∑u−1

r=1 ars
u−r +au+su−1 are even. Since the elements of

∑t
r=u+1 ars

t−r =

au+1s
t−u−1+au+2s

t−u−2+ · · ·+at are −(st−u−1),−(st−u−3), . . . , (st−u−1),

then the elements of
∑t

r=u+1 ars
t−r/2st−u belong to [−1/2 + 1/2st−u, 1/2−

1/2st−u]. As a result, the elements of 1/2 +
∑t

r=u+1 ars
t−r/2st−u belong to

(0, 1). Then it follows that if
∑t

r=1 ars
t−r is collapsed into su levels, it is

u∑
r=1

ars
u−r + (su − 1)− (su − 1) =

u∑
r=1

ars
u−r,

whose elements are −(su − 1),−(su − 3), . . . , (su − 1).
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(ii) For l = 1, . . . , g, let bl =
∑ul

r=1 a∑l−1
i=1 ui+rs

ul−r. We know that bl has s
ul levels

with each level occurring st−ul times. Let (ai1, ai2, . . . , ait) be the ith row of

A, and (bi1, bi2, . . . , big) be the corresponding ith row of (b1, b2, . . . , bg). Then

(bi1, bi2, . . . , big) =
( u1∑

r=1

airs
u1−r,

u2∑
r=1

ai(u1+r)s
u2−r, . . . ,

ug∑
r=1

a
i(
∑g−1

j=1 uj+r)
sug−r

)
.

Since (a1, a2, . . . , at) is an OA(st, t, s, t), all the (ai1, ai2, . . . , ait)’s for i =

1, . . . , st are different, thus all the (bi1, . . . , big)’s for i = 1, . . . , st are different.

Thus (b1, . . . , bg) is an OA(st, g, su1 × · · · × sug , g), noting that
∑g

i=1 ui = t.

Remark A.1. In Lemma A.1, if we change the order of the elements in dk, then

similar conclusions can be reached. This is important for proving the theorems.

A.2. Proof of Theorem 1

Let A = (a1, . . . , am). Without loss of generality, let R1 = R1(-s) and R∗
1 =

R∗
1(-s).

(i) For j = 1, . . . , 2k, let bj be the jth column of B. Then we have

b2j−1 =

t∑
r=1

a(j−1)t+rs
r−1, and b2j =

t∑
r=1

a(j−1)t+rs
t−r, j = 1, . . . , k.

According to Lemma A.1 and Remark A.1, if b2j−1 is collapsed into su1 levels,

it is

2
⌊b2j−1 + st

2st−u1

⌋
− su1 + 1 =

t∑
r=t−u1+1

a(j−1)t+rs
r−t+u1−1;

and if b2j is collapsed into su2 levels, it is

2
⌊b2j + st

2st−u2

⌋
− su2 + 1 =

u2∑
r=1

a(j−1)t+rs
u2−r.

If Dj = (b2j−1, b2j) is the jth block of B, j = 1, . . . , k, then B = (D1, . . . ,

Dk). It is easy to see that B is an OA(n, 2k, st, 1). For g ≥ 2 and u1 + · · ·+
ug = t, consider the case that there is at least one pair of columns which

are selected from the same block. We can specially select b2j−1 and b2j for

g = 2 and u1 + u2 = t. In this case, if b2j−1 is collapsed into su1 levels,

it is
∑t

r=u2+1 a(j−1)t+rs
r−u2−1, while if b2j is collapsed into su2 levels, it is∑u2

r=1 a(j−1)t+rs
u2−r. Since (a(j−1)t+1, a(j−1)t+2, . . . , ajt) is an OA(n, t, s, t),

according to Lemma A.1 and Remark A.1 it follows that (b2j−1, b2j) can be

collapsed into an OA(n, 2, su1 × su2 , 2). For g ≥ 2 and u1 + · · · + ug = t, if
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we select g columns from different blocks Di1 , . . . , Dig , then these g columns

can be collapsed into an OA(n, g, su1 × · · · × sug , g) since, for any t columns

(ai1 , . . . , ait) of A, they form an OA(n, t, s, t). Other cases can be derived

similarly.

(ii) For t/2 ≤ q < t and u1 + u2 = t, it is enough to prove that both (b1, b2k+1)

and (b2, b2k+1) can be collapsed into OA(n, 2, su1 × su2 , 2)’s, where

b2k+1 =

t−q∑
r=1

ars
r−1 +

q∑
r=1

akt+rs
t−q−1+r.

For u1 + u2 = t and u2 > q, if b2k+1 is collapsed into su2 levels, it is

t−q∑
r=t−u2+1

ars
r−t+u2−1+

q∑
r=1

akt+rs
u2−q−1+r=

t−q∑
r=u1+1

ars
r−u1−1+

q∑
r=1

akt+rs
u2−q−1+r,

if b1 is collapsed into su1 levels, it is
∑t

r=t−u1+1 ars
r−t+u1−1, and if b2 is col-

lapsed into su1 levels, it is
∑u1

r=1 ars
u1−r. Then both (b1, b2k+1) and (b2, b2k+1)

can be collapsed into OA(n, 2, su1 × su2 , 2)’s. Since t/2 ≤ q < t and u2 =

t − u1 > q, we have t − q < t − u1 + 1 and u1 < u1 + 1, which in

turn yields that both (au1+1, . . . , at−q, at−u1+1, . . . , at, akt+1, . . . , akt+q) and

(a1, . . . , au1 , au1+1, . . . , at−q, akt+1, . . . , akt+q) are OA(n, t, s, t)’s.

For the case u2 ≤ q, we can derive the result by a similar argument. The

details are omitted.

A.3. Proof of Theorem 2

According to Theorem 1, we know that B = AR2 is an SOA(n, 2k, st, t).

Since R2 is column-orthogonal, it follows from Lemma 1 that B is a column-

orthogonal SOA(n, 2k, st, t), and it is 3-orthogonal if t > 3.

A.4. Proof of Theorem 3

(i) Let A = (a1, . . . , am). For j = 1, . . . , 2k, let bj denote the jth column of B.

Since the proof is similar to that of Theorem 1(i), here we only prove that

(b2j−1, b2j) can be collapsed into an OA(n, 2, su1 × su2 , 2), where u1+u2 = t.

For j = 1, . . . , k,

b2j−1 = a1s
(t−1)/2 +

(t−1)/2∑
r=1

a(j−1)(t−1)+r+1s
r−1+

t−1∑
r=(t+1)/2

a(j−1)(t−1)+r+1s
r,

and

b2j = a1s
(t−1)/2 +

(t−1)/2∑
r=1

a(j−1)(t−1)+r+1s
t−r+

t−1∑
r=(t+1)/2

a(j−1)(t−1)+r+1s
t−r−1.
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For u1 + u2 = t and u2 ≥ (t− 1)/2, if b2j−1 is collapsed into su1 levels, it is

2
⌊b2j−1 + st

2st−u1

⌋
− su1 + 1=


a1 +

t−1∑
r=u2+1

a(j−1)(t−1)+r+1s
r−u2 , u2 =

t−1
2 ,

t−1∑
r=u2

a(j−1)(t−1)+r+1s
r−u2 , u2 >

t−1
2 ;

(A.1)

and if b2j is collapsed into su2 levels, it is

2
⌊b2j+st

2st−u2

⌋
−su2+1=



u2∑
r=1

a(j−1)(t−1)+r+1s
u2−r, u2=

t−1
2 ,

a1 +
u2−1∑
r=1

a(j−1)(t−1)+r+1s
u2−r, u2=

t+1
2 ,

a1s
u2−(t+1)/2+

(t−1)/2∑
r=1

a(j−1)(t−1)+r+1s
u2−r

+
u2−1∑

r=(t+1)/2

a(j−1)(t−1)+r+1s
u2−r−1, u2>

t+1
2 .

(A.2)

From (A.1), (A.2), and Lemma A.1, it follows that (b2j−1, b2j) can be col-

lapsed into an OA(n, 2, su1 × su2 , 2).

The case u2 < (t− 1)/2 can be derived similarly.

(ii) As in the proof of Theorem 1(ii), for (t − 1)/2 ≤ q < t and u1 + u2 = t, it

is enough to prove that both (b1, b2k+1) and (b2, b2k+1) can be collapsed into

OA(n, 2, su1 × su2 , 2)’s, where

b2k+1=



a1s
q +

t−q−1∑
r=1

ar+1s
r−1 +

q∑
r=1

a(k−1)(t−1)+rs
t−q−1+r, q = t−1

2 ,

a1s
(t−1)/2+

t−q−1∑
r=1

ar+1s
r−1+

q−(t−1)/2∑
r=1

a(k−1)(t−1)+rs
t−q−2+r

+
q∑

r=q−(t−3)/2

a(k−1)(t−1)+rs
t−q−1+r, q > t−1

2 .

For u1 + u2 = t and u2 > q ≥ (t − 1)/2, if b2k+1 is collapsed into su2 levels,

it is
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a1 +
q∑

r=1
a(k−1)(t−1)+rs

r, u2 =
t+1
2 , q = t−1

2 ,

a1s
q−t+u2 +

t−q−1∑
r=t−u2+1

ar+1s
r−(t+1−u2)

+
q∑

r=1
a(k−1)(t−1)+rs

r−q−1+u2 , u2 >
t+1
2 , q = t−1

2 ,

a1s
u2−(t+1)/2 +

t−q−1∑
r=t−u2+1

ar+1s
r−(t+1−u2)

+
q−(t−1)/2∑

r=1
a(k−1)(t−1)+rs

r−q−2+u2

+
q∑

r=q−(t−3)/2

a(k−1)(t−1)+rs
r−q−1+u2 , u2 > q ≥ t+1

2 .

(A.3)

For u2 > (t − 1)/2 and u1 + u2 = t, we know that if b1 is collapsed into su1

levels, it is

2
⌊b1 + st

2st−u1

⌋
− su1 + 1 =

t−1∑
r=u2

ar+1s
r−u2 (A.4)

and, if b2 is collapsed into su1 levels, it is

2
⌊b2 + st

2st−u1

⌋
− su1 + 1 =

t−u2∑
r=1

ar+1s
t−r−u2 . (A.5)

From (A.3), (A.4), (A.5), and Lemma A.1, it follows that both (b1, b2k+1)

and (b2, b2k+1) can be collapsed into OA(n, 2, su1 × su2 , 2)’s.

The other cases can be derived similarly.

A.5. Proof of Theorem 4

According to Theorem 3, we know that both AR4 and AR∗
4 are strong or-

thogonal arrays. Since both R4 and R∗
4 are column-orthogonal, the conclusions

can be obtained through Lemma 1.

A.6. Proof of Theorem 5

Obviously, R5 is a special case of R3. Then from Theorem 3, AR5 is an

SOA(n, 2k, st, t). It can be easily calculated that the correlation between any

two distinct columns of R5 is st−1(s2 − 1)/(s2t − 1). According to Lemma 1,

we know that the correlation between any two distinct columns of B is also

st−1(s2 − 1)/(s2t − 1). It is not difficult to prove that st−1(s2 − 1)/(s2t − 1) is

strictly decreasing with respect to s and t, respectively. We omit the details.
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A.7. Proof of Theorem 6

Without loss of generality, we only prove the case of even t with R be-

ing R1(-s); the proofs are similar for other cases. Let B = (B1T , . . . , BsT )T ,

where Bi consists of the rows of B from (i − 1)n/s + 1 to in/s. Then Bi is an

OA(n/s,m, s, t− 1). Similarly, let C = (C1T , C2T , . . . , CsT )T , where Ci consists

of the rows of C from (i− 1)n/s to in/s. Then according to Theorem 1,

Ci = BiR, ci2j−1 =

t∑
r=1

bi(j−1)t+rs
r−1, ci2j =

t∑
r=1

bi(j−1)t+rs
t−r,

where cil is the lth column of Ci and biv is the vth column of Bi, l = 1, . . . , 2k,

v = 1, . . . ,m, and i = 1, . . . , s. Let D = (D1T , D2T , . . . , DsT )T be the matrix

obtained by collapsing C into st−1 levels. Then

di2j−1 = 2
⌊ci2j−1 + st

2s

⌋
− st−1 + 1 =

t∑
r=2

bi(j−1)t+rs
r−2,

di2j = 2
⌊ci2j + st

2s

⌋
− st−1 + 1 =

t−1∑
r=1

bi(j−1)t+rs
t−r−1.

According to the proof of Theorem 1, Di is an SOA(n/s,m′, st−1, t− 1). Then

C is a sliced SOA(n,m′, st, t) with s slices, and each slice is an SOA(n/s,

m′, st−1, t− 1) when collapsed into st−1 levels.

Conclusions on the orthogonality of C and its slices can be obtained through

Lemma 1.
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